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Semi-Inflationary DATALOG:

A Declarative Database Language

with Procedural Features
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This paper presents a rule-based database language
which extends stratified DATALOG by adding a con-
trolled form of inflationary fixpoint, immersed in a
context of classical stratified negation with least fix-
point. The proposed language, called Semi-Inflationary
DATALOG (DATALOG@(*) for short), smoothly com-
bines the declarative purity of stratified negation
with the procedural style of the inflationary fixpoint,
DATALOG

@(*) is particularly suitable to express algo-
rithms in a mixed style: declarative rules, whenever it
is natural and convenient, and procedural ones, any
time it is easier to list the sequence of single actions.
In the latter case, in order not to oblige the program-
mer to supply unnecessary procedural details, a num-
ber of choice constructs are available to express don’t
care non-determinism. The semantics of a DATALOG

@(*)

program is given using stable models by means of
rule rewriting into a DATALOG program with choice
and XY-stratification. In addition the complexity and
expressive power of DATALOG

@(*) queries is precisely
characterized and some lights are put on the related
class NQPTIME as well.

Keywords: DATALOG, Stable model, Inflationary fix-

point, Non-Deterministic Query, Complexity

1. Introduction

DATALOG is a rule-based declarative database
language that is amenable to very efficient im-

*Corresponding author: Antonella Guzzo, DEIS, Univer-
sity of Calabria, via P. Bucci 41C, 87036 Rende, Italy.

plementation as demonstrated by a number of
prototypes of deductive database systems [10,11,
20,30]. Many proposals have been issued to ex-
tend DATALOG in order to support nonmonotonic
queries, mainly by means of various forms of nega-
tion in the bodies of the rules. The first solution
was stratified negation [5,9,35], which has a simple,
intuitive semantics leading to efficient implemen-
tation. Unfortunately, this type of negation has a
reduced expressive power for it can only express a
proper subset of fixpoint queries.

The next step toward greater expressive power
was to remove the condition that there is no recur-
sion through negation. In this framework, a dra-
matic leap in expressive power is provided by the
concept of stable model [12] but this gain is not
without complications. Indeed the usage of unre-
stricted negation in programs is often neither sim-
ple nor intuitive, and, for example, might lead to
writing programs that have no total stable models.

A great deal of research was focused on overcom-
ing limitations of unstratified negation for non-
monotonic DATALOG and can be classified in two
main directions:

1. several proposals have given up declarative
semantics by falling back on procedural se-
mantics, e.g. those based on the inflationary
fixpoint computation procedure [2,3,23];

2. other proposals insisted in adopting a model-
theoretic semantics without surrendering the
naturalness and efficiency of stratified nega-
tion — they use a disciplined form of sta-
ble model semantics to refrain from abstruse
forms of unstratified negation which may lead
to undefinedness or unnecessary computa-
tional complexity.

As argued in [18], the core of a desirable
database language in the latter approach should be
stratified DATALOG, that is extended with only pre-
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defined types of non-stratified negation, hardwired
into ad-hoc constructs. A powerful construct for
capturing a controlled form of unstratified nega-
tion is the choice, whose semantics was defined
in terms of stable models in [31] by exploiting
the nondeterminism implicit in the notion of such
models. The combination of choice with extrema
aggregates is investigated in [19] and many other
facets of logic programming with choice are de-
tailed in [14]. Recently, the problem of extend-
ing choice DATALOG to capture various complex-
ity classes of database boolean queries and to ex-
press search and optimization queries has been ad-
dressed respectively in [18] and in [17].

Another interesting direction in extending the
expressive power of DATALOG by a disciplined us-
age of unstratified negation is represented by XY-
stratification which was first introduced in [39] and
has later been used to model updated and ac-
tive rules [37,38]. The recursive predicates of an
XY-stratified program have a temporal argument
which is used to enforce local stratification, a weak
form of stratification introduced in [29]. It is in-
teresting to observe that XY-stratification has a
procedural style and, indeed, it can easily simulate
inflationary fixpoint. In a sense XY-stratification
represents a bridge between the two possible styles
in DATALOG: procedural and declarative.

Our ”current” belief (the quoted adjective is
mandatory for believes) is that a declarative style
should be adopted in all situations for which it
is natural and one should switch to a procedural
style as soon as it becomes more effective to list
the sequence of actions to get the result. Possi-
bly, to reduce the ”rudeness” of procedurality, it
may result convenient to use a certain dose of non-
determinism to hide some unnecessary details.

In this paper we present a new language,
called Semi-Inflationary DATALOG (DATALOG@(*) for
short), which smoothly combines the declarative
purity of stratified negation and of least fixpoint
with an inflationary fixpoint, suitably disciplined
by means of the usage of ad-hoc predicates and
rules. Choice constructs may occur only in in-
flationary rules and provide the power of don’t-
care non-determinism to reduce the number of de-
tails while defining the inflationary fixpoint stages.
The semantics of the two components of language
is given in the uniform context of stable model
semantics by means of classical rewriting of the
choice constructs and the use of XY-stratification
to implement inflationary fixpoint.

DATALOG@(*) is particularly suitable to express
algorithms in a mixed style: declarative, whenever
it is natural and convenient, and procedural, any
time it is necessary to break down the single ac-
tions at the desired level of details, regulated by an
appropriate usage of choice. As illustrated in the
paper, such a style is very effective to to describe
greedy algorithms.

The relevance of this paper is not only the pro-
posal of a new language: actually there have been
so many proposals of extensions of DATALOG around
that one would object that there is no need for yet
another proposal. An important result of the paper
is that it provides a precise characterization of the
expressive power and complexity of the language
and of the class of database queries NQPTIME as
well, for DATALOG@(*) queries turn out to coincide
with this class.

NQPTIME was first introduced in [2,4] to char-
acterize the queries in a language with inflationary
fixpoint augmented with a non deterministic con-
struct, the witness. NQPTIME was originally de-
fined as the class od all non-deterministic database
transformations which can be computed by a non-
deterministic Turing machine in polynomial time.
Later, to remove some imprecision, this definition
was refined in [24] by requiring that the for each
input, every branch of a non-deterministic compu-
tation halts into an accepting state. At the best
of our knowledge, this is the first time that the
queries of a DATALOG language are proved to ex-
press the class NQPTIME according to the defini-
tion given in [24].

The paper is organized as follows. In Sec-
tion 2, after having recalled preliminary notions
on DATALOG and the basic concepts of choice
and of XY-stratification, we illustrate the syn-
tax and the stable model semantics of stratified
DATALOG@(*) programs, which is given by rewriting
the rules to eventually produce an XY-stratified
programs with choice. In Section 3 we introduce
non-deterministic database queries, discuss their
complexity and prove the results about the class
of stratified DATALOG@(*) queries. In Section 4 we
present some extensions of DATALOG@(*) to express
inflationary fixpoint in a simpler and more declar-
ative way, thus providing a powerful formalism for
describing greedy algorithms, as confirmed by a
meaningful example. Finally we draw the conclu-
sion and discuss further lines of research in Section
5.
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2. The Semi-Inflationary language DATALOG@(*)

2.1. Preliminaries on DATALOG, Choice and
XY-Stratification

We assume that the reader is familiar with basic
notions of relational databases, logic programming
and DATALOG [1,7,25,34].

We are given a universe U (that is a countable
set of constant symbols) and a countable set S of
relation symbols with given finite arities. Let r be
any relation symbol in S, say with arity k: a tuple
on r is any element of Uk, a relation on r is any fi-
nite set R of tuples on r, and the set of all relations
on r is denoted by inst(r). A (relational) database
scheme D is a tuple 〈r1, . . . , rm〉 of different rela-
tion symbols. A (relational) database D on D is a
tuple 〈R1, . . . , Rm〉, where for each i, 1 ≤ i ≤ m,
Ri ∈ inst(ri). The active domain of a database D,
denoted by UD, is the set of all constants occurring
in D. The set of all databases on D is denoted by
inst(D).

A logic program P is a finite set of rules r of
the form H(r) ← B(r), where H(r) is an atom
(head of the rule) and B(r) is a conjunction of
literals (body of the rule). A rule with empty body
is called a fact. The ground instantiation of P is
denoted by ground(P ); the Herbrand universe and
the Herbrand base of P are denoted by UP and
BP , respectively.

Let an interpretation I ⊆ BP be given — with a
little abuse of notation we sometimes see I as a set
of facts. Given a predicate symbol r in PD, I(r)
denotes the set {t : r(t) ∈ I} — by seeing r also
as a relation symbol, I(r) is a relation. Moreover,
pos(P, I) denotes the positive logic program that is
obtained from ground(P ) by (i) removing all rules
r such that there exists a negative literal ¬A in
B(r) and A is in I, and (ii) by removing all nega-
tive literals from the remaining rules. Finally, I is
a (total) stable model [12] if I = T∞

pos(P,I)(∅), that
is the least fixpoint of the classical immediate con-
sequence transformation for the positive program
pos(P, I).

Given a logic program P and two predicate sym-
bols p and q, we write p → q if there exists a rule
where q occurs in the head and there is a predicate
in the body, say s, such that either p = s or p → s.
P is stratified if for each p and q, if q → p holds
in it then p does not occur negated in the body
of any rule whose head predicate symbol is q, i.e.

there is no recursion through negation. Stratified
programs have a unique stable model which coin-
cides with the stratified model, obtained by par-
titioning the program into an ordered number of
suitable subprograms (’strata’) and computing the
fixpoints of every stratum in their order [5].

A DATALOG¬ program is a logic program with
negation in the rule bodies but without functions
symbols — if the program is stratified then it is
called DATALOG¬s . Predicate symbols can be either
extensional (i.e., defined by the facts of a database
— EDB predicate symbols) or intensional (i.e., de-
fined by the rules of the program — IDB predicate
symbols). A DATALOG¬ program P has associated a
relational database scheme DP , which consists of
all EDB predicate symbols of P . Given a database
D on DP , the tuples of D are seen as facts added
to P ; so P on D yields the following logic program
PD = P ∪ {q(t). : q ∈ DP ∧ t ∈ D(q)}.

The complexity of computing a stable model of
PD is measured according to the data complexity
approach of [8,36] for which the program is as-
sumed to be constant while the database is vari-
able. It is well known that computing the unique
stable model of a DATALOG¬s program P on a
database D can be done in time polynomial on the
size of D whereas it requires exponential time (un-
less P = NP) in case P is not stratified. Actually,
in the latter case, deciding whether there exists a
stable model or not is NP-complete [26].

A disciplined form of unstratified negation is the
choice construct, which is used to enforce func-
tional dependency (FDs) constraints on rules of a
logic program and to introduce a form of nonde-
terminism. The formal semantics of the choice can
be given in terms of stable model semantics [31]. A
rule r with choice constructs, called a choice rule,
has the following general format:

r : A ← B(Z), choice((X1), (Y1)), . . . ,

choice((Xk), (Yk)).

where, B(Z) denotes the conjunction of all the lit-
erals in the body of r that are not choice con-
structs, and Xi, Yi, Z, 1 ≤ i ≤ k, denote vec-
tors of variables occurring in the body of r such
that Xi ∩ Yi = ∅ and Xi, Yi ⊆ Z. Each construct
choice((Xi), (Yi)) prescribes that the set of all con-
sequences derived from r, say R, must respect the
FD Xi → Yi. Let FDr = {Xi → Yi|i = 1, ..., k}.

The formal semantics of choice is given in terms
of stable models by replacing the above choice rule
with the following rules:
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1. Replace r with a rule r′ (called modified
choice rule) obtained by substituting the
choice atoms with the atom chosenr(W ):

r′ : A ← B(Z), chosenr(W ).

where W ⊆ Z is the list of all variables
appearing in the choice goals, i.e. W =⋃

1≤j≤k Xj ∪ Yj .

2. Add the new rule (called chosen rule)

chosenr(W ) ← B(Z), ¬diffChoicer(W ).

3. For each choice((Xi), (Yi)) (1 ≤ i ≤ k), add
the new rule diffChoice rule

diffChoicer(W ) ← chosenr(W
′), Yi 6= Y ′

i .

where (i) the list of variables W ′ is derived
from W by replacing each V 6∈ Xi with a new
variable V ′ (e.g. by priming those variables),
and (ii) Yi 6= Y ′

i is true if V 6= V ′, for some
variable V ∈ Yi and its primed counterpart
V ′ ∈ Y ′

i .

Throughout the paper we shall use a simple
variation of choice, denoted by ! (to be read
”choiceAny” rather than ”cut” as in the Pro-
log jargon), which nondeterministically selects one
consequence. Thus this construct is a shorthand
of choice((), (Z)), where Z is the list of all vari-
ables occurring in the rule body, according to the
meaning of the FD ∅ → Z.

Another approach in disciplining unstratified
negation is to add a distinguished stage (tempo-
ral) argument to recursive predicate symbols and
to allow only two types of recursive rules:

1. X-rule when the stage argument of the head
predicate is the same variable as in all stage
arguments of the literals in the body which
only occur positive;

2. Y-rule when the head stage argument is T +1
and all stge arguments of the literals in the
body are equal to T , where T is a variable —
in this case negation is allowed.

This extension, introduced in [39], is called XY-
Stratification and has been used to model updated
and active rules [37,38]. XY-stratified programs
are indeed locally stratified [29] and, therefore,
there exists a unique stable model although it can
be infinite because of the temporal argument. Nev-
ertheless, for practical applications it is possible to
include restrictions into a XY-stratified program in
order to guarantee both the finiteness of the stable
model and its computation in polynomial time.

In the next section we shall present a language
whose semantics is based on XY-stratification and
on extended choices for which both existence and
finiteness of stable models is guaranteed and one
of them can be computed in polynomial time. We
note that the combination of XY-stratification and
choice has been first used in [6] to model various
planning problems.

2.2. The Language DATALOG@(*)

We next present Semi-Inflationary DATALOG,
called DATALOG@(*) for short. In addition to clas-
sical EDB and IDB DATALOG predicate symbols,
the language includes inflationary (I-IDB) pred-
icate symbols which correspond to IDB relations
that are computed by means of an inflationary fix-
point, i.e., all tuples computed at each iteration of
the fixpoint are added to to the tuples computed
at the previous iteration. Formally, given a logic
program P and an interpretation I, the inflation-
ary immediate consequence transformation is de-
fined as TP (I) ∪ I rather than just TP (I) as for
classical least fixpoint. Inflationary fixpoint and
inflationary DATALOG have been proposed in the
literature (see for instance [2,3,23]). The novelty
of DATALOG@(*) is that the two types of fixpoint
are mixed together and can interact each other so
that the programmer can switch from a declara-
tive style to a procedural one by selecting the most
suitable approach for each subproblem. The pro-
cedural style of inflationary fixpoint also assumes
declarative flavor because non-deterministic con-
structs simplify the formalization and hide some
low-level implementation details.

An I-IDB predicate has the format p(X)@(S),
where X is a list of arguments and S is the stage
argument that denotes the stage of the inflationary
fixpoint at which a tuple has been added to the
relation p. A stage term @(S) can have one of the
following formats:

– @(0) is the initial stage of an inflationary fix-
point;

– @(.) denotes the current stage of an inflation-
ary fixpoint;

– @(+) denotes the next stage;
– @(*) denotes all stages in an inflationary fix-

point (or up to the current stage if the fixpoint
is not yet reached);

– @(^) denotes the last stage in an inflationary
fixpoint that has been already computed.
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In order to verify conditions at the various stages
of an inflationary fixpoint, we use additional pred-
icate symbols called X-IDB which have a stage ar-
gument as I-IDB symbols but of only two types:
@(.) or @(0).

A DATALOG@(*) program consists of rules which
may contain any type of EDB and IDB predicates
in the body whereas I-IDB and X-IDB predicates
are subject to some restrictions. In particular, a
program comprises:

– declarative rules with IDB predicates in the
heads; no X-IDB predicate symbol may occur
in the body and possible I-IDB predicates in
the body must have stage argument of the
form either @(*) or @(^), i.e., I-IDB relations
must be already computed before making a
declarative rule inference;

– the inflationary rules having one of the fol-
lowing formats: p(X)@(S) ← B,C1, · · · , Cs,
where X is a list of arguments, s ≥ 0, Ci

(0 ≤ i ≤ s) are choice predicates and B is a
conjunction of EDB, IDB and I-IDB literals.
The inflationary rules are classified according
to the format of the head iterative argument
and have number of restrictions in the body:

1. initial rule: the head predicate can be I-
IDB or X-IDB with stage argument @(0);
no I-IDB or X-IDB predicate may occur in
the body; moreover, if the head predