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Abstract. Process Mining techniques have been gaining attention, ow-
ing to their potentiality to extract compact process models from massive
logs. Traditionally focused on workflows, these techniques tend to rely on
a clear specification of process tasks, assumed to be referred explicitly by
the logs. This limits however their applicability to many real-life BPM
environments (e.g. issue tracking systems) where the traced events do not
match any task, but yet keep lots of context data. To make the applica-
tion of (predictive) process mining to such logs more effective and easier,
a novel approach is devised, where the discovery of different execution
scenarios is combined with the automatic abstraction of log events. The
approach was integrated in a BPA system, also supporting the evaluation
of discovered models and OLAP-like analyses. Tested on real-life data,
the approach achieved compelling prediction accuracy w.r.t. state-of-the-
art methods, and discovered interesting descriptions for both activities
and process variants.

Keywords: Business Process Analysis, Data Mining, Prediction

1 Introduction

The general aim of Process mining techniques [3] is to extract useful information
out of historical process logs, possibly providing the analyst with some sort of de-
scriptive (e.g. control-flow oriented) or predictive process model. Such techniques
have been given increasing attention in the last decade in the field of Business
Process Management, owing to their potentiality to help process analysis and
design tasks, and to provide a practical support to process improvement policies.
In particular, an emerging research stream [12, 4, 16, 7] concerns the induction of
state-aware models for predicting a given performance measure (or KPI), corre-
spondingly to any new process case, which can help integrate advanced run-time
support services (e.g., activity recommendation [23] or risk estimation [11]) into
the very process enactment or monitoring environment. The basic idea is to ex-
ploit log data to induce a state-aware performance model, based on some trace
abstraction function (see, e.g., [4, 16]).
Originally focused on workflow systems, the attention of Process Mining re-

searches has been moving towards less structured processes, possibly featuring a
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wide variety of behaviors, and a high number of tasks. This calls for enhancing
classical approaches with the capabilities of capturing diverse execution scenar-
ios (process variants) for the process, and of mapping low level tasks to high-level
activity concepts [5], so preventing the construction of useless “spaghetti-like”
models, providing an overly detailed (and scarcely generalizable) view of pro-
cess behavior. On the other hand, the need to provide the analyst/designer with
high level process views is also witnessed by the multitude of works concerning
process abstraction/decomposition (see, e.g., [13, 2, 21, 10]) and the very idea of
modelling suitably different process variants and their links to environmental
factors [22, 25], and of possibly discovering them automatically via trace cluster-
ing methods [24, 15, 20, 16, 7]. In particular, unsupervised log-driven abstraction
approaches, [21, 10] try to discover high-level activities directly out of execution
logs, by aggregating raw events according to their mutual correlation (estimated
on the basis of log evidence). A bunch of approaches was also defined that com-
bine trace clustering and activity abstraction, in order to (semi-)automatically
build an expressive representation of the process, showing its main execution
variants in terms of high-level activities (sub-processes) [19, 14].
Unfortunately, most of the methods above somewhat rely on a preliminary

definition of process tasks, which limits their applicability to many real-life col-
laborative work environments (such as, e.g., issue tracking systems, or pure trans-
actional systems in general) where the traced execution events (or “audit trail
entries”) do not refer any predefined process task at all, but rather keep plenty
of information, in the form of event/case attributes, which one may well exploit
to grasp a high-level description for the performed activities, and, eventually, for
the behaviour of the analyzed process.
Moreover, to the best of our knowledge, the combination of model induction

and automated activity abstraction has not been investigated adequately in the
field of predictive process mining, despite it could help prevent the construction
of inaccurate models. In fact, previous proposals [12, 4, 16, 7] mainly reliy on
simple expert-driven methods for mapping the given process traces to abstract
representations for major execution states of the process, consisting in replacing
each log event with the associated task or executor (or them both). However, as
in most real logs none of the events’ properties fully characterize the semantics of
the performed action (and its impact on process performances), an underfitted
performance model is likely to be discovered when abstracting the events with
just one of their properties. Conversely, if trying to define abstract activities by
simply combining the values of multiple event attributes, a cumbersome and yet
overfitted model may be generated. In both cases, the discovered models hardly
manage to capture the general behavior of the process, and to furnish accurate
predictions against unseen process cases, as empirically shown in our tests.
We hence believe that, to effective apply (predictive) process mining to such

lowly-structured and yet rich logs, novel automatic log abstraction methods must
be devised, accounting for both process performances and process variants.

Contribution Conceptually, we face the above issues, we state the problem of
inducing a predictive performance model out of a given process log is stated as
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the search for a new enhanced kind of high-level performance model, featuring
three components: (i) an event classification criterion (allowing for replacing
each low-level log event with a work-item class, corresponding to some unknown
process activity, which is frequent, correlated with process performances); (ii)
a trace classification criterion (discriminating among different process variants,
on the basis of case data); and (iii) a collection of state-aware predictors, each
of them is associated with one of the discovered process variants. Such a model
encodes a performance prediction function, where the forecast for the outcome
of any new process case c is built in three logical steps: (i) first a compact view of
c’s history is built by replacing each event occurred in its partial enactment with
an event class (based on the first function); (ii) the abstract trace so produced
is then assigned to process variant (case class) via the second function, and (iii)
the corresponding predictor of is eventually used to make the forecast.

Technically, we devise an algorithm for inducing, out of a given log, such a
multi-facet process model, where the two basic classification functions (relative
to cases and events, respectively) are learnt through an iterative co-clustering
scheme, leveraging and extending the consolidate framework of (logics-based)
predictive clustering [8], before equipping each trace cluster with a local predic-
tor (like those used in [7]). By inducing a definition of both abstract activities of
process variants, both expressed in terms of logical decision rules, the approach
suits well the difficult process mining settings mentioned before (complex pro-
cesses, with different context-dependent variants, and low-level logs), while free-
ing the analyst from the need to explicitly define a mapping between log records
and high level process tasks — indeed, our (log-driven and performance-aware)
unsupervised classification of log events allows for mapping them to relevant
activity patterns, expressed at the right abstraction level as far as concerns the
characterization (and prediction) of performance behaviors. Besides enjoying
satisfactory prediction accuracy (often better than current methods with usual
event abstraction criteria) in real application scenarios, the descriptive nature of
the discovered events’ and traces’ classification rules (expressed in terms of their
associated data properties) helps the analyst comprehend process behaviors, and
the way its performances depends on both context factors and activity patterns.

An innovative Business Process Analysis architecture is also presented, which
supports the analyst to discover of such a multi-perspective performance model
(by way of the proposed learning approach), as well as to evaluate and reuse the
discovered knowledge, and to embed it into advanced monitoring mechanisms.

Organization The rest of the paper is structured as follows. After introducing
some preliminary concepts and notation (in Section 2), we formally state the
problem faced in the paper, and illustrate a learning algorithm for solving it
(in Section 3). The Section 4 presents the prototype system implemented. We
then discuss, in Section 5, an empirical analysis conducted on two real-life case
studies, allowing for assessing the validity of the proposed approach and the
practical usefulness of the models discovered. A few concluding remarks and
future work directions are drawn in Section 6.
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2 Preliminaries

Process Logs As usual, we assume that a trace is recorded for each process
instance (a.k.a “case”), storing the sequence of events happened during its en-
actment. Let E and T be the universes of all possible events and traces, respec-
tively, for the process under analysis. An event e ∈ E can be regarded as a tuple
〈cID, t, x1, . . . , xn〉, where cID is the identifier of a process instance, t is a times-
tamp, while x1, . . . , xm is a list of data values corresponding to some given event
attributes XE

1 , . . . , XE
m, respectively. For the sake of conciseness, let prop(E) de-

note the space of all these latter attributes (i.e., prop(E) = XE
1 × . . . × XE

m),
and prop(e) = 〈XE

1 , . . . , XE
m〉 be the (sub-)tuple of all data associated with any

event e ∈ E; moreover, let case(e) and time(e) denote the case ID and times-
tamp associated with e, and let XE

i (e) be the value taken by attribute XE
i on

e, for i = 1, . . . ,m. For example, in structured process management settings
(like those handled by way of a WfMS) each event refers to both a task and an
executor (“resource”) — which could be denoted by task(e) and executor(e),
respectively. This does not happen, however, in more flexible collaboration en-
vironments (e.g., those used in the areas of ticket/issue handling, bug tracking,
project management, and document versioning), where no precise conceptualiza-
tion of process tasks is available, or these just correspond to very generic kinds
of operations (e.g., updating a document/field and/or exchanging a message).
And yet, many data attributes can be stored for an execution event (such as,
e.g., data parameters), which can help infer the semantics of the corresponding
activity. In fact we just look at log events as a precise snapshot of the executed
work items, without assuming that these are necessarily modeled in terms of well
specified process tasks, so trying to extend the scope of application of Process
Mining techniques to a broader range of BPM scenarios than the workflow-based
one they were originally devised for.
For each trace τ ∈ T , let len(τ) be the number of events stored in τ , τ [i] be

the i-th event of τ , for i = 1 .. len(τ), and τ(i] ∈ T be the prefix trace consisting
only of the first i events in τ , for any i = 0, . . . , len(τ). Besides the mere sequence
of registered events, most tracing systems keeps the values of a number of data
attributes, say XT

1 , . . . , XT
m, for each process instance. As for the case of events,

let us denote prop(T ) = XT
1 × . . . × XT

m, and let con(τ) be the tuple storing
the values associated with any trace τ ∈ T . Notice that the properties of both
events and traces can be extended by adding a series of “environment” variables
(such as, e.g., workload indicators, temporal dimensions), capturing the state
of the surrounding enactment system, in addition to their associated “intrinsic”
properties (as also proposed in [16]).
A log L (over T ) is a finite subset of T , while the prefix set of L, denoted by

P(L), is the set of all prefix traces that can be extracted from L, and events(L)
is the set of all events stored in (some trace of) L.

Performances measures and basic prediction approach. Let us denote by λ :
T → R the (unknown) performance measure that is the target of our analysis,
virtually assigning a performance value to any (possibly partial) trace – for the
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sake of concreteness, and w.l.o.g., we assume that λ ranges over real numbers.
Two notable examples of such a function are the remaining processing time and
steps, denoted by λRT and λRS , which return the time and steps, respectively,
that are still needed to complete the process instance associated with the trace.
A (predictive) Process Performance Model (PPM) is a model that can es-

timate the unknown performance value of a process enactment, based on the
contents of the corresponding trace. Such a model can be viewed as a function
λ′ : T → R approximating λ all over the trace universe — which also includes
the prefix traces of all possible unfinished enactments of the process. Learning
a PPM hence amounts to solving a particular induction problem, where the
training set takes the form of a log L, and the value λ(τ) of the target measure
is known for each (sub-)trace τ ∈ P(L) — in fact, for each τ and τ(i], it is
λRT (τ(i]) = time(τ [len(τ)])− time(τ [i]) and λRS(τ(i]) = len(τ)− i.
Current approaches to this problem [4, 12, 16] rely all on the idea of applying

some suitable abstraction function to process traces, allowing to focus on those
facets of the registered events that influence the most process performances.
An event abstraction function E is a function mapping each event e ∈ E to

an abstract representation E(e). Based on such a function, we can define the
abstracted view of an entire trace, in order to provide a more concise encoding
for its actual sequence of events, as well as for its context data. A common
approach to defining such a view consists in simply regarding the trace as a
multi-set (a.k.a. bag) of abstracted events.

Definition 1 (Trace Abstraction). Let T be a trace universe and E be an
event abstraction function, mapping each event in E to an abstract event in
{ê1, . . . , êk}. Then, for each trace τ ∈ T , the trace abstraction function absE :
E → Nn is defined as follows: absE(τ) = 〈count(ê1, τ), . . . , count(êk, τ)〉, where
count(êi, τ) = |{ i ∈ {1, . . . , len(τ)} | E(τ [i]) = êi }|. �

In this way, each trace τ is summarized into a tuple, each component of which
corresponds to a single abstract activity, and stores the number of times this
latter occurs in τ . Notice that the above trace abstraction criterion is similar
to those used in the literature [4, 16] — to be precise, these latter works also
considered the possibility to turn a trace into a list (or set) of abstracted events,
while possibly focusing on the most recent ones, based on a horizon threshold.

Example 1. Let us consider a real-life case study pertaining a transshipment
process, also used in the tests of Section 5. The main attribute of each trace event
concerns the kind of move operation (moveType) performed, which may include
the following ones: transferring it from one slot to another (MOV ), charging
it onto a ship (OUT ), and swapping it with another container (SHF ). Other
relevant event attributes are: the shift when the operation was done, the vehicle
used (e.g., straddle carrier, multi-trailer, crane), and source/destination position
— expressed at different granularities, in terms of yard slots, blocks, and areas.
To apply traditional approaches to such data, one can define an event abstraction
function EMT that simply replaces each event with the associated MoveType,
hence regarded as an atomic task of the logistics process. For example, let us
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assume that τ is a log trace encoding the sequence 〈e1, e2, e3〉 of three events, with
MoveType(e1) = MoveType(e2) = MOV and MoveType(e3) = OUT . Using the
function in Def. 1, the prefixes τ(1], τ(2] and τ(3] ≡ τ (i.e. the enactments ending
at the first, second and third event, respectively) are turned into three tuples,
encoding the multi-sets [MOV ], [MOV 2], and [MOV 2, OUT ], respectively. ⊳

Based on such trace abstractions, a PPM can be derived as proposed in the pio-
neering work [4], in terms of an annotated finite state machine (named “AFSM”),
where each node corresponds to one abstract trace representation (produced by
absE) and stores an estimate for the target measure (usually computed as the av-
erage over all trace prefixes reaching that state), while each transition is labelled
with an event abstraction (produced by E).

Predictive clustering and performance prediction In general, the core assumption
of Predictive Clustering [8] is that, based on a suitable clustering model, predic-
tions for new instances can be based on the cluster where they are estimated to
belong. In such a setting, it is assumed that two kinds of features are available
for any element z in the given instance space Z = D×Y : descriptive features and
target features (i.e., the ones to be predicted). Then, the task amounts to induce
a (predictive clustering) function m : D → Y of the form m(x) = p(c(d), d), such
that c : D → N is a partitioning function and p : N×D → Y is a (cluster-based)
prediction function. Clearly, when dealing with multiple target features, q is to
encode a multi-regression model. Several PCM learning methods have been pro-
posed in the literature, which can work with general relational data [8], or with
propositional data only (e.g., system CLUS [1]).
The application of predictive clustering techniques to log data, as a solution

for predicting process performance, was originally proposed in [16], based on the
belief that process performances may depend on context data, which can be then
used as descriptive variables for partitioning the log, while using a number of
associated performance measurements as target. To this end, a propositional en-
coding of log traces and of their associated performance values is used to induce
such a partitioning function, and to eventually derive a PPM from each of the
discovered clusters. A similar approach was used in [7], using classic regression
methods for propositional data as an alternative to AFMS models. Such a solu-
tion was proven quite effective and scalable, and easier to use, in that it allows
to find the right abstraction level over the sequence of events in a data-driven
way (without requiring the analyst to suitably tune the horizon threshold).

3 Problem Statement and Approach

After introducing a more precise formulation of the problem that we want to
face, we next illustrate our solution approach.

3.1 Problem Statement

Clearly, the effectiveness of current performance mining approaches strongly de-
pends on the capability of the event abstraction function E to focus on facets
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of log events that are really correlated with the behavior of the process and,
in particular, with its typical performance patterns. Unfortunately, the common
solution of abstracting each event into the associated task or executor (or them
both), does not fit many real logs, consisting of fine grain records, which only
correspond to low level, generic, operations (and conveying little information on
the semantics of the activities performed), or even lack any conceptualization of
process tasks. In such a situation, none of the events’ properties may be suitable
for abstraction purposes, in that it is not sufficient to fully capture relevant ac-
tivity execution patterns (which are both frequent and correlated to performance
outcomes). For instance, with regard to Example 1, when only looking at the
kind of move performed in a processing step, several other properties of it (such
as the transportation means, or the involved yard positions) are disregarded,
which might have helped discover a more refined model of process performances.
However, defining abstract activities by combining the values of multiple event
properties, as proposed in [4], may well yield a cumbersome representation (with
a combinatorial number of trace features and, hence, of process states), which
risks being ineffective in many application scenarios, as shown by our tests.
Beside exhibiting a far richer representation of events, w.r.t. traditional work-

flow logs, many real application contexts are also characterized by the presence
of lots of context information for each process case. For example, in the above
transshipment system, several physical properties (e.g., size and weight) are kept
for each container, as well as its previous and next call, and the navigation lines
delivering/loading it. By also exploiting such context factors, a more precise and
articulated performance prediction model. In particular, we still rely on the idea
(introduced in [16]) of using these trace attributes as descriptive features for
discriminating among different context-related execution scenarios.

In order to fully exploit the variety of data stored in a process log, we attempt
to build a high-level and modular performance model for the process, based
on two interrelated classification models: one allowing to grasp the right level
of abstraction over log events, and the other encoding the business rules that
underly each of its variants. A precise definition of such a model is given below.

Definition 2 (CCPM). Let L be a log, over some given event universe E and
trace universe T . Then, a Co-Clustering Performance Model (CCPM) for L is a
triple of the form M = 〈CE , CT , Λ〉, where: (i) CE : E → N is a partitioning
function over E; (ii) CT : T → N is a partitioning function over T ; and (iii)
Λ = 〈λi, . . . , λq〉 is a list of performance prediction models, all using CE as event
abstraction function, where q is the number of clusters produced by CT , and λi

is the model of the i-th cluster, for i = 1 . . . q. The overall prediction function
encoded by M (also denoted by M , for shortness) is: M(τ) = λj(τ), where
j=CT (τ). �

Conceptually, a forecast for any new process instance τ can be made in three
steps with the help of such a model: (i) first an abstract version of τ is obtained
in the form of a vector (as specified in Def. 1) summarizing both its context data
and structure, where each event is abstracted into an event class via CE ; (ii) τ
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is then assigned to a trace cluster (representing a particular execution scenario
for the process) via function CT ; (iii) the predictor of this cluster is finally used
to make a forecast for τ , by providing it with absCE (τ).
The functions CE and CT , encoding two different classification models, are

hence exploited to abstract raw log event into high-level classes, and to discrim-
inate among different process variants based on context data, respectively.
Notably, in our setting, the very definition of an event abstraction criterion be-

comes a key part of an induction problem, amounting to learn the above specified
kind of prediction model (capturing the hidden performance measure), based on
a given log of historical traces. This frees the analyst from the burden of finding
the right abstraction level over events, which is instead a preliminary delicate
task for current approaches. On the other hand, the automated recognition of
multiple process variants helps obtain more precise forecasts than a single PPM
model, especially when working with complex and/or flexible processes.

3.2 A solution approach to CCPM discovery: Algorithm CCD

In principle, one might search for an optimal CCPM for the given log L, as the
one minimizing some suitable loss measure, contrasting the actual performance
of each trace to the corresponding prediction (possibly using an independent
test sample). By contrast, to avoid prohibitive computation times (due to the
large number of instances that may exist for functions CE and CT in many
contexts), we turn the problem into two simpler ones: (i) find a locally optimal
pair of classification functions CE and CT , and (ii) derive a collection of full PPM
predictors, one for each trace cluster, according to them.
Our solution approach is illustrated in Figure 1, in the form of an algorithm,

which is named CCD (standing for “Co-Clustering based Discovery”). Since the
quality of the trace clustering model CT strongly depends on the chosen ab-
straction function CE , and vice versa, we regard the first subproblem as a multi-
domain clustering (i.e. co-clustering) problem, were an optimal partition must
be find for both the traces and the events. This problem is approached via an
iterative alternate-optimization scheme (somewhat resembling that of numerical
bi-clustering and matrix approximation methods [6]), where, at each iteration k,
the updated versions of the two partitioning functions are computed, denoted by

C
(k)
E and C

(k)
T , till a satisfactory precision improvement is achieved, with respect

to the previous iteration.
For the sake of efficiency, prediction errors are estimated through an approxi-

mated loss measure, denoted by Err(k) for any iteration k, which only accounts
for the distribution of performance values within each “co-cluster” (i.e., each
pair of trace cluster and event cluster), without requiring the computation of a

complete CCPM . By way of a predictive clustering method, each model C
(k)
E

is induced from a propositional “event-oriented view (named e-view) EV of the
input log, which is meant to capture the relationship between event data and
different performance values, computed in correspondence of all current trace

clusters, i.e. the range of function C
(k−1)
T . The discovered event clustering C

(k)
E
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Input: A log L (over some trace universe T ) with an associated target measure λ,
max. iterations’ number maxIter ∈ N, min. (relative) loss reduction γ ∈ (0, 1],
max. number maxClE,maxClT ∈ N∪{∞} of (events’, resp. traces’) clusters,
min. cluster coverages σ ∈ (0, 1] (for both events and traces).

