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Abstract—Power efficiency is one of the main issues that will
drive the design of data centers, especially of those devoted to
provide Cloud computing services. In virtualized data centers,
consolidation of Virtual Machines (VMs) on the minimum num-
ber of physical servers has been recognized as a very efficient
approach, as this allows unloaded servers to be switched off or
used to accommodate more load, which is clearly a cheaper alter-
native to buy more resources. The consolidation problem must be
solved on multiple dimensions, since in modern data centers CPU
is not the only critical resource: depending on the characteristics
of the workload other resources, e.g. RAM and bandwidth,
can become the bottleneck. The problem is so complex that
centralized and deterministic solutions are practically useless in
large data centers with hundreds or thousands of servers. This
paper presents a self-organizing approach for the consolidation
of VMs on two resources, namely CPU and RAM. Decisions on
the assignment and migration of VMs are driven by probabilistic
processes and are based exclusively on local information, which
makes the approach very simple to implement. Both a fluid-
like mathematical model and experiments on a real data center
show that the approach rapidly consolidates the workload, and
CPU-bound and RAM-bound VMs are balanced, so that both
resources are exploited efficiently.

I. INTRODUCTION

All main trends in information technology, e.g., Cloud
Computing and Big Data, are based on large and powerful
computing infrastructures. The ever increasing demand for
computing resources has led companies and resource providers
to build large warehouse-sized data centers, which require a
significant amount of power to be operated and hence consume
a lot of energy. It has been estimated by Gartner that in 2006
the energy consumed by IT infrastructures in USA was about
61 billion kWh, corresponding to 1.5% of all the produced
electricity and 2% of the global carbon emissions, which is
equal to the aviation industry, and these figures are expected
to double every 5 years [1].

In the past few years important results have been achieved,
especially by improving the efficiency of cooling and power
supplying facilities in data centers. The Power Usage Effec-
tiveness (PUE) index, defined as the ratio of the overall power
entering the data center and the power devoted to computing
facilities, had typical values between 2 and 3 only a few
years ago, while now big Cloud companies have reached
values lower than 1.2. However, much space remains for the

optimization of the computing facilities themselves. It has been
estimated that only 20-30% of the total capacity of servers
is used on average [2][3]. Unfortunately, power consumption
is not proportional to the server utilization: an active but
idle server consumes between 50% and 70% of the power
consumed when it is fully utilized [4] meaning that a large
amount of energy is used even at low utilization.

The virtualization paradigm can be exploited to alleviate
the problem: applications are not assigned directly to servers,
but are first associated to Virtual Machine (VM) instances,
many of which can be executed on the same physical server.
This enables the consolidation of the workload, which consists
in allocating the maximum number of VMs in the minimum
number of physical machines [5]. Consolidation allows un-
needed servers to be put into a low power state or switched
off (leading to energy saving and OpEx reduction), or devoted
to the execution of incremental workload (leading to CapEx
savings, thanks to the reduced need for additional servers).

Unfortunately, efficient VM consolidation is hindered by the
inherent complexity of the problem. The optimal assignment of
VMs to the servers of a data center is analogous to the NP-hard
“Bin Packing Problem”, the problem of assigning a given set
of items of variable size to the minimum number of bins taken
from a given set. To make things even worse, the problem is
complicated by two circumstances: (i) the assignment of VMs
should take into account multiple server resources at the same
time, for example CPU and RAM, therefore it is formally a
“multi-dimensional bin packing problem”, much more difficult
than the single dimension problem; (ii) even when a good
assignment has been achieved, the VMs continuously modify
their hardware requirements, potentially baffling the previous
assignment decisions in a few hours.

In [6] we presented ecoCloud, an approach for consolidat-
ing VMs according to a single computing resource, i.e., the
CPU. Here the approach is extended to the multi-dimension
problem, and is presented for the specific case in which VMs
are consolidated with respect to two resources: CPU and RAM.

With ecoCloud, VMs are consolidated using two types of
probabilistic procedures, for the assignment and the migration
of VMs. Both procedures aim at increasing the utilization of
servers and consolidating the workload dynamically, with the



twofold objective of saving electrical costs and respecting the
Service Level Agreements stipulated with users, especially
concerning the expected quality of service. All this is done
demanding the key decisions to single servers

The scenario is pictured in Figure 1: an application request
is transmitted from a client to the data center manager, which
selects a VM that is appropriate for the application on the basis
of application characteristics such as the amount of required
resources (CPU, RAM memory, disk) and the type of operating
system. Then, the VM is assigned to one of the available
servers through the assignment procedure.

Fig. 1. Assignment and migration of VMs in a data center.

Upon an invitation from the central manager, a single server
autonomously decides whether to give or deny its availability
to accept a VM. Decisions are based on information available
locally – for example, information on the local CPU and RAM
utilization – and are founded on Bernoulli trials. The data
center manager has only a coordinating role, and it does not
need to execute any complex centralized algorithm to optimize
the mapping of VMs.

The workload of each application typically changes with
time: for example, the CPU demand of a Web server depends
on the workload generated by Web users. Therefore, the
assignment of VMs is monitored continuously and is tuned
through the migration procedure. Migrating a VM can be ad-
vantageous either when the utilization of a hardware resource
is too low, meaning that that resource is under-utilized, or
when it is too high, possibly causing overload situations and
quality of service violations.

The rest of the paper is organized as follows: Section II
defines and illustrates the assignment and migration proce-
dures, generalized for the multi-resource consolidation prob-
lem. Section III analyzes the assignment procedure through a
mathematical model based on differential equations and shows
that ecoCloud is able not only to consolidate the load but
also to efficiently balance the available resources between
compute-intensive and memory-intensive applications. Section
IV reports the results of the ecoCloud adoption in a real
data center of a telecommunications company, extending the
assessment to the migration procedure. Section V illustrates
related work and Section VI concludes the paper.

II. ASSIGNMENT AND MIGRATION PROCEDURES

In this section we describe the two main probabilistic
procedures that are at the basis of ecoCloud: the assignment

and migration procedures. The allocation of VMs is driven by
the availability of CPU and RAM on the different servers.

The assignment procedure is performed when a client asks
the data center to execute a new application. Once the applica-
tion is associated to a compatible VM, the data center manager
must assign the VM to one of the servers for execution. Instead
of taking the decision on its own, which would require the
execution of a complex optimization algorithm for a inherently
intractable problem, the manager delegates a main part of the
procedure to single servers. Specifically, it sends an invitation
to all the active servers, or to a subset of them, depending
on the data center size and architecture1, to check if they
are available to accept the new VM. Each server takes its
decision whether or not to accept the invitation, trying to
contribute to the consolidation of the workload on as few
servers as possible. The invitation should be rejected if the
server is over-utilized or under-utilized on either of the two
considered resources, CPU and RAM. In the case of over-
utilization, the rationale is to avoid overload situations that
can penalize the quality of service perceived by users, while
in the case of under-utilization the objective is to put the
server in a sleep mode and save energy, so the server should
refuse new VMs and try to get rid of those that are currently
running. Conversely, a server with intermediate utilization
should accept new VMs to foster consolidation.

The server decision is taken performing a Bernoulli trial.
The success probability for this trial is equal to the value
of the overall assignment function that, in turn, is defined
by evaluating the assignment function on each resource of
interest. If x (valued between 0 and 1) is the relative utilization
of a resource, CPU or RAM, and T is the maximum allowed
utilization (T=0.8 means that the resource utilization cannot
exceed 80% of the server capacity), the assignment function
is equal to zero when x > T , otherwise it is defined as:

f(x, p, T ) =
1

Mp
xp(T − x) 0 ≤ x ≤ T (1)

where p is a shape parameter, and the factor Mp is used to
normalize the maximum value to 1 and is defined as:

Mp =
pp

(p+ 1)(p+1)
T (p+1) (2)

Figure 2 shows the graph of the single-resource assignment
function (1) for some values of the parameter p, and T = 0.9.
The value of p can be used to modulate the shape of the
function. Indeed, the value of x at which the function reaches
its maximum - that is, the value at which assignment attempts
succeed with the highest probability - is p/(p + 1)T , which
increases and approaches T as the value of p increases. The
value of the function is zero or very low when the resource is
over-utilized or under-utilized.

1Data centers are equipped with high-bandwidth networks that naturally
support broadcast messaging. In very large data centers, the servers may
be distributed among several groups of servers: in this case, the invitation
message may be broadcast to one of such groups only.
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Fig. 2. Assignment probability function f(x, p, T ) for three different values
of the parameter p and T equal to 0.9.

If us and ms are, respectively, the current CPU and RAM
utilization at server s, the overall assignment function is
obtained by the product of two assignment functions as in (1),
where x = us and x = ms are used, respectively, for CPU
and RAM. Let pu and pm be the shape parameters defined for
the two resources, and Tu and Tm the respective maximum
utilizations. The overall assignment function for the server s
is denoted as fs and defined as:

fs(us,ms, pu, pm, Tu, Tm) = f(us, pu, Tu) · f(ms, pm, Tm)
(3)

The shape of the assignment functions, combined with the
definition of function (3), ensures that servers tend to respond
positively when they have intermediate utilization values for
both CPU and RAM: if one of the resources is under- or over-
utilized the probability of the Bernoulli trial is low.

If the Bernoulli trial is successful, the server communicates
its availability to the data center manager. Then, the manager
selects one of the available servers, and assigns the new VM
to it. If none of the contacted servers is available – i.e., all the
Bernoulli trials are unsuccessful – it is very likely that in all
the servers one of the two resources (CPU or RAM) is close
to the utilization threshold2. This usually happens when the
overall workload is increasing, so that the current number of
active servers is not sufficient to sustain the load. In such a
case, the manager wakes up an inactive server and requests it
to run the new VM. The case in which there is no server to
wake up, because all the servers are already active, is a sign
that altogether the servers are unable to sustain the load even
when consolidating the workload: when this situation occurs,
the company should consider the acquisition of new servers.

The assignment process efficiently consolidates the VMs, as
shown later in Section III, but application workload changes
with time. When some VMs terminate or reduce their demand
for server resources, it may happen that the server becomes
under-utilized leading to a lower energy efficiency. On the
other hand, when the VMs increase their requirements, a
server may be overloaded, possibly causing SLA violation

2The case that all or many servers are not available because under-utilized
on both resources is very unlikely because the process tends to consolidate
the workload on highly utilized servers.

events and affecting the dependability of the data center. In
both these situations, under-utilization and over-utilization of
servers, some VMs can be profitably migrated to other servers,
either to switch off a server, or to alleviate its load.

The migration procedure is defined as follows. Each server
monitors its CPU and RAM utilization (a very simple oper-
ation that can be executed every few seconds) and checks if
it is between two specified thresholds, the lower threshold Tl

and the upper threshold Th. When this condition is violated,
the server evaluates the corresponding probability function,
f l
migrate or fh

migrate, and performs a Bernoulli trial whose
success probability is set to the value of the function. If the
trial is successful the server requests the migration of one
of the local VMs. Denoting by x the utilization of a given
resource, the migration probability functions are defined as
follows:

f l
migrate = (1− x/Tl)

α (4)

fh
migrate =

(
1 +

x− 1

1− Th

)β

(5)

The functions, whose graphs are shown in Figure 3, are defined
so as to trigger the migration of VMs when the utilization
is, respectively, below the threshold Tl or above the threshold
Th. These two kinds of migrations are also referred to as “low
migrations” and “high migrations” in the following. The shape
of the functions can be modulated by tuning the parameters
α and β, which can therefore be used to foster or hinder
migrations. The same function is applied to CPU and RAM,
but the parameters, Tl, Th, α and β can have different values
for the two resources. It may be useful to remark that the
over- or under-utilization of a single resource is sufficient to
trigger the migration procedure. In the case of over-utilization
the obvious rationale is that the overloaded resource becomes
a bottleneck for the server. On the other hand the under-
utilization of a single resource is a hint that the consolidation
is not optimal on that resource, and the migration of one or
more VMs may be profitable.
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Fig. 3. Migration probability functions f l
migrate and fh

migrate (labeled
as f l and fh) for two different values of the parameters α and β. In this
example, the threshold Tl is set to 0.3, Th is set to 0.8.

Whenever a Bernoulli trial is performed with success, the
server must choose the VM to consider for migration. In the
case of high migration, the server focuses on the over-utilized
resource (CPU or RAM) and considers the VMs for which



the utilization of that resource is larger than the difference
between the current server utilization and the threshold Th.
Then one of such VMs is randomly selected for migration, as
this will allow the utilization to go below the threshold3. In
the case of low migration the choice of the VM to migrate is
made randomly.

