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Process discovery has recently emerged as a powerful approach to support the analysis and the design
of complex processes. It consists of analyzing a set of traces registering the sequence of tasks performed
along several enactments of a transactional system in order to build a process model that can explain all the
episodes recorded over them. An approach to accomplish this task is presented which can benefit of the back-
ground knowledge that, in many cases, is available to the analysts taking care of the process (re-)design. The
approach is based on encoding the information gathered from the log and the (possibly) given background
knowledge in terms of precedence constraints, i.e., of constraints over the topology of the resulting pro-
cess models. Mining algorithms are eventually formulated in terms of reasoning problems over precedence
constraints, and the computational complexity of such problems is thoroughly analyzed by tracing their
tractability frontier. Solution algorithms are proposed and their properties analyzed. These algorithms have
been implemented in a prototype system, and results of a thorough experimental activity are discussed.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data min-

ing; D.2.2 [Software Engineering]: Design Tools and Techniques; F.2.2 [Analysis of Algorithms and

Problem Complexity]: Nonnumerical Algorithms and Problems; F.4.1 [Mathematical Logic and For-

mal Languages]: Mathematical Logic—Logic and constraint programming

General Terms: Algorithms

Additional Key Words and Phrases: Process mining, graph analysis, computational complexity.

1. INTRODUCTION

1.1. An Overview of Process Discovery

Process mining aims to discover, monitor and improve real processes by extracting
knowledge from the event logs that are made available by today’s information sys-
tems [van der Aalst 2011]. A prominent process mining task is process discovery, whose
goal is to facilitate the re-design phase and the implementation of complex process
models. Indeed, process discovery algorithms are devoted to automatically deriving
a model that can explain all the episodes recorded in an event log collected by an
information system while the activities of an underlying process are executed. Even-
tually, the “mined” model can be used to design a detailed process model suited to be
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A:2 G. Greco et al.

Fig. 1. Process models in the running example.

supported in a workflow management system, or to shed light on the actual process
behavior for optimization purposes (for instance, by singling out deviations between
the conceptual model and the behavior that is actually registered).

From a conceptual viewpoint, discovery algorithms carry out two different sub-tasks.
First, they analyze the traces registering the sequences of activity executions, by min-
ing the causal dependencies that are likely to hold among them. In particular, they
present these dependencies in form of dependency graphs, that is, directed graphs
whose nodes one-to-one correspond with the activities and such that an edge from
an activity a to an activity b means that, in some enactment, we expect that an ac-
tual flow of information can occur from a to b. Second, they enrich dependency graphs
with advanced facets of process enactments (such as synchronization and branching
constructs, duplicate activities, and invisible activities, just to name a few) and return
process models formalized in expressive modeling languages.

EXAMPLE 1.1. Consider the set A = {a, b, c, d, e} of activities, and the structures de-
picted in Figure 1. Basically, we have three dependency graphs, G0, G1, and G2, which
are meant to encode the causal relationships that hold over the activities in A. More-
over, these graphs are adorned with an intuitive notation that expresses routing con-
structs over them. For instance, in G1, the flow of execution is split after a over two
branches that are to be executed in parallel, and which are eventually synchronized
by the activity d—see Section 2 for the formalization of the semantics and the notation.

Assume now that the two traces abcde and acbde over A are given as input to a
process discovery algorithm. Then, the graph G0 will be hardly returned as output, as
it does not model the flow associated with the trace acbde, where b is executed after c.

Instead, G1 and G2 are good candidates for a dependency graph supporting the two
traces. The crucial observation here is that b is executed before c in one trace, while
b is executed after c in the other. This likely witnesses that the two activities are not
related by any causal dependency, and that they are executed in “parallel”, i.e., over
different branches of the process. Moreover, one might argue that the graph G1, to-
gether with the associated routing constraints, is more appropriate than G2 for being
returned as output. Indeed, there is a heuristic evidence in the two given traces that b
and d are not parallel, since b seems to be a pre-requisite for the execution of d. �
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Process Discovery under Precedence Constraints A:3

Several process models can in general be associated with a log of traces given as
input. Ideally, one might select the most appropriate one among them under the as-
sumption that the log is complete, i.e., that it registers all the possible traces for the
underlying process. Indeed, in this case, if an activity always precedes another, then
we can safely discard those models where such activities are executed over different
branches. For instance, if we assume that the traces abcde and acbde of Example 1.1
are the only possible ones, then we can safely conclude that b and d are not parallel
activities, hence discarding the graph G2 in Figure 1.

Log completeness has received considerable attention in the literature, and it is a
crucial assumption under which a number of discovery methods can be proven to be
correct (see, e.g., [van der Aalst et al. 2004; van der Aalst et al. 2003]). In fact, process
discovery is often carried out via heuristics approaches, for which the quality of the
resulting models grows with the fraction of the traces given at hand over all possible
traces for the process. It follows that the quality can be rather poor in those cases
where logs are far from being complete due, for instance, to the following reasons:

Temporal bias: First, two parallel activities may always appear in the same relative
order, simply because one of them always finishes after the other, due to a different
duration of them or of some of their predecessor activities. For instance, even for
a process that conforms with the schema G2, we may find no trace where d occurs
before b, just because c is time consuming, so that b is always completed before d.

Combinatorial explosion: Second, log completeness might not hold just because the
process has not been enacted for a sufficient number of times. Indeed, the number
of possible traces grows exponentially w.r.t. the number of activities that can be ex-
ecuted in parallel. For instance, for a process with n branches each one involving m
activities, we have more than n!m possible traces. Thus, for real life processes (even
with just two branches and about 20 activities), the number of combinations im-
mediately leads to more than one billion of enactments, which in many application
domains are unrealistic.

Because of the issues illustrated above, process discovery techniques are still at an
early stage of adoption within enterprises. Indeed, analysts are likely to prefer tra-
ditional “top-down” design approaches, where models are eventually built by refining
and formalizing a number of desiderata and specifications reflecting the prior knowl-
edge they possess about the process to be automatized. For example, by a-priori know-
ing that b and d are parallel activities, the analyst can immediately discard G1 in Ex-
ample 1.1, even though no trace is given where d actually occurred before b.

1.2. Bottom-Up vs Top-Down Design Methods

Several process discovery approaches have already been proposed in the literature,
mainly differing in the kinds of modeling language they support. For example, pro-
cesses are intuitively represented in [Agrawal et al. 1998; Weijters and van der Aalst
2001; Weijters and van der Aalst 2003; A.J.M.M. Weijters et al. 2006; Greco et al.
2006; Chen and Yun 2003] via pure directed graphs, while more expressive representa-
tions are used in other proposals, ranging from expression tree models [Schimm 2003]
and block-structured workflow models [Herbst and Karagiannis 2000; 2003; Hammori
et al. 2006], to special classes of Petri-nets [van der Aalst and van Hee 2002; van der
Aalst et al. 2003; van der Aalst et al. 2004; de Medeiros et al. 2004; Medeiros et al.
2007]. Moreover, moving from the observation that extracting a single process model
may lead to over-generalized process models that mix together different usage scenar-
ios, such classical discovery algorithms have been often combined with methods for
clustering log traces, so that a set of process models can be returned as output. Indeed,
this allows for improving the precision of the underlying algorithms, by capturing—
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from an abstract perspective—constraints that are beyond the expressiveness of their
associated modeling languages (cf. [Greco et al. 2006]).

Despite the technical differences that emerge from the non-exhaustive list of pro-
posals discussed above, it must be pointed out that all of them share the idea of min-
ing process models by gathering statistics from the data and by processing them via
heuristics. In particular, these “bottom-up” discovery techniques are not capable of tak-
ing into account prior knowledge on the underlying process. As a result, over logs that
are not complete, mined models may well violate conceptual specifications and domain-
constraints (recall that, in Example 1.1, G1 would be the most probable outcome of a
discovery algorithm), hence turning out to be useless in real-life applications.

In fact, the need of defining process discovery algorithms that can take advantage
of prior knowledge has been firstly argued by Goedertier et al. [2009]. In particular,
the AGNEs (Artificial Generation of Negative Events) technique is presented, which is
a mining algorithm founding on an Inductive Logic Programming (ILP) classification-
oriented learner. The algorithm is articulated in four steps: First, temporal constraints
are extracted from the input log, in order to capture local dependencies, non-local de-
pendencies, and parallelism relationships. Second, the input log and the temporal con-
straints are used to generate negative examples, i.e., for each prefix of any trace, nega-
tive events are generated stating which activities are not allowed to be executed later
on in that trace. Third, by using input log traces (as positive examples) together with
the artificial negative events, a logic program is induced to predict whether any given
activity is allowed to occur at a given position of a given sequence. An important pe-
culiarity of AGNEs is that, in the first of the above four phases, domain experts can
directly provide background knowledge. In particular, it is possible to state that two
activities are parallel (resp., not parallel), and that one precedes/succeeds (resp., does
not precede/succeed) the other.

Another process discovery method (partially) taking into account domain knowledge
has been proposed by van der Werf et al. [2009]. As a reference model, Petri nets are
considered. Starting with the most liberal (and overgeneralized) net for a given log,
with as many transitions as the process activities and with no place, a more refined
workflow model is obtained by iteratively adding a new place for restricting the al-
lowed behavior. Each place is chosen greedily, by solving a system of integer linear
inequalities, asking for a place with a minimal (resp., maximal) number of incoming
edges (resp., outgoing edges). To curb the growth of the mined model, the search of the
places is guided by the causal dependencies derived from the log (by using the metrics
of van der Aalst et al. [2004]). Moreover, in its implementation in the ProM frame-
work [van Dongen et al. 2005], users are allowed to enforce finer grain constraints, by
manually modifying the basic activity dependencies extracted from the log, prior to de-
riving a novel (refined) workflow model. By this way, the learning process can benefit of
available domain knowledge expressed in terms of edge constraints and of constraints
enforcing parallelism between pairs of activities.

1.3. Contribution

As it emerged from the analysis carried out in the above section, top-down design
methods and bottom-up process discovery techniques have been almost separate
worlds, so far. Indeed, while the use of background knowledge to improve the qual-
ity of results has already been considered in a number of traditional data mining tasks
(on relational data and on sequence data) including pattern mining [Guns et al. 2011]
and clustering [de Amo and Furtado 2007], designing counter-parts of such techniques
in the context of process discovery is still largely an open issue.

In this paper, we move a further step to synergically integrate top-down design meth-
ods and bottom-up process discovery techniques. Indeed, we propose a “hybrid” ap-
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Table I. Summary of constraint support.

Traditional [Goedertier et al. 2009] [van der Werf et al. 2009] Here

edge constraints � � � �

path constraints � � � �

constraints for parallelism � � � �

constraints over sets � � � �

proach to process discovery, where a learning method is conceived which can take into
account a wide variety of constraints over the causal dependencies that are possibly
available to the analyst. This is particularly useful in order to circumvent the problems
emerging when log completeness does not hold. In more detail,

(1) We propose a formal framework to specify additional properties on the process
models that can be produced as output by process discovery algorithms. The frame-
work is based on defining a set of precedence constraints over the activities, and
supports the kind of prior knowledge that is usually available to the analyst. Table I
summarizes the features of our framework, by comparing them with those supported
(to some extent) by earlier approaches in the literature. Note that “traditional” pro-
cess discovery methods do not provide any support to deal with prior knowledge.

(2) In the light of our formulation, process discovery can be conceptually viewed as
a mining task (i.e., building all possible models for a given input log) followed by a
reasoning task (i.e., filtering out those models that do not satisfy the precedence con-
straints defined by the analyst). However, exponentially many process models might
be built in general as a result of the mining phase, hence making a literal implemen-
tation of such a two-phase approach unfeasible. In fact, we identify relevant classes
of constraints where the two tasks can be synergically addressed, and where process
discovery can be efficiently carried out.

(3) We analyze the computational complexity of the proposed setting, by taking into
account various qualitative properties regarding the kinds of constraint being al-
lowed, and by tracing the tractability frontier w.r.t. them. In particular, we show
that for the classes of constraints that are not covered by the algorithms discussed
in the point (2) above, an efficient solution algorithm is unlikely to exist at all, be-
cause process discovery turns out to be NP-hard over them.

(4) All the algorithms discussed in the paper have been implemented and integrated
in a prototype system, which is made available as a plug-in for the well-known pro-
cess mining suite ProM [van Dongen et al. 2005]. In particular, to face the above
intractability results, the efficient solution algorithms originally conceived for spe-
cial cases only are generalized by making them applicable as heuristic solution ap-
proaches over arbitrary classes of constraints. Case studies are illustrated, and re-
sults for the experimental activity we have conducted in order to validate the effec-
tiveness of the proposed approach are also reported.

Organization. The rest of the paper is organized as follows. Section 2 illustrates pre-
liminaries on process logs and models. Precedence constraints are formalized and an-
alyzed in Section 3, while their complexity is studied in Section 4. Efficient solution
approaches are illustrated in Section 5. Experimental validation and some concluding
remarks are reported in Section 6and Section 7, respectively.

2. CAUSAL NETS AND LOGS

In this section, we illustrate and point out basic results about the process modeling
language we shall adopt in the rest of the paper.

Several languages have been proposed in the literature which are tailored to the
design and the analysis of processes, such as Petri nets [van der Aalst 1998] or event
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A:6 G. Greco et al.

driven process chains EPCs [van der Aalst et al. 2002; Keller et al. 1992]. Given the
focus of the paper, it is convenient to adopt a language that is closer to the needs
of process mining applications. Accordingly, our choice is to consider the language of
causal nets [van Der Aalst et al. 2011], providing a favorable representational bias for
such applications while having the same expressiveness as the language of Petri nets.

2.1. Preliminaries

Let us hereinafter assume that A is a given alphabet of symbols, univocally identi-
fying the activities of some underlying process. The set A contains two distinguished
activities a

⊥
and a

⊤
, called the starting and the terminating activity, respectively.

A dependency graph (over A) is a directed graph G = (V,E) whose nodes are the
activities in the set V ⊆ A, with V ⊇ {a

⊥
, a

⊤
}, and whose edges in E ⊆ V × V encode

the causal relationships that hold over them. In particular, for each activity a ∈ V \
{a

⊥
, a

⊤
}, it must be the case that a occurs in some path from a

⊥
to a

⊤
. Moreover, a

⊥

and a
⊤

have no ingoing and outgoing edges, respectively.

EXAMPLE 2.1. Consider again the three graphs G0, G1, and G2 depicted in Figure 1.
It is immediate to check that they are dependency graphs over the set A = {a, b, c, d, e}
of activities. In particular, a (resp., e) is the starting (resp., terminating) activity. �

A causal net (over A) is a tuple C = 〈G, I,O〉 where G = (V,E) is a dependency graph
and where I and O are two functions such that:

— I maps each activity a ∈ V to the set I(a) of the input bindings for a. For any a ∈
V \{a

⊥
}, an input binding ib ∈ I(a) is a non-empty set of edges such that ib ⊆ {(x, a) |

(x, a) ∈ E}, while the empty set ∅ is the only input binding for a
⊥

, i.e., I(a
⊥
) = {∅}.

For each a ∈ V ,
⋃

ib∈I(a) ib = {(x, a) | (x, a) ∈ E} must hold.

— O maps each activity a ∈ V to the set O(a) of the output bindings for a. For any
a ∈ V \ {a

⊤
}, an output binding ob ∈ O(a) is a non-empty set of edges such that

ob ⊆ {(a, y) | (a, y) ∈ E}, while the empty set ∅ is the only output binding for a
⊤

, i.e.,
O(a

⊤
) = {∅}. For each a ∈ V ,

⋃

ob∈O(a) ob = {(a, y) | (a, y) ∈ E} must hold.

Intuitively, input bindings are meant to encode the pre-conditions for the execution
of an activity, while output bindings are meant to encode the effects of this execution.

EXAMPLE 2.2. Consider the causal net C0 = 〈G0, I0,O0〉, where G0 = ({a, b, c, d,
e}, E0) is the graph in Figure 1, and where I0(z) = {ibz} and O0(z) = {obz} are such
that ibz = {(x, z) | (x, z) ∈ E0} and obz = {(z, y) | (z, y) ∈ E0}, for each z ∈ {a, b, c, d, e}.
The causal net models that the execution of z can start as soon as its predecessor
activity in G0 is completed—of course, this is immaterial for the starting activity a,
which is such that iba = ∅. In fact, after its execution and if z 6= e, we have that z
enables the execution of its unique successor in G0.

Similarly, consider the causal net C1 = 〈G1, I1,O1〉, where G1 = ({a, b, c, d, e}, E1) is
the graph in Figure 1, and where I1(z) = {ib′z} and O1(z) = {ob′z}, for each activity z,
are such that: ib ′a = ∅, ib ′b = {(a, b)}, ib ′c = {(a, c)}, ib ′d = {(b, d), (c, d)}, ib ′e = {(d, e)},
ob ′a = {(a, b), (a, c)}, ob ′b = {(b, d)}, ob ′c = {(c, d)}, ob′d = {(d, e)}, and ob ′e = ∅. Note that
after its execution, the activity a enables both b and c (in parallel), and that the flow is
synchronized by d, whose execution is possible only after b and c are both completed.

Note also that the symbols adorning the edges of the graphs in Figure 1 precisely
correspond with the input and the output bindings. Formally, if 〈G, I,O〉 is a causal net,
then each input binding ib ∈ I(z) (resp., output binding ob ∈ O(z)) is represented by
marking the edges in ib (resp., in ob) and by linking all such markings with a line. For
instance, in the graph G1, the edges (a, b) and (a, c) are marked, and these markings are
linked together, hence meaning that the output binding {(a, b), (a, c)} occurs in O(a).
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Process Discovery under Precedence Constraints A:7

For completeness, we point out that any given activity can be associated with more
than one input/output binding, in general. As an example, consider the causal net
C2 = 〈G2, I2,O2〉 associated with the graph G2 shown in Figure 1. Then, we may note
for instance that O3(a) = {{(a, b)}, {(a, c)}, {(a, b), (a, c)}} holds. Indeed, the edges (a, b)
and (a, c) are linked together as in the case of G1, but we additionally have also the
singleton markings now. Thus, a can either activate b, or c, or even both of them. �

Formally, the semantics of causal nets is next given in terms of those instantiations
that are “globally valid”. This is different from the operational semantics of design-
oriented modeling languages, such as the token-game semantics of Petri nets.

A binding activity for the causal net C is a tuple 〈a, ib, ob〉, where a ∈ V is an activity
and where ib ∈ I(a) and ob ∈ I(a) hold. A sequence σ of binding activities 〈a1 =
a

⊥
, ib1, ob1〉, ..., 〈an = a

⊤
, ibn, obn〉 is called a binding sequence. The state Sσ

j of C at the

j-th step of σ is defined inductively as the multi-set1 of edges such that Sσ
0 = ∅, and

Sσ
j = Sσ

j−1∪obj \ ibj , for each j ∈ {1, ..., len(t)}. The sequence σ is valid w.r.t. C if Sσ
n = ∅

and ibj ⊆ Sσ
j−1, for each j ∈ {1, ..., n}.

EXAMPLE 2.3. Consider the net C1 discussed in Example 2.2, and the binding se-
quence σ = σ1σ2...σ5 such that: σ1 = 〈a, {}, {(a, b), (a, c)}〉, σ2 = 〈b, {(a, b)}, {(b, d)}〉,
σ3 = 〈c, {(a, c)}, {(c, d)}〉, σ4 = 〈d, {(b, d), (c, d)}, {(d, e)}〉, and σ5 = 〈e, {(d, e)}, {}〉. Note
that Sσ

0 = ∅, Sσ
1 = {(a, b), (a, c)}, Sσ

2 = {(a, c), (b, d)}, Sσ
3 = {(b, d), (c, d)}, Sσ

4 = {(d, e)},
and Sσ

5 = ∅. In fact, σ is valid w.r.t. C1. �

Transactional systems store partial information about binding sequences, by tracing
the events related to the execution of the various activities. Formally, a trace t (over A)
has the form t[1]t[2]...t[n], with t[i] ∈ A being an activity, for each i ∈ {1, ..., n}, and with
n being the length of t. W.l.o.g., we shall hereinafter assume that t[1] = a

⊥
, t[n] = a

⊤
,

and that for each i ∈ {2, ..., n− 1}, t[i] ∩ {a
⊥
, a

⊤
} = ∅. Indeed, we may view a

⊥
and a

⊤

as two virtual activities, which we add to t in order to satisfy this requirement. The
length of t is also denoted as len(t). A multi-set L of traces is hereinafter just called a
log, and the set of all the activities occurring over the traces in L is denoted by A(L).

Note that, as commonly done in the literature, we are considering an abstract view
of a log, where we focus on the ordering of the execution (in particular, completion) of
the various activities, by getting rid of all information about (i) timings (e.g., starting
times and durations) and about (ii) the data involved in them.