Output: A CC-PPM model for L (fully encoding λ all over T ).
Method: Perform the following steps:

1 set T̂ (0) := {L}; Ê(0) := {events(L)}; Err(0) := ∞; k := 0;
2 do

3 k := k+1;

4 EV := VE(L, C
(k−1)
T ); // build an e-view for L w.r.t. C

(k−1)
T (cf. Def. 3)

5 C
(k)
E := minePCM(EV, σ,maxClE) ; // induce a novel event clustering model

6 TV := VT (L, C
(k)
E ); // build a t-view for L w.r.t. C

(k)
E (cf. Def. 4)

7 C
(k)
T := minePCM(TV, σ,maxClT ) ; // induce a novel trace clustering model

8 let Err(k) = Loss(C
(k)
E , C

(k)
T , L); // estimate current prediction error

9 improved := Err(k−1) − Err(k) ≤ γ(k) × Err(k−1);
10 while k ≤ maxIter and improved;

11 if improved then CT := C
(k)
T ; CE := C

(k)
E ;

12 else CT := C
(k−1)
T ; CE := C

(k−1)
E ;

13 let TC = 〈t̂1, . . . , t̂q〉 be the list of trace clusters produced by CT on P(L);
14 for each t̂i in TC do

15 λi := minePPM(t̂i, CE);
16 end

17 return 〈CE, CT , 〈λ1, . . . , λq〉〉

Fig. 1. Algorithm CCD.

are then used, as a novel event abstraction function, to produce a summarized
propositional “trace-oriented view (named t-view) TV of the log, which is again
given as input to a predictive clustering algorithm, to discover an updated trace

partitioning model C
(k)
T . In this way, any novel trace clustering takes advan-

tage of the most recent definition of the event classes (abstract activities), and
vice versa, according to a reinforcement learning perspective. Both event clusters
and trace clusters are discovered via function minePCM (“mine Predictive Cluster
Model”), which implements a predictive clustering method, allowing to induce a
partitioning function for one or multiple target attributes, out of a given proposi-
tional dataset, featuring a number of additional descriptive attributes (the ones
that will be used in partitioning function) — in fact, this is right the structure
of both the e-view EV and the t-view TV , as explained in details later on. Two
auxiliary parameters are taken by this function: a minimal coverage percent-
age for each discovered cluster, and an upper bound for the number of clusters,
respectively.

Once an (locally) optimal pair of event and trace clustering functions have
been found, each local cluster predictor (λi, for i = 1..n) is eventually computed
through function minePPM (“mine Process Performance Model”), provided with
the set of traces assigned to the clusters, and with a suitable event abstraction
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function — which, in our case, corresponds to the event partitioning function CE ,
computed at the end of the co-clustering loop, which right allows for replacing
each event (based on its associated attributes) with an event cluster (regarded as
an abstract activity pattern). To this end, each cluster t̂i is preliminary converted
into table, by generating its t-view (with CE used for event abstraction).
Before providing the reader with technical details on e-views, t-views and the

loss measure, we notice that (besides process traces and associated target per-
formances) the algorithm can be provided with a series of parameters, giving the
analyst some control on the structure of the discovered model, as well as on the
computation time. We pinpoint that the approach does not require big efforts
for the tuning of these parameters, and performs well over a wide range of set-
tings, as discussed in detail in Section 5.6. In fact, maxClE and maxClT mainly
help discover compact and readable models, while maxIter and γ can allow for
speeding up the computation. Notably, in practical cases, the computation tends
to converge naturally in a few steps, without using restrictive stopping criteria,
so that one might even use the most liberal configuration for both γ (= 0) and
maxIter (= ∞). However, it should be safer to fix, at least, a reasonable bound
(e.g., 20) for the iterations’ number, and some low positive value for γ, for the
sake of robustness to numerical approximation.
Anyway, no matter of input parameters, the algorithm always converges to

a local minimum for the loss function, seeing as this latter must decrease its
value at each iteration w.r.t. the previous one — observe indeed that it is re-
quired that γ > 0— and the number of clustering functions for both events and
traces is finite. Moreover, since the novel clusterings are chosen via the same
greedy deterministic procedure, it is likely that the stop condition is met in a
few iterations — as confirmed by our empirical analysis on real data.

Technical details: E-Views, T-Views, and Loss Both kinds of log views, as well
as the error measure used in the optimization loop, are formally defined next.

Definition 3 (E-View). Let L be a log, with associated event and trace uni-
verses E and T . Let CT be a given (trace) partitioning function defined over
P(L), and let {t̂1, . . . , t̂q} be its associated clusters — i.e., the range of CT .
Then, an e-view (“event-centric view”) for L w.r.t. CT , denoted by VE(L, CT ),
is a relation consisting of a tuple ze = prop(e)‖〈val(e, t̂1), . . . , val(e, t̂q)〉 for
each e ∈ events(L), with ‖ standing for tuple concatenation, such that, for
i = 1, . . . , q, it is:

val(e, t̂i) =

{

NULL, if ∄ τ ∈ t̂
(k)
i s.t. prop(τ [len(τ)]) = prop(e);

avg({λ(τ) | τ ∈ t̂
(k)
i and prop(τ [len(τ)]) = e }), otherwise.

With regard to predictive clustering, for any such tuple ze, all the fields in prop(e)
are to be considered as descriptive variables, and 〈val(e, t̂1), . . . , val(e, t̂q)〉 as the
associated (multidimensional) target. �

Such a view of the log is intended to serve as a training set in the (unsupervised)
learning of an event classification function, with the help of some predictive
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clustering procedure. Clearly, the discovered event classification will depend on
the given current trace clusters, and, in particular, on how the performance
values associated with prop(e) are distributed across them.

Definition 4 (Trace View). Let L be a log, with associated event and trace
universes E and T . Let CE a given (event) partitioning function defined over

events(L), and ranging over the clusters {ê
(k)
1 , . . . , ê

(k)
p }. Then, a t-view (“trace-

centric view”) for L w.r.t. CE , denoted by VT (L, CE), is a relation containing, for
each (partial) trace τ ∈ P(L), a tuple zτ = prop(τ) ‖ absCE (τ) ‖ 〈λ(τ)〉, where
‖ still denotes tuple concatenation. For any such tuple zτ , prop(τ) and absCE (τ)
are considered as descriptive features, and λ(τ) as the (scalar) target. �

Similarly to the previous case, a trace sketch is exploited to learn a trace classifi-
cation model by way of some suitable predictive clustering procedure, where the
context data and the structural abstraction of each trace are used as descriptive
features, allowing to split the (partial) traces into homogenous groups with re-
spect to their associated performance values. In this way, it is possible to exploit
all information stored in any partial trace, be it the collection of abstract activi-
ties (captured by event classes CE) appearing in it, or the array of its associated
(updated) context data — differently from [16], where each training instance
represents a fully unfolded trace, using only the initial values (i.e., registered at
the start of the process) of its associated data properties as descriptive features.

4 Implementation: an Advanced BPA Prototype System

The learning approach described so far has been integrated into a prototype
system, aimed at providing advanced services for the analysis and monitoring
of process performances. The system features a three-layer conceptual architec-
ture, as shown in Figure 2. The lowest layer, the Data/Model Repository Layer, is
responsible for storing both historical process logs and different kinds of propo-
sitional sketches derived from them prior to each induction task. The Knowledge
Discovery layer encapsulates some core functionalities for building and handling
different kinds of models, representing different facets of process behavior: (i)
Event Clustering Models, providing an effective, data-driven, way to abstract raw
events into high-level activities, (ii) Trace Clustering Models, capturing diverse
execution scenarios for the analyzed process, and their correlation with major
context factors, and (iii) a series of performance prediction models (PPMs) (one
for each discovered scenario).
All these core models are discovered, in a interactive and iterative manner,

based on the computation scheme of algorithm CCD — possibly instantiated
multiple times, with different (random) initializations of both events’ and traces’
clusters, in order to possibly explore several local optima, and eventually keep
the best of them. More specifically, the Log Processing module is in charge of
generating the e-views and t-views for a given log (cf. Definitions 3 and 4).
Optionally, the Log Processing module can enrich each event/trace instance with
extrinsic (environmental) context features computed on the fly, such as workload
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Fig. 2. Conceptual architecture of the developed prototype system.

indicators and aggregated time dimensions, by taking advantage of auxiliary data
structures for efficiently looking up the neighborhood of any log’ trace/event.

