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Balancing Prediction and Recommendation Accuracy:

Hierarchical Latent Factors for Preference Data

Nicola Barbieri ∗ Giuseppe Manco † Ettore Ritacco‡ Riccardo Ortale§

Abstract

Recent works in Recommender Systems (RS) have in-
vestigated the relationships between the prediction ac-
curacy, i.e. the ability of a RS to minimize a cost func-
tion (for instance the RMSE measure) in estimating
users’ preferences, and the accuracy of the recommenda-
tion list provided to users. State-of-the-art recommen-
dation algorithms, which focus on the minimization of
RMSE, have shown to achieve weak results from the rec-
ommendation accuracy perspective, and vice versa. In
this work we present a novel Bayesian probabilistic hi-
erarchical approach for users’ preference data, which is
designed to overcome the limitation of current method-
ologies and thus to meet both prediction and recommen-
dation accuracy. According to the generative semantics
of this technique, each user is modeled as a random mix-
ture over latent factors, which identify users community
interests. Each individual user community is then mod-
eled as a mixture of topics, which capture the prefer-
ences of the members on a set of items. We provide two
different formalization of the basic hierarchical model:
BH-Forced focuses on rating prediction, while BH-Free
models both the popularity of items and the distribu-
tion over item ratings. The combined modeling of item
popularity and rating provides a powerful framework
for the generation of highly accurate recommendations.
An extensive evaluation over two popular benchmark
datasets, proves the effectiveness and the quality of the
proposed algorithms, showing that BH-Free realizes the
best compromise between prediction and recommenda-
tion accuracy.
Keywords. Recommender Systems, Probabilistic Hi-
erarchical Co-clustering, Recommendation Accuracy.

1 Introduction

Recommender systems (RS) play an important role in
several domains as they provide users with potentially
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interesting recommendations within catalogs of avail-
able information/products/services [19]. Among the
various RS techniques, Collaborative Filtering (CF) is
effective with huge catalogs when information about
past interactions is available. According to this assump-
tion, several CF-based recommendation techniques have
been proposed, mainly focusing on the predictive skills
of the system.

Recent studies [8, 9, 17] have shown that the focus
on prediction does not necessarily help in devising good
recommender systems. In particular, the improvements
in prediction accuracy do not automatically reflect into
improvements of the accuracy of the recommendation
list, which is actually displayed to users. It has been
shown [3, 4] that probabilistic approaches based on
latent-factor models allow the most adequate degree of
flexibility, as they: (i) allow the specification of complex
yet easy to interpret latent structures; (ii) achieve the
highest recommendation accuracy.

Typically, complex patterns can be better detected
by means of co-clustering approaches [3, 10, 18, 22–24].
The latter aim at partitioning data into homogeneous
blocks enforcing a simultaneous clustering on both the
dimensions of the preference data. This highlights the
mutual relationships between users and items. The
work in [5] further extends the co-clustering approaches
by proposing the Hierarchical User Community Model
(HUCM in the following), which overcomes the limits of
a static structure enforced by fixed row/column blocks
where both users and items have to fit. HUCM intro-
duces a dynamic hierarchy between user communities
and item categories: in practice, data are modeled as-
suming that there is a dependency relationship between
latent factors on items and latent factors on users.

When focusing on user communities only, HUCM
is incidentally capable of explicitly modeling item se-
lection, i.e, the probability that an item is actually se-
lected by a user. While most of the conventional proba-
bilistic techniques focus on forced-prediction, which ex-
plicitly requires to predict the preference value for each
observed user-item pair, the non-hierarchical version of
HUCM (referred to as UCM in the following) is capable
to model item selection and rating prediction simulta-
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neously.
To summarize, previous research devised two major

contributions to the current literature. First, hierarchi-
cal probabilistic structures based on latent factor mod-
els can better model the underlying hidden relationships
at the basis of users’ behaviors. This allows to boost
the prediction accuracy of such probabilistic models.
Second, explicit modeling of item selection plays a cru-
cial role with accurate recommendation lists. As shown
in [4], a combined use of items selection and ranking
prediction is crucial for providing accurate recommen-
dation lists.

There is an apparent mismatch between these two
situations. The explicit modeling of item selection
boosts the accuracy of recommendation lists, yet it
negatively impacts on prediction accuracy. The point
is that exploiting item selection for ranking prediction
in a (hierarchical) co-clustering model yields too many
parameters to estimate, and consequently the risk of
overfitting increases. As a matter of fact, the models
achieving better prediction accuracy [1, 5, 18, 20] ignore
the item selection components, whereas the models
exhibiting the highest recommendation accuracy (such
as Pure-SVD [9], pLSA [14], LDA [7] and UCM ) provide
poor performance in ranking prediction, or do not
support it at all.

In this paper we propose a new Bayesian Hierar-
chical latent factor model (BH in the following) which
combines the advantages of both hierarchical modeling
and item selection, and comparatively investigate both
its recommendation accuracy and prediction error. BH
relies on a generative process, which can take into ac-
count both item selection and rating emission, so that
those users who experience the same items and tend to
adopt the same rating pattern are gathered into commu-
nities. Individual users are modeled as a random mix-
ture of communities, where the individual community
is characterized again by a mixture of topics modeling
both the popularity of items and the distribution over
item ratings.

BH reinterprets the former HUCM in a Bayesian
modeling setting, that is better suited to the sparseness
of the preference data and less susceptible to overfitting.
Additionally, BH allows a simpler and more elegant pro-
cedure for the estimation of model parameters through
Gibbs sampling [6]. As a matter of fact, a reinterpre-
tation of some results in [5] has been initially studied
in [2]. There, we proposed the Bayesian User Commu-
nity Model (BUCM), which revises the UCM model in
a Bayesian settings. Again, BUCM exhibits the (so far)
highest recommendation accuracy, but still fails in pro-
viding a suitable trade-off with prediction accuracy. By
converse, the BH model proposed here represents a sys-

tematic accommodation of the above issues, as it meets
the aforementioned requirements in a simple and ele-
gant mathematical setting, which guarantees both rec-
ommendation and prediction accuracy.

The rest of the paper is organized as follows.
First, we give an overview of the recommendation
problem by introducing some preliminary notations in
Sec. 2. In Sec. 3 we introduce and discuss two versions
of the hierarchical model, which focus respectively
on ranking prediction and explicit modeling of item
popularity. A collapsed Gibbs sampling procedure for
parameter estimation is also specified. We evaluate
the proposed approaches in Sec. 4, showing that the
BH approach outperforms state-of-the-art competitors
in recommendation accuracy and is yet comparable to
them in terms of prediction error. Finally, conclusions
are drawn in Sec. 5.

2 Preliminaries and Context

We introduce in this section the notation used through-
out the paper along with some preliminary concepts.
Let U = {u1, . . . , uM} be a set of M users and I =
{i1, . . . , iN} a set of N items. Users’ preferences can
be represented as a M × N matrix R, whose generic
entry rui denotes the rating value (i.e., the degree of
preference) assigned by user u to item i. For each pair
〈u, i〉, rating value rui falls within a limited integer range
V = {0, . . . , V }, where 0 represents an unknown rating
and V is the maximum degree of preference. Notation
ruR denotes the average rating among all those ratings
rui > 0 of the user u.

The number of users M as well as the number of
items N are very large and, in practical applications, the
rating matrix R is characterized by an an exceptional
sparseness (e.g., more than 95%), since the individual
users tend to rate a limited number of items. The set
of items rated by user u is denoted by IR(u) = {i ∈
I|rui > 0}. Dually, UR(i) = {u ∈ U|rui > 0} is the set
of all those users, who rated item i. Any user u with a
rating history, i.e., such that IR(u) 6= ∅ is said to be an
active user. Finally, the number of pairs (u, i) ∈ R such
that rui > 0 is denoted as S.

Given an active user u, the goal of a RS is to
provide u with a recommendation list RLu ⊆ I of
unexperienced items (i.e., RLu ∩ IR(u) = ∅), that are
expected to be of interest to u. This clearly involves
predicting the interest of u into unrated items.

In this paper, we focus on probabilistic approaches
based on latent factors. In these models, each pref-
erence observation 〈u, i〉 is generated by one of multi-
ple possible states, which informally explains the rea-
son why u rated i. To keep notation uncluttered,
we shall write P (r, u, i) to denote the joint probabil-
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ity P (R = u, U = u, I = i), where R, U and I are
random variables taking values r, u and i, respectively,
from the set of rating values V, the set of users U and
the set of items I. Likewise, the same notation will be
also adopted for conditional probabilities, for instance
P (r|u, i) corresponds to P (R = r|U = u, I = i).

Based on the underlying mathematical model, prob-
abilistic approaches allow the prediction of the expected
interest of a user u into an item i in two different
ways [14]:

• Forced prediction: the probabilistic model provides
an estimate of P (r|u, i);

• Free prediction: the item selection process is in-
cluded in the probabilistic model, which is typically
based on the estimate of P (r, i|u). Since the latter
can be factorized as P (r|i, u)P (i|u), the resulting
model still includes a forced prediction component,
which however is weighted by the item selection
component.

In general, a recommendation list RLu can be
generated as follows:

• Let C be a set of d candidate recommendations to
arbitrary items, not yet rated by u;

• Associate each item i ∈ C with a score pui repre-
senting u’s interest in i.