Concerning the first assumption, note that our process modeling language is not ca-
pable of supporting temporal information. In fact, very few mining approaches have
been proposed that are able to discover timed models, such as for instance stochastic
Petri nets (see, e.g, [Anastasiou et al. 2011; HU et al. 2011]). Therefore, in our setting,
information about timings in the log can be helpful to a limited extent only. For in-
stance, we can immediately conclude that two activities are parallel when one starts
before the other is completed. Moreover, for two activities a and b that are not paral-
lel, in order to assess how likely a is a pre-requisite for the execution of b, in addition
of their relative positions (see Section 5), we can consider the time elapsed between
the completion of a and the starting of b. In the paper, however, we will not expand
on these standard heuristics (conceived for models that do not support temporal in-
formation), by referring the interested reader, e.g., to the work by Wen et al. [2009].
Here, we stress instead that it is an interesting avenue for further research to extend
the features of causal nets by directly incorporating timing information and to explore
how our techniques can be modified as to deal with the resulting model.

1Hereinafter, set operations are transparently applied to multi-sets with the usual intended meaning.
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Concerning the second assumption, we point out that even the adaptation of basic
process discovery algorithms to multi-dimensional settings, where modeling languages
have again to be extended (in this latter case to deal with data about activity execu-
tions), has been only partially explored in the literature (see, e.g., [Greco et al. 2007]).
In fact, this is still largely an open research issue, so that exporting our results to such
richer settings is outside the scope of the paper, while constituting another interesting
avenue for further researcher.

Now that we have clarified the assumptions underlying our setting, we can proceed
to formalize when a log can be considered as the result of the enactments of a given
process model. To this end, we say that a causal net C supports a trace t if there is a
binding sequence σ that is valid w.r.t. C and where the j-th binding activity 〈aj , ibj , obj〉
of σ, for each j ∈ {1, ..., len(t)}, is such that aj = t[j]. Moreover, we say that the causal
net C supports a log L, denoted by C ⊢ L, if C supports each trace t ∈ L.

EXAMPLE 2.4. The causal net C1 discussed in Example 2.2 supports the trace abcde,
as it is witnessed by the binding sequence σ illustrated in Example 2.3. Moreover, it
can be checked that C1 supports the trace abcde, and that no further trace is supported.

Consider instead the causal network C2, again discussed in Example 2.2. Recall that
a can activate either b, or c, or both of them. Moreover, by looking at the dependency
graph G2 depicted in Figure 1, observe that b and d are parallel activities. Thus, the
traces that C2 supports are abe, acde, abcde, acbde, and acdbe. �

We leave the section by pointing out that a useful extension of causal nets consists
of allowing input and output bindings to be multi-sets, rather than just sets. With this
extended model, for instance, an activity x can activate two different instances of an
activity y, for which (x, y) is an edge in the underlying dependency graph.2 A causal
net enriched with this capability will be hereinafter called an extended causal net.

2.2. Dependency Graphs and Process Mining: Basic Results

In process mining, a log L is given and the goal is to derive a process model supporting
its traces. We next show that the main task to be carried out to this end is essentially
the discovery of the underlying dependency graph. In fact, based on this property, we
can contextually show that the whole semantics of causal nets can be recast in simple
graph-theoretic terms, which is convenient for our subsequent elaborations.

DEFINITION 2.5. Let L be a log. A dependency graph G acyclically supports L, de-
noted by G ⊢a L, if for each trace t ∈ L, there is a subgraph Gt of G such that:

— Gt is an acyclic dependency graph over A({t}), and
— t is a topologic sort of Gt, i.e., for each edge (t[i], t[j]) in Gt, we have that i < j. 2

EXAMPLE 2.6. Consider again the graph G2 in Figure 1, and note that G2 ⊢a {abe,
acde, abcde, acbde, acdbe}. For instance, given the trace abe, the subgraph of G2 induced
over the activities {a, b, e} is an acyclic dependency graph and abe is a topologic sort
of it. Moreover, for any log L including a trace not in {abe, acde, abcde, acbde, acdbe}, we
can check that G2 ⊢a L does not hold. �

At this point, it is interesting to observe that the set of traces supported by the
causal network C2 (see Example 2.4) precisely coincides with the set of traces acycli-
cally supported by the dependency graph G2 on top of which C2 is built. This is not by

2Alternatively, we might think that input and output bindings are sets as usual, but that x activates two
hidden activities, say h1 and h2, which both activate y in their turn. While hidden activities play a role in
the enactments, they are not registered in the log. In fact, in process discovery applications, hidden activities
are frequently used to enrich the basic expressivity of the process modeling languages.
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t

Fig. 2. A process model involving a cycle, with an example unfolding.

chance, and is intimately related with the fact that none of the given traces contains
repetitions of the same activity. We next formalize this property.

First, we say that a log L is linear if there is no trace in L containing repetitions
of the same activity, i.e., for each t ∈ L and for each i, j ∈ {1, ..., len(t)} with i 6= j,
t[i] 6= t[j] holds. Then, we derive the following result—proofs in this section are rather
technical and are deferred to Appendix A, for the sake of readability.

THEOREM 2.7. Let L be a linear log, and let G be a dependency graph. Then, G ⊢a L
if, and only if, there is a causal net C = 〈G, I,O〉 such that C ⊢ L.

To deal with arbitrary logs, we next introduce a mechanism to virtually unfold cycles.
For each trace t, let unfold(t) denote the trace obtained from t by substituting the i-th
occurrence in t of any activity a with the fresh (virtual) activity a〈i〉. Moreover, let
unfold(A) denote the (infinite) set of all virtual activities that can be built based on A.
The starting and terminating activity in unfold(A) are a〈1〉

⊥
and a〈1〉

⊤
, respectively.

If L is a log, then we define unfold(L) as the linear log {unfold(t) | t ∈ L}. Moreover,
if Ḡ = (V̄ , Ē) is a graph where V̄ ⊆ unfold(A), then we define the folding of Ḡ as the
directed graph fold(Ḡ) = (V,E) such that V = {x | ∃x〈i〉 ∈ unfold(A) s.t. x〈i〉 ∈ V̄ } and
E = {(x, y) | ∃x〈i〉, y〈j〉 ∈ unfold(A) s.t. (x〈i〉, y〈j〉) ∈ Ē}.

DEFINITION 2.8. Let L be a log. A dependency graph G supports L, denoted by
G ⊢ L, if for each trace t ∈ L, there is a graph Ḡt such that fold(Ḡt) is a subgraph of G,
Ḡt ⊢a {unfold(t)}, and the following two conditions hold:

(1) there is no pair of edges (x〈i〉, y〈j〉), (x〈i〉, y〈j
′〉) in Ḡt such that j 6= j′, and

(2) there is no pair of edges (x〈i〉, y〈j〉), (x〈i′〉, y〈j〉) in Ḡt such that i 6= i′. 2

EXAMPLE 2.9. Consider the log consisting of the trace t = acdcde, and note that
unfold(acdcde) = a〈1〉c〈1〉d〈1〉c〈2〉d〈2〉e〈1〉. Moreover, check that the graph Ḡt depicted on
the right part of Figure 2 is such that Ḡt ⊢a {unfold(acdcde)}. In fact, fold(Ḡ) is a sub-
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graph of the dependency graph G3 depicted in the left part of the figure, and it is easily
seen that conditions (1) and (2) of Definition 2.8 hold on Ḡt. Hence, G3 ⊢ {acdcde} holds.

Consider now the trace t′ = abbe and unfold(abbe) = a〈1〉b〈1〉b〈2〉e〈1〉. Let Ḡt′ be the
graph consisting of the edges (a〈1〉, b〈1〉), (a〈1〉, b〈2〉), (b〈1〉, e〈1〉), and (b〈2〉, e〈1〉). Then,
Ḡt′ ⊢a {unfold(abbe)}, and fold (Ḡt′) is a subgraph of G3. However, Ḡt′ violates conditions
(1) and (2) in Definition 2.8. Therefore, G3 does not support {abbe}. �

Note that whenever the log L is linear, the above definition reduces to Definition 2.5,
and in particular conditions (1) and (2) are immaterial. More formally, in this case,
G ⊢ L holds if, and only if, G ⊢a L holds. Hence, for linear logs, we are in the position
of applying Theorem 2.7 with ‘⊢’ in place of ‘⊢a’. More generally, the following result is
established in order to relate the notion of support over dependency graphs with the
notion of support over causal nets. The result is of interest in its own, as it allows to
restate the semantics of causal nets in pure graph-theoretic terms. In fact, it will play
an important role in role in our subsequent elaborations.

THEOREM 2.10. Let L be a log, and let G be a dependency graph. Then, G ⊢ L if,
and only if, there is a causal net C = 〈G, I,O〉 such that C ⊢ L.

EXAMPLE 2.11. Consider the causal net C3 = 〈G3, I3,O3〉, where G3 is the de-
pendency graph shown in Figure 2, and where I3 and O3 are the functions such
that: I3(a) = {∅}, I3(b) = {{(a, b)}}, I3(c) = {{(b, c)}, {d, c}}, I3(d) = {{(c, d)}},
I3(e) = {{(b, e)}, {(c, e)}, {(b, e), (c, e)}}, O3(a) = {{(a, b), (a, c)}, {(a, b}, {(a, c)}}, O3(b) =
{{(b, d)}}, O3(c) = {{(c, d)}}, O3(d) = {{(d, e)}}, and O3(e) = {∅}. Note that C3 ⊢
{acdcde} holds.

Hence, by the above result, we can conclude that G3 ⊢ {acdcde} also holds, as we
have in fact already observed in Example 2.9. �

We leave the section, by noticing that if conditions (1) and (2) in Definition 2.8 are
not guaranteed to hold, then a weaker variant of Theorem 2.10 can be still established.

THEOREM 2.12. Let L be a log, and let G be a dependency graph such that for each
trace t ∈ L, there is a graph Ḡt such that fold (Ḡt) is a subgraph of G and Ḡt ⊢a {unfold(t)}.
Then, there is a possibly extended causal net C = 〈G, I,O〉 such that C ⊢ L.

3. PRECEDENCE CONSTRAINTS: FORMAL FRAMEWORK AND COMPLEXIT Y

In this section, we propose and analyze a framework to specify additional properties
on the process models that can be produced as output by process discovery algorithms.
In particular, we formalize the concept of precedence constraints, and discuss its ap-
plication to the problem of mining causal nets.

3.1. Syntax and Semantics

A precedence constraint is an assertion aimed at expressing a relationship of prece-
dence among some of the activities in the underlying set A. The language of prece-
dence constraints is next defined in order to smoothly allow the formalization of the
prior knowledge that is usually available to the analyst, such as, parallelism, locality,
or exclusivity of activities (cf. [Goedertier et al. 2009]).

DEFINITION 3.1. A positive precedence constraint π over A is either

— an expression of the form S → T , called edge constraint, or
— an expression of the form S  T , called path constraint,

where S, T ⊆ A, with |S| ≥ 1 and |T | ≥ 1, are non-empty sets of activities.
For a positive constraint π, ¬(π) is a negative precedence constraint. 2
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Precedence constraints are interpreted over directed graphs as follows.

DEFINITION 3.2. Let G = (V,E) be a directed graph such that V ⊆ A. Then,

(1) G satisfies an edge constraint S → T , if there is an edge (x, y) ∈ E with x ∈ S and
y ∈ T ;

(2) G satisfies a path constraint S  T , if there is a sequence x = a0, a1, ..., an = y, with
n > 0, such that x ∈ S, y ∈ T and (ai, ai+1) ∈ E, for each i ∈ {0, ..., n− 1};

(3) G satisfies ¬(π), if G does not satisfy π.

If G satisfies each constraint in a set Π of precedence constraints, then G is a model
of Π, denoted by G |= Π. The set of all activities occurring in the constraints in Π is
hereinafter denoted by A(Π). 2

As we have already informally discussed, a foundational task in process mining con-
sists of automatically building a process model that can explain the behavior registered
in all the traces of some log L given as input. In this context, precedence constraints
can be naturally exploited to formalize additional requirements that the model discov-
ered from L has to satisfy. This gives rise to the following problem

CN-MINING: Given a set A of activities, a log L with A(L) ⊆ A, and a set Π of precedence
constraints with A(Π) ⊆ A, compute a possibly extended causal net C = 〈G, I,O〉
over A such that C ⊢ L and G |= Π, or check that no net with these properties exists.

Note that, for Π = ∅, the problems above reduce to the standard ones considered in
the literature. Moreover, observe that we are not considering for the moment quality
measures on the net to be computed. This issue will be explored in the following. Fi-
nally, note that extended causal nets are allowed as solutions to the problems. In fact,
throughout the paper, we shall explicitly discuss and show how our results extend to
the more stringent setting where the focus is on (standard) causal nets. Here, we stress
that on linear logs the two settings coincide, as the ability of extended causal nets to
activate multiple instances of the same activity is useless in this case.

FACT 3.3. Over linear logs, CN-MINING admits a solution if, and only if, it admits
a causal net as a solution.

EXAMPLE 3.4. Consider the set Π = { ¬({b}  {d}),¬({d}  {b})} of precedence
constraints. We have two negative path constraints, stating that b and d must be exe-
cuted over “parallel” branches of the given process.

Consider then the traces abcde and acbde within the setting of Example 1.1, plus
the causal nets C1 and C2 discussed in Example 2.2 and depicted in Figure 1. With-
out additional constraints, we have already noticed that C1 and C2 are such that
C1 ⊢ {abcde, acbde} and C2 ⊢ {abcde, acbde}. However, the dependency graph G2 (associ-
ated with C2) is a model of Π, while G1 is not as it violates the constraint ¬({b} {d}).
Thus, C2 is a solution to CN-MINING on input {abcde, acbde} and Π.

Finally, consider the causal net C3 discussed in Example 2.11 and illustrated in Fig-
ure 2. Then, C3 is a solution to CN-MINING on input {abcde, acbde} and Π. Note that in
this case G3 is not acyclic. �

As a further remark, note that a solution to the mining problem might require ac-
tivities that do not occur in the log and in the constraints. For instance, consider the
set {¬({a} → {b}), {a}  {b}} of constraints prescribing the existence of a path from
a to b, but forbidding the existence of a direct connection. If the log provided as input
to the mining problem (together with the above constraints) is defined over these two
activities only, then any solution has to be clearly defined over (at least) one “fresh”
activity, say v, in order to include an edge from a to v plus an edge from v to b.
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Fig. 3. Example construction in the proof of Theorem 3.5.

According to the formulation of CN-MINING, any “fresh” activity has to be explicitly
provided as input to the mining problem, too. Therefore, one might wonder whether
this is restrictive and, in particular, whether scenarios exist where all solutions to
such problems need exponentially many activities (w.r.t. those occurring in A(L) and
A(Π)), so that explicitly listing all of them would artificially blow-up the size of the
input. The following result shows that these scenarios are not possible, since a “small”
solution always exists if the problem admits any solution at all. Hence, there is no loss
of generality by assuming that the set A is given as input (possibly implicitly, i.e., by
just specifying the upper bound on the number of activities which is defined in the
statement of the result). To the contrary, in our formulation, we gain flexibility as we
can, for instance, specify that we are interested in solutions defined over the symbols
occurring in the log and in the constraints only (so that the solution requiring the fresh
activity v would be not admissible).

THEOREM 3.5. Let L be a log, let Π be a set of precedence constraints, and let C =
〈G, I,O〉 be a causal net (resp., an extended causal net) with C ⊢ L and G |= Π. Then, a
causal net (resp., an extended causal net) C′ = 〈G′, I ′,O′〉 exists such that C′ ⊢ L, G′ |= Π,
and |V ′| ≤ |A(L)∪A(Π)|2+ |A(L)∪A(Π)|, with V ′ being the set of nodes of G′. Moreover,
if G is acyclic, then G′ is acyclic, too.

PROOF. Let C = 〈G, I,O〉, with G = (V,E), be a (resp., an extended) causal net such
that C ⊢ L and G |= Π. Consider the graph G′ = (V ′, E′

1 ∪ E′
2) built as follows. The

set V ′ consists of all the activities in A(L) ∪ A(Π) plus a fresh activity ax,y for each
pair of activities x, y ∈ A(L) ∪ A(Π) such that there is a path in G from x to y. The
set E′

1 consists of all the edges in E defined over the activities in A(L) ∪ A(Π), i.e.,
E′

1 = {(x, y) ∈ E | {x, y} ⊆ A(L) ∪ A(Π)}. The set E′
2 contains the edges (x, ax,y) and

(ax,y, y), for each activity ax,y ∈ V ′ \ V , and no further edge is in E′
2.

As an example, consider the graph G reported on the left of Figure 3. The graph is
defined over the activities in A(L) ∪ A(Π) = {a

⊥
, a

⊤
, x, y} plus 6 additional activities,

which are depicted as circles. The graph G′ that is built based on G is illustrated on
the right part of the same figure. All nodes in G′ that do not occur in G are depicted as
black circles. In particular, observe that the node ax,y is responsible of preserving the
connectivity that is supported in G by the nodes not occurring in A(L) ∪ A(Π).
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Let us now analyze the properties of G′. First, note that the activities a
⊥

and a
⊤

are
in V ′, as in fact they occur in A(L). Moreover, since G is a dependency graph, no edge
ingoing into a

⊥
(resp., outgoing from a

⊤
) occurs in E′

2. Hence, given the construction of
the edges in E′

1, we conclude that a
⊥

and a
⊤

have no ingoing and outgoing edges in G′.
Now, we claim that for each pair of activities x, y ∈ A(L)∪A(Π), there is a path from

x to y in G if, and only if, there is a path from x to y in G′. Indeed, if there is a path from
x to y in G, then the edges (x, ax,y) and (ax,y, y) occur in E′

2. Conversely, assume that
there is a path π from x to y in G′, and for the sake of contradiction that there is no
path from x to y in G. As all edges of E defined over the activities in A(L)∪A(Π) are in
E′

1, it must be the case that two edges occur in π having the form (x̄, ax̄,ȳ) and (ax̄,ȳ, ȳ)
and such that there is no path from x̄ to ȳ in G. However, this is impossible given the
construction of the edges in E′

2.
In the light of the above property, it follows that if G is acyclic, then G′ is acyclic, too.

Indeed, just notice that any cycle in G′ must necessarily include a node in A(L)∪A(Π).
Moreover, we can conclude that each activity a ∈ A(L)∪A(Π)\{a

⊥
, a

⊤
} is in a path in G′

from a
⊥

to a
⊤

. Consider then an activity of the form ax,y, which occurs in V ′\V . Since x
(resp., y) either coincides with a

⊥
(resp., a

⊤
) or is reachable from a

⊥
(can reach a

⊤
) in G′,

because this property hold in fact on G, we also conclude that ax,y is in a path in G′ from
a

⊥
to a

⊤
. By putting the above observations together, it follows that G′ is a dependency

graph over the set V ′ of activities. Moreover, |V ′| ≤ |A(L) ∪A(Π)|2 + |A(L) ∪ A(Π)|.
Recall now that G′ preserves all the edges defined over the activities in A(L), and

that C = 〈G, I,O〉 is a causal net (resp., extended causal net) such that C ⊢ L. It follows
that there is a (resp., an extended) causal net C′ = 〈G′, I ′,O′〉 such that C′ ⊢ L, where
I ′ and O′ just extend I and O as to include, for each given activity, a binding defined
over the whole set of its ingoing and outgoing edges, respectively. Note that C′ supports
all the traces in L, even without using such fresh bindings. In fact, the construction of
I ′ and O′ is just required to ensure that C′ is formally a (possibly extended) causal net.

In order to conclude, we have then to show that G′ |= Π. To this end, note that edge
constraints and negated edge constraints are satisfied by G′, because they are satisfied
by G and since the two graphs coincide over the activities in A(Π). Eventually, recall
that, for each pair of activities x, y ∈ A(L) ∪ A(Π), there is a path from x to y in G if,
and only if, there is a path from x to y in G′. Hence, also path constraints and negated
path constraints are satisfied by G′, because they are satisfied by G. That is, G′ |= Π.

3.2. Process Mining and Precedence Constraints

From a conceptual viewpoint, the problems defined above comprise a mining task, i.e.,
mining a process model supporting a given log, and a reasoning task, i.e., to check
whether the model additionally satisfies some precedence constraints. In fact, we next
show that even the learning task can be declaratively formulated in terms of reason-
ing about precedence constraints. This property will be crucial to study the intrinsic
complexity of the framework and to design efficient solution algorithms (by also allow-
ing to greatly simplify their analysis). The basic idea is to characterize the notions of
support in Definition 2.5 and Definition 2.8 in terms of precedence constraints.

DEFINITION 3.6. Let L be a log. For each trace t ∈ L, the set of precedence con-
straints induced by t is defined as follows:

π(t) = { {t[1], ..., t[i− 1]} → {t[i]} | 1 < i ≤ len(t) }∪
{ {t[i]} → {t[i+ 1], ..., t[len(t)]} | 1 ≤ i < len(t) }.

The set of precedence constraints induced by L is defined as π(L) =
⋃

t∈L π(t). 2

Intuitively, we just state that each activity in the trace t can be directly reached by at
least one of its predecessors in t, and it can directly reach at least one of its successors
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in t. This suffices to precisely characterize the semantics of causal nets over logs that
are linear, as illustrated below.

THEOREM 3.7. Let L be a linear log and let G be a dependency graph. Then, G |=
π(L) if, and only if, G ⊢a L.

PROOF. (if part). Assume that G ⊢a L, i.e., for each t ∈ L, there is a subgraph Gt =
(Vt, Et) of G = (V,E) such that Gt is an acyclic dependency graph, and t is a topologic
sort of Gt. Therefore, for each i ∈ {2, ..., len(t)} (resp., i ∈ {1, ..., len(t) − 1}), there is a
path from t[1] (resp., t[i]) to t[i] (resp., t[len(t)]) in Gt, by definition of dependency graph.
In particular, since t is a topologic sort of Gt, we are guaranteed about the existence of
an edge in Et (and then in E) having the form (t[j], t[i]) (resp., (t[i], t[j′])) and such that
j < i (resp., i < j′) holds. Hence, the set π(t) of the precedence constraints induced by
t are satisfied by G, for each trace t in L. That is, G |= π(L).

(only-if part). Assume that G |= π(L), with G = (V,E). Let t be a trace in L, and let
Gt = (Vt, Et) be the graph such that Vt = {t[1], ..., t[len(t)]} and Et = {(t[i], t[j]) ∈ E |
1 ≤ i < j ≤ len(t)}. Since L is linear, we can note that Gt is acyclic, that t[1] = a

⊥

has no ingoing edges, and that t[len(t)] = a
⊤

has no outgoing edges. We now claim
that each activity t[i] ∈ Vt \ {t[1]} can be reached from t[1]. The above property can
be shown by induction on the index i > 1. In the case where i = 2, (t[1], t[2]) must
belong to E (and hence to Et) in order to satisfy the constraint {t[1]} → {t[2]} in π(t).
Assume now that the activities in the set {t[2], ..., t[i − 1]} can be reached from t[1].
Then, because of the constraint {t[1], ..., t[i − 1]} → {t[i]} in π(t), we again have that
t[i] can be reached from t[1]. Similarly, it can be checked that the terminating activity
t[len(t)] can be reached by each activity t[i] ∈ Vt \ {t[len(t)]}, by using this time the fact
that {t[i]} → {t[i + 1], ..., t[len(t)]} is in π(t). Hence, Gt is an acyclic dependency graph.
Moreover, for each edge (t[i], t[j]) in Et, we have that i < j holds by construction. Thus,
t is a topologic sort of Gt. As Gt is a subgraph of G, we then have G ⊢a L.

Theorem 3.7 and Theorem 2.7 imply the following corollary, where process mining
over linear logs is restated in terms of reasoning about precedence constraints.

COROLLARY 3.8. Let G be a dependency graph over a set A of activities, let L be a
linear log with A(L) ⊆ A, and let Π be a set of precedence constraints with A(Π) ⊆ A.
Then, the following statements are equivalent:

(1) The graph G is a model of Π ∪ π(L).
(2) There is a causal net C = 〈G, I,O〉 that is a solution to CN-MINING on input A, L,

and Π.

Note that, because of Fact 3.3, the above result completely characterizes the cases
where the problem CN-MINING admit solutions. Indeed, point (2) above can be equiv-
alently restated as the existence of a possibly extended causal net that is a solution to
the mining problem.

EXAMPLE 3.9. Let Π be the set of constraints in Example 3.4, and consider the
novel set Π′ = Π∪π({abcde, acbde}). It can be checked that the dependency graph G2 in
Figure 2 is a model of Π′. Thus, by Corollary 3.8, we are guaranteed about the existence
of a causal net that can be defined on top of G2 and that is a solution to CN-MINING

on input {abcde, acbde} and Π. In fact, we already know that the causal net C2 defined
in Example 2.2 is a solution. �

Moreover, it is useful to remark that the ‘(1)⇒(2)’-part of Corollary 3.8 can be stated
constructively. That is, the causal net 〈G, I,O〉 can be efficiently built given the graph
G. The method is just based on inspecting the proofs for the results in Section 2.2,
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which are reported in Appendix A. In fact, we anticipate that the method will be for-
malized algorithmically and analyzed in Section 5.

At this point, the natural question is whether we can extended Theorem 3.7 to deal
with arbitrary logs. An answer that is however only partially positive is stated below.

THEOREM 3.10. Let L be a log and let G be a dependency graph. Then, G ⊢ L implies
that G |= π(L).

PROOF. Assume that G ⊢ L holds, with G = (V,E). By Definition 2.8, for each trace
t ∈ L, there is a graph Ḡt = (V̄t, Ēt) such that, in particular, fold(Ḡt) is a subgraph of
G = (Vt, Et) and Ḡt ⊢a {unfold(t)}. Then, we apply Theorem 3.7 on Ḡt, and we conclude
that Ḡt |= π(unfold(t)). Moreover, we note that fold(Ḡt) |= π(t) also holds. Indeed, for
each i ∈ {1, ..., len(t)}, if (unfold(t)[j], unfold(t)[i]) (resp., (unfold(t)[i], unfold(t)[h])) is in
Ēt, then (t[j], t[i]) (resp., (t[i], t[h])) is in Et with j < i (resp., h > i), because fold(Ḡt) is
a subgraph of Gt. Finally, define Ḡ = (

⋃

t∈L V̄t,
⋃

t∈L Ēt). Then, we claim that fold(Ḡ) |=
π(L). Indeed, the constraints induced by the traces in L are positive ones, so that
since fold(Ḡt) |= π(t), the graph fold(Ḡ) (of which fold(Ḡt) is a subgraph) is still such
that fold(Ḡ) |= π(t). In order to conclude, we can eventually observe that fold(Ḡ) is a
subgraph of G, and hence G |= π(L).

This is the best one can hope to do. Indeed, we can see that G |= π(L) does not imply
G ⊢ L, by just looking again at Example 2.9. There, we have noticed that the graph G3

does not support {abbe}. However, it can be checked that G3 |= π({abbe}) holds.
Despite the above limitation, the counterpart of Corollary 3.8 for arbitrary logs can

still be obtained by moving to possibly extended causal nets—as with Corollary 3.8,
the ‘(1)⇒(2)’-part below will be formalized algorithmically and analyzed in Section 5.

THEOREM 3.11. Let G be a dependency graph over a set A of activities, let L be a
log with A(L) ⊆ A, and let Π be a set of precedence constraints with A(Π) ⊆ A. Then,
the following statements are equivalent:

(1) The graph G is a model of Π ∪ π(L).
(2) There is a possibly extended causal net C = 〈G, I,O〉 that is a solution to CN-

MINING on input A, L, and Π.

PROOF. (1)⇒(2). Assume that G is a model of Π ∪ π(L), with G = (V,E). Let
Ḡ = (V̄ , Ē) be the graph such that V̄ = A(unfold(L)) and Ē = {(x〈i〉 , y〈j〉) | (x, y) ∈
E, x〈i〉 ∈ V̄ , y〈j〉 ∈ V̄ }. Since Ḡ is a dependency graph, it is also the case that Ḡ
is a dependency graph (over A(unfold(L))). Moreover, Ḡ |= π(unfold(L)) holds. In-
deed, just note that for each trace t ∈ L and for each i ∈ {1, ..., len(t)}, if (t[j], t[i])
(resp., (t[i], t[h])) is in E with j < i (resp., h > i), then (unfold(t)[j], unfold(t)[i]) (resp.,
(unfold(t)[i], unfold(t)[h])) is in Ē by construction. Thus, we can apply Theorem 3.7 in
order to conclude that Ḡ ⊢a unfold(L). Eventually, we observe that fold(Ḡ) is clearly a
subgraph of G. Then, we distinguish two cases. In the case where G satisfies condi-
tions (1) and (2) in Definition 2.8, then we can apply Theorem 2.10 and conclude that a
causal net C can be built over G such that C ⊢ L. Instead, in the case where one of the
above conditions does not hold, we can apply Theorem 2.12 and conclude that there is
a possibly extended causal net C built over G and such that C ⊢ L.

(2)⇒(1). Assume that C = 〈G, I,O〉 is a solution to CN-MINING on input A, L, and
Π, and for the sake of contradiction that G is not a model of Π∪ π(L). The fact that G is
not a model of Π is trivially impossible. Thus, assume that G is not a model of π(L), i.e.,
there is a trace t ∈ L such that G does not satisfy the constraints in π(t). According to
Definition 3.6, there are two possible cases: (a) there is an index i ∈ {2, ..., len(t)} such
that there is no edge in G from one of the activities in {t[1], ..., t[i − 1]} to t[i]; (b) there
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is an index i ∈ {1, ..., len(t) − 1} such that there is no edge in G from t[i] to one of the
activities in {t[i+ 1], ..., t[len(t)]}.

Now, as C is a solution, it must be the case that C supports the trace t, i.e., there is a
binding sequence σ that is valid w.r.t. C and where the j-th binding activity 〈aj , ibj , obj〉
of σ, for each j ∈ {1, ..., len(t)}, is such that aj = t[j]. In particular, the i-th activity is
〈t[i], ibi, obi〉. In the case (a) above, the set ibi, which is a non-empty set of edges ingoing
into t[i], is a subset of the set {(x, t[i]) | x 6∈ {t[1], ..., t[i − 1]}}, while the state Sσ

i−1 of
the causal net consists of edges having the form (x, y), with x ∈ {t[1], ..., t[i − 1]}. It
follows that ibi is not contained in Sσ

i−1, and σ is not valid, which is impossible as σ is
valid. In the case (b), the set obi, which is a non-empty set of edges outgoing from t[i],
is included in the set {(t[i], y) | y 6∈ {t[1+ 1], ..., t[len(t)]}}. Thus, Sσ

i necessarily includes
an element having the form (t[i], y), with y 6∈ {t[1+ 1], ..., t[len(t)]}. However, as there is
no edge in G from t[i] to one of the activities in {t[i + 1], ..., t[len(t)]}, this element will
eventually occur at the last step of the execution of σ, i.e., Sσ

len(t) 6= ∅, which again is

impossible as σ is valid.

For instance, since G3 |= π({abbe}) holds, we are guaranteed that a net supporting
this trace can be built on top of G3. To be concrete, we can consider the extended causal
net C′

3 = 〈G3, I ′
3,O

′
3〉 where I ′

3(a) = {∅}, I ′
3(b) = {{(a, b)}}, I ′

3(e) = {{(b, e), (b, e)}},
O′

3(a) = {{(a, b), (a, b)}}, O′
3(b) = {{(b, e)}}, and O′

3(e) = {∅}—the specification of the
bindings over the activities c and d is irrelevant here.

3.3. Significance of the Results and Possible Applications

At the beginning, we have anticipated that the results derived in this section will
be crucial to design our algorithms and to conduct the complexity analysis. Indeed,
we can now see that Theorem 3.11 reformulates the whole mining problem and the
“dynamics” of the causal nets in purely “static” terms, i.e., in terms of reasoning about
the satisfaction of precedence constraints. In particular, we can completely get rid of
the concepts of bindings and of support of a trace and a log.

In addition to the above described technical (and conceptual) role, the results in
this section have also an immediate concrete application. Indeed, given that the whole
mining problem has been reformulated in terms of a reasoning problem, a common en-
vironment emerged where the tasks of mining a process model supporting a given log
and checking whether the model additionally satisfies some precedence constraints are
combined synergically and can be simultaneously carried out. In particular, it is imme-
diate to encode the reasoning problem in terms of a “standard” constraints satisfaction
problem, CSP for short (see, e.g., [Dechter 1992]), and to reuse existing constraint pro-
gramming platforms to compute models for it, in the spirit of the works by De Raedt
et al. [2008] and Nijssen et al. [2009]. This approach has been originally discussed in
the conference version of this paper [Greco et al. 2012], and details can be found there.

An advantage of the CSP-based framework is that it can transparently handle ar-
bitrary sets of precedence constraints. The price to be paid however is that computing
a solution in some of these settings is very challenging from a computational view-
point, as we shall formally illustrate in Section 4. In this extended version, we decided
therefore to depart from the original approach3 by proposing solution algorithms that
are specific for some classes of constraints (over which solutions can be efficiently com-
puted) as well as methods that handle the general setting heuristically. In fact, from
our experimentation, the heuristics methods emerged to be definitively much faster
than the CSP-based method, while being capable to end up with an exact solution in

3In any case, note that the approach in [Greco et al. 2012] was not designed to deal with causal nets (i.e.,
with full process models), but its focus was on the discovery of the underlying dependence graphs only.
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most cases. Accordingly, for those cases where a heuristic solution (i.e., where some
constraints might be violated) is acceptable, our earlier approach has to be considered
as pragmatically superseded by the methods proposed here. However, it constitutes
an interesting avenue of further research to define different kinds of encodings (possi-
bly, still CSP-based ones) and exact solution approaches for them that have acceptable
scalings over real logs and with arbitrary classes of precedence constraints.

4. COMPLEXITY ANALYSIS

We now turn to study the computational complexity of the problem CN-MINING, which
is an important step towards developing effective algorithms for its solution. We start
by recalling some notions of complexity theory, by referring the reader to the book by
Garey and Johnson [1979] for more on this subject.

4.1. Preliminaries on Complexity Theory

Decision problems are maps from strings (encoding the input instance over a fixed
alphabet, e.g., the binary alphabet {0, 1}) to the set {“yes”, “no”}. We are often inter-
ested in computations carried out by non-deterministic Turing machines. We recall
that these are Turing machines that, at some points of the computation, may not have
one single next action to perform, but a choice between several possible next actions.
A non-deterministic Turing machine answers a decision problem if, on any input x,
(i) there is at least one sequence of choices leading to halt in an accepting state if
x is a “yes” instance (such a sequence is called accepting computation path); and (ii)
all possible sequences of choices lead to a rejecting state if x is a “no” instance. The
class of decision problems that can be solved by non-deterministic Turing machines in
polynomial time is denoted by NP.

A decision problem A1 is polynomially reducible to a decision problem A2, if there is
a polynomial-time computable function h (called reduction) such that, for every x, h(x)
is defined and x is a “yes” instance of A1 if and only if h(x) is a “yes” instance of A2. A
decision problem A is NP-hard if every problem in NP is polynomially reducible to A; if
A is NP-hard and belongs to NP, then A is said to be NP-complete. Thus, problems that
are complete for NP are the most difficult problems in NP. In particular, it is unlikely
that an NP-complete problem can be solved in polynomial time.

4.2. Summary of Results

In the analysis that follows, we take into account various qualitative properties re-
garding the kinds of constraint being allowed, by tracing the tractability frontier w.r.t.
them. Formally, let S be a subset of the following set of symbols {→, , 6→, 6 }. Let
C[S] denote all the possible constraints that can be built in a way that if →6∈ S (resp.,
 6∈ S, 6→6∈ S, 6 6∈ S), then no edge (resp., path, negated edge, negated path) constraint
is in C[S]). Let CN-MINING[S] denote the restriction of the problem over any set Π of
precedence constraints such that Π ⊆ C[S]. And, finally, let CN-EXISTENCE[S] be the
decision version of this problem, where we have just to decide whether a solution ex-
ist at all and we are not asked to compute a solution, if any. Then, our results can be
summarized as it is stated next (see also Figure 4).

THEOREM 4.1. If S ⊆ {→, , 6→} or S ⊆ {6 }, then CN-MINING[S] is feasible in
polynomial time. Otherwise, it is even intractable to check whether there is a solution at
all (formally, the problem CN-EXISTENCE[S] is NP-complete). 2

In particular, the proofs of the hardness results are based on linear logs only. Hence,
according to Fact 3.3, for these results it is immaterial whether CN-MINING is defined
over extended causal nets or over (standard) causal nets. These proofs are discussed in
the rest of the section. Instead, the classes of constraints over which the mining prob-
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Fig. 4. Tractability frontiers. A set S ⊆ {→, , 6→, 6 } above (resp., below) the frontier means that the corre-
sponding problem is NP-hard (resp., feasible in polynomial time) on C[S]. Problem ACYCLIC-CN-EXISTENCE

is defined in Section 4.3.

lems can be solved in polynomial time will be discussed in Section 5, where efficient
solution approaches will be proposed.

4.3. Hardness Results

For the analysis that follows, we find convenient to introduce a variant of the problem
CN-MINING, which we call ACYCLIC-CN-MINING. Given a set A of activities, a log
L with A(L) ⊆ A, and a set Π of precedence constraints with A(Π) ⊆ A, the problem
asks to compute a possibly extended causal net C = 〈G, I,O〉 over A where G is acyclic,
C ⊢ L, and G |= Π, or check that no net with these properties exists.

We start the proofs of the hardness results stated in Theorem 4.1, by focusing on
edge and path constraints imposed over the problem ACYCLIC-CN-EXISTENCE.

LEMMA 4.2. ACYCLIC-CN-EXISTENCE[{→}] is NP-hard.

PROOF. Consider the monotone one-in-three 3SAT problem defined as follows. We
are given as input a Boolean formula in conjunctive normal form Φ = c1 ∧ . . . ∧ cm
over the variables X1, . . . , Xn, where each clause cj , with j ∈ {1, ...,m}, has the form
(tj,1 ∨ tj,2 ∨ tj,3), and tj,1, tj,2, and tj,3 are three distinct variables. Note that Φ is always
satisfiable by the truth assignment where all variables evaluate true. In fact, the prob-
lem asks whether there is a satisfying truth assignment where each clause has exactly
one variable evaluating true (and hence two variables evaluating false). This problem
is known to be NP-complete [Schaefer 1978].

Based on any formula Φ as above, we build the set A(Φ) consisting of the variables in
Φ, which are transparently viewed as activities, plus the three distinguished activities
c, a

⊥
and a

⊤
, where a

⊥
and a

⊤
are as usual the starting and the terminating activity,

respectively. So, we formally have A(Φ) = {c} ∪ {X1, ..., Xn} ∪ {a
⊥
, a

⊤
}.
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Fig. 5. Example reduction in the proof of Lemma 4.2.

Moreover, we build the set Π(Φ) ⊆ C[{→}] of edge constraints as follows. For each
clause cj , Π(Φ) contains the constraints {tj,1, tj,2, tj,3} → {c}, {c} → {tj,1, tj,2}, {c} →
{tj,1, tj,3}, and {c} → {tj,2, tj,3}. No further constraint is in Π(Φ).

We now claim that: There is a satisfying truth assignment to the variables of Φ
such that each clause has exactly one variable evaluating true ⇔ there is an acyclic
dependency graph G (over A(Φ)) such that G |= Π(Φ).

(⇒) Assume that σ is a satisfying truth assignment such that each clause has ex-
actly one variable evaluating true. Consider the graph G(Φ, σ) = (A(Φ), E) whose
set of edges is defined as follows. For each variable Xh, with h ∈ {1, ..., n}, the edges
(a

⊥
, Xh) and (Xh, a⊥

) are in E. For each clause cj and each variable tj,i evaluating
true (resp., false) in σ, the edge (tj,i, c) (resp., (c, tj,i)) is in E. The edges (a

⊥
, c) and

(c, a
⊤
) are in E, and no further edge is in E. As an example, the graph G(Φ, σ) associ-

ated with the formula Φ = (X1 ∨X2 ∨X3)∧ (X3 ∨X4 ∨X5) and the truth assignment
σ, where X1 and X4 are the only variables evaluating true, is reported in Figure 5.
In particular, note that the edges whose definition depend on σ are depicted in bold.

We first show that G(Φ, σ) is a dependency graph. Indeed, a
⊥

and a
⊤

have no ingo-
ing and outgoing edges, respectively. Moreover, for each activity a ∈ A(Φ) \ {a

⊥
, a

⊤
},

the edges (a
⊥
, a) and (a, a

⊤
) are in E, so that a occurs in a path from a

⊥
to a

⊤
.

Then, we show that G(Φ, σ) satisfies all the constraints in Π(Φ). Recall that σ is a
satisfying truth assignment such that each clause has exactly one variable evaluat-
ing true. Thus, for each clause cj , with j ∈ {1, ...,m}, by construction there is an edge
of the form (tj,i, c), so that the constraint {tj,1, tj,2, tj,3} → {c} is satisfied. Moreover,
there are also two edges of the form (c, tj,i′) and (c, tj,i′′), where i′ 6= i, i′′ 6= i, i′ 6= i′′,
and {i′, i′′} ⊆ {1, 2, 3}. Thus, the constraints {c} → {tj,1, tj,2}, {c} → {tj,1, tj,3}, and
{c} → {tj,2, tj,3} are also satisfied, for each clause cj . It follows that all constraints in
Π(Φ) are satisfied by G(Φ, σ), i.e., G(Φ, σ) |= Π(Φ).

In order to conclude, we now just need to point out that G(Φ, σ) is acyclic. To this
end, assume for the sake of contradiction that a cycle exists in G(Φ, σ). Note that
this cycle is necessarily defined over the variables and the distinguished activity c.
Therefore, the set E of edges must contain an edge of the form (c,Xh) and an edge
of the form (Xh, c). By construction, the existence of the edge (c,Xh) implies that Xh

is a variable evaluating false in σ. However, the existence of the edge (Xh, c) implies
that Xh is a variable evaluating true in σ. Contradiction.

(⇐) Assume that G = (V,E) is an acyclic dependency graph satisfying all the con-
straints in Π(Φ), and define the truth assignment σG such that Xh evaluates true
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if, and only if, the edge (Xh, c) occurs in E. We first show that σG is satisfying.
Indeed, for each clause cj , with j ∈ {1, ...,m}, consider the associated constraint
{tj,1, tj,2, tj,3} → {c}, and note that since G |= Π(Φ), we are guaranteed about the
existence of an edge from one of the variables in {tj,1, tj,2, tj,3} to c. Hence, for each
clause cj , at least one of the variables occurring in cj evaluates true in σG , by defini-
tion of this assignment, which is therefore satisfying.

Now, we show that σG is a such that each clause has exactly one variable evaluat-
ing true. Assume, for the sake of contradiction, that a clause cj exists such that two
variables, say tj,i′ and tj,i′′ with i′ 6= i′′, evaluate true in σG . Thus, the edges (tj,i′ , c)
and (tj,i′′ , c) are both in E. Consider then the constraint {c} → {tj,i′ , tj,i′′} associ-
ated with the clause cj , and note that it prescribes that at least one of the edges in
{(c, tj,i′), (c, tj,i′′ )} occurs in E. Assume, w.l.o.g., that (c, tj,i′) is in E and observe that
we have eventually a cycle over c and tj,i′ . Contradiction.

By Corollary 3.8 and Fact 3.3, the above entails that ACYCLIC-CN-MINING[{→}] on
input A(Φ), the empty log, and the set Π(Φ) has a solution if, and only if, there is a
satisfying truth assignment to the variables of Φ such that each clause has exactly one
variable evaluating true. As the reduction is feasible in polynomial time, it follows that
ACYCLIC-CN-EXISTENCE[{→}] is NP-hard.

A straightforward adaptation of the above proof, where each edge constraint is re-
placed by a path constraint over the same sets of activities, can be used to show that
the problem remains intractable if we consider path constraints in place of edge con-
straints. The proof is reported below, for the sake of completeness.

LEMMA 4.3. ACYCLIC-CN-EXISTENCE[{ }] is NP-hard.

PROOF. Consider again the setting in the proof of Lemma 4.2 and, for any formula
Φ, define Π′(Φ) ⊆ C[{ }] as the set of constraints obtained from Π(Φ) by replacing
each edge constraint with the analogous path constraint. Therefore, for each clause cj,
Π′(Φ) contains the constraints {tj,1, tj,2, tj,3}  {c}, {c}  {tj,1, tj,2}, {c}  {tj,1, tj,3},
and {c} {tj,2, tj,3}. We now claim that: There is a satisfying truth assignment to the
variables of Φ such that each clause has exactly one variable evaluating true ⇔ there
is an acyclic dependency graph G (over A(Φ)) such that G |= Π′(Φ).

(⇒) Assume that σ is a satisfying truth assignment such that each clause has exactly
one variable evaluating true, and consider the graph G = (Φ, σ) built in the proof
of Lemma 4.2. Recall that G |= Π(Φ). Hence, we trivially have that G |= Π′(Φ), in
particular because all path constraints are satisfied by direct connections.

(⇐) Assume that G = (V,E) is an acyclic dependency graph satisfying all the con-
straints in Π′(Φ), and define the truth assignment σ′

G such that Xh evaluates true
if, and only if, there is a path from Xh to c in E. Because of the constraints
{tj,1, tj,2, tj,3}  {c} occurring in Π′(Φ) and associated with the clause cj , for each
j ∈ {1, ...,m}, σ′

G is satisfying. In order to conclude, we need to show that σ′
G is a such

that each clause has exactly one variable evaluating true. Assume, for the sake of
contradiction, that a clause cj exists such that two variables, say tj,i′ and tj,i′′ with
i′ 6= i′′, evaluate true in σG . Thus, there is a path from tj,i′ to c and a path from tj,i′′
to c are both in E. Consider then the constraint {c} {tj,i′ , tj,i′′} associated with the
clause cj , and note that it prescribes that there is a path from c to at least one of the
nodes in {tj,i′ , tj,i′′}. Assume, w.l.o.g., that a path from c to tj,i′ exists. Then, we have
a cycle involving the activities c and tj,i′ . Contradiction.

By the above result, Corollary 3.8, Fact 3.3, and the fact that the reduction is feasible
in polynomial time, it follows that ACYCLIC-CN-EXISTENCE[{ }] is NP-hard.
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Let us now turn to the case of negated edge constraints, but still focusing on the
acyclic variant of the mining problem.

LEMMA 4.4. ACYCLIC-CN-EXISTENCE[{6→}] is NP-hard.

PROOF. Let Π = {{b1i , ..., b
ki

i } → {a1i , ..., a
hi

i } | i ∈ {1, ...,m}} ⊆ C[{→}] be a

(non-empty) set of edge constraints, such that {b1i , ..., b
ki

i } ∩ {a1i , ..., a
hi

i } = ∅, for each
i ∈ {1, ...,m}. For each i ∈ {1, ...,m}, let ci denote a fresh activity not in A(Π). Moreover,
let a

⊥
and a

⊤
be two activities not in A(Π) playing the role of the starting and termi-

nating activity, respectively. Then, consider the log L(Π) = {t1, ..., tm} such that ti =

a
⊥
b1i ...b

ki

i cia
1
i ...a

hi

i a
⊤

, for each i ∈ {1, ...,m}. Moreover, consider the set Π¬ of negated
edge constraints such that Π¬ = {¬({a

⊥
} → {ci}),¬({ci} → {a

⊤
}) | i ∈ {1, ...,m}}.

We claim that: There is an acyclic dependency graph G over the set A(Π) ∪ {a
⊥
, a

⊤
}

of activities and such that G |= Π ⇔ there is an acyclic dependency graph G′ over the
set A(Π) ∪ {a

⊥
, a

⊤
} ∪ {c1, ..., cm} of activities and such that G′ |= π(L(Π)) ∪ Π¬.

(⇒) Assume that G = (V,E) is an acyclic dependency graph over the set A(Π)∪{a
⊥
, a

⊤
}

of activities and such that G |= Π. Consider the graph G′ = (V ′, E ∪ E′
1 ∪ E′

2) where
V ′ = V ∪ {c1, ..., cm} and whose set of edges is built as follows. The set E′

1 contains
the edges (a

⊥
, a) and (a, a

⊤
), for each activity a ∈ A(Π), and no further edge is in E′

1.

Moreover, for each i ∈ {1, ...,m}, and for each edge (x, y) ∈ E such that x ∈ {b1i , ..., b
ki

i }

and y ∈ {a1i , ..., a
hi

i }, E′
2 includes the edges (x, ci) and (ci, y). No further edge is in E′

2.
It is immediately checked that G′ is an acyclic dependency graph.

Now, we first claim that G′ |= Π¬. Indeed, {a
⊥
, a

⊤
} ∩ A(Π) = ∅, so that E′

2 does
not include any edge of the form (a

⊥
, ci) or of the form (ci,⊤), with i ∈ {1, ...,m}. Let

now ti be a trace in L(Π), with i ∈ {1, ...,m}. Consider the set π(ti) of constraints
induced by ti according to Definition 3.6. Because of the edges in E′

1, all constraints

in π(ti) are trivially satisfied by G′, but the two constraints {a
⊥
, b1i , ..., b

ki

i } → {ci}

and {ci} → {a1i , ..., a
hi

i , a
⊤
}, because there is no edge in G′ from a

⊥
to ci, and from ci

to a
⊤

. Now, recall that G satisfies Π and hence, an edge (x, y) occurs in E such that

x ∈ {b1i , ..., b
ki

i } and y ∈ {a1i , ..., a
hi

i }. By construction of the edges in E′
2, we therefore

have that (x, ci) and (ci, y) are edges of G′, which proves that the two constraints are
satisfied, too. Hence, G′ |= π(L(Π)).

(⇐) Assume there is an acyclic dependency graph G′ = (V ′, E′) over the set A(Π) ∪
{a

⊥
, a

⊤
} ∪ {c1, ..., cm} of activities and such that G′ |= π(L(Π)) ∪ Π¬. Let ti be a trace

in L(Π), with i ∈ {1, ...,m}, and consider the two constraints {a
⊥
, b1i , ..., b

ki

i } → {ci}

and {ci} → {a1i , ..., a
hi

i , a
⊤
} in the set π(ti), which are satisfied by G′. Since G′ |= Π¬,

from the above we conclude that G′ |= {{b1i , ..., b
ki

i } → {ci}, {ci} → {a1i , ..., a
hi

i }} holds.
Consider now the graph G = (V,E) where V = V ′ \ {c1, ..., cm} and where the set of

edges is defined as follows. The set E contains the edges (a
⊥
, a) and (a, a

⊤
), for each

activity a ∈ V . Moreover, for each i ∈ {1, ...,m}, E includes all edges of the form (x, y)

such that {(x, ci), (ci, y)} ⊆ E′, x ∈ {b1i , ..., b
ki

i }, and y ∈ {a1i , ..., a
hi

i }. Note that, in the
light of the above observation, at least an edge of this kind is included in E, so that
G |= Π holds. Note also that G is a dependency graph. Eventually, to conclude the
proof, just note that G is acyclic, as the existence of a cycle in G would immediately
entail the existence of a cycle in G′.

Observe now that the log L(Π) is linear, so that we are in the position of applying
Corollary 3.8 and Fact 3.3 on the result proven above. By this way, we conclude that
ACYCLIC-CN-MINING[{→}] on input A(Π) ∪ {a

⊥
, a

⊤
}, the empty log, and the set Π

has a solution if, and only if, ACYCLIC-CN-MINING[{6→}] on input A(Π) ∪ {a
⊥
, a

⊤
} ∪
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{c1, ..., cm}, the log L(Π), and the set Π¬ has a solution. Eventually, by inspecting
the proof of Lemma 4.2, note that the constraints used to prove the NP-hardness of
ACYCLIC-CN-MINING[{→}] are precisely of the form considered here for the set Π,
and that the result is established even for logs that are empty. Therefore, we have re-
duced ACYCLIC-CN-MINING[{6→}] to ACYCLIC-CN-MINING[{→}], so that the problem
is hence shown to be NP-hard, too.

To complete the picture, we now move to the case of arbitrary process models, i.e.,
of models that are not required to be acyclic. In this context, the picture is easily com-
pleted, as negated path constraints can be used to enforce acyclicity.

THEOREM 4.5. The problems CN-MINING[{→, 6 }], CN-MINING[{ , 6 }], and CN-
MINING[{6→, 6 }] are NP-hard.

PROOF. Let Π be a set of constraints in C[{→}] (resp., C[{ }], C[{6→}]). Based on Π,
we build the set Π′ of constraints including all the constraints in Π, plus the novel con-
straint ¬({a} 6 {a}), for each activity a taken from the underlying set of symbols A. Of
course, Π′ belongs to C[{→, 6 }] (resp., C[{ , 6 }], C[{6→, 6 }]). In particular, the novel
constraints just enforce that the resulting process model is acyclic. Then, ACYCLIC-
CN-MINING[{→}] (resp., ACYCLIC-CN-MINING[{ }], ACYCLIC-CN-MINING[{6→}])
has a solution on input the set A of activities, a log L, and the set Π of constraints if,
and only if, CN-MINING[{→, 6 }] (resp., CN-MINING[{ , 6 }], CN-MINING[{6→, 6 }])
has a solution on input A, L, and Π′. The result therefore follows from Lemma 4.2,
Lemma 4.3, and Lemma 4.4.

To complete the proof of Theorem 4.1, we now show that the decision version of the
mining problem belongs to the complexity class NP. Combined with the NP-hardness
results discussed above, this entails the corresponding NP-completeness results.

THEOREM 4.6. CN-EXISTENCE[S] is in NP, for each set S ⊆ {→, , 6→, 6 }.

PROOF. We need to decide about the existence of an extended causal net C =
〈G, I,O〉 over A such that C ⊢ L and G |= Π. Thus, we can build a non-deterministic
Turing machine that guesses a graph G = (V,E), with V ⊆ A, and checks that G |= Π.
Moreover, for each trace t ∈ L, the machine guesses a sequence σt of binding activi-
ties 〈t[1], ib1, ob1〉, ..., 〈t[len(t)], ibn, obn〉 and checks that σt is valid w.r.t. C. Note that, by
Theorem 3.5, we can assume w.l.o.g. that the size of G is polynomially bounded. Thus,
the overall size of the structures guessed by the machine is polynomially bounded.
Moreover, the operations performed on them are feasible in polynomial time. Hence,
the problem belongs to NP.

For the sake of completeness, note that if one restricts the problem to causal nets
only, then the problem is still feasible in NP, as the machine has just to additionally
check that I and O are sets rather than multi-sets as in the extended model.

5. CLASSES OF TRACTABLE PRECEDENCE CONSTRAINTS

In this section, we define two algorithms to efficiently solve CN-MINING over the
classes C[{→, , 6→}] and C[{6 }], respectively. The algorithms will be designed as to
make them still applicable over larger classes of constraints, by providing heuristic
solution methods in these (NP-hard) cases. The efficiency of the methods and their
efficacy as heuristics will be eventually assessed in Section 6.

In the exposition below, we assume that a set A of activities is given, together with
a log L such that A(L) ⊆ A and with a set Π of precedence constraints such that
A(Π) ⊆ A. Accordingly, to simplify the notation, we shall omit to indicate A, L, and Π,
unless we want to explicitly point out a dependency from some of them. Moreover, we
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shall denote by Π→ and Π (resp., Π6→ and Π6 ) the sets of all positive (resp., negated)
edge and path constraints in Π, respectively.

Both algorithms are based on a succession of graph manipulations, i.e., insertions
and deletions of edges, starting with an initial (dependency) graph built from the log.
In order to facilitate reasoning about such graph manipulations, for any directed graph
G = (V,E) and for any set E′ ⊆ V ×V of edges, we define G⊕E′ as the graph (V,E∪E′),
and G ⊖E′ as the graph (V,E \ E′). Moreover, we observe that while performing these
operations, it is practically relevant to include (resp., exclude) only those edges that
very likely (resp., hardly) witness the existence of true causal relations. In order to
provide a formal measure of the ‘quality’ of an edge, we consider here the notion of
causal score inspired by the works of Weijters and van der Aalst [2001], Weijters and
van der Aalst [2003], and A.J.M.M. Weijters et al. [2006].

Let δ be a real number with 0 < δ < 1. Then, the causal score (w.r.t. δ) is defined
as the function csδ : A × A 7→ R such that csδ(ai, aj) = D(ai, aj)/|{t ∈ L | ai =
t[k], for some index k}|, and where:

D(ai, aj) =
∑

t∈L|ai=t[h]∧aj=t[k]∧h<k

δ
k−h−1 −

∑

t∈L|ai=t[k]∧aj=t[h]∧h<k

δ
k−h−1

.

To illustrate the above definition, note that, for each trace t[1]...t[n], D(ai, aj) is in-
cremented of a term δk−h−1 if ai occurs k − h positions before aj , and decremented of
the same term (in absolute value) if ai occurs k − h positions after aj . Moreover, the
positive and the negative terms exponentially decrease at the growing of the distances
between ai and aj in the traces. Note that csδ(ai, aj) ≤ 1 holds, since δ < 1.

5.1. Precedence Constraints without Negated Paths

We start by illustrating an algorithm to solve CN-MINING over C[{→, , 6→}]. The algo-
rithm is design so that, over linear logs, a causal net is always returned as a solution,
whenever a solution in fact exists. Instead, over arbitrary logs, the algorithm might
well return an extended causal net.

5.1.1. Precedence Graphs. The starting point of the algorithm is the construction of
the precedence graph PG(L,Π) over A(L). In this graph, we avoid the edges that are
forbidden to satisfy the negated edge constraints in Π, i.e., the edges in FE(Π) = {(x, y) |
x ∈ S, y ∈ T,¬(S → T ) ∈ Π6→}. We start with an intuition of this concept.

EXAMPLE 5.1. Consider a log L consisting of the trace abcde, and assume that Π
consists of the constraint ¬({c} → {d}). Then, the precedence graph PG(L,Π) is the one
illustrated in the left part of Figure 6. Intuitively, each activity x ∈ {a, b, c, d, e} has an
edge incoming (resp., outgoing) to any activity that precedes (resp., follows) x in some
trace. However, we avoid the edges that are forbidden according to the constraints.
In particular, the graph does not contain the edge (c, d), and the connectivity of d is
guaranteed via the edge (b, d), i.e., d is reached by the node closest to it in the trace
abcde and for which no violation in Π6→ occurs. Moreover, c can reach the final activity
via to the direct connection (c, e). �

Formally, PG(L,Π) = (V,E) is defined as the directed graph where V = A(L) and
where the set E of its edges is built as follows. For each trace t ∈ L and for each
i ∈ {2, ..., len(t)} (resp., i ∈ {1, ..., len(t)− 1}), if there is an index j ∈ {1, ..., i− 1} (resp.,
h ∈ {i + 1, ..., len(t)}) such that (t[j], t[i]) 6∈ FE(Π) (resp., (t[i], t[h]) 6∈ FE(Π)), then E
contains the edge (t[j∗], t[i]) (resp., (t[i], t[h∗])) witnessing that the property hold (i.e.,
(t[j∗], t[i]) 6∈ FE(Π) (resp., (t[i], t[h∗]) 6∈ FE(Π))) and having the highest causal score. No
further edge is in E. The basic properties of precedence graphs are stated below.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 G. Greco et al.

Fig. 6. Precedence graphs for the examples in Section 5.

LEMMA 5.2. Assume that PG(L,Π) 6|= π(L) holds. Then, there is no graph G such
that G |= π(L) ∪ Π. Otherwise, i.e., if PG(L,Π) |= π(L), then PG(L,Π) is a dependency
graph over A(L) such that PG(L,Π) |= Π6→.

PROOF. Assume that PG(L,Π) 6|= π(L). Then, there is a trace t ∈ L such that
PG(L,Π) 6|= π(t). By Definition 3.6, there are two possible cases. First, there might
be an index i ∈ {2, ..., len(t)} such that {t[1], ..., t[i − 1]} → {t[i]} is not satisfied by
PG(L,Π). By construction of PG(L,Π), this means that (t[j], t[i]) ∈ FE(Π) holds, for each
j ∈ {1, ..., i − 1}. Consider then a dependency graph G such that G |= π(L). Note that
G must include an edge (t[j∗], t[i]), with j∗ ∈ {1, ..., i − 1}, in order to satisfy the above
constraint. However, (t[j∗], t[i]) is in FE(Π), and there is a negated edge constraint
¬(S → T ) ∈ Π such that t[j∗] ∈ S and t[i] ∈ T . So, if G |= π(L), then G 6|= Π.

Assume now that PG(L,Π) |= π(L). We first observe that PG(L,Π) contains the two
activities a

⊥
and a

⊤
, playing the role of the starting and terminating activity. In par-

ticular, a
⊥

and a
⊤

have no ingoing and outgoing edges, respectively. Consider then
any other activity a occurring in PG(L,Π), and note that there is a trace t ∈ L and
an index i ∈ {2, ..., len(t) − 1} such that t[i] = a. Since PG(L,Π) |= π(L), we are then
guaranteed about the existence of two edges having the form (t[j], t[i]) and (t[i], t[h]),
with j ∈ {1, ..., i − 1} and h ∈ {i + 1, ..., len(t)}. By structural induction on the index i,
it then follows that t[i] occurs in a path connecting t[1] = a

⊥
to t[len(t)] = a

⊤
. Hence,

PG(L,Π) satisfies all the conditions for being a dependency graph over A(L). Then, in
order to conclude the proof, we need to show that PG(L,Π) |= Π6→. Indeed, assume by
contradiction that a negated edge constraint ¬(S → T ) exists in Π such that x ∈ S,
y ∈ T , and the edge (x, y) is in PG(L,Π). Hence, (x, y) ∈ FE(Π), which is impossible as
all edges of PG(L,Π) do not belong to FE(Π), by construction.

5.1.2. Positive Precedence Constraints. According to the above result, precedence graphs
can be used as a preliminary representation of inter-activity dependencies. However,
these graphs do not guarantee that positive constraints are satisfied. Therefore, we
define a method to identify the edges needed to satisfy the positive constraints in Π.
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EXAMPLE 5.3. Consider the precedence graph PG(L,Π) discussed in Example 5.1
and assume that Π also contains the constraint {d}  {b}. Note that PG(L,Π) does
not satisfy the positive constraint {d}  {b}. Thus, we have to update the graph by
including a path starting from d and terminating into b and where the edge (c, d) does
not occur in it. Of course, in this case we can just simply add and edge from d to b, as
it is shown in the center of Figure 6. �

Let G = (V,E) be a dependency graph with V ⊇ A(Π). For each pair of nodes x, y ∈ V ,
define the weight of (x, y) for G w.r.t. δ, as the real number wδ(G, x, y) such that4:

wδ(G, x, y) =

{

0 if (x, y) ∈ E
+∞ if x = a

⊤
; or y = a

⊥
; or x ∈ S, y ∈ T , and ¬(S → T ) ∈ Π

2− csδ(x, y) in the remaining cases

If a1, ..., ah is a sequence of nodes forming a path in G, with h ≥ 2, then we define its

weight wδ(G, a1, ..., ah) as the value
∑h−1

i=1 wδ(G, ai, ai+1). Note that wδ(G, a1, ..., ah) ≥ 0,
because csδ(x, y) ≤ 1 holds, for each pair x, y. Moreover, for each path constraint S  T
(resp., edge constraint S → T ) in Π, we define BestPathδ(G, S  T ) = a1, ..., ah (resp.
BestEdgeδ(G, S → T ) = a1, a2) as the minimum-weight path (resp., minimum-weight
edge) such that a1 ∈ S and ah ∈ T . Note that, if there is a precedence constraint S  T
(resp., S → T ) such that the weight of BestPathδ(G, S  T ) (resp., BestEdgeδ(G, S →
T )) is +∞, then all the paths (resp., edges) connecting any activity in S to any activity
in T must include an edge that cannot occur in a model of Π6→. Hence, the following is
immediately established.

LEMMA 5.4. Let G be a graph such that G |= Π6→. If there is a path constraint
S  T (resp., edge constraint S → T ) such that the weight of BestPathδ(G, S  T )
(resp., BestEdgeδ(G, S → T )) is +∞, then CN-MINING has no solution (on A, L, and Π).

If the hypothesis in the above lemma does not hold, in order to satisfy a path con-
straint S  T (resp., edge constraint S → T ) we can just update the graph G as to
include BestPathδ(G, S  T ) (resp., BestEdgeδ(G, S → T )) as a path (resp., an edge).

5.1.3. Putting It All Together. Now that we have discussed all the salient ingredients, we
can illustrate the algorithm COMPUTE-CN shown in Figure 7.

The algorithm starts in step 1 by adding to Π a set of path constraints stating that
each activity a ∈ A \ A(L), i.e., not occurring in the log, has still to occur in a path
from the starting activity to the terminating one. Step 2 is responsible of checking
whether the precedence graph supports the constraints induced by the log. Note that
we directly check the satisfaction of the constraints induced by the log. Indeed, if this
graph does not satisfy the condition, then we report that no solution exists all.

In step 3, a graph G1 is initially built over the nodes in A and the edges in PG(L,Π). In
the subsequent steps, Gk denotes the graph obtained from G1 after having performed
k − 1 manipulations on it. The process starts with step 4, which is a heuristic step
that removes any edge whose causal score is below a given threshold τ , received as an
additional parameter. In fact, it can be checked that for τ = 1, this is immaterial and
the graph remains unchanged. Step 5–11 (resp., 12–18) are responsible of adding a
number of edges to the precedence graph as to satisfy all edge constraints (resp., path
constraints), according to the strategy described in Section 5.1.2. A failure in this step
leads the algorithm to exit by reporting that no solution exist at all.

Finally, a (possibly extended) causal net 〈G, I,O〉 is built and returned as output.
This latter step is carried out by a function that just implements the strategy of in-

4Here, +∞ stands for any large enough positive real number, e.g., +∞ > |A|2 ×max(x,y)∈E csδ(x, y).
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Input: A set A of activities, with a⊥ (a⊤) being the starting (terminating) one,
a log L with A(L) ⊆ A, and
a set Π ∈ C[{→, , 6→}] of precedence constraints with A(Π) ⊆ A;

Parameters: Two real numbers δ > 0 and τ > 0;
Output: A triple 〈G, I,O〉, or ‘no’;

1. Π := Π ∪ {{a⊥} {a}, {a} {a⊤} | a ∈ A \ A(L)};
2. if PG(L,Π) 6|= π(L) then return ‘no’ (and HALT);
3. let G1 := (A, E1) be the graph where E1 consists of the edges in PG(L,Π);
4. G1 := G1 ⊖ {(x, y) | csδ(x, y) < τ}, k := 1;
5. F := {S → T ∈ Π | Gk 6|= S → T};
6. while F 6= ∅ do
7. let S → T be in F , and let BestEdgeδ(Gk, S, T ) = a1, a2;
8. if wδ(Gk, a1, a2) ≥ +∞ then return ‘no’ (and HALT);
9. Gk+1 := Gk ⊕ {(a1, a2)}, k := k + 1;

10. F := {S → T ∈ Π | Gk 6|= S → T};
11. end while
12. F := {S → T ∈ Π | Gk 6|= S  T};
13. while F 6= ∅ do
14. let S  T be in F , and let BestPathδ(Gk, S  T ) = a1, ..., ah;
15. if wδ(Gk, a1, ..., ah) ≥ +∞ then return ‘no’ (and HALT);
16. Gk+1 := Ḡk ⊕ {(ai, ai+1) | i ∈ {1, ..., h− 1}}, k := k + 1;
17. F := {S  T ∈ Π | Gk 6|= S  T};
18. end while
19. return computeBindings(Gk ,L);

Function computeBindings(G, L), with G = (A, E);
⌈ ∀a ∈ A, let I(a) := Ia and O(a) := Oa, where
| Ia = {(x, a) | (x, a) ∈ E} and Oa = {(a, y) | (a, y) ∈ E};
| for each trace t in L, and for each i ∈ {1, ..., len(t)} do
| I(t[i]) := I(t[i]) ∪ {(t[j], t[i]) ∈ E | csδ(t[j], t[i]) ≥ τ, j < i}; (*to be treated as multi-sets*)
| O(t[i]) := O(t[i]) ∪ {(t[i], t[j]) ∈ E | csδ(t[i], t[j]) ≥ τ, i < j}; (*to be treated as multi-sets*)
| end for
⌊ return 〈G, I,O〉; (* possibly extended causal net *)

Fig. 7. Algorithm COMPUTE-CN (on C[{→, , 6→}]).

cluding an input (resp., output) binding for each trace t, and of defining this binding
with all predecessor (resp., successor) activities in t. Moreover, in order to formally
guarantee that 〈G, I,O〉 is a (possibly extended) causal net, we add the binding Ia
(resp., Oa) to I(a) (resp., O(a)), for each activity a in G, being defined as the union of all
incoming (resp. outgoing) edges. As above, we heuristically get rid of any edge whose
causal score is below τ . The correctness is stated next.

THEOREM 5.5. The following properties hold on COMPUTE-CN, receiving as input
A, L, Π ∈ C[{→, , 6→}], the parameter δ, and for τ = 1:

— if it returns ‘no’, then there is no solution;
— if it returns 〈G, I,O〉 and L is (resp., is not) a linear log, then 〈G, I,O〉 is a (resp.,

possibly extended) causal net such that 〈G, I,O〉 ⊢ L and G |= Π.

PROOF. By Lemma 5.2 and Theorem 3.11, if the algorithm returns ‘no’ at step 2,
then we are guaranteed that there is no solution. Assume that we are not in this case.
Then, by Lemma 5.2, we know that PG(L,Π) is a dependency graph over A(L) with
PG(L,Π) |= π(L) and PG(L,Π) |= Π6→. So, G1 is such that G1 |= π(L) and G1 |= Π6→.

Consider now the steps 5–18. Note that whenever the current graph G is updated
(in steps 9 and 16), we are guaranteed that any edge (x, y) that is inserted does not
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violate negated edge constraints, for otherwise the weight of BestEdgeδ(G, S → T ) or
BestPathδ(G, S  T ) would be +∞. Moreover, in the remaining steps, no edge is added.
Therefore, Gk |= Π6→ holds, for each k ≥ 1. In fact, steps 6–18 try to enforce the satis-
faction of the edge and the path constraints. By Lemma 5.4 and since Gk |= Π6→ holds,
for each k ≥ 1, we derive that if the the algorithm returns ‘no’, then we are guaranteed
that no solution exists at all. Again, let us assume that this is not the case, in order
to complete the analysis. So, we have now reached step 19, where we are guaranteed
that the current graph Gk is such that Gk |= Π. Moreover, as we have just added edges
and initially G1 |= π(L) holds, then Gk |= π(L) holds, too. In particular, the subgraph
of Gk induced over the nodes in A(L) is a dependency graph. Moreover, because of the
constraints added in step 1, every other activity in a ∈ A \ A(L) is also in a path from
the starting to the terminating activity. Hence, Gk is a dependency graph.

Finally, step 19 invokes a function that equips Gk with the sets I and O. The reader
may check that the function is a constructive implementation of the proof of Theo-
rem 3.11 (which basically founds on Theorem 2.7). Therefore, the tuple C = 〈Gk, I,O〉
returned as output is such that C ⊢ L and Gk |= Π \ Π6 . Hence, if Π ∈ C[{→, , 6→}],
then we have actually computed a solution.

Note that the net computed by the function COMPUTE-CN might well be an extended
causal net. In fact, in Section 6 we shall discuss heuristics making this scenario rather
unlikely, as we have also verified in our experiential activity. Moreover, in absence of
negated edge constraints, it is easy to see that there is always a causal net that is
a solution and that can be trivially built from the dependency graph containing all
possible edges—heuristics can be also defined to remove unnecessary edges, but we
do not expand on this aspect. However, we leave it open the question about whether
CN-MINING is still tractable when restricted over causal nets only, and when negated
edge constraints can occur in addition to positive constraints.

Implementation issues and computation time analysis. Let nt = |L| and na = |A|
be the number of traces and activities in input, and lt be the maximal trace length.
Let n→ be the number of precedence constraints, and (resp., n 6→, n ) be the number
of constraints of type C[{→}] (resp., C[{6→}], C[{ }]) given as input. Moreover, let nc

be the total number of input constraints (independently of the type), and k be the
maximum number of elements in either side of them all, i.e., the maximum size of all
their associated sets S and T .

In the implementation, constraints are indexed with a number in {1, . . . , nc}, and two
arrays of activity identifiers’s lists are used to keep trace of the activities appearing in
the left and right sides, respectively, of each constraint. Causal scores, forbidden edges,
and dependency graphs are all represented via na × na matrices. The initialization of
these structures and steps 1-5 can be done in O(nt × l2t + (n→ + n 6→ + n ) × k + n2

a)
time, where the leftmost term corresponds to both computing the causal score matrix
and PG(L,Π), and assessing whether this latter satisfies π(L).

The cost of the first loop (steps 6-11) is O(n→ × k2). This accounts for checking the
satisfaction of all positive edge constraints, and for the cost of computing the “best
edge” for each of them. Since no edge is removed, each constraint is considered at most
in one iteration, and will remain satisfied in the subsequent ones. The second loop
(steps 13-18) resemble the first one, but for the focus on computing “best paths” rather
than “best edges”. For each constraint, the task can be carried out via the classical
Djikstra algorithm (possibly provided with an artificial “super”-source node, linked to
all activities in the lefthand set of the constraint), with a cost O(n2

a). Since k ≤ na and
we have n constraints, the overall cost is O(n × n2

a).
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Input: A set A of activities, with a⊥ (a⊤) being the starting (terminating) one,
a log L with A(L) ⊆ A, and
a set Π ∈ C[{6 }] of precedence constraints with A(Π) ⊆ A;

Parameters: Two real numbers δ > 0 and τ > 0;
Output: A triple 〈G, I,O〉, or ‘no’;

1. let G1 := PG(L, ∅);
2. G1 := G1 ⊖ {(x, y) | csδ(x, y) < τ}, k := 1;
3. while FakeEdge(Gk) 6= ∅ do
4. let (x∗, y∗) := argmin(x,y)∈FakeEdge(Gk){csδ(x, y)};
5. let z, w be any pair of nodes in Gk such that

(c1) z ∈ succ(Gk, x
∗), w ∈ pred(Gk, y

∗) and there are no paths from either z to a
node in T ∪ {w}, or from a node in S ∪ {z} to w.

(c2) ∀z′, w′ satisfying (c1), csδ(x
∗, z) + csδ(w, y∗) ≥ csδ(x

∗, z′) + csδ(w
′, y∗);

6. Gk+1 := Gk ⊕ {(x∗, z), (w, y∗)} ⊖ {(x∗, y∗)}, k := k + 1
7. end while

8. if Gk 6|= Π 6 then return ‘no’ (and HALT);
9. return computeBindings(Gk ,L);

Fig. 8. Algorithm COMPUTE-CN (on C[{6 }]).

Finally, the input and output bindings of each activity can be kept in two dictio-
naries, whose entries are multi-sets of activities, with each activity identifying the
other vertex of an associated incoming/outgoing edge. Such multi-sets (which reduces
to sets in the case of pure causal nets) are simply stored as vectors, encoding edges’
multiplicity. Regarding such vectors as strings of length na (i.e. the sequence of occur-
rence counts, one per edge), these dictionaries can be implemented as a tries (i.e. prefix
trees), which can be built in O(nt × lt × na). This cost accounts for (i) scanning each
input trace s in both directions (forward and backward) with an index, say i, while
incrementally building the multi-set of all activities in its first (resp., last) i positions,
and for (ii) generating the resulting multi-set and adding it to input (resp., output)
bindings of s[i]. 5

In total, we get O(nt × lt ×max(lt, na) + n2
a × (1 + n ) + n→ × k2 + n 6→ × k).

5.2. The Case of Negated Path Constraints

We now present an algorithm to solve CN-MINING on the class C[{6 }], which is illus-
trated in Figure 8. Most of the ingredients discussed so far will still play a role, but the
approach is substantially different. The algorithm starts again with the construction
of the precedence graph, but this time building it without taking care of negated edge
constraints—note that edges with low causal scores are removed. That is, we start
with the graph PG(L, ∅), whose main properties are stated below and are easily seen to
hold by inspecting the proof of Lemma 5.2.

LEMMA 5.6. PG(L, ∅) is a dependency graph over A(L) and PG(L, ∅) |= π(L).

The algorithm subsequently breaks any path that witnesses a violation of the
negated path constraints in Π. Formally, if G = (V,E) is a dependency graph over

5The idea of using an efficient data structure to store the bindings of each node in an extended (resp., pure)
causal net stems from the observation that a safe upper bound to their number is min(lna

t , lt × nt) (resp.,
min(2na , lt × nt)) — even though, in many practical cases, the it can be assumed as constant. Several finer-
grain policies can be adopted to reduce the actual (space and/or time) costs of maintaing such structures. For
example, one can store only once the elements shared by multiple tries, adopt a more concise representation
for any multi-set (e.g., as a pair of the form 〈activity, occurrences〉), as well as resort to radix (“patricia”)
tries. Anyway, none of these improvements change our asymptotical analysis.
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A, then the set of all fake edges is defined as FakeEdge(G) = {(x, y) ∈ E | ¬(S  T ) ∈
Π,G |= {{S}  {x}, {y}  {T }}}. Intuitively, we would like to remove these edges
from the graph, but while doing so we might miss the ability of supporting the log L.
In some cases, we need in fact to repair the connectivity.

Let G = (V,E) be a graph over A. Let y be an activity in V . The set pred(G, y) of the
causal predecessors of y in L is defined as the set of all the activities w ∈ V such that
there is a path from a

⊥
to w in G \ {(x′, y) | (x′, y) ∈ E} and, for each trace t ∈ L where

y occurs, i.e., y = t[i] for some i ∈ {1, ..., len(t)}, then w also occurs in t before y, i.e.,
w = t[j] where j < i holds. Symmetrically, let x be an activity in V . The set succ(G, x)
of the causal successors of x in L is the set of all the activities z ∈ V such that there is
a path from z to a

⊤
in G \ {(x, y′) | (x, y′) ∈ E} and, for each trace t ∈ L where x occurs,

i.e., x = t[i] for some i ∈ {1, ..., len(t)}, then z also occurs in t after x, i.e., z = t[j] where
j > i holds. Note that the following is immediate.

LEMMA 5.7. Let G = (V,E) be a dependency graph such that G |= π(L), and let
(x, y) be an edge in E, hence with x 6= a

⊥
and y 6= a

⊤
. Then, a

⊥
∈ pred(G, y) and

a
⊤
∈ succ(G, x).

The following result shows how to safely update a given dependency graph G.

LEMMA 5.8. Let G = (V,E) be a dependency graph such that G |= π(L), let (x, y) be
an edge, and let w 6= a

⊥
and z 6= a

⊤
be in pred(G, y) and succ(G, x), respectively. Then,

G′ = G ⊕ {(w, y), (x, z)} ⊖ {(x, y)} is a dependency graph such that G′ |= π(L).

PROOF. Note first that, since G is a dependency graph, it must be the case that
x 6= a

⊤
and y 6= a

⊥
. Moreover, it can be also checked that w ∩ {y, a

⊤
} = ∅ and z ∩

{x, a
⊥
}, by definition of causal predecessor and successor. Therefore, the graph G′ =

G ⊕ {(w, y), (x, z)} ⊖ {(x, y)} is such that the starting activity a
⊥

and the terminating
activity a

⊤
have no ingoing and outgoing edges, respectively. Consider now an activity

a ∈ V \ {a
⊥
, a

⊤
}. Note that, since G is a dependency graph, either (i) there is a path

in G ⊖ {(x, y)} from a
⊥

to a, or (ii) the edge (x, y) occurs in each path in G from a
⊥

to
a. In the case (i), we immediately conclude that there is a path from a

⊥
to a in G′, too.

Hence, let us focus on case (ii). Recall that in G′ we have the edge (w, y) where w 6= x.
In particular, there is a path from a

⊥
to w in G \ {(x′, y) | (x′, y) ∈ Ē}. Hence, we have

again derived that there is a path from a
⊥

to a in G′, too. By symmetric arguments, we
derive also that there is a path from a to a

⊤
in G′. Hence, G′ is a dependency graph.

In order to conclude the proof, we have now to show that G′ |= π(L), too. Indeed,
assume by contradiction that a trace t exists in L such that G′ does not model π(t).
Given the differences between G and G′ and since the constraints induced by the traces
are only positive ones, it must be the case that the removal of the edge (x, y) is the
source of the violation. Formally, we can be in one of the following two scenarios:

(1) It holds that y = t[i] and x = t[j], with j < i, and G′ does not satisfy the constraint
{t[1], ..., t[i − 1]} → {y}, which is instead satisfied by G precisely because of the edge
(x, y). However, we recall that the edge (w, y) occurs in G′ and that w occurs before
y in any trace where y occurs. That is, there is an index j′ ∈ {1, ..., i − 1} such that
w = t[j′] where j′ < i holds. Hence, G′ satisfies the constraint. Contradiction.

(2) It holds that x = t[i] and y = t[j], with i < j, and G′ does not satisfy the constraint
{x} → {t[i + 1], ..., t[len(t)]}, which is instead satisfied by G precisely because of the
edge (x, y). However, we recall that the edge (x, z) occurs in Ḡ′ and that z occurs after
x in any trace where x occurs. That is, there is an index j′ ∈ {i + 1, ..., len(t)} such
that z = t[j′] where j′ > i holds. Hence, G′ satisfies the constraint. Contradiction.

Therefore, G′ |= π(L) holds.
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EXAMPLE 5.9. Consider the trace abcde and the constraints ¬({c}  {d}) and
¬({b}  {d}). In this setting, for the dependency graph PG({abcde}, ∅), the edges (c, d)
and (b, c) are fake ones. The left part of Figure 6 evidences how the graph has to be up-
dated when removing the edge (c, d)—in fact, this coincides with the graph built when
the edge (c, d) is forbidden, as we already discussed in Example 5.1.

Note that, in the resulting graph, (b, c) is no longer a fake edge. However, the result-
ing graph does not still satisfy the constraints, because (b, d) has became a fake edge.
On the right part of Figure 6, a further update is reported accommodating the deletion
of the edge (b, d). Note that the connectivity is now guaranteed via a direct connection
from a to d. �

The specific strategy adopted to select causal predecessors and causal successors is
formalized in the steps 3–7. Eventually we return the causal net built on top of Gk via
the function computeBindings. The correctness of the whole approach is shown below.

THEOREM 5.10. The following properties hold on COMPUTE-CN, receiving as input
A, L, Π ∈ C[{6 }]), the parameter δ, and for τ = 1:

— if it returns ‘no’, then there is no solution;
— if it returns 〈G, I,O〉 and L is (resp., is not) a linear log, then 〈G, I,O〉 is a (resp.,

possibly extended) causal net such that 〈G, I,O〉 ⊢ L and G |= Π.

PROOF. Because of Lemma 5.6, we know that G1 is a dependency graph over A(L)
and G1 |= π(L). Consider then all the update operations performed in the steps 3–7.
Because of Lemma 5.7 these operations are well-defined, and by Lemma 5.8, the graph
Gk is still a dependency graph with Gk |= π(L).

Let us now focus on step 8. Note that when all fake edges are removed, the only edges
that remain and that can violate a negated path constraints have the form (a

⊥
, a),

(a, a
⊤
), or (a

⊥
, a

⊤
). However, if there is a constraint preventing the existence of a path

from a
⊥

to a, or from a to a
⊤

, or from a
⊥

to a
⊤

, then there can be no dependency graph
at all satisfying them. Hence, if the algorithm halts there, then we are guaranteed that
no solution exists. Otherwise, for the analysis of the last step, recall that the function
computeBindings is a constructive implementation of the proof of Theorem 3.11, in
order to build a possibly extended causal net from the given graph Gk. In particular, it
is immediate to check that whenever L is linear, we end up with a causal net.

Implementation issues and computation time analysis. In addition to the symbols
already used when analyzing the costs of the algorithm of Figure 7, let us denote by
n 6 the number of constraints of type C[{6 }] that are taken as input, and by m 6 the
number of (distinct) paths prohibited by them, i.e., m 6 = |{(x, y) ∈ A × A | ∃ ¬(S 6 
T ) s. t. x ∈ S and y ∈ T }|. Notice that typically m 6 << k2, where k still denotes the
maximum number of elements appearing in either side of any constraint.

As above, constraints are indexed with numbers in {1, . . . , nc} and associated with
two lists of activity identifiers, storing the activities in their left and right sides, re-
spectively, while na × na matrices are used to store causal scores, dependency graphs,
as well as the collection of prohibited paths mentioned above. An additional vector of
flags is kept to indicate whether each constraint is currently satisfied or not.

Finally, in order to speed up the calculation of pred(Gk, x) and succ(Gk, x), for each ac-
tivity x, we precompute a relaxed version of both sets, denoted by pred(x) and succ(x),
only accounting for the ordering of activities in the log traces. More precisely, for any
activity y, it is y ∈ succ(x) (resp., y ∈ pred(x)) iff for each trace t ∈ L where x occurs,
then y also occurs in t after (resp., before) x. All such sets of (potential) successors and
predecessors are stored as boolean vectors, one for each activity.
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Initializing all these data structures and performing the first two steps in the algo-
rithm takes O(nt × l2t + n 6 × k + n2

a) time.
The loop spanning over steps 3-7 can be iterated m 6 times at most, seeing as each

iteration removes at least one of the fake edges and one of the paths violating some
constraint — which are, at most, n2

a and m 6 , respectively (with m 6 ≤ k2 ≤ n2
a).

The computation of all fake edges, at the beginning of each iteration, is accomplished
in O(n 6 ×n2

a) time as follows. For each constraint that is still unsatisfied, two symmet-
ric multiple-source visits of Gk are carried out, starting from all the activities in its left
and right sides, respectively; in particular, in the latter case, edges are considered as
they were reversed. By reckoning all edges traversed in both directions as fake edges,
we compute that with the minimum causal score — denoted by (x∗, y∗) in the figure.

We then compute the transitive closure G+
k of the current dependency graph via a

matrix-multiplication method, in O(nω
a ) time, and materialize it into a matrix. In our

current implementation, based on the famous Strassen’s method, it is ω = 2.8074. How-
ever, this cost can be lowered, since it was proven that ω ≤ 2.374 [?]. Anyway, answering
path queries against G+

k , in O(na) time we can find the nodes z and w mentioned in
Step 5. To this end, we simply select the activity in succ(x∗) (resp., in pred(y∗)) with
the maximal score csδ(x

∗, z) (resp., csδ(w, y
∗)), among those satisfying all involved

path constraints — including the existence of a path from z to a
⊤

(resp., from a
⊥

to w),
which is a required property of causal successors (resp., predecessors).

Therefore, the overall cost of the loop in Figure 8 is O((nω
a + n2

a × n 6 )×m 6 ).
A cost of O(na) is enough for accomplishing all remaining (edge update) operations

in the loop. The same result holds for Step 8, where we just need to check whether all
constraints are marked as satisfied. As explained previously, a O(nt × lt × na) cost is
needed for computing all bindings (while storing them in a concise form).

In conclusion, we get a total cost of O(nt × lt ×max(lt, na) + (nω
a + n2

a × n 6 )×m 6 ).6

6. EXPERIMENTAL EVALUATION

The algorithms proposed in the paper have been implemented as a plug-in for the well-
known process mining suite ProM [van Dongen et al. 2005], combining the computa-
tion schemes described in Figure 7 and Figure 8. The latter scheme is used when user-
defined constraints belong to the class C[{6 }], whereas the former has been slightly
generalized7 in order to provide a heuristic solution approach in all remaining cases
(while still being an exact solution approach over the class C[{→, 6→, }]).

The generalization consists of a post-processing procedure applied to the discovered
causal net returned by Step 19 in Figure 7. The procedure removes “useless” edges
with the intended goal of returning a more compact model, by increasing the chances of
satisfying negated path constraints. Formally, it iteratively removes the edge with the
lowest causal score over all the edges (x, y) satisfying the following three conditions:

(i) none of the input (resp., output) bindings associated with y (resp., x) coincides with
{(x, y)}, i.e., the edge does not appear as a singleton binding;

(ii) the removal of (x, y) will not violate any user-defined precedence constraint;

(iii)
csδ(x,y)

min{csδ(x,y∗),csδ(x∗,y)} > τr2b, where (x, y∗) (resp., (x∗, y)) is the outgoing edge of x

(resp., the incoming edge of y) with the highest causal score. Notice that τr2b is used

6This result could be improved by resorting to dynamic graph algorithms for keeping updated the transitive
closure of a graph [?]. In particular, the overall time of the algorithm in Figure 8 would lower to O(nt × lt ×
max(lt, na)+n2.374

a +n2
a ×n 6 ×m6 ), if using the solution in [?], which guarantees constant look-up times

andO(n2) worst-case time for each update and O(n2.374
a ) for initializing its data structures.

7We also implemented a generalization of the algorithm in Figure 8, but results of experimentation evi-
denced that its efficacy as a heuristic was not satisfying.
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Table II. Process discovery algorithms used in the experiments: legend of symbols.

Symbol Meaning

ILP The ILP-based mining algorithm defined in [van der Werf et al. 2009]
AGNEs The AGNEs mining algorithm in [Goedertier et al. 2009]
α The α mining algorithm defined in [van der Aalst et al. 2004]
HM The Heuristics mining algorithm defined in [A.J.M.M. Weijters et al. 2006]
GM The Genetics mining algorithm defined in [Medeiros et al. 2007]
Here The COMPUTE-CN algorithm defined in Figures 7 and 8

here as a relative (lower) threshold to check the strength of any edge (x, y), relatively
to those of the best y’s predecessor and of the best x’s successor—it is similar to
the “relative to best” threshold proposed in [A.J.M.M. Weijters et al. 2006]. In the
tests described in the remainder of the paper, we fixed the values δ = 0.85, τ =
0.05, and τr2b = 0.5. These values were chosen pragmatically based on a series of
tests conducted on a wide range of synthesized data. Now, they are hardwired in the
implementation and are transparent to the user of the plug-in.

The performances of our implementation have been compared with those of the
approaches listed in Table II. Note that we considered the approaches proposed
by van der Werf et al. [2009] (ILP) and Goedertier et al. [2009] (AGNEs), which we have
already discussed in Section 1.2 and which can in fact incorporate a-priori knowl-
edge on the existence of activity dependencies. Moreover, we considered four classi-
cal discovery approaches, very popular in the Process Mining community: “Heuristics
Miner” [A.J.M.M. Weijters et al. 2006] (HM), “Genetic Miner” [Medeiros et al. 2007]
(GM), algorithm α [van der Aalst et al. 2004].The performances of these methods are
discussed to delineate baselines suitable for assessing the gain that can be obtained
by empowering learning methods with the capability to exploit knowledge on the real
structure of the process under analysis.

In order to test the competitors, we exploited their implementations available in the
latest (6.3) release of the ProM framework [van Dongen et al. 2005], but for AGNEs and
ILP for which the implementations in the version 5.2 were used. Indeed, AGNEs is only
available up to this earlier version, while the implementation of ILP in the latest re-
lease lacks of the ability of improving the models discovered by expressing parallelism
and direct dependency relationships (which is the feature we are interested in). Since
an earlier implementation of α in ProM also allows users to express relationships of
parallelism and direct dependencies, we have included this method too in all the tests
performed in presence of background knowledge. Default settings were used for the
various methods. For GM, we took the best model among 1000 different ones derived
from an initial population of 100 models.

In the rest of the section, we shall illustrate results of experimental activity con-
ducted over our method and its competitors. In particular, in Section 6.1 we consider
an archetypical application scenario, in Section 6.2 we illustrate results on benchmark
logs, and in Section 6.3 we present results on synthesized logs. Experiments have been
performed on a dedicated machine, equipped with an Intel dual-core 3 GHz processor
with 4 GB (DDR2 1033 MHz) of RAM, and running Windows 7 Professional.

6.1. Case Study: a Product-Recall Process

Let us consider the product recall process defined by M.T. Wynn et al. [2009], in ac-
cordance to the guidelines established by several public institutions (e.g., in Australia,
New Zealand, USA, and EU). This is an archetypical application scenario, and its dis-
cussion is meant here to assess the importance of having background knowledge when
an incomplete sample of the possible traces is only given at hand.
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Fig. 9. Causal net of the ProductRecall process.

6.1.1. Testbed Description. The process concerns the main activities that must be per-
formed by a recall sponsor (usually the manufacturer of a suspect product), in response
to a recall incident, which can be possibly triggered by consumer complaints, supplier
notifications, or failed quality tests. Specifically, the reported problem has to be inves-
tigated and a comprehensive risk analysis must be done (macro-activity PROLOGUE—see
[M.T. Wynn et al. 2009], for details on the sequence of activities comprised in it), in or-
der to decide whether the product should be recalled or not. The model associated with
the activities occurring in the former case is reported in Figure 9: After starting the
recall procedure, a case can proceed along a number of concurrent threads, including
the following tasks: (i) stopping the distribution of the product, (ii) identifying reme-
dies, (iii) arranging the disposal of items already distributed, (iv) keeping records for
subsequent monitoring and analysis purposes, and (v) notifying third parties about the
recall. In addition, depending on the kinds of product and of defect involved, it can be
necessary to halt the production of the product and to destroy/modify other products
that might have been contaminated. Once these recall actions have been completed, a
sequence of finalizing activities must be performed (macro-activity EPILOGUE), ranging
from monitoring the effectiveness of the process, to implementing changes to prevent
similar problems in the future, to preparing reports for regulatory authorities and/or
other third parties. Notice that, as pointed out by M.T. Wynn et al. [2009], the need
of handling product recall operations, while taking care of traceability and notification
issues, arises in a wide variety of real applications.

6.1.2. Evaluation Setting. In order to valuate the quality of findings, we contrast the
set Dout of causal dependencies discovered by the mining methods towards the set
Din of real dependencies existing in the a-priori known process model, by resorting
to the classical F-measure metric, defined as 2×P×R

P+R
, where P (stating for precision)

is the fraction of the dependencies in the mined model that exist in the real model,
i.e., P = |Dout ∩Din|/|Dout|, whereas R (standing for Recall) is the fraction of real
dependencies captured by the mined model, i.e., R = |Dout ∩Din|/|Din|.
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Table III. F-measure scores obtained by algorithm COMPUTE-CN and its competitors, for different percentages
of traces of process ProductRecall (Figure 9), without (left) and with (right) a-priori knowledge on parallelism
relationships. For both cases, maximal scores on each trace percentage are written in bold.

trace without constraints with constraints
% HM α GM ILP AGNEs Here α ILP AGNEs Here

10 0.657 0.717 0.281 0.848 0.674 0.930 0.772 0.848 0.667 0.956
20 0.830 0.871 0.432 0.924 0.727 0.982 0.899 0.924 0.736 0.992
30 0.893 0.924 0.391 0.914 0.677 0.982 0.950 0.914 0.720 1.000
40 0.931 0.950 0.348 0.914 0.720 0.992 0.983 0.914 0.730 1.000
50 0.965 0.951 0.354 0.904 0.748 1.000 0.968 0.904 0.727 1.000
60 0.979 0.975 0.417 0.903 0.745 1.000 0.970 0.903 0.774 1.000
70 0.984 0.984 0.556 0.882 0.774 1.000 0.990 0.882 0.763 1.000
80 0.984 0.992 0.500 0.893 0.763 1.000 0.992 0.893 0.779 1.000
90 1.000 1.000 0.510 0.882 0.763 1.000 1.000 0.882 0.779 1.000
100 1.000 1.000 0.605 0.882 0.763 1.000 1.000 0.882 0.782 1.000

Avg 0.911 0.929 0.439 0.897 0.735 0.986 0.952 0.897 0.752 0.995

6.1.3. Test with variable amounts of log traces. Given the interest in assessing the perfor-
mances of our approach in scenarios where log completeness does not hold, we first
built a complete log L for the process where each possible behavior is registered once.
Then, we conducted experiments over logs that are obtained from L by randomly pick-
ing x% of its traces, for x ∈ {10, 20, ..., 100}. In particular, 10 different logs are sampled
for each x, and experiments are performed on each of them, so that average values will
be discussed in our analysis. Table III summarizes our findings.

Let us first consider the columns reporting results for the scenario where no con-
straints are provided as input. It is easily seen that the performances of all methods
are rather poor against very small log samples, and tend to improve when augmenting
the number of input traces. Such an effect is evident in the case of the classical meth-
ods HM, α, which get full accuracy when provided with at least 90% of the log traces.
Interestingly, our approach managed to reconstruct the real set of task dependencies
already with 50% samples of the log, hence outperforming the competitors even with-
out being provided as input with additional background knowledge. On the one hand,
this behavior is clearly due by the fact that our causal score heuristic, designed to
select the edges to be included/removed from the resulting model (see Section 5), is
indeed largely inspired by such earlier approaches. On the other hand, it confirms the
validity of the processing scheme of Figure 7 and Figure 8 and the efficacy of the very
simple post-processing method illustrated in this section. Opposed to these good news
related to our method, it emerges that low quality scores are achieved when using ILP

and AGNEs, which are to be seen as our more direct competitors.
The four rightmost columns in Table III report the results obtained by providing do-

main knowledge to the discovery methods. To this end, we assumed that the analyst
knows that the activity Complete optional actions is parallel with each of the ac-
tivities in {Identify remedies, Keep records, Stop distribution, Arrange disposal,
Notify third parties}. Note that this knowledge can be incorporated in the two com-
petitors AGNEs, and ILP, as well as in the α algorithm8, so that we are not exploiting
for the moment the richer expressiveness of our framework. By looking at the table,
it emerges that our method is able of fully exploiting these constraints, by getting
impressive accuracy results even on very small samples. Instead, the benefits of the
background knowledge are lower for α and especially for AGNEs. Moreover, note that
both ILP and α are not capable to exploit at all the given knowledge. In fact, in our
experiments, we have noticed that the former method is quite often not capable to ben-

8To this purpose, in the latter two cases, all the above pairs of concurrent activities were added to the
parallelism relation, while removing any direct succession relationship between them, derived from the log.
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Fig. 10. F-measure scores obtained by COMPUTE-CN when varying the percentages of positive edge/path
constraints and of negative edge/path constraints, for four different families of log samples (all of 16K traces),
corresponding to 3% (a) and 6% (b) of distinct traces in the original log, respectively).

efit of knowledge about parallelism, while significant improvements can be obtained
in presence of knowledge about relationships of precedences, as we shall see later.

6.1.4. Varying the quantity and type of background knowledge. In order to assess, in a deeper
and more systematic manner, the capability of our approach to exploit a-priori knowl-
edge for improving its performances, further tests were carried out on the same appli-
cation scenario, while using different amounts of precedence constraints. As a way of
simulating a non-trivial discovery setting, only very small portions of the (complete)
log mentioned above were used to this end, containing 3%, and 6%, of the traces. Again,
for each trace percentage x% (with x ∈ {3, 6}), 10 samples were generated, by randomly
picking x% of the traces in the log.

Different inter-activity dependencies were extracted directly from the known
control-flow model of the process, shown in Figure 9. Regarding this model as a de-
pendency graph, four binary relations over its activities can be defined and computed
trivially, each encoding some basic kind of (singleton-body) precedence constraints:
edges and paths (i.e., pairs of activities, where the second one depends on the first ei-
ther directly or indirectly, respectively), and the associated complementary (w.r.t. all
possible activity pairs) relations of negative edges and negative paths. These relation-
ships are denoted in the figures discussed below by E, P, NE, NP, respectively. In order
to automatically generate different sets of precedence constraints, while controlling
the relative amount of each type of them, a sample of elements is extracted randomly
from each of the core pairwise relations above, by using some given percentage value
for each of them. In fact, 5 samples are generated and results are averaged over them.

Figure 10 reports the average F-measure scores obtained by our solution approach
against the different percentages of log traces, while using one of the above described
kinds of pairwise constraints per time. For each kind of constraints, different amounts
were considered, ranging from 0 to 50% of its whole population. It clearly emerges that
the use of the background knowledge improves the performances of the algorithm. In-
deed, higher F-measure scores are achieved when increasing the amount of whichever
kind of constraints. However, a noticeably boost seems to be given to the accuracy
when increasing the percentage of negative (edge or path) constraints, no matter of
how many traces are taken as input. Conversely, lower improvements are obtained
when only positive constraints are used, especially when these are expressed on paths.
Intuitively, this is due to the fact that negative constraints are able to reduce the num-
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Fig. 11. Computation time spent by algorithm COMPUTE-CN with different amounts of traces and con-
straints’ percentages in input. A base-2 logarithmic scale is used for the vertical axis in both figures, as well
as for the horizontal axis in the left-hand figure.

ber of spurious flows of executions whose presence negatively impacts on the quality
of the resulting process model. This finding has been confirmed in all our tests. Hence,
as a practical guideline, the users of our plug-in are encouraged to introduce as much
as possible negated constraints in the specification of the mining problem.

Finally, note that Figure 10 evidences that the level of improvement is neatly higher
when working on smaller log samples (hardly capturing all actual process behaviors).
In fact, this is hardly surprising given that our method has very good performances
even when no background knowledge is provided at all.

6.1.5. Rate of unsatisfied constraints. So far our algorithm has been tested in scenarios
where the kinds of precedence constraints are not mixed together. Therefore, according
to the results discussed in Section 5, our algorithm provides an exact solution in these
cases, i.e., no constraint can be violated by the resulting process model. Hence, in order
to study the efficacy of the method as a heuristic, we performed an additional series
of experiments with heterogeneous combinations of precedence constraints, mixing up
negative path constraints with other kinds constraints. To this end, we applied our
algorithm to the same log samples built as in the previous subsection, while provid-
ing it with variable amounts of negative path constraints, and fixing the percentage
of any other kind of constraints to 25%. Note that, given the adaptation discussed at
the beginning of this section, the algorithm results a process model that still satisfies
all positive edge constraints, path constraints, and negated edge constraints. How-
ever, the satisfaction of negated path constraint is just greedily enforced by the post-
processing phase, and it is therefore not guaranteed. In fact, we computed the rate of
negative-path constraints left unsatisfied by our approach, in correspondence of dif-
ferent amounts of distinct traces and of negative-path constraints provided as input
(expressed as percentages w.r.t. the size of their respective populations). In the worst
case, just 0.8% of all negative-path constraints given as input have not been satisfied,
in the average. This rate shrinks of about a half when using either 10% samples or 50%
samples of negative paths. A similar trend is observed for trace samples with a 6% of
distinct process traces. The amount of violated constraints becomes negligible when
bigger samples of log traces (we tested both 12% or 24%), no matter how many negated
paths are passed to the algorithm.
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6.1.6. Running Time. In order to provide the reader with a general idea of the computa-
tion times needed by our method, we performed a first series of tests on logs of different
sizes. Logs were generated again with a variable level of completeness, by extracting
different amounts of distinct traces out of the original (fully complete) log. First of all,
for each trace percentage x ∈ {3, 6, 12, 24}, we randomly extracted 4 samples of (dis-
tinct) traces out of the complete log, which were subsequently used as a sort of “seeds”
in order to produce a behaviorally heterogenous collection of logs. Specifically, for each
log size s ∈ {1000, 4000, 16000, 64000}, we simply duplicated the distinct traces in each
of such seed in a balanced way (i.e., all traces are replicated approximatively the same
number of times), up to obtaining a collection of s traces.9 Concerning the constraints,
we considered 6 distinct configurations, each corresponding to a distinct percentage
p ∈ {10, 20, ..., 50} for all types of pairwise constraints (i.e., E, P, NE, NP) extracted by
the model in Figure 9, as explained before. For each value of p, 5 different heteroge-
neous sets of constraints were generated, containing p% constraints for each constraint
type, extracted at random from their respective populations. Again, 5 different trials
were performed for each of the above logs and constraints’ sets.