The Predictive Clustering and PPM Learning modules are mainly devoted
to compute the minePCM and minePPM functions, respectively, called in the algo-
rithm of Figure 1. Currently, the implementation of the former function leverages
an algorithm for the induction of a PCT (Predictive Clustering Tree) [8, 9], a
logics-based predictive clustering model, where the cluster assignment function
is encoded in terms of decision rules (over descriptive attributes). Such a model
is built via a top-down partitioning scheme, where the log is split recursively, by
selecting every time a descriptive attribute that locally minimizes the variances
of the newly generated clusters. An F-test based stopping criterion is used to
curb the growth of the tree, possibly combined with an user-given upper bound
on the total number clusters — used as size constraint in the application (to the
fully grown tree) of the pruning procedure in [18].

Log traces, with the events abstracted into their respective classes, are then
delivered to the PPM Learning module, which derives one PPM for each trace
cluster, through one of the following prediction techniques: the tree-based re-
gression algorithm RepTree [26], and the instance-based IBK [26]. Notice that
we are working on integrating other numeric prediction algorithms, to enlarge
the range of alternative PPM learners offered to the analyst.

For the sake of further analysis, all the models discovered out of a process
log (i.e., traces’ and events’ clustering models, and the PPM models of each
trace cluster) are made available to the Model Evaluation and Reuse Layer. All
these models can be explored with the help of the Model Evaluation module,
which, in particular, provides the user with an easily-readable report, including
the classical error metrics (e.g., rmse, mae, and mape) introduced in Section 5.
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The OLAP Gateway module is meant to reorganize historical log data into
different aggregated forms, in order to possibly apply OLAP-like methods. More
specifically, the module allows the analyst to dynamically compute aggregated
statistics (Figure 4), as well as to present data-driven aggregation hierarchies for
a process/event attribute, derived automatically from trace/event clusters (Fig-
ure 3). The latter kind of result is obtained by applying a hierarchical clustering
algorithms to a contingency matrix representing in how many clusters two values
of the analyzed attribute occur together. Clearly, this capability is particularly
interesting for attributes with high cardinality, as it allows the analyst to get a
summarized representation of the attribute, and can support the design of a dat-
acube for analysing process performances, Even though such consolidated data
could be efficiently processed with the help of an OLAP engine, the actual im-
plementation of the system only works with virtual aggregated views (computed
on-the-fly), without precomputing them.
Thanks to its predictive nature, each CCPM model can be used to configure

a forecasting service for the process it was discovered for, to estimate (at run
time and step-by-step) the performance outcome of any new instance of that
process. Such a service (taking as input the partial trace of an ongoing process
enactment, and returning a forecast for the associated measure, such as the re-
maining processing time/steps), can be accessed through the Process Enactment
Interface, by any process enactment system, in order to possibly improve the
process at run-time. In addition to pure performance prediction, the Advanced
Monitoring module supports the anticipated notification of Service Level Agree-
ment (SLA) violations, whenever a process instance is estimated to fail a given
quality requirement, previously established for one of the performance measures
associated with the process.

5 Experiments

In order to assess the validity and usefulness of our approach, we conducted a
series of tests on the logs of two real-life systems: (i) a transshipment system,
supporting the handling of containers in a maritime hub, and (ii) a bug-tracking
system. For the sake of readability, Table 1 reports some major features of both
scenarios, concisely referred to as harbor and bug, respectively.

5.1 Test setting

Three variants of the CCD algorithm have been studied in our test, which differ
in the regression method exploited as base learners (for building the predictor of
each discovered cluster): CCD-AVG, where each cluster predictor just returns the
average performance of its associated instance; CCD-RT, based on the regression-
tree induction algorithm RepTree [26]; and CCD-IBK, exploiting a k-NN proce-
dure available in Weka [17] with the name of IBK. Notice that CCD-AVG is just
intended to serve as a baseline, giving some feedback on the effectiveness of the
mere co-clustering scheme.
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Table 1. Summary features of the two application scenarios (including the associated
event/trace attributes used in the tests).

Scenario #events #cases Event Attrib. Trace Attrib. Target

Harbor 21484 5336

movType, shift,
area from, area to,
vehicleType,
block from, block to

service in, service out, imo,
line in, line out, size, height,
vessel in, containerType, reefer,
carrierType in, carrierType out,
prevCall, nextCall, outOfGauge,
prevCountry, nextCountry

remaining
time

Bug 8661 2283

assignee, blocks,
component, hardware,
priority, product,
resolution, os,
severity, status

comments, votes, severity, QA,
classification, component, URL,
reporter, keywords, resolution,
product, assignee, priority,
status, hardware, flags

remaining
steps

In all cases, a fixed setting was used for the parameters of algorithm CCD:
maxIter = 20 (although, actually, all runs always terminated in fewer itera-
tions), γ = 0, σ = 1%, maxClE = maxClT = 50. The bound on the number
of event/traces clusters was just set in order to obtain handier process models
and make their computation faster, seeing that this leads to very little accuracy
losses (at least for the two major methods CCD-RT and CCD-IBK), with respect
to the default setting maxClE = maxClT = ∞ — further details can be found
in the sensitiveness study of Section 5.6.

For the sake of comparison, besides the two basic regression algorithms men-
tioned above (and denoted by RT and IBK) playing as baselines, we tested the
FSM-based method in [4] (here named AFSM), and the CATP algorithm of [16]
(reusing AFSM as base learner), and two variants of the approach in [7], denoted
by as AATP-IBK and AATP-RT, which still combine the base regressors IBK and
RepTree, respectively, in a trace clustering scheme. Notably, none of these com-
petitors feature any automated mechanism for abstracting each log event (into
an activity/action symbol), and need to be provided with a user-defined event
abstraction function.

In order to test the prediction accuracy, we used three standard error metrics
(computed via 10-fold cross validation): root mean squared error (rmse), mean
absolute error (mae), and mean absolute percentage error (mape). For the sake
of statistical significance, all the error results reported in the following have
been averaged over 10 trials and computed via 10 fold cross-validation, while
also applying a statistical test procedure to check whether methods accuracies
are really different. More specifically, for each error metrics, we used a paired
two-tail Student’s test to compare the outcomes of each method with those of
the most precise one (i.e., that achieving the lowest average error), with respect
to two different confidence levels: 95% and 99%, In the following, a method will
be considered as almost equivalent to (resp., substantially worse than) the best
performer if it was deemed as not significantly different at the 95% level (resp.,
as significantly different at the 99% level) from the best one — i.e. if we could not
reject with a 95% level of confidence (resp., we did can reject) the null hypothesis
that that method behaves identically to the latter.
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5.2 Application Scenarios