• Sort C in descending order of item scores pui ;

• Add the first k items from C to RLu and return the
latter to user u.

Historically, the evaluation of the goodness of the
recommendation list is made implicitly, i.e. by reinter-
preting the recommendation problem as a missing value
prediction problem [21]. Since a user is more prone to
access items for which she will likely provide a posi-
tive feedback, a recommendation list can be be built by
drawing upon the (predicted) highly-rated items. Under
this perspective, predictive accuracy metrics measure
how close the predicted score are to the true user pref-
erences [12], typically through the Root Mean Square
Error (RMSE).

However, the interaction between the RS and the
user is often based exclusively on the recommendation
list, while the system does not directly provide predicted
rating to users. In this context, classification accuracy
metrics, such as precision and recall, are more suitable
to measure the effectiveness of the RS.

A common framework in the evaluation of the
predictive capabilities of a RS algorithm is to split the
rating matrix R into two matrices T and S, such that

the former is used to train the RS, while the latter is
used for validation purposes. By selecting a user u from
S, the recommendation list RLu is the set of the best
items drawn from I − IT(u). Evaluation is performed
by comparing RLu with IS(u). Given a user u and
a subset T ru ⊆ IS(u) of relevant items, the degree of
precision (prec) and recall (rec) of the k items within
RLu is defined as shown next:

rec(k) =
1

M

M∑
u=1

|RLu ∩ T ru |
|T ru |

prec(k) =
1

M

M∑
u=1

|RLu ∩ T ru |
k

Item relevance can be measured in several different
ways. Since explicit preference values are available, we
consider as relevant all those items that received a rating
greater than the average ratings in the training set:

T ru = {i ∈ IS(u)|rui > ruT, (u, i, r
u
i ) ∈ S}

The above definitions of precision and recall consider the
amount of useful recommendations as a single session.
A different perspective can be considered by assuming
that a recommendation meets user satisfaction, if the
user can find at least a hit, i.e. an interesting (best
rated) item in the recommendation list. Starting from
a redefinition of the set of relevant items,

T ′ru = {i ∈ IS(u)|(u, i, rui ) ∈ S, rui = V }

the following testing protocol can be applied to assess
user satisfaction:

• For each user u and for each item i ∈ T ′ru :

– Generate the candidate list C by randomly
drawing from IR(u)− (IT(u) ∪ {i}).

– Add i to C.
– Associate each item within C with a suitable

score and sort C in descending order of item
scores.

– Consider the position of the item i in the
ordered list: if i belongs to the top-k items,
there is a hit ; otherwise, there is a miss.

According to this protocol, [9] defines the US-Precision
and US-Recall.

US-Recall(k) =
#hits

|T ′ru |
, US-Precision(k) =

#hits

k · |T ′ru |

A key role in the process of generating accurate
recommendation lists is played by the schemes with
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which to rank items candidate for recommendation. [4]
provides a comparative analysis of three possible such
schemes, and studies their impact in the accuracy of the
recommendation list. The results of such study can be
summarized as follows.

• Lower RMSE values do not necessarily imply im-
provements in recommendation accuracy. Cutting-
edge probabilistic approaches, such as PMF [20],
equipped with expected-value (pui = E[R|u, i])
item-ranking schemes have been shown to perform
poorly in terms of recommendation accuracy.

• Probabilistic CF methods were shown to outper-
form state-of-the-art competitors in terms of rec-
ommendation accuracy when equipped with the
item selection scheme pui = P (i|u).

In the model proposed in this paper, we shall con-
centrate on a mix of item selection and relevance rank-
ing, namely pui = P (i, r > ruT|u). Specifically, we aim at
forcing the selection process to focus on relevant items,
by counterbalancing the prediction probability with a
component that represents the predicted relevance of an
item i with respect to a given user u.

3 Bayesian Hierarchical Model for Preference
Data

A crucial point in the foregoing discussion is the ob-
servation that different communities can infer different
evaluations of the same item. The problem has been
preliminarily studied in [5], where the concepts of user
communities and hierarchical item categories was intro-
duced. Specific groups of users tend to be co-related
according to different subsets of features.

Figure 1: Hierarchical topics nested into user commu-
nities.

Consider the toy example in fig. 1, where homoge-
neous blocks exhibiting similar rating patterns are high-
lighted. There are 7 users clustered into two main com-
munities. Community 1 is characterized by 3 main top-
ics (with groups d11 = {i1, i2, i3}, d12 = {i4, i5, i6, i7}
and d13 = {i8, i9, i10}), whereas community 2 includes

4 main topics (with groups d21 = {i1, i4, i5}, d22 =
{i2, i3, i7}, d23 = {i6, i10} and d24 = {i8, i9}). The nov-
elty is that different communities group the same items
differently. This introduces a topic hierarchy which in
principle increases the semantic power of the overall
model.