Figure 11 reports the computation time (measured in milliseconds) when varying
the amounts of traces and constraints in input. Results are presented there according
to two different perspectives, namely, a curve for each constraints’ percentage with the
different log sizes over the horizontal axis (left) and vice-versa (right). Each value plot-
ted in either figure has been computed by averaging the durations of all the runs per-
formed with a specific number s of traces and a particular percentage p% of constraints
(for s ∈ {1000, 4000, 16000, 64000} and p ∈ {10, 20, ...50}). Notably, whatever percentage
of constraints is given as input, the computation time scales basically linearly with re-
spect to the number of input traces. On the other hand, a positive correlation seems to
exist as well between the overall running time and the quantity of constraints taken
as input—if ignoring the case of 1000-sized logs, where the times measured are too
low to safely infer any general significant trend of behavior. Anyway, the impact of
constraints on times is negligible if compared with that of the log size.

Finally, we notice that the computation time of algorithm COMPUTE-CN is compa-
rable to that of the standard process mining methods α, ILP, and HM, and neatly lower
than those spent by GM, AGNEs. Indeed, the latter method took about 600 times longer
than COMPUTE-CN to compute a model, in the average, while the computation time of
GM was about 4500 times that of COMPUTE-CN when using the default population size
of 1000 (the ratio only decreased to 600:1 with 100-model populations).

6.2. Comparative Analysis on Benchmark Data

In order to assess the capability of our approach to discover a good-quality process
model in a wider range of settings, we performed a series of tests on some bench-
mark logs, while measuring the accuracy of the each model by way of several “log-
conformance” metrics, very popular in the fields of Process Mining and Business Pro-
cess Analysis. Differently from the pure (edge-oriented) F-measure employed in the
previous section, to contrast a discovered model to the true (a-priori known) one, these
metrics allow for evaluating how much the behaviors registered in a given log comply
with those allowed by the model under analysis.

6.2.1. Testbed: Logs and Conformance Metrics. Our experimental activities were carried
out over some of the benchmark logs provided with the ProM framework [van Dongen

9Of course, duplicated traces might be processed more efficiently by just “weighting” each trace with the
number of its occurrences in the log. Here, we avoid this trick as it is our goal to precisely stress the algorithm
at the varying of the log size, in a setting where the given (very simple) process model does not allow for a
sufficiently large number of distinct behaviors.
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Table IV. Benchmark logs: structural characteristics and statistics.

log distinct pairs of control-flow distinct total
name activities || activities constructs traces traces

parallel5 10 10 − 109 300
a10skip 12 1 skip 6 300
a12 14 2 − 5 300
a5 7 1 loop 13 300
a6nfc 8 1 nf -choice 3 300
a7 9 4 − 14 300
a8 10 1 − 4 300
choice 12 0 − 16 300
driversLicense 9 0 − 2 300
herbstF ig3p4 12 3 loop 12 300
herbstF ig6p18 7 0 loop 153 300
herbstF ig6p36 12 0 nf -choice 2 300
herbstF ig6p37 16 36 − 135 300
herbstF ig6p41 16 4 − 12 300
herbstF ig6p45 8 4 − 12 300
l2l 6 0 loop 10 300
l2lOptional 6 0 loop, skip 9 300
l2lSkip 6 0 loop 8 300

et al. 2005], which have been widely used in the literature (see, e.g., [Medeiros et al.
2007; Goedertier et al. ; De Weerdt et al. 2011; Weerdt et al. 2012]) in order to evaluate
process mining approaches. In particular, owing to our special interest toward incom-
pleteness issues, we focused on the subset of those logs exhibiting the highest degree
of non-determinism and concurrency. The logs include special routing constructs, such
as (non free) choices, skips, and loops. Table IV summarizes their features, by report-
ing in particular the number of distinct activities composing the process, the number
of pairs of activities belonging to different parallel branches (“parallel || pairs”), the
presence of special constructs, the number of distinct activity sequences occurring in
the log, and the total number of log traces.

In order to assess the capability of a process model to accurately capture the behav-
ior recorded in a given log, several alternative conformance metrics have been proposed
in the literature. In our analysis, we consider precision metrics and recall metrics. 10

Precision metrics attempt to estimate the amount of the “extra” (unseen and likely
unwanted) behavior allowed by the model, with respect to that actually registered in
the log, whereas recall metrics try to evaluate how much of the behavior recorded in
a log is really captured by the model. All these metrics range over the real interval
[0, 1] and have been defined in the literature for Petri-net models. In order to use them
with a model represented in another language (in particular, a causal net), we pre-
liminary translated the given model into a Petri net, with the help of suitable conver-
sion plug-ins available in the ProM framework. The actual computation of the metrics
was carried out by taking advantage of the CoBeFra tool, recently proposed [van den
Broucke et al. 2013] as a practical support to conformance analysis. A summary of all
the considered metrics is reported in the first column of Table V.

6.2.2. Results. For each of the conformance metrics described above, Table V reports
the average value obtained by applying each of the methods to each of the logs in Ta-
ble IV. As a term of comparison, column True reports the conformance results obtained
for the process models that were actually used to generate the logs (and that are known
for the given benchmark logs). Since many methods got very similar results over sev-
eral metrics, a statistical testing procedure was carried out to check whether their

10We did not considered generalization [van der Aalst et al. a] metrics, which are meant to punish overly
precise process models, which tend to prevent any likely and not explicitly forbidden behavior, if it does
not occur explicitly in the log. This choice stems from the fact that, in our setting, the selected logs can be
assumed to capture well enough all behavioral aspects of the respective processes.
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Table V. Average conformance measures obtained, on all benchmark logs, by different workflow discovery
methods — including the one proposed in this paper (Here). An additional column (True) reports the average
measures computed on ground-truth process models (i.e., the one employed to generate the log). The results
of the methods that were reckoned as significantly different from the best performing one (for each measure)
are reported in italics.

Metric True AGNEs α GM HM ILP Here

Fitness [Rozinat and van der Aalst 2008] 1.000 0.995 0.988 1.000 0.995 1.000 0.997
Alignment Based Fitness [Adriansyah et al. 2011] 1.000 0.986 0.848 0.997 0.995 0.889 0.998
Behavioral Recall [Goedertier et al. ] 0.997 0.992 0.959 0.989 0.843 1.000 0.989
Proper Completion [Rozinat and van der Aalst 2008] 1.000 0.938 0.851 0.999 0.934 1.000 0.957
Adv. Behav. Appropriateness [Rozinat and van der Aalst 2008] 0.797 0.823 0.854 0.802 0.783 0.856 0.805
Alignment Based Precision [van der Aalst et al. b] 0.925 0.943 0.910 0.925 0.920 0.904 0.930
Behavioral Specificity [Goedertier et al. ] 1.000 0.992 0.978 0.994 0.991 1.000 0.994
(Wtd) Behavioral Precision [De Weerdt et al. 2011] 0.907 0.884 0.882 0.890 0.749 0.891 0.898
Negative Event Precision [Goedertier et al. ] 0.968 0.927 0.927 0.953 0.941 0.934 0.944

Table VI. Statistics on the “critical” sub-log extracted for each of the benchmark logs in Table IV.

original distinct total
benchmark log traces (%) traces (%)

herbstFig3p4 4 (12%) 48 (16%)
herbstFig6p37 13 (10%) 135 (45%)
herbstFig6p41 4 (35%) 68 (23%)
herbstFig6p45 3 (25%) 53 (18%)
parallel5 5 (5%) 9 (3%)

behaviors are really different. To this end, for each of the considered metrics, a paired
two-tail Student’s test was applied to compare the outcomes of each method with those
of the best one (i.e., the one achieving the highest average value on that metrics). No-
tably, for each the metrics, we did not find significantly enough differences, apart from
a small number of cases, which are emphasized in italics in the table—in almost all
cases we could not reject (with a 95% level of confidence) the null hypothesis that a
method behaves identically to the best performer.

The fact that almost all existing approaches are able to reconstruct the originating
models with high levels of precision and recall (for most of the considered metrics)
comes with no surprise, seeing as the logs are representative enough of all the possible
behaviors of their respective processes. To our ends, we observe that our method is
competitive even in this standard setting where logs are basically complete. Moreover,
we observe that our evaluation procedure tends in any case to disadvantage a model
that was not originally built as a Petri net, because the conversion plug-ins often pro-
duce results with hidden/duplicated transitions, which are considered as a source of
extra-log behaviors by certain precision metrics.11

As a further comment on these tests, we stress here that, in terms of computation
time, our approach is in line with the most efficient process discovery techniques, and
definitely faster than both AGNEs and GM. In details, the average and standard devi-
ations values computed over the running times (in milliseconds) of each method are:
21851.2± 12334.6 for AGNEs, 341012.2± 385997.7 for GM, 95.6± 73.4 for HM, 203.1± 53.4 for
ILP, and 138.2± 85.3 for our approach.

6.2.3. Tests on “critical” sublogs. The quality results presented in the previous section
clearly demonstrate that each of the analyzed state-of-the-art methods (as well as,
comfortingly, our approach) is really effective in rediscovering the structure of a pro-

11This explains why even the collection of ground-truth models has been given lower precision scores than
the native Petri-net models discovered with ILP or AGNEs when using the Advanced Behavioral Appropriate-
ness and Alignment Based Precision metrics. On the other hand, even a low recall score was assigned to the
a-priori models by the Behavioral Recall metrics.
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Table VII. Results on“critical” samples without and with background knowledge. For each row,
the best average score is in bold and underlined, while the results of all methods that were not recognized
as significantly different from the best performer (for the same metrics and setting) are in bold.

without constraints with constraints
Metric AGNEs α GM HM ILP Here α AGNEs ILP Here

Fitness 0.909 0.852 0.950 0.882 0.941 0.951 0.865 0.958 0.969 1.000
Behavioral Recall 0.913 0.792 0.948 0.881 0.945 0.939 0.806 0.966 0.962 1.000
Alignment Based Fitness 0.867 0.744 0.948 0.834 0.945 0.948 0.799 0.919 0.962 1.000
Proper Completion 0.095 0.102 0.523 0.081 0.459 0.543 0.340 0.457 0.564 1.000
Adv. Behav. Appropriateness 0.667 0.711 0.901 0.580 0.828 0.910 0.788 0.723 0.848 0.928
Alignment Based Precision 0.976 0.957 0.966 0.956 0.963 0.965 0.967 0.976 0.966 0.972
Behavioral Specificity 0.913 0.792 0.948 0.881 0.945 0.949 0.806 0.966 0.962 1.000
(Wtd) Behavioral Precision 0.669 0.701 0.794 0.615 0.794 0.776 0.764 0.843 0.872 0.966
Negative Event Precision 0.708 0.746 0.827 0.658 0.833 0.822 0.815 0.872 0.897 0.976

F-measure 0.740 0.730 0.817 0.733 0.833 0.836 0.806 0.929 0.833 1.000

cess whenever they are provided with a rich enough sample of process traces, capable
to encompass the diverse kinds of admitted behaviors. In order to test all discovery
methods in a more challenging setting, we extracted a critical sample out of each log,
constituting an incomplete collection of traces, covering a limited portion of the whole
variety of the behaviors in the original log. An empirical iterative procedure was de-
vised to this purpose, where increasing amounts of traces are randomly removed from
a given benchmark log, until we register a loss of 15% in the F-measure of the mod-
els discovered with all tested methods. In order to further emphasize the effect of log
incompleteness, we focused our attention on a subset of the logs in Table IV, which
allowed all the tested discovery methods to perfectly rediscover the associated model
(i.e., and hence achieve a maximal value of 1 over both F-measure and all of the recall
metrics). The size of each of these sub-logs is reported in the Table VI, in terms of the
number of traces and of distinct activity sequences that appear in the sub-log.

Given the incompleteness of the resulting logs, experiments have been conducted
also in the presence of background knowledge. In this case, for each critical sub-log,
we considered all possible combinations of three constraints at most, extracted from
the given true models, by reporting the results obtained in the best scenario. Note that
here we exploit the full expressiveness of our approach. In fact, it emerged that the
best results are obtained in the presences of negative path constraints only.

Results for these tests are reported in Table VII, where the precision and recall met-
rics are computed by evaluating the quality of the models discovered from the sub-logs
built as above w.r.t. the whole behavior of the traces registered in the original bench-
mark log. Moreover, the F-measure values are also reported (see Section 6.1.2). As
above, a two-tail Student’s test was carried out to assess the significance of the perfor-
mance differences. The results obtained in absence of background knowledge further
confirm the validity of our approach and, in particular, the effectiveness of its underly-
ing (causal-score driven) heuristics for pruning useless/unlikely edges. The advantage
of using additional background knowledge clearly emerges. In particular, our method
perfectly reconstructs the true models of all benchmark logs (see the lowermost row),
and achieves maximal recall without incurring into overgeneralization.

6.3. Further Tests on Synthesized Data

A final series of tests was conducted on different synthesized logs, in order to assess
the effectiveness of the proposed approach against logs following different data distri-
butions, as far as concerns the structure of the processes producing them.

6.3.1. Generation of process models. The data used in this experimentation were pro-
duced with the help of a random log generator (based upon the one described in [Burat-
tin and Sperduti 2011]), which allows for both constructing a process model randomly,
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Fig. 12. Results on synthesized log data, with different degrees of parallelism (AP): accuracy of discovered
process models (in terms of F-measure w.r.t. real activity dependencies), and rates of unsatisfied (negative
path) constraints. Both measures are reported for different amounts of a-priori constraints of all types (ex-
pressed as percentages w.r.t. the sizes of their respective population).

and generating a log of random execution traces out of it. The synthesis of the model
is carried out via an incremental block-oriented procedure, where an initially empty
model is extended iteratively by adding a new subprocess, until a given number of el-
ementary activities is obtained. Each subprocess can be either an elementary activity,
a sequence of activities, or a more complex control-flow block. The whole procedure is
governed by a combination of gaussian and multinomial probability distributions, and
it can be controlled by way of a number of parameters, which are listed below:

— Task Number (TN): mean of a gaussian distribution12 determining the number of
elementary activities to be generated;

— Branching Factor (BF): mean of a gaussian distribution determining the number of
branches in any branching structure;

— Singleton Probability (SP): probability that any current subprocess will be instanti-
ated with just one activity;

— Fork Probability (FP): probability that the subprocess is a “fork” structure (i.e., a
number of subprocesses that can be executed in parallel or that are mutually exclu-
sive), given that it is not an elementary activity;

— AND Probability (AP): probability that the branches of any fork structure are in
parallel, rather than in mutual exclusion.

In order to prevent models from having an excessively unbalanced shape, one further
parameter can be set, named Maximum Nesting Depth (MND), stating the maximum
level of nesting of any activity with respect to all the control-flow blocks it is enclosed
within—precisely, whenever the nesting level of a subprocess equals MND, the subpro-
cess is forced to take the form of a single activity (i.e., it cannot give rise to a complex
control-flow block). In our experiments, we fixed SP = 0.1, FP = 0.5, TN = 25, and
MND = 4, while we simulated three different levels of concurrency, hinged on dif-
ferent values of parameter AP ∈ {0.0, 0.5, 1.0}. For each configuration, we generated
10 different schemas, and produced 10 logs for each of them, by simulating 1000 ran-
dom enactments of the schema (as in [Burattin and Sperduti 2011]). In this way, 100
different logs were eventually obtained for each level of concurrency.

12The standard deviation of all gaussian distributions is set to a third of the mean.
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6.3.2. Results. Figure 12 reports the results of tests performed by applying our ap-
proach, while providing it with heterogenous sets of precedence constraints, and hence
expressing partial information on real activity relationships. As in Section 6.1.6, these
constraints were randomly extracted from the model which generated the log, accord-
ing to different levels of coverage for the entire population of constraints that can be
derived from any model, expressed in terms of a percentage p ∈ {10, 20, ..., 50}. In more
details, for each log L and each value of p, we randomly generated 5 sets of constraints,
by sampling p% pair from each of the binary relations (of the form E, P, NE, NP) ex-
tracted from the a-priori known model of L.

Each value in the figure was computed by averaging all the results obtained when
using (i) any log of workflows generated with the give value of AP , and (ii) any con-
straint set covering p% of each (positive/negative direct/indirect) precedence relation.
Clearly, higher levels of concurrency (i.e., higher values of AP ) lead to lower accuracy
results, as far as concerns the recognition of real activity dependencies. This result
comes with no surprise, seeing as the relatively low number of random traces (namely
1000) available in each log hardly suffice to rediscover the structure of models with
many parallel branches of activities. However, providing increasing amounts of con-
straints definitely helps to improve the average accuracy of the resulting models.

As a further effectiveness indicator (connected with the capability of our approach
to really satisfy the constraints it was provided with), we finally present, in the right
side of Figure 12, the rate of unsatisfied negative path constraints, i.e., the percentage
of constraints of this kind that were taken as input in some run of the algorithm, but
were not fulfilled by the causal net discovered in the same run.13 Again, these results
are reported for different values of both p and AP . It is good news that the rates of
unsatisfied negative path constraints are always relatively small, especially in the case
of low concurrency levels. In fact, all the models that were induced from concurrency-
free logs do not violate any constraint at all. Higher violation rates affects the models
extracted from choice-free logs (AP = 1), i.e., logs produced by a model where all the
branches going out of a fork node are always executed concurrently. However, even
in such an extreme case, the rate is quite low, reaching at most 15%, precisely when
p% = 10%. Therefore, the absolute number of constraints violated is still very small,
and only represents a 0.15% of all possible constraints associated with the underlying
models. Moreover, note that increasing the amount of input constraints seems to help
our approach to reduce violation rates. This can be explained by observing that, as the
availability of more background knowledge makes each discovered model more similar
to the true one, it is more likely that the former will eventually satisfy a higher amount
of all the a-priori constraints associated with the latter.

7. DISCUSSION AND CONCLUSION

Current research is rather active in proposing process mining techniques supporting
increasingly expressing modeling languages. However, most of the approaches pro-
posed in the literature mine the causal dependencies that hold over the activities by
completely ignoring the prior knowledge that in many cases is available to the ana-
lyst. This paper moves a systematic step to fill the gap, by proposing and analyzing
a constraint-based framework for process mining, where background knowledge can
be encoded in the form of precedence constraints. The computational complexity of
the framework has been studied, and the whole approach has been implemented in a
prototype system, which has been tested on different log data.

13As discussed before, the model returned by our algorithm is always guaranteed to satisfy all other kinds
of constraints.
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Note that the use of constraints is currently gaining attention in a different context,
yet still related to process management, namely in the context of developing declar-
ative approaches to support business automation. In fact, traditional modeling lan-
guages, such as Petri nets or causal nets, are procedural ones for they explicitly repre-
sent all the allowed behavior of the process, according to a “closed world” assumption.
Opposed to this approach, recent research focused on developing declarative models
where any possible enactment is allowed unless a constraint (expressed in some suit-
able formal logic) is known to hold and explicitly forbids it (see, e.g., [van der Aalst
et al. 2009; Sadiq et al. 2005; Reichert et al. 2009]). Following a number of earlier
attempts to use logic-based languages for the specification of business processes (see,
e.g., [Bonner 1999; Senkul et al. 2002; Dourish et al. 1996; Joeris 2000; Wainer and
de Lima Bezerra 2003; Lu et al. 2006; Attie et al. 1996]), Declare [Pesic et al. 2009] is
nowadays the most solid platform adopting a declarative perspective for process mod-
eling, where the semantics of each constraint is provided in terms of an associated
Linear Temporal Logic (short: LTL) formula, whose (finite) models are precisely the
set of all the allowed traces [Pesic et al. 2007; Pesic et al. 2010].