Harbor Scenario This real-life scenario pertains the handling of containers in
a maritime terminal, where a series of logistic activities are traced for each all
the containers that pass through the harbor (nearly 4 millions per year). In our
experimentation, we focused on a subset of 5336 containers (namely those passed
through the hub within the third of year 2006, and exchanged with other ports
of the Mediterranean sea), while regarding the transit of each container is here
seen as a case of a (unknown) logistic process.
As mentioned in Example 1, each event in the log of the system stores, via

event attributes, different aspects of the logistics (move) actions performed on
a container, which include: (i) the source and destination position it was moved
between, in terms of yard’s blocks (block from and block to, resp.) and areas
(area from and area to, resp.) (ii) the kind of operation performed (namely
MOVe, DRive to Bring, DRrive to Get, LOAD, DIScharge, SHuFfle, OUT),
stored by attribute movType; (iii) the type of instrument used, encoded by at-
tribute vehicleType, ranging from cranes to straddle-carriers and multi-trailers.
Trace attributes convey instead different properties of the handled container

(seen as a process instance). These include the origin (prevCountry) and desti-
nation (nextCountry) countries, its previous (prevCall) and next (nextCall)
ports, some properties of the ship loading (e.g., carrierType in) it, physical
features (e.g., size and height). Like in [16], we also considered a few more
(environment-oriented) context features for each container: the hour (resp., day
of the week, month) when it arrived, and the total number of containers that
were in the port at that time.
A complete list of all events’ and traces’ attributes can be found in Table 1.

Bug Scenario In this scenario we analyzed the Eclipse project’s bug repository,
developed with Bugzilla (http://www.bugzilla.org), a general-purpose bug track-
ing system offering a range of basic services for handling software bugs (e.g.,
track a bug, exchange messages about it, submit/review patches).
Some major fields associated with each bug b are: who reported the bug

(reporter), and who it was allocated to (assignee); different features of the
software module affected (e.g., component, product, version, hardware); its
severity and priority levels; the number of comments made on b (comments);
the lists of other bugs that must wait for b being solved (blocks); the status

and resolution of b. Almost all bug fields (apart from the reporter) may
change dynamically as the bug case proceeds. In particular, the status of a bug
b can take one of the following values: unconfirmed, new, assigned, resolved, ver-
ified, reopened, and closed. For a resolved bug b, the resolution may be: fixed,
duplicate, works-for-me, invalid, or won’t-fix.
As to log events, in Bugzilla the history of a bug is stored in terms of update

records (named “bug activities”), with five fields: who (the person who made the
update), when (timestamp), what (the attribute modified), removed (the former
value) and added (the new value). Changes made to multiple bug fields during a
single access session are treated as a single “bug activity”. We encoded each bug
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Table 2. Prediction results on the harbor scenario: errors made (over remaining times)
by CCD and several competitors. For each metrics, the best outcome is reported in bold
and underlined, while all methods nearly equivalent to the best one, and those neatly
worse than it (according to T-test) are shown in bold and in italics, respectively.

Predictors Error Measures

Approach Methods rmse mae mape (%)

Algorithm CCD (Fig. 1)
CCD-IBK 26.57±8.11 5.39±8.11 15.00±11.34

CCD-RT 25.39±8.38 5.95±0.91 10.17±10.61

CCD-AVG 28.58±11.44 8.27±1.44 38.10±15.86

Competitors with setting S1

(1-attribute event abstraction)

AATP-IBK [7] 31.93±12.50 7.04±1.20 63.62±5.65

AATP-RT [7] 29.95±9.67 8.76±1.31 66.32±14.80
AFSM [4] 80.46±11.93 30.74±1.40 279.15±26.72

CATP [16] 31.53±8.33 8.35±0.60 58.26±26.96
IBK [26] 33.66±9.37 7.64±0.89 72.50±9.85
RT [26] 30.28±8.91 8.36±0.77 69.67±8.70

Competitors with setting S2
(5-attribute event abstraction)

AATP-IBK [7] 54.38±7.98 16.66±2.00 288.55±44.82
AATP-RT [7] 43.84±8.08 16.58±1.08 144.19±46.31

AFSM [4] 75.31±16.68 25.27±2.77 53.95±20.27
CATP [16] 56.21±11.68 20.25±1.73 85.56±34.64
IBK [26] 54.02±5.97 16.50±1.42 290.54±28.76

RT [26] 43.33±6.04 15.59±0.76 205.06±48.89

activity a into an event having as many attributes as the number of (modifiable)
bug fields, where the value of each attribute is either (i) the new value assigned
to the corresponding field, if it was really modified in a, or (ii) null, otherwise.
Notably, this flat representation allows propositional mining technique to capture
the “simultaneous” modification of multiple bug fields.

As a sample for our experiments, we used a subset of the bugs created from
January 1st, 2012 to April 1st, 2013, which were all fixed at least once, but not
opened and closed in the same day, while also filtering out all events (i.e. bug
activities) that did not refer at least one of the fields status, resolution, and
assignee. The resulting log was composed of 2283 traces, with lengths (i.e. nr.
of events) ranging from 2 to 25.

5.3 Prediction Accuracy Results

Results on the Harbor Scenario Table 2 shows the averages and standard devi-
ations for the errors made by our methods and the competitors/baseline ones,
when trying to predict the remaining processing of container traces.

While our approach doesn’t need any preliminary event abstraction/labelling,
and it can work directly with raw (multi-dimensional) event tuples, all previ-
ous approaches need that an event abstraction criterion is specified in advance.
Therefore, we considered two different settings for applying them to the harbor
scenario: (S1) abstracting each container handling events with just the asso-
ciated move type (namely, MOV, DRB, DRG, LOAD, DIS, SHF, or OUT), as stored
in attribute moveType; and (S2) using a combination of more event attributes
(namely, movType, shift, vehicleType, area from, area to).



Mining Expressive Performance Models 17

Table 3. Prediction results on the bug scenario: errors made (over remaining steps)
by CCD and several competitors. The best result is in bold and underlined, methods
nearly equivalent to the best one are in bold, those neatly worse than it in italics.

Predictors Error Measures

Approach Methods rmse mae mape (%)

Algorithm CCD (Fig. 1)
CCD-IBK 1.369±0.666 0.448±0.111 0.167±0.010

CCD-RT 1.345±0.658 0.496±0.101 0.210±0.008

CCD-AVG 1.440±0.666 0.578±0.118 0.197±0.005

Competitors, provided
with ad-hoc defined

activity labels

AATP-IBK [7] 1.369±0.446 0.472±0.143 0.176±0.020

AATP-RT [7] 1.381±0.723 0.566±0.128 0.767±0.134
AFSM [4] 1.463±0.818 0.590±0.164 0.779±0.035
CATP [16] 1.404±0.839 0.578±0.175 0.684±0.041

IBK [26] 1.392±0.848 0.484±0.164 0.555±0.041
RT [26] 1.499±0.787 0.637±0.154 0.873±0.020

Clearly, when faced with the challenge of dealing with complex events, accord-
ing to setting S2, all the competitors show a neat worsening of results1, with
respect to the case where they were just made focus on the kinds of moves per-
formed (setting S1 ). In fact, the latter setting corresponds to a natural choice for
traditional (workflow-oriented) process mining approaches, since the performed
move operation is indeed the closer than any other event attributes to the no-
tion of process task. Interestingly, we verified empirically that this is the best
single-attribute event abstraction — i.e. worse results were obtained by existing
methods when the events were preliminary abstracted with the value of another
attribute of them. By a finer grain analysis, it easy to see that, generally, all
base predictors IBK, RT and AFSM get improved when integrated in a context-
driven trace clustering scheme (see AAPT-IB, AAPT-RT and CATP, respectively) –
actually, this effect is very marked in the last case.
However, the best outcomes are right discovered by our methods CCD-IBK and

CCD-RT — remember that CCD-AVG is just given as a baseline, measuring co-
clustering loss. Besides confirming the ability of algorithm CCD to automatically
find an abstract representations of raw events (hinged on the features of them
that are really relevant to performance prediction), these results show the su-
periority of our approach with respect to the two-phase (i.e. event abstraction,
followed by model induction) strategy commonly followed in the field of process
mining, as well as to the very idea of using simple event abstraction methods,
centered on just one event property, or on a combination of a fixed number of
them.