The choice of the new server that will accommodate the
migrating VM is made using a variant of the assignment
procedure described previously, with two main differences.
The first one concerns the migration from an overloaded
server: the threshold T of the assignment function is set to
0.9 times the resource utilization of the server that initiated
the procedure, and this value is sent to servers along with the
invitation. This ensures that the VM will migrate to a less
loaded server, and prevents ping-pong situations in which a
VM is continuously migrated from an overloaded server to
another. The second difference concerns the migration from
a lightly loaded server. When no server is available to run a
migrating VM, it would not be acceptable to switch on a new
server in order to accommodate the VM: one server would be
activated to let another one be hibernated. Therefore, when no
server is available, the VM is not migrated at all.

It is worth noting that our approach ensures a gradual and
continuous migration process, while most other techniques
recently proposed for VM migration (some are discussed in
the related work section) require the simultaneous migration
of many VMs.

III. MATHEMATICAL ANALYSIS

This section is devoted to the analysis of the ecoCloud
assignment procedure. The mathematical model is based on
a set of differential equations inspired by fluid dynamics
problems. Let Ns be the number of servers in a data center,
and Nc the number of cores in each server. The equations
model the evolution with time of the CPU and RAM utilization
of the servers, respectively denoted by us(t) and ms(t) for
server s, with s = 0, · · · , Ns − 1. The utilization of both
resources is a real number that changes by infinitesimal
increments/decrements over the interval [0, 1].

It is assumed that two types of VMs are executed on the
data center: CPU-bound and RAM-bound VMs, respectively
indicated as C-type and M-type. C-type VMs need an amount
of CPU that is larger than the amount needed by M-type
VMs of a factor γC > 1; conversely, the amount of RAM
required by M-type VMs is larger than the one needed by
C-type VMs by a factor γM > 1. Given the fluid model
assumption described above, the VM arrival process is a
continuous process that makes it arrive, in a time period ∆t,
an amount of VMs that is λ(C)(t)∆t for C-type VMs and
λ(M)(t)∆t for M-type VMs. The rate at which services are
completed is denoted by µ.

To analyze the two classes of VMs separately, we also
define the following state variables: u(C)

s (t) and u
(M)
s (t) are

3If no VM matches the condition, the largest VM will be chosen and a
new Bernoulli trial will be executed to trigger another migration.

the amount of CPU that in a server s is occupied by C-type
and M-type VMs, respectively; while m

(C)
s (t) and m

(M)
s (t)

are the amounts of RAM occupied by the two types of VMs.
The total utilization of CPU and RAM in server s is given by
the sum of the utilization of the two classes of VMs,

us(t) = u(C)
s (t) + u(M)

s (t)

ms(t) = m(C)
s (t) +m(M)

s (t)

Since the probability of assigning a VM to a server increases
with the value of the assignment function, in the model the
fraction of workload assigned to a server s is proportional
to the acceptance probability fs(us(t),ms(t), pu, pm, Tu, Tm),
as defined in expression (3). In the following, the acceptance
probability is simply denoted as fs(t).

The set of differential equations (with server index s =
0, · · · , Ns − 1) is the following:

∂u
(C)
s (t)

∂t
= −Nc · µ · u(C)

s (t) +K · γC · λ(C)(t) · fs(t) (6)

∂u
(M)
s (t)

∂t
= −Nc · µ · u(M)

s (t) +K · λ(M)(t) · fs(t)

∂m
(C)
s (t)

∂t
= −Nc · µ ·m(C)

s (t) +K · λ(C)(t) · fs(t)

∂m
(M)
s (t)

∂t
= −Nc · µ ·m(M)

s (t) +K · γM · λ(M)(t) · fs(t)

K is a normalization factor K, defined as:

K =
1∑Ns−1

i=0 fs(t)

The equations can be solved with the initial conditions that
define the state of the system at the time that ecoCloud is
executed:

u(C)
s (0), u(M)

s (0),m(C)
s (0),m(M)

s (0) s = 0, · · · , Ns − 1
(7)

To analyze the behavior of the system, we performed an
experiment for a data center with Ns=100 servers, each having
Nc = 6 cores with CPU frequency of 2 GHz and 4 GB RAM.
In the experiment, the VMs have nominal CPU frequency of
500 MHz. The average time the VM spent in service, 1/µ, is
set to 100 minutes. The average CPU (memory) load of the
data center is defined as the ratio between the total amount
of CPU (RAM) required by VMs and the corresponding CPU
(RAM) capacity of the data center, is denoted as ρC (ρM ) and
is computed as λ(C)/µT (λ(M)/µT ). Here, µT is the overall
service rate of the data center, obtained as µT = µNsNcNv,
where Nv is the number of VMs that can be executed on
a single 2 GHz core, in this case 4. To analyze the system
with a specified overall CPU or memory load, the arrival rates
λ(C) and λ(M) must be set accordingly. In the first set of



experiments, values of λ(C) and λ(M) are set to 9.6. With
these values the overall load of the data center, is equal to
0.40 for both CPU and RAM: ρC=ρM=0.4.

The experiment started from a non consolidated scenario:
for each server, initial CPU and RAM utilizations are set
using a Gamma probabilistic function having average equal
to 40 percent of the server capacity. The parameters of the
assignment function were set as follows: maximum utilization
threshold T=0.9, p=3. Under normal operation, without using
ecoCloud, the data center would tend to a steady condition
in which all the servers remain active with CPU and RAM
utilization around 40 percent. With ecoCloud, the workload
consolidates to only 45 servers, while 55 are switched off. This
allows the data center to nearly halve the consumed power,
from more than 20 kW to about 11 kW.

It was assumed that VMs are equally shared between
compute-intensive (C-type) and memory-intensive applications
(M-type). We considered the values of γC and γM , i.e., the ra-
tios between the CPU and RAM demanded by the two types of
VMs. The values of the two parameters were kept equal to one
another, and in different tests were set to: 1.0 (the two kinds
of applications coincide), 1.5 (C-type applications need 50%
more CPU than M-type ones, and M-type applications need
50% more RAM than C-type ones), 2.0, and 4.0 as the most
extreme case. At the end of the consolidation process, i.e., after
about two hours of the modeled time, the 45 active servers
show nearly the same distribution of their hardware resources
between the two types of applications. This distribution is
shown in Figure 4 for one of the active servers and for the
above-mentioned values of γC and γM . The most interesting
outcome of this experiment is that the probabilistic assignment
process balances the two kinds of VMs so that neither the
CPU or the RAM becomes a bottleneck. For example, in the
most imbalanced scenario (γC and γM equal to 4.0), about
71% of the CPU is assigned to C-type VMs while about
18% is given to M-type VMs, and the opposite occurs for
memory. Both CPU and RAM are utilized up to the permitted
threshold (90%) and the workload is consolidated efficiently,
which allows 55 servers to be hibernated and the consumed
power to be almost halved.

Of course, such an efficient consolidation is possible when
the relative overall loads of CPU and RAM are comparable
(both equal to 40% in this case). If one of the two resources
undergoes a heavier demand, that resource inevitably limits
the consolidation degree. For such a case, it is still interesting
to assess the behavior of the assignment algorithm. To this
purpose, we run experiments in which the overall CPU load,
ρC , is set to 40% of the total CPU capacity of the servers,
while the overall RAM load, ρM , is varied between 20% and
60%. This is accomplished by appropriately varying the value
of λ(M), the arrival frequency of M-type VMs. For this set
of experiments, the values of γC and γM are set to 4.0. The
CPU and RAM utilizations observed for each server after the
consolidation phase are shown in Figure 5. Correspondingly,
Figures 6 and 7 report the number of active servers and the
average value of consumed power. When the overall memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 γC=γM=1.0         γC=γM=1.5         γC=γM=2.0         γC=γM=4.0        

C
PU

 a
nd

 R
A

M
 u

til
iz

at
io

n

CPU C-type
CPU M-type
RAM C-type
RAM M-type

Fig. 4. CPU and RAM utilization of active servers, with different values of
γC and γM .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 ρM=0.2         ρM=0.3         ρM=0.4         ρM=0.5         ρM=0.6        

C
PU

 a
nd

 R
A

M
 u

til
iz

at
io

n

CPU C-type
CPU M-type
RAM C-type
RAM M-type

Fig. 5. CPU and RAM utilization of active servers, with different values of
ρM , and ρC=0.4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ρM=0.2       ρM=0.3       ρM=0.4       ρM=0.5       ρM=0.6       

N
um

be
r 

of
 a

ct
iv

e 
se

rv
er

s

Active servers

Fig. 6. Number of active servers with different values of ρM , and ρC=0.4.

load is lower than 0.4 (cases ρM=0.2 and ρM=0.3), the CPU is
the critical resource and is the one that drives the consolidation
process. The number of active servers (45), and the consumed
power (about 11 kW) are the same as in the case where CPU
and RAM overall loads are comparable. On the other hand,
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when the most critical resource is the memory, as happens
in the cases ρM=0.5 and ρM=0.6, the consolidation process
is driven by the allocation of RAM to the VMs. More active
servers and more power are needed to satisfy the increased
demand for memory: in the cases that the memory load is
equal to 50% and 60% of the data center capacity, 56 and 67
servers are kept active, respectively, and corresponding values
of consumed power are equal to about 13 kW and about 15
kW. Overall, it may be concluded that the approach is always
able to consolidate the load as much as is allowed by the most
critical hardware resource.

IV. EXPERIMENTS ON A REAL DATA CENTER

This section reports the results of the experiments performed
in May 2013 on a data center owned by a major Italian
telecommunications operator. The experiment was run on 28
servers virtualized with the platform VMWare vSphere 4.0.
Among the servers, 2 are equipped with processor Xeon 32
cores and 256 GB RAM, 8 with processor Xeon 24 cores and
100 GB RAM, 11 with processor Xeon 16 cores and 64 GB
RAM and 7 with processor Xeon 8 cores and 32 GB RAM.
The servers hosted 447 VMs which were assigned a number of
virtual cores varying between 1 to 4 and an amount of RAM
varying between 1 GB and 16 GB.

The VMs were categorized into CPU-bound (C-type) and
memory-bound (M-type) depending on their usage of the two
resources. We took as a reference the overall CPU and memory
capacity of the data center that were equal, respectively, to
1171 GHz and 2334 GBytes. A VM was classified as CPU-
bound if, at the end of the analyzed period, the average ratio
between its CPU and memory utilization was higher than the
ratio between the CPU and memory capacity of the data center.
In the opposite case, it was classified as memory-bound. In this
data center, 75 percent of the VMs, 335, were memory-bound,
with an average usage of CPU and RAM of, respectively, 0.382
GHz and 3.25 GB. The remaining 112 CPU-bound VMs had
average values of CPU and RAM of 1.76 GHz and 1.58 GB,
respectively. The M-type VMs contributed for about 40% of
the overall CPU load and for about 90% of the overall memory

load.
While the analytical study presented in Section III focuses

on the assignment procedure, during the real experiments both
the assignment and the migration were activated. VMs are
migrated either when the CPU or memory load exceeds the
high threshold Th, set to 0.95, or goes below the low threshold
Tl, set to 0.5. Values of α and β, in expressions (4) and (5),
were set to 0.25. The parameters of the assignment function
were set as in the mathematical analysis: T=0.9, p=3.

Figure 8 shows the number of active servers starting from
the time at which ecoCloud is activated and for the following
12 days. Within the first three days 11 servers, our of 28,
are switched off thanks to the workload consolidation. In the
following days, the number of active servers is stabilized.
Figure 9 shows that the consumed power reduces thanks
to consolidation. Figure 10 reports the number of high and
low migrations performed during each day of the analyzed
period on the whole data center. In the first days after
the activation of ecoCloud, migrations are mostly from low
utilized servers, which are first unloaded and then switched
off. As the consolidation process proceeds, active servers tend
to be well utilized and some high migrations are needed to
prevent overload events. The number of migrations stabilizes
to definitely acceptable values: for example, in the last two
days no more than four migrations per day are performed.

Figures 11 and 12 offer a snapshot of the data center at
the end of the twelfth day of ecoCloud operation, when only
17 of 28 are still active. The first figure reports, for each of
the 28 servers, the amount of CPU and RAM utilized by C-
type and M-type VMs. Since in this scenario most VMs are
memory-bound, the consolidation is driven by RAM: in the
majority of active servers the RAM utilization is over 70%,
three servers have a RAM utilization between 60% and 70%,
and a single server – the one labeled as server 6 – has a
RAM utilization lower than 50%. The consolidation is made
possible by the fact that VMs of the two types are distributed
among the servers in a proportion that never diverts too much
from the overall proportion observed in the whole data center.
This is clear from Figure 12, which reports the numbers of
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and M-type VMs. Values are taken at the end of the 12th day of operation.

VMs of the two types that run on each server. With the only
exception of server 6, in which no C-type VM is running, in
all the servers the proportion between the two types of VMs
is comparable to the 80-20 proportion observed in the data
center. The absolute numbers are different because servers are
not homogeneous.
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V. RELATED WORK

Recently, a notable amount of studies has focused on
algorithms and procedures that aim at improving the “green”
and energy-efficient characteristics of data centers. A survey
and a taxonomy are given in [7], while in [8] the focus is on
the categorization of green computing performance indices:
power metrics, thermal metrics, combined metrics, etc.