Interestingly, the problem of automatically inferring a process model from a given
log available at hand has been considered within these declarative frameworks for pro-
cess management, too. In particular, techniques specifically designed to infer Declare
constraints have been presented by Maggi et al. [2011] and Maggi et al. [2012] and
subsequently enhanced by [Maggi et al. 2013] in order to discover data-aware mod-
els. Another approach has been proposed by Di Ciccio and Mecella [2012], where con-
straints are eventually expressed in terms of regular expressions rather than in terms
of LTL formulas. By sharing the spirit of the above proposals but focusing on a slightly
different problem, Chesani et al. [2009] proposed a methodology to analyze a log whose
traces are labeled as compliant or non-compliant, and whose goal is to learn a classi-
fication model defined as a set of rules/constraints expressed in the SCIFF [Alberti
et al. 2008] language (eventually mapped in the Declare notation). Other approaches
to build rule-based classification models have been proposed, for instance, by Bellodi
et al. [2010] and Ferreira and Ferreira [2006].

By looking at the above body of literature, it clearly emerges that the use of con-
straints in these works is completely different from ours. Indeed, the role of constraints
in such declarative frameworks is to specify the set of traces that are allowed, while in
our approach they are instead used to specify the set of those possible process models
that are of interest to the analyst. In fact, our perspective is the traditional one where
the analyst wants to end up with a procedural model, and where constraints are used
to prune the search space of all the models that can be the result of a mining phase.
Accordingly, we adopted a language to specify topological constraints on the process
model, rather than a language (such as LTL) tailored to define constraints on traces.

Even though the two approaches are completely orthogonal, we stress however that
the research reported in this paper might have also an impact in the context of devel-
oping mining approaches for declarative process models. Indeed, in this setting, the
idea of incorporating a-priori knowledge in the mining phase has been largely unex-
plored, and constitutes a promising avenue of further research. Currently, analysts are
provided with the rules induced via learning methods and might refine them to incor-
porate their knowledge in a post-processing phase. Instead, it would be interesting to
define approaches where analysts can a-priori formalize their knowledge and where
rule/constraints adhering with it are automatically inferred from the available log.

Finally, to delineate another avenue for further research, we stress that logs have
been viewed in the paper as multi-set of traces, by disregarding in particular the data
involved over the various activities. Therefore, it is natural to look for extensions of
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the proposed mining techniques capable to deal with context information (about, e.g.,
parameters and functional features of the activities) and process ontologies.
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A. PROOFS IN SECTION 2.2

PROOF OF THEOREM 2.7. (if part). Let C = 〈G, I,O〉 be a causal net such that C ⊢ L.
Let t be any trace in L. Let Gt = (Vt, Et) be the subgraph of G = (V,E) such that
Vt = {t[1], ..., t[len(t)]} and Et = {(t[i], t[j]) ∈ E | 1 ≤ i < j ≤ len(t)}. Hence, Gt is the
subgraph of G induced over the activities occurring in t, where we keep those edges of
E that conform with the ordering of the activities in t. Since L is linear, Gt is acyclic and
t is a topologic sort of it. According to Definition 2.5, to conclude, it is then sufficient to
prove that Gt is a dependency graph. In fact, a

⊥
and a

⊤
have no ingoing and outgoing

edges, respectively, by construction of Gt and since G is a dependency graph. The final
requirement to be checked is now that, for each activity a ∈ V \{a

⊥
, a

⊤
}, it must be the

case that a occurs in some path from a
⊥

to a
⊤

. In particular, since Gt is acyclic, we can
equivalently check that each activity a ∈ V \ {a

⊤
} (resp., a ∈ V \ {a

⊥
}) has at least one

outgoing (resp., ingoing) edge.
Let σ be a valid binding sequence such that σj = 〈t[j], ibj , obj〉 is the j-th binding

activity of σ, for each j ∈ {1, ..., len(t)}. Note that σ exists, since C ⊢ L. Consider first
an activity a ∈ V \ {a

⊤
}, i.e, a = t[j] where j ∈ {1, ..., len(t) − 1}. As σ is a binding

sequence, obj ∈ O(t[j]) holds and hence we have that obj 6= ∅. In particular, there is
an edge (t[j], y) ∈ obj such that (t[j], y) ∈ Sσ

j = Sσ
j−1 ∪ obj \ ibj , because σ is valid so

that ibj ⊆ Sσ
j−1. Moreover, again because σ is valid, Sσ

len(t) = ∅ holds, and hence there

is an index i ∈ {j + 1, ..., len(t)} such that (t[j], y) ∈ ibi. It follows that y = t[i] and thus
(t[j], t[i]) belongs to E (hence, to Et since j < i). So, we have shown that each activity
a ∈ V \ {a

⊤
} has at least one outgoing edge.

We conclude by claiming that, for each j ∈ {2, ..., len(t)}, there is an index i ∈
{1, ..., j − 1} such that (t[i], t[j]) is in E (hence, in Et). In order to prove the claim,
let again σ be a valid binding sequence such that σj = 〈t[j], ibj , obj〉 is the j-th binding
activity of σ, for each j ∈ {1, ..., len(t)}. By definition of binding sequence, we know that
Sσ
j ⊆ Sσ

j−1 ∪ obj holds, for each j ∈ {1, ..., len(t)}. In particular, since σ is valid, Sσ
0 = ∅

holds, and hence Sσ
j ⊆

⋃j

h=1 obh, for each j ∈ {1, ..., len(t)}. Recall now from the defini-
tion of causal net that obj ∈ O(t[j]) implies obj ⊆ {(t[j], y) | (t[j], y) ∈ E}. Therefore, we
conclude that:

Sσ
j ⊆

j
⋃

h=1

{(t[h], y) | (t[h], y) ∈ E}, for each j ∈ {1, ..., len(t)}. (1)

Let us exploit again the fact that σ is valid, in order to derive that ibj ⊆ Sσ
j−1 holds,

for each j ∈ {1, ..., len(t)}. Let now j be an index in the set {2, ..., len(t)}. Observe that,
by definition of causal net, ibj ∈ I(t[i]) implies that ibj ⊆ {(x, t[j]) | (x, t[j]) ∈ E}, with
ibj being in particular non empty. Therefore, by looking again at Equation 1 above and
recalling that ibj ⊆ Sσ

j−1, we can eventually conclude that an index i ∈ {1, ..., j − 1}
exists such that (t[i], t[j]) occurs in E.

(only-if part). Assume that, for each trace t ∈ L, there is a subgraph Gt of G = (V,E)
such that Gt is an acyclic dependency graph and t is a topologic sort of Gt. For each trace
t in L and for each index j ∈ {1, ..., len(t)}, define the input binding ibt,j = {(x, t[j]) |
(x, t[j]) ∈ E, x ∈ {t[1], ..., t[j − 1]}} and the output binding obt,j = {(t[j], y) | (t[j], y) ∈
E, y ∈ {t[j + 1], ..., t[len(t)]}}. Note that, for each j ∈ {2, ..., len(t)}, ibt,j 6= ∅ holds.
Indeed, as Gt is a dependency graph, for each j ∈ {2, ..., len(t)}, t[j] has at least one
ingoing edge (x, t[j]) in Gt. Moreover, since t is a topologic sort of Gt, we actually have
that x ∈ {t[1], ..., t[j − 1]}. Similarly, it can be seen that, for each j ∈ {1, ..., len(t) − 1},
obt,j 6= ∅ holds. Finally, it is immediate to check that ibt,1 = obt,len(t) = ∅.

Now, consider the functions I and O such that, for each a ∈ V ,
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— I(a) =
⋃

t∈L,j|t[j]=a ibt,j ∪ Ia, where Ia = {(x, a) | (x, a) ∈ E};

— O(a) =
⋃

t∈L,j|t[j]=a obt,j ∪Oa, where Oa = {(a, y) | (a, y) ∈ E}.

Since G is a dependency graph and given the definition of Ia and Oa, for each a ∈ V ,
it is immediate to check that C = 〈G, I,O〉 is a causal net. It remains to show that
C ⊢ L, i.e., that for each trace t in L, there is a valid binding sequence σ such that
〈t[j], ibj , obj〉 is the j-th binding activity of σ, for each j ∈ {1, ..., len(t)}. Let t[1]...t[n] be
a trace, and consider the sequence σ = 〈t[1], ibt,1, obt,1〉, ..., 〈t[n], ibt,n, obt,n〉. We have to
show that Sσ

n = ∅ and ibt,j ⊆ Sσ
j−1, for each j ∈ {1, ..., n}.

To prove the result, we first claim that, for each j ∈ {0, 1, ..., n}, Sσ
j =

⋃j

i=1{(t[i], t[i
′]) |

(t[i], t[i′]) ∈ E, i′ > j}. In fact, the base case holds because Sσ
0 = ∅, by definition of the

state of a causal net. Now, assume that the property holds up to the index h < j. We

have to show that Sσ
h+1 =

⋃h+1
i=1 {(t[i], t[i

′]) | (t[i], t[i′]) ∈ E, i′ > h+1}. To this end, recall

that Sσ
h+1 = Sσ

h ∪ obt,h+1 \ ibt,h+1, so that Sσ
h+1 =

⋃h
i=1{(t[i], t[i

′]) | (t[i], t[i′]) ∈ E, i′ >
h} ∪ obt,h+1 \ ibt,h+1 holds, by inductive hypothesis. Eventually, the result derives by
the above expression and the fact that obt,h+1 = {(t[h + 1], y) | (t[h + 1], y) ∈ E, y ∈
{t[h+ 2], ..., t[n]}} and ibt,h+1 = {(x, t[h+ 1]) | (x, t[h+ 1]) ∈ E, x ∈ {t[1], ..., t[h]}}.

Armed with the above property, we can now resume the proof. First, we have to show
that Sσ

n = ∅. In fact, we have that Sσ
n =

⋃n

i=1{(t[i], t[i
′]) | (t[i], t[i′]) ∈ E, i′ > n}, which

coincides with the empty set as n is the length of t. Second, we have to show that ibt,j ⊆
Sσ
j−1, for each j ∈ {1, ..., n}. To this end, recall that ibt,j = {(x, t[j]) | (x, t[j]) ∈ E, x ∈

{t[1], ..., t[j − 1]}}, and eventually just check that ibt,j ⊆
⋃j−1

i=1 {(t[i], t[i
′]) | (t[i], t[i′]) ∈

E, i′ > j − 1} = Sσ
j−1.

PROOF OF THEOREM 2.10. (if part). Let C = 〈G, I,O〉 be a causal net such that C ⊢
L, with G = (N,E). This means that, for each trace t in L, there is a binding sequence
σ such that σ is valid w.r.t. C, and the j-th element of σ has the form 〈t[j], ibj , obj〉, for
each j ∈ {1, ..., len(t)}. Let Sσ

j denote the state of C at the j-th step of σ, and consider

the sequence σ̄ having the same length len(t) as σ and whose j-th element 〈āj , ībj , ōbj〉,
for each j ∈ {1, ..., len(t)}, is obtained from 〈t[j], ibj , obj〉 as follows:

• āj is the virtual activity t[j]〈k〉, where k is the number of occurrences of the activity
t[j] in t[1]...t[j], i.e., the number of binding activities defined over t[j] in the first j
elements of σ;

• For each output binding (t[j], y) ∈ obj , let αy denote the number of binding activities
occurring up to the j-th step of σ where (t[j], y) occurs as an element of the output
binding. Note that, since σ is a valid sequence w.r.t. C (and since bindings are sets,
i.e., multiple occurrences are not allowed), we are guaranteed about the existence of
αy binding activities where these output bindings are consumed, i.e., where they are
taken as input. Let next(j, y) be the index of the αy-th activity binding of this kind,
hence, in particular with (t[j], y) ∈ ibnext(j,y), and note that next(j, y) > j. Then, we

define ōbj = {(āj , ānext(j,y)) | (t[j], y) ∈ obj}.
• For each input binding (x, t[j]) ∈ ibj , let βy denote the number of binding activities

occurring up to the j-th step of σ where (x, t[j]) is taken as input. Note that, since
σ is a valid sequence w.r.t. C, we are guaranteed about the existence of βy binding
activities where these input bindings are produced. Let prev (j, x) be the index of the
βy-th activity binding of this kind, hence, in particular with (x, t[j]) ∈ obprev(j,x), and

note that prev (j, x) < j. Then, we define ībj = {(āprev(j,x), āj) | (x, t[j]) ∈ ibj}.
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Define now Ḡt = (V̄t, Ēt) as the graph where V̄t = A({unfold(t)}) and where Ēt =
⋃len(t)

j=1 (ībj ∪ ōbj). We claim that Ḡt is a dependency graph. Indeed, note first that Ḡt is

acyclic because each edge in Ēt has the form (āi, āj), with i < j. In particular, t[1]〈1〉

and t[len(t)]〈1〉 play the role of the starting and the terminating activity, respectively.
Then, consider an activity āj ∈ V̄t \ {t[1]〈1〉} (resp., āj ∈ V̄t \ {t[len(t)]〈1〉}). Note that āj
has at least one ingoing (resp., outgoing) edge in Ēt, because there is at least an edge
of the form (x, t[j]) (resp., (t[j], y)) in ibj (resp., obj), by the fact that C = 〈G, I,O〉 is a
causal net (hence, ibj 6= ∅ and obj 6= ∅ hold) and that σ is a binding sequence. Since Ḡt

is acyclic, the above properties entail that āj occurs in a path from t[1]〈1〉 to t[len(t)]〈1〉.
Consider now the functions Īt and Ōt such that Īt(āj) = ībj and Ōt(āj) = ōbj , for

each āj ∈ V̄t. Since Ḡt is a dependency graph and given the construction of its edges,
we derive that 〈Ḡt, Īt, Ōt〉 is a causal net (over A({unfold(t)})). Moreover, we claim
that σ̄ is valid w.r.t. 〈Ḡt, Īt, Ōt〉. To prove the claim, note first that, given the above
construction for σ̄, if i = prev (j, x) (resp., i = next(j, y)), then x = t[i] (resp., y = t[j])
and j = next(i, t[j]) (resp., j = prev (i, t[j])). Then, consider the state Sσ̄

j of 〈Ḡt, Īt, Ōt〉 at
the j-th step of σ̄, and observe that the following properties hold.

— For each j ∈ {1, ..., len(t)}, ībj ⊆ Sσ̄
j−1. Indeed, consider an element (āprev(j,x), āj)

in ībj , let i = prev(j, x), and recall that (āprev(j,x), āj) = (āi, ānext(i,t[i])). Therefore,

(āprev(j,x), āj) occurs in ōbi and, hence, in Sσ̄
i = Sσ̄

i−1∪ ōbi \ ībi. Eventually, as āj occurs
only at the j-th step of σ̄ and i < j, we have that (āprev(j,x), āj) ∈ Sσ̄

j−1.

— Sσ̄
len(t) = ∅. Indeed, assume by contradiction that (x̄, ȳ) occurs in Sσ̄

len(t). Then, there

is an index j such that x̄ = āj and (āj , ȳ) occurs in ōbj . By construction, we therefore
have that (x̄, ȳ) = (āj , ānext(j,y)). However, by letting i = next(j, y), we can write that

(āj , ānext(j,y)) = (āprev(i,t[j]), āi) ∈ ībi. Since i > j, it follows that (x̄, ȳ) 6∈ Sσ̄
i , as x̄ occurs

only at the j-th step of σ̄. We conclude that (x̄, ȳ) 6∈ Sσ̄
len(t). Contradiction.

By putting together the above results, we have so far shown that 〈Ḡt, Īt, Ōt〉 is a
causal net with 〈Ḡt, Īt, Ōt〉 ⊢ {unfold(t)}, for each t in L. It follows that we can apply
Theorem 2.7 on 〈Ḡt, Īt, Ōt〉, and we derive that Ḡt ⊢a {unfold(t)} holds, for each t in L.

Finally, consider the graph Ḡt and note that conditions (1) and (2) in Definition 2.8
are trivially satisfied, by construction of its edges. Indeed, all edges outgoing from āj ,
with j ∈ {1, ..., len(t)}, have the form (āj , ānext(j,y)), where (t[j], y) ∈ obj . In particu-
lar, (āj , ānext(j,y)) is univocally determined by y, so that (āj , ānext(j,y)) 6= (āj , ānext(j,y′))
implies that y 6= y′ and hence ānext(j,y) and ānext(j,y′) are virtual activities built from
different true activities. A similar line of reasoning applies to the edges incoming into
āj. Moreover, fold(Ḡt) is a subgraph of G. Indeed, Ēt is the union of all bindings in

〈Ḡt, Īt, Ōt〉, and any element in these bindings is of the form (x〈i〉, y〈j〉), where (x, y)
occurs in a binding in I or O and, hence, is an edge in E. Therefore, according to
Definition 2.8, we have shown that G ⊢ L holds.

(only-if part). Assume that G ⊢ L holds, with G = (V,E). Thus, for each trace t ∈ L,
there is a graph Ḡt = (V̄t, Ēt) such that fold(Ḡt) is a subgraph of G, Ḡt ⊢a {unfold(t)},
and the following two conditions hold:

(1) there is no pair of edges (x〈i〉, y〈j〉), (x〈i〉, y〈j
′〉) in Ḡt such that j 6= j′, and

(2) there is no pair of edges (x〈i〉, y〈j〉), (x〈i′〉, y〈j〉) in Ḡt such that i 6= i′.

By Theorem 2.7 applied on the fact that Ḡt ⊢a {unfold(t)} holds, we derive that there
is a causal net C̄t = 〈Ḡt, Īt, Ōt〉 such that C̄t ⊢ {unfold(t)} holds. This means that there is
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binding sequence σ̄ that is valid w.r.t. C̄ and where the j-th binding activity 〈āj , ībj , ōbj〉
of σ̄, for each j ∈ {1, ..., len(t)}, is such that āj is the symbol t[j]〈k〉, with k being the
number of occurrences of t[j] in t[1]...t[j].

Let It (resp., Ot) be the function such that, for each node z in fold(Ḡt), It(z) = {ibz |
exists j s.t. ībz ∈ Īt(z〈j〉)} (resp., Ot(z) = {obz | exists i s.t. ōbz ∈ Ōt(z

〈i〉)}) where ibz
(resp., obz) is the binding obtained from ībz (resp., ōbz) by stripping off the instantiation
numbers of the virtual symbols. Similarly, define σ as the sequence obtained from σ̄ by
stripping off the instantiation numbers of the virtual symbols. Note that because of
the conditions (1) and (2) above, and since bindings are defined over the edges of Ḡt,
|ībz| = |ibz| and |ōbz| = |obz| hold, for each activity z. Therefore, if Sσ̄

j is the state of C̄t
at the j-th step of σ̄, then the state Sσ

j of Ct at the j-th step of σ can be obtained from
Sσ̄
j by just stripping off the instantiation numbers of the symbols it contains. Hence,

since σ̄ is valid w.r.t. C̄t, we can conclude that σ is valid w.r.t. Ct = 〈fold(Ḡ)t, It,Ot〉. This
witness that Ct ⊢ {t} holds.

Let now Ḡ = (V̄ , Ē) be the graph such that V̄ =
⋃

t∈L V̄t and Ē =
⋃

t∈L Ēt, and let I
and O be the functions such that I(z) =

⋃

t∈L It(z) and O(z) =
⋃

t∈L Ot(z), for each z

in fold(Ḡ) = (Vf , Ef ). Note that fold(Ḡ) is a subgraph of G, and that C = 〈fold (Ḡ), I,O〉
is a causal net such that C ⊢ L. Therefore, in the case where fold(Ḡ) = G, then we have
derived that there is a causal net C = 〈G, I,O〉 such that C ⊢ L. To conclude the proof,
the only remaining case to be analyzed is when fold (Ḡ) is a proper subgraph of G. In this
case, consider the functions I ′ and O′ such that, for each z ∈ V ∩ Vf , I ′(z) = I(z) ∪ Iz
and O′(z) = O′(z) ∪ Oz , and for each z ∈ V \ Vf , I ′(z) = Iz and O′(Z) = Oz , where
Iz = {(x, z) | (x, z) ∈ E} and Oz = {(z, y) | (z, y) ∈ E}. As G is a dependency graph,
by construction of I ′ and O′, we trivially have that 〈G, I ′,O′〉 is a causal net, which
generalizes the behavior of C = 〈fold(Ḡ), I,O〉 over the nodes and the edges in G that
do not occur in fold(Ḡ). Since C ⊢ L, we conclude that 〈G, I ′,O′〉 ⊢ L. Indeed, if σ is a
sequence valid w.r.t. C, then it is also valid w.r.t.〈G, I ′,O′〉.

PROOF OF THEOREM 2.12. In the case where conditions (1) and (2) in Defini-
tion 2.8 are not guaranteed to hold, by inspecting the proof of the only-if part of The-
orem 2.10, it can be checked that the structure C built there over G is still such that
C ⊢ L holds. The only difference is that C might be a possibly extended causal net.
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