Results on the Bug Scenario The prediction errors measured for all approaches
against the bug scenario are reported in Table 3. In order to provide the competi-
tors with a suitable definition of abstract events, we tried different combinations
of bug fields as possible activity labels, and empirically found that the best pre-
diction results are achieved (by competitors) when focusing only on the changes
made to a bug’s status (and to the resolution field, if modified “contempo-

1 Notice that setting S1 was right focused on a subset of all event attributes available,
in order not to penalize excessively the competitors — yet considering unnatural for
an analyst to define abstract activities based on many event properties.
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Table 4. Some event clusters (left) and trace clusters (rigth) found with CCD-RT on
the harbor scenario, with σ = 0.01, and maxClE = maxClT = 50.

id condition size

ê1
area to ∈ {C,BFS,SR} ∧
area from ∈ {A-NEW,T,B-NEW,. . .}

12%

ê2
area to ∈ {C,BFS,SR} ∧
area from ∈ {C,CR,A,. . .}

5%

ê3 area to ∈ {CR,BITTE} 17%
ê4 area to ∈ {MTR,T,GT,. . .} 13%

ê9

area to ∈ {A-NEW,A,B-NEW,. . .} ∧
movType = MOV ∧
area from ∈ {A-NEW,A,BITTE,. . .}

11%

ê12

area to ∈ {A-NEW,A,B-NEW,. . .} ∧
movType ∈ {OUT,DRG,LOAD,DRB,

DIS,SHF} ∧
area from ∈ {A-NEW,A,BITTE,. . .}

6%

id condition size

t̂20

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê4) ≤ 0 ∧ count(ê9) > 0 ∧
nextCountry ∈ {BG,BE,KR,. . .} ∧
service OUT ∈ {ME3,GBX,. . .}

6%

t̂33

count(ê1) ≤ 0 ∧ count(ê2) ≤ 0 ∧
count(ê3) ≤ 0 ∧ count(ê4) ≤ 0 ∧
count(ê9) ≤ 0 ∧ count(ê12) ≤ 0 ∧
nextCountry ∈ {GE,HR,TN,. . .} ∧
service OUT ∈ {AEC,GAX,. . .} ∧
line OUT ∈ {CPP,CPS,SEN,. . .}

4%

t̂44

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê4) ≤ 0 ∧ count(ê9) ≤ 0 ∧
nextCountry ∈ {GR,ES,AE,. . .} ∧
service OUT ∈ {EEX,BSS,. . .} ∧
line OUT ∈ {MSK,APL,HLL,. . .} ∧
prevCountry ∈ {LB,SY,BE,EG,DZ}

2%

raneously”), or to its assignee. In the former case, the activity label will also
encode the newly values assigned (to status and resolution), whereas no de-
tails are kept about the individual to whom the bug was (re-)assigned — as this
would lead to overfitting. The resulting abstract events took looked like the fol-
lowing activity labels: status:=new, status:=resolved + resolution:=fixed,
etc., ∆assignee — with the latter encoding any change to the assignee field.
Despite the fact that it was not provided with any suggestion on how events

should be abstracted, our approach reached excellent prediction results (except
when using the näıve regressor CCD-AVG), neatly better than all competitors but
AATP (and, partially, the basic IBK method).

5.4 Qualitative Results

This section is meant to provide the reader with some example of the event/trace
classification functions, which actually underly our performance prediction mod-
els, and are discovered by our approach in an automated unsupervised manner.

Models found on the Harbor Scenario Table 4 summarizes the classification rules
associated with some of the clusters discovered by our approach (namely, by the
CCD-RT) out of the harbor log. Clearly, these rules are quite easy to interpret and
validate, and practically demonstrate the capability of our approach to provide
the analyst with useful descriptions of process behavior, in addition to guarantee
accurate predictions. In particular, the event clusters shown in the table confirm
that performance-relevant activity patterns cannot be captured by just one of
the event properties, nor by a fixed combination of them. Interestingly, indeed,
while some event clusters just correspond to a subset of destination areas, other
of them also depend on the destination area, or even further on the kind of move
performed. On the other hand, the descriptions of trace clusters let us recognize
the presence of different execution scenarios for the process, which depends both
on context factors (e.g., the country of the previous/next port, or the line/service
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Table 5. All event clusters (left) and some trace clusters (right) found by algorithm
CCD on the bug scenario, with σ = 0.01, and maxClE = maxClT = 50.

id condition size

ê1 status = closed 47%
ê2 status = verified 2%

ê3
status ∈ {resolved,new} ∧
resolution = fixed

38%

ê4
status ∈ {resolved,new} ∧
resolution ∈ {worksforme,invalid}

1%

ê5 status = assigned 8%
ê6 status = reopened 4%

id condition size

t̂1
count(ê1) > 0 ∧ comments > 6 ∧
component ∈ {build, foundation,. . .}

1%

t̂22

count(ê1) ≤ 0 ∧ 5 <comments ≤ 15 ∧
count(ê2) ≤ 0 ∧ count(ê3) > 0
component ∈ {DBWS, Graphiti,. . .}

4%

t̂47

count(ê1) ≤ 0 ∧ count(ê3) ≤ 0 ∧
count(ê5) ≤ 0 ∧ comments ≤ 10 ∧
product ∈ {Xtend, Aether, Jetty,. . .} ∧
component ∈ {Xpand, Debugger, . . .}

3%

that was planned to bring the container) and on some of the discovered event
clusters (here playing the role of high-level activity patterns).

Models found on the Bug Scenario The qualitative results in Table 5 confirm
that our approach did manage to automatically extract a suitable abstract rep-
resentations for the given log events, which looks indeed very similar to the
optimal one defined by expert for the application of competitors, while recog-
nizing different process’ usage scenarios (i.e. trace clusters) depending on the
discovered event classes. Indeed, the status and resolution attributes have
been fully exploited for discriminating among event classes. Trace clusters (cap-
turing different execution scenarios) seems to depend mainly on the number of
comments associated with bugs, and on the component and/or product affected
— as well as on the occurrences of some of the discovered event classes (capturing
high-level activity patterns).

5.5 Post-processing Results

Figure 3 finally shows a data-driven aggregation hierarchy discovered for the
trace attribute nextCountry (i.e. the country of the next port that a container
is planned to reach), which was computed automatically on the basis of a contin-
gency matrix derived by our system (module OLAP gateway), according to the
distribution of this attribute’s values across all discovered trace clusters. Clearly,
this capability is particularly interesting for attributes with high cardinality, in
that it allows the analyst to have a summarized vision of the attribute’s values,
which can be taken into account when a new datacube for the analysis of process
performances is to be developed.
Figure 4 illustrates instead some aggregated statistics for the distribution of

pre-defined user groups (actually corresponding frequent email domains), com-
puted by the same system module for the bug scenario.

5.6 Sensitiveness to Parameters

In order to analyze how the behavior of algorithm CCD depends on its input pa-
rameters, we carried out a further series of tests, over both application scenarios



20 Francesco Folino, Massimo Guarascio, and Luigi Pontieri

 !"

#$"

%&"

!&"

!'"

()"

%!"

*&"

+'"

,'"

-)"

)$"

$,"

-("

!."

(%"

(,"

'-"

'/"

/ "

0#"

%0"

,$"

1'"

23"

2$"

*)"

*4"

$("

#,"

5'"

 

   Similarity

48      43      38      33      28      23       18     13
  

Fig. 3. Different aggregations for event attribute nextCountry, based on contingency
analysis of discovered event clusters (harbor scenario).

described above. Figure 5 reports the three kinds of error metrics obtained on
the harbor scenario by the three instantiations of the algorithm (namely, CCD-RT,
CCD-IBK, and CCD-AVG), when varying the setting of parameters. More precisely,
a distinct curve is depicted for each version of CCD, for different values of the
maximum numbers of event/trace clusters (namely, maxClE ∈ {25, 50, INF},
maxClT ∈ {50, 100, INF}) and of the clusters’ coverage threshold (namely,
σ = {0, 0.01}). Notice that label “INF” stands here for the case where no actual
bound is set on the number of clusters, which will be decided autonomously by
the PCT learning algorithm (based on its default stopping and pruning criteria).
Clearly, the regression method used as base PCM learner is the factor exhibit-

ing the strongest impact on precision results. In particular, the disadvantage
of using the näıve regressor (CCD-AVG) is neat, especially when a low thresh-
old for σ is used — and hence bigger clusters are found, likely exhibiting some
higher level of variability in the distribution of the target metrics. The other two
methods seem to achieve satisfactory accuracy (especially when using a (quite
small) lower bound for clusters’ coverage), with CCD-RT performing slightly bet-
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Fig. 4. Distribution of reporter (a) and assignee (b) groups in some of the discovered
trace clusters for the bug scenario.

ter than CCD-IBK, irrespective of other parameters. This is a good news, since
the RepTree regression method is to be preferred to IBK for both readability and
scalability reasons.

As the to remaining parameters, it is easily seen that, no matter of the error
metrics, poorest results are obtained when σ = 0, i.e. no preventive filtering is
applied to lowly frequent clusters. The call for a frequency cut on, especially on
event clusters, is strengthen by the observation that when acting directly on the
maximum number of event clusters (e.g., maxClE = 50 or maxClE = 25), we
still obtain good results, even when σ = 0.

Anyway, our approach seems to enjoy good stability and robustness, over a
wide range of parameter configurations. Indeed, as soon as a sufficient coverage
level for the cluster is fixed (e.g., σ = 1%), the remaining two parameters,
maxClE and maxClT , do not impact on the quality of predictions anymore.
The only exception is CCD-AVG, which, as mentioned before, is negatively biased
by the reduction of trace clusters. This behavior can be easily explained by
observing that if maxClT drops, different usage scenarios tend to be mixed into
the trace clusters, and the trivial average predictor (which simply returns the
means of the performance values in a cluster), tends to make higher prediction
errors. Conversely, the other methods seem to cope well with the presence of
heterogenous behaviors in the same cluster, thanks to their capability to build
a more refined prediction model for the cluster.

In practice, it seems sufficient to choose an adequate value of σ, in order
to ensure good and stable prediction outcomes, no matter of the remaining
parameters – which might be, indeed, harder to tune in general.

With the help of Figure 5.(d), reporting (in seconds) the computation times
of all our methods, we can also conclude that using a suitable setting for σ

dramatically improves the scalability of our approach. A minor speed-up effect
is played instead by the maxClT parameter, which actually reduces the number
of training instances that are to be processed by the base learners, at the end of
co-clustering procedure.
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Fig. 5. Effect of some major parameters of algorithm CCD on the prediction error, w.r.t.
different error metrics (tests performed on the harbor scenario).

6 Discussion and Conclusions

The method proposed in the paper enhances current process mining approaches
for the analysis of business process performances in different respects. First of
all, it allows for removing the common assumption that the traced event logs
explicitly refer (or can be easily mapped to) some well defined process tasks, and
automatically replaces (in data-driven way) the formers with high-level activity
patterns, expressed at the right level of abstraction for the characterization of
performance behaviors. By inducing a definition of both abstract activities of
process variants, the approach suits well the case where low level log data are
available for analyzing the behavior of a complex processes, exhibiting diverse
context-dependent variants. This frees the analyst from the burden of explicitly
defining a mapping between log records and high level process tasks, possibly
using some event abstraction tool for preprocessing the log. The empirical anal-
ysis conducted on two different application scenarios, showed that the approach
manages to achieve compelling prediction accuracy with respect to state-of-the-
art methods, developed in the field of Process Mining, even when these latter
are provided with an expert-driven definition of process activities (i.e. with care-
fully chosen event abstraction rules). Notice that our empirical analysis was only
meant to demonstrate the ability of our approach to find a collection of good
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quality predictors (fitting different unknown context-dependent execution sce-
narios), by automatically reaching a right level of abstraction over lowly struc-
tured multidimensional log records. In fact, more powerful, regression algorithms
can be integrated in our approach, which might have achieved even better perfor-
mances than the basic ones mentioned above. In a sense, we are mainly interested
in providing a proof-of-concept for the innovative idea of supporting the analy-
sis of process performances through the combination of context-based inductive
methods for event abstraction and trace clustering.
Moreover, the very classification functions discovered for both events and

traces (expressed in terms of logical rules over event/case attributes, and discov-
ered in unsupervised way, via an ad hoc predictive co-clustering scheme) give an
important descriptive value to the model, which can turn it very useful for the
analyst to fully comprehend the behavior of the process, and the dependence
of its performances on both context factors and activity patterns — besides al-
lowing for a quick validation and evaluation of the the discovered models. In
fact, feature distinguish our approach from most of those presented so far in the
literature for clustering either log traces or log events, where (with the exception
of [16, 7]) the discovered trace/activity clusters are not self-explicative, and need
further efforts for being interpreted, and validated.
Finally, as to efficiency issues, despite being based on multiple applications

of the basic predictive clustering procedure to the input log, when applying our
approach, with σ = 1% and maxClE = maxClT = 50, to the real scenarios
presented above, each computation only took about 3.6 times the computation
time of the fastest among the competitors — excluding IBK, which only keeps a
copy of the input traces in main memory, without performing any real learning
task. This worst case ratio goes up to 5.4 when no finite upper bound is set for
the numbers of clusters. Considering the benefits that our approach can bring (in
terms of accuracy, usability, and interestingness of the knowledge discovered),
these extra costs look well acceptable.
As to future work, we plan to investigate on enhacing the expressive power of

our event/trace classification models, by possibly resorting to First-Order Logic
induction techniques, as well as to integrate advanced regression methods for
learning cluster predictors, and to complete and extend the OLAP capabilities
of our prototype system, Moreover, we would like to extend the approach to
the discovery of control-flow process models, by suitably redefining the objective
function in our core co-clustering scheme, the encoding of both traces and events,
and obviously the kind of base learner for inducing the model of each cluster.
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