Virtualization is a common means to consolidate applica-
tions and in this way reduce power consumption [5][9][10].
The problem of optimally mapping VMs to servers can be
reduced to the bin packing problem [1][11][12]: VMs can be
treated as items of different size that must be assigned to the
minimum number of servers (representing the bins) taken from
a given set. This problem is known to be NP-hard, therefore
heuristic approaches can only lead to sub-optimal solutions.
Live migration of VMs among servers is adopted by the
VMWare Distributed Power Management system, using lower
and upper utilization thresholds to enact migration procedures.
The heuristic approaches presented in [1] and in [12] use
techniques derived, respectively, from the classical Best Fit
Decreasing and the First Fit Decreasing algorithms. In both
cases, the goal is to place each migrating VM on the server that
minimizes the overall power consumption of the data center.
An interesting study is presented in [13]. The paper proposes
the Delayed Off strategy (the name derives from the fact that
a server is turned off after been idle for some time), which
is proved to be asymptotically optimal but only under some
assumptions, for example stationary Poisson arrival process
and homogeneous servers.

These approaches represent important steps ahead for the
deployment of energy-efficient data centers, but still they share
a couple of notable drawbacks. First, they use deterministic
and centralized algorithms whose efficiency deteriorates as the
size of the data center grows. Secondly, they may require the
concurrent migration of many VMs, which causes considerable
performance degradation during the reassignment process.

A novel approach for the consolidation of VMs, based on
probabilistic trials, was presented in [6], and its mathematical



foundation was given in [14]. The solution has proved to
be scalable thanks to its self-organizing nature, and ensures
that VMs are relocated gradually using an asynchronous and
smooth migration process. In most studies, including the last
two, energy-efficiency strategies focus on CPU to obtain a
consistent reduction of consumed power. The reason is that
only CPU supports active low-power modes, whereas other
hardware components can only be completely or partially
switched off [2]. Nevertheless, important fractions of power
are consumed by memory, disk, and power supplies [15].
Moreover, applications hosted by VMs often present com-
plementary resource usage, so it may be profitably to let
a server execute a mix of memory-bound and CPU-bound
applications. When the assignment problem needs to consider
multiple hardware resources, it can be formally modeled as a
multidimensional bin packing problem, in which servers are
represented by bins, and each resource (CPU, disk, memory)
is a dimension of the bin [16]. This problem is clearly more
difficult than the single-dimension bin packing problem, and
centralized/deterministic solutions are hardly applicable even
in small data centers.

The probabilistic approach presented here extends the one
published in [6] to the case of multiple hardware resources.
The avenue is to define assignment and migration functions
for each resource type and let a server declare its availability
to the accommodation of a VM only when Bernoulli trials
are successful for every resource type. The second possibility,
simpler and not analyzed here, is to execute a single Bernoulli
trial for the most critical resource and use the other resources
as constraints to be satisfied to enable the accommodation of
the new or migrating applications.

To consolidate VMs, it is often necessary to migrate them
between two servers of the same cluster, or between different
clusters. This opportunity is favored by the recent trend
in the development and implementation of Software-Defined
Networks (SDN) [17], which extend the virtualization effort
from applications to network facilities, also thanks to the
definition of open standards like OpenFlow [18]. The SDN
paradigm will allow the data center to be viewed and managed
as a single large pool of computing and network resources, and
VMs to be migrated between any two physical servers.

VI. CONCLUSION AND FUTURE WORK

The paper focuses on the problem of making data centers
and Cloud infrastructures more energy efficient. One of the
most promising approaches consists in avoiding low utilization
of servers, which implies not optimal use of energy, by con-
solidating the load on as few servers as possible. In particular,
the paper deals with a recently proposed solution, namely
ecoCloud, that, by being decentralized and probabilistic in
nature, is highly scalable and allows smooth adaptation of the
infrastructure to the actual traffic load. In this paper, ecoCloud
is analyzed by extending the concept of server utilization from
a scalar individual value to a set of values that represent the
utilization of different kinds of resources inside the server:
for example, utilization is applied separately to CPU and

memory. An analytical model as well as experiments on a real
data center, show that ecoCloud achieves high consolidation
whatever combination of resource availability and resource
demand is considered.
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