In this paper we extend the framework of [5] by
relaxing some basic conditions:

• users can exhibit diverse “dynamic” behaviors (in
the style of [15]). That is, for each user there is
no fixed community. Rather, the local behavior is
picked randomly among the most probable.

• Analogously, items are dynamically associated with
topics according to an underlying probability law.

• The overall process is governed by Bayesian priors
thus allowing a more controlled modeling of data
sparseness.

The key idea is that there exists a set of user commu-
nities, each one describing different tastes of users and
their corresponding rating patterns. Each user com-
munity is then modeled as a random mixture over la-
tent topics, which can be interpreted as item-categories.
Given a user u, we can foresee his/her preferences on a
set of items Iu by choosing an appropriate user commu-
nity z and then choosing an item category w for each
item in the list. The choice of the item category w
actually depends on the selected user community z. Fi-
nally the preference value is generated by considering
the preference of users belonging to the group z on items
of the category w. This local modeling of items is the
main difference in the generative semantic with respect
to state-of-art LDA based co-clustering approaches [18].

A first coarse-grained generative process directly
derived from [5] can be devised as an adaptation of the
well-know LDA-based models [1, 7], and is graphically
depicted in Fig. 2:

α ϑ z

β ϕ w

γεr

N ×K

M M ×N

K × L

Figure 2: BH-Forced Generative model

1. For each user u ∈ U sample user community-
mixture components ~ϑu ∼ Dir(α̃);
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2. For each item i ∈ I and user community z ∈
{1, . . . ,K} sample the mixture components ~ϕz,i ∼
Dir(~β)

3. For each topic w ∈ {1, . . . , L} and user community
z = {1, · · · ,K}, sample rating probabilities ~εz,w ∼
Dir(~γ)

4. For each active pair n = (u, i) in R:

(a) Choose a user attitude zn ∼ Discrete(~ϑu)

(b) Choose a topic wn ∼Multi(~ϕzn,i)

(c) Generate a rating value for the chosen item
according to the distribution P (r|~εzn,wn)

With respect to HUCM proposed in [5], that relies
on maximum likelihood estimation with multinomial
priors for model inference, the new Bayesian formulation
(BH-Forced in the following) is both better suited to
the sparsity of the rating matrix and less susceptible to
overfitting. Moreover, it allows the development of a
simpler and more elegant procedure for approximated
parameter estimation based on Gibbs sampling [6].
Notice that, in the following, we model P (r|~εzn,wn) as a
multinomial over the parameter vector ~εzn,wn

. Different
choices can be made, in the style of [13], which are
omitted here for lack of space.

Figure 3 shows how the rating matrix described in
Fig. 1 can be modeled according to BH-Forced. The fig-
ure summarizes a setting of the probability distributions
for a BH-Forced Co-Clustering model compatible with
the data represented in the previous example. By ap-
plying the generative process described above, the inter-
ested reader can easily verify that each observed rating
can be replicated by drawing upon the corresponding
distribution. For example, let us consider the observa-
tion 〈u5, i5〉. According to the devised generative pro-
cess, we first pick user community 2 for u5, exploiting
table c. Next, we assign item category 1 to item i5, by
drawing upon the available categories according to the
probability in table e. Finally, given the cocluster 〈2, 1〉,
we observe rating 5 by picking randomly according to
the related rating distribution in table f.

Again, it is worth noticing that the Bayesian Hierar-
chical model is more powerful, as it allows the modeling
of complex relationship in a more dynamic scenario. As
a matter of fact, users (resp. items) are not necessarily
statically bound to a single community (resp. topic),
but their membership can be dynamically modeled. In
particular, for each pair 〈u, i〉 diverse user communities
and item categories can be picked, according to the as-
sociated multinomial priors.

3.1 Modeling Free Prediction. A problem with
the BH model introduced so far is its focus on forced-
prediction. That is, the model concentrates on the
prediction of preference values for each observed user-
item pair, and does not explicitly take into account item
selection. As already mentioned, this component plays
a crucial role in the generation of the recommendation
list. Hence, it is likely to expect poor recommendation
accuracy for this model.

The point is that the components in the BH-
Forced model do not provide a direct support to the
computation of p(r, i|u). Thus, the only possibility
for BH-Forced is to generate a recommendation list by
resorting to the expected-value, as explained in section
2.

We fix this issue by accommodating the hierarchical
schema in Fig. 2 with an explicit item selection compo-
nent. Specifically, each user is modeled as a random
mixture of topics, where the individual topic is then
characterized both by a distribution modeling item-
popularity within the considered user-community and
by a distribution over preference values for those items.
In particular, the distribution of items given the topic
variable w depends on the choice of the user commu-
nity: this enforces an explicit modeling of item popu-
larity both within a category and within a community,
and hence provides a high degree of flexibility. Further,
the rating prediction components maintains almost the
same structure as in the BH-Forced models, and hence
even the accuracy is almost the same.

α ϑ z

β ϕ w

γε

δς
i

r

K

M S K × L

K × L

Figure 4: BH-Free Model

The generative process for the new BH-Free model,
whose corresponding graphical scheme is shown in
Fig. 4, is as follows:

1. For each user u ∈ U sample user community-
mixture components ~ϑu ∼ Dir(α̃);

2. For each user community z ∈ {1, . . . ,K} sample

the mixture components ~ϕz ∼ Dir(~β)

3. For each topic w ∈ {1, . . . , L} and user community
z = {1, · · · ,K},
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Figure 3: Probabilistic modeling of local patterns

(a) Sample item selection components ~ςz.w ∼
Dir(~δ)

(b) Sample rating probabilities ~εz,w ∼ Dir(~γ)

4. For each u ∈ U

(a) Sample the number of items for the user u,
Nu ∝ Poisson(K)

(b) For n = 1 to Nu

i. Choose a user attitude zu,n ∼
Discrete(~ϑu)

ii. Choose a topic wu,n ∼Multi(~ϕzn)

iii. Choose an item in ∼Multi(~ςzu,n,wu,n
)

iv. Generate a rating value for the cho-
sen item according to the distribution
P (r|~εzu,n,wu,n).

BH-Free tries to infer the tendency of a user to ex-
perience some items over others independent of her/his
rating values. The model assumes that this tendency is

influenced by implicit and hidden factors which charac-
terize each user community. To elucidate, a user may
be pushed to experience a certain item because she/he
belongs to a community in which the category of that
item occurs with a high probability, although this has
no impact on the rating assigned to the aforesaid item
category. The probability of observing an item is in-
dependent from the rating assigned, given the state of
the latent variables. This is a major difference with
respect to most of the (co-clustering) models, which in-
stead approach the problem from a matrix approxima-
tion perspective (as they focus on the prediction of rui ).
By contrast, free-prediction models are focused on both
the estimation of a rating behavior and the popularity
of an item within each user community. An item which
has received high ratings and has been experienced few
times by the users belonging to the considered com-
munity could not have better chances of being recom-
mended with respect to a popular item within the same
community, which has received only ratings around the
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average.
It is worth noticing that support to free prediction

was already included in the UCM model. And in fact,
BH-Free can be considered a substantial extension of
the UCM model, in that it (i) adds a hierarchical co-
clustering structure, thus complying to the originary
idea of modeling local patterns; (ii) accommodates a
Bayesian modeling which allows better control on data
sparseness.

3.2 Inference and parameter estimation. The
inference process is similar for both BH-Forced and BH-
Free. Concerning the BH-Free model, there’s a small
overhead due to the explicit modeling of item selection.
Hence, in the following we shall only sketch the deriva-
tion of the sampling equations for this model. The equa-
tions for BH-Forced can be derived by resorting to sim-
ilar techniques.

SYMBOL DESCRIPTION
M #Users
N # Items
R M ×N Rating Matrix
K # topics/user communities
L # item categories

Θ matrix M ×K of parameters ~ϑu

~ϑu K-vector: mixing proportion of user-communities
for the user u

Φ Matrix of parameters ~ϕk

~ϕk L-vector: mixing proportion for the item category l
and the user-topic k

Γ Matrix of parameters ~εk,l

~εk,l V -vector: distribution over rating values
for the co-cluster k, l

Σ Matrix of parameters ~ςk,l

~ςk,l N-vector: mixing proportion for each item
i in the co-cluster k, l

z user-topic variable
Z M ×N matrix: user-topic assignments

for each rating observation
w item-categories topic variable
W M ×N matrix: item-categories assignments

for each rating observation
~α K- vector: Dirichlet priors on user communities
~β L-vector: Dirichlet priors on item categories
~γ V -vector: Dirichlet priors on rating values
~δ N-vector: Dirichlet priors on items

nk
u # evaluation of the user u which have been

assigned to the user topic k

nk,l
r # times that the rating r has been assigned

to each observation when the user topic is k
and the item category is l

nk,l
i

# times that the item category l has been assigned
to observations of the item i when the user topic is k

nu # observations for the user u (|I(u)|)
nk # observations associated with community k
nk,l # times that the category l has been assigned

to observations whose user topic is k

~nu {nk
u}

K
k=1

~nk {nl
k}

L
l=1

~n
(V )

k,l
{nk,l

r }
V
r=1

~n
(N)

k,l
{nk,l

i
}Ni=1

Table 1: Summary of notation

The notation used in our discussion is summarized

in Tab. 1. Given the hyperparameters ~α, ~β, ~δ and ~γ,
the joint distribution of the data R, the user-community
mixtures Θ, the item-topic components Φ, the item
and rating probabilities Σ and Γ and the observation-
community/topic assignments Z,W , can be computed
as:

P (R, Z,W,Θ,Φ,Σ,Γ|~α, ~β,~γ, ~δ) =

P (R|Z,W,Γ,Σ)

· P (Z|Θ)P (Θ|~α)

· P (W |Z,Φ)P (Φ|~β)

· P (Γ|~γ)

· P (Σ|~δ)

(3.1)

The complete data likelihood can be obtained by
integrating over Θ, Φ, Σ and Γ which can be factored
as:

P (R, Z,W |~α,~β,~γ, ~δ) =

∫
P (Z|Θ)P (Θ|~α)dΘ∫

P (W |ZΦ)P (Φ|~β)dΦ∫ ∫
P (R|Z,W,Σ,Γ)P (Σ|~δ)P (Γ|~γ)dΣdΓ

By rearranging the components and grouping the con-
jugate distributions, the complete data likelihood can
be expressed as:

P (R, Z,W |~α, ~β,~γ, ~σ) =

M∏
u=1

∆(~nu + ~α)

∆(~α)
·
K∏
k=1

∆(~nk + ~β)

∆(~β)

·
K∏
k=1

L∏
l=1

∆(~n
(V )
k,l + ~γ)

∆(~γ)
·
K∏
k=1

L∏
l=1

∆(~n
(N)
k,l + ~δ)

∆(~δ)

The latter is the starting point for the inference of
all the topics underlying the generative process, as the
conditioned distribution on Z,W can be written as:

P (Z,W |R, ~α, ~β,~γ, ~δ) =
P (Z,W,R|~α, ~β,~γ, ~δ)
P (R|~α, ~β,~γ, ~δ)

This formula is however intractable, mainly because
the computation of the denominator requires a summa-
tion over an exponential number of terms. Gibbs Sam-
pling [6] addresses this problem by defining a Markov
chain, in which at each step inference can be ac-
complished by exploiting the full conditional P (zn =

kn, wn = ln|Z¬n,W¬n,R, ~α, ~β,~γ). In the latter, zn
(resp. wn) is the cell of the matrix Z (resp. W ) which
corresponds to this observation, and Z¬n (W¬n) denotes
the remaining topic assignments. The chain is hence de-
fined by iterating over the available states n. The Gibbs
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Sampling algorithm estimates the probability of assign-
ing the pair kn, ln to the n-th observation, given the
assignment corresponding to all the other rating obser-
vations:

P (zn = kn, wn = ln|Z¬n,W¬n,R, ~α, ~β,~γ) ∝
nknun

+ αkn − 1∑K
k′=1(nk′un

+ αk′)− 1

·
nlnkn + βln − 1∑L

l′=1(nl
′
kn

+ βl′)− 1

·
nkn,lnrn + γrn − 1∑V
r=1(nkn,lnr + γr)− 1

·
nkn,lnin

+ γin − 1∑N
i=1(nkn,lni + δi)− 1

(3.2)

Given the state of the Markov chain, denoted
my M = (R, Z,W ), we can obtain the multinomial
parameters Φ and Θ and Γ noticing that, by applying
Bayes’s rule and then by algebraic manipulations and
the properties of the Dirichlet distribution [11]. This
ultimately yields the following estimations:

ϑu,k =
nku + αk

nu +
∑K
k=1 αk

(3.3)

ϕk,l =
nkl + βl

nk +
∑L
l=1 βl

(3.4)

εk,l,r =
nk,lr + γr

nk,l +
∑V
r′=1 γr′

(3.5)

ςk,l,i =
nk,li + δi

nk,l +
∑N
i′=1 δi′

(3.6)

Finally, given the pair 〈u, i〉 we compute the proba-
bility of observing the rating value r in a free prediction
context:

(3.7) p(R = r, i|u) =

K∑
k=1

L∑
l=1

ϑu,k · ϕk,l · ςk,l,i · εk,l,r

Notice the explicit reference, in Eq. 3.7 to the ςk,l,i com-
ponents that models the probability of i being selected
within co-cluster k, l. Clearly, such a component biases
the ranking towards relevant items, thus providing the
required adjustment that makes the model suitable for
both prediction and recommendation accuracy.

4 Evaluation

In this section we comparatively evaluate the perfor-
mance of the two BH models. The experiments are
aimed at assessing the quality of the models in two dif-
ferent perspectives:

• From the forced-prediction viewpoint, we show
that the predictive accuracy (i.e., the prediction
error) exposed by both the BH-Forced and BH-Free
models over unobserved ratings is comparable and
in some cases even better to other state-of-the art
probabilistic approaches.

• Conversely, from the free-prediction viewpoint, we
show that BH-Free is the top-notch approach in
term of recommendation accuracy

We use two reference benchmark data sets, namely
MovieLens-1M1 and a sample of Netflix data. Both
datasets contain explicit preference data: ratings fall
within the range 1 to 5, where the latter denotes the
highest preference value. The main features of these
datasets are summarized in Tab. 2.

Nextflix MovieLens
Training Set Test Set Training Set Test Set

Users 435,656 389,305 6,040 6,032
Items 2,961 2,961 3,706 3,444

Ratings 5,714,426 3,773,781 800,729 199,480
Avg ratings (user) 13 9 132 33
Avg ratings (item) 1929 1274 216 57
Min ratings (user) 1 1 11 1
Min ratings (item) 5 1 1 1
Max ratings (user) 957 691 1849 465
Max ratings (item) 64492 42780 2738 690
Sparseness Coeff 0,9957 0,9642

% of * 4.55 4.53 5.62 5.58
% of ** 10.06 10.06 10.76 10.74
% of *** 28.82 28.87 26.11 26.11
% of **** 33.33 33.39 34.89 34.89
% of ***** 23.21 23.13 22.61 22.69

Table 2: Summary of the Data used for validation.

We compare both models with some state-of-the-art
competitor approaches to CF recommendation, and in
particular with co-clustering approaches. For the latter
aspect, we compare with LDCC [25] (which extends
the Bayesian co-clustering model proposed in [22] and
it is based on a collapsed Gibbs sampling algorithm
to perform parameter estimation and inference); with
Bregman-CC proposed in [10] (which is based on the
Bregman co-clustering algorithm); with Bi-LDA [18]
(which extends the standard URP model [1] in both
the user and item dimensions). All models have been
trained by retaining the 1% of the training data as held
out to perform early stopping and avoid overfitting.

We also compare with the User community models
previously defined: UCM, HUCM [5], and BUCM [2].
Whereas HUCM is a natural choice for comparison, (as
the BH models represent a direct extension of such
a model), the UCM (and its Bayesian redefinition)
explicitly model item selection and relevance ranking,
and hence represent a reference comparison for the BH-
Free model.

1http://www.grouplens.org/system/files/

million-ml-data.tar\_\_0.gz
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Predictive Accuracy. We start our analysis from
the evaluation of the prediction accuracy achieved by
the algorithms. Table 3 summarizes the best RMSE
obtained on both the considered datasets, together with
the associated settings. To assess the effectiveness of
all the considered approaches in rating prediction, we
compare them with Probabilistic Matrix Factorization
(PMF) [20], a cutting-edge probabilistic approach.

As a general remark, both BH-Forced and BH-
Free exhibit similar RMSE as other co-clustering ap-
proaches. BH-Free even outperforms all the other ap-
proaches on the NetFlix data, and is the runner-up win-
ner after HUCM which, however, exhibits a marginal
advantage. Minimal differences can also be noticed on
MovieLens, where PMF achieves the best RMSE score
(as expected). In both datasets, BUCM is overcome by
all other co-clustering methods: this proves that a hier-
archical structure provides substantial information for
boosting the accuracy of prediction.

Since the dependency between item categories and
user communities tends to produce more complex
structures with respect to traditional co-clustering ap-
proaches, it is important to evaluate the scalability
of the BH models in this respect. Fig. 5 shows
how the RMSE scales with the number of item cat-
egories for the two BH models. BH-Forced glob-
ally achieves a lower RMSE, but tends to overfit the
data with a larger number of such categories. This
is clearly due to the huge number of parameters that
the model induces: BH-Forced estimates the matrix
{ϕk,i,l}k=1,...,K;i=1,...,N ;l=1,...,L which is one order of
magnitude bigger than the same matrix in the other
co-clustering models (like Bi-LDA or BH-Free).

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

3 5 10 15 20

R
M

SE

#ItemCategories

RMSE on Movielens - #Communities=20

BH-Forced BH-Free

Figure 5: RMSE on MovieLens data - Bayesian Hierar-
chical Model (#usercommunities=20)

As shown in Fig. 6, the learning time of the BH
models introduced a reasonable overhead with respect
to the learning time of LDCC, when the number of item
categories is less than 20.
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Figure 6: Execution Time on MovieLens data

Recommendation Accuracy. Things change
substantially when considering the precision and recall
accuracy metrics described in Sec. 2. Based from the re-
sults in [2, 4], we consider here also LDA model, which
has been identified as one of the top-performers in terms
of recommendation accuracy. Notice that LDA was not
included in the analysis of predictive accuracy, as it does
not explicitly support a way to compute rating predic-
tion. 2

The recommendation list for traditional probabilis-
tic approaches based on forced prediction is computed
by sorting items according to the expected value. As
far as HUCM is concerned, even if the overall model
does not specify item-selection probabilities, these com-
ponents are modeled explicitly by the simplified non-
hierarchical (B)UCM versions (detailed in [2, 4, 5]). To
summarize, we equip LDA with item selection ranking,
and UCM, BUCM and BH-Free with item selection and
relevance ranking. All the other approaches are based
on the expected value.

Figures 7 and 8 show the results in recommenda-
tion accuracy on Movielens and Netflix data, when the
size k of the list varies from 1 to 20. Probabilistic
models equipped with item-selection achieve the best
results in both datasets. On Movielens data, BH-Free
follows the same trend as LDA for user satisfaction, and
exhibits a minimal worsening on standard recall (0.39
vs 0.37) and precision (0.11 vs 0.10). BF-Forced does
not compare with item-selection methods, but achieves
competitive results with the remaining probabilistic co-
clustering approaches, outperforming them in user sat-
isfaction recall. Notably, the discrepancy between the
recommendation accuracy of Bayesian approaches and
the non-bayesian ones is consistently large. In particu-

2As a matter of fact, extensions explicitly modeling such

feature [16] have been experimentally shown in [4] to perform
worse than PMF.
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MovieLens Netflix
Approach Best RMSE #Topics Best RMSE #Topics

PMF 0.8655 10 0.9309 100
HUCM 0.9278 2-3 0.9212 50-10

Bregman-CC 0.9023 10-20 0.9873 3-5
Bi-LDA 0.9033 30-20 0.9362 30-15
LDCC 0.9074 5-5 0.9419 5-10

BH-Forced 0.9041 15-3 0.9320 10-3
BH-Free 0.9073 30-5 0.9256 30-5
BUCM 0.9292 30 0.9431 10

Table 3: Summary of predictive accuracy over the MovieLens and Netflix datasets

lar, both BUCM and BH-Free outperform UCM. This
confirms the advantages of the Bayesian approach.

The trends are confirmed and even strengthened on
Netflix data: approaches equipped with item-selection
and relevance ranking, and in particular BH-Free, tend
to outperform all the other approaches. BH-Free
achieves the best recommendation accuracy and ex-
hibits a global gain over both UCM and BUCM.

The outperformance of BUCM over BH-Free in
Movielens can be explained by the different distribution
of these data with regards to Netflix. In this latter case,
in fact, the huge volume of data is more likely to exhibit
local patterns, which are better modeled by BH-Free.
By converse, Movielens exhibits both less users and less
ratings, and hence the simpler BUCM model can easily
fit the data.

5 Final Remarks and Conclusion

In this work we proposed a hierarchical Bayesian ap-
proach for preference data, which extends state-of-the-
art (hierarchical) co-clustering techniques, by modeling
dynamic associations and dependencies between user-
and item-clusters. Two versions of the general schema
were proposed, namely BH-Forced and BH-Free, respec-
tively based on the forced- and free-prediction seman-
tics. An extensive evaluation was performed to assess
the skills of the devised models, in terms of both rating
prediction and recommendation accuracy. BH-Free and
BH-Forced were shown to achieve a competitive predic-
tion accuracy on the Movielens and Netflix data sets,
with respect to co-clustering competitors. However, the
two models perform differently as the number of item
categories grows. In fact, BH-Forced tends to overfit,
while the incorporation of item selection results in the
more robust BH-Free model. The learning time of the
proposed approaches is comparable to those of other co-
clustering techniques with a reasonable overhead due to
the higher structural complexity of the proposed mod-
els.

BH-Free is characterized by a high recommendation
accuracy: on the Movielens data set, it achieves compet-
itive results with respect to LDA, and it outperforms all

competitors on the sample of the Netflix collection. Ta-
ble 4 summarizes prediction and recommendation per-
formances on both datasets, reporting for each model
the settings that achieve the best results in terms of
recommendation accuracy. Due to space limitations, we
report only values for US-Recall and US-Precision. This
final comparison highlights the effectiveness of the pro-
posed BH models, which represent the best compromise
between prediction and recommendation accuracy.

We plan to extend the proposed model in two main
directions. First of all, we are interested in combining
in the same bayesian framework both collaborative
and content features. This is expected to increase
the accuracy of the recommendations provided by the
system and the background content information can be
used to provide personalized recommendations in cold-
start scenarios. Moreover, since the users behavior on
web is always more influenced by its social interactions
with the other users, and social recommender systems
[26,27] are emerging as a powerful combination of both
recommendation and social networking features, we are
interested in providing an extension of the proposed
framework which takes into account both users’ past
preferences and explicit people relationships to enhance
recommendations.
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Figure 8: Precision and recall over the Netflix data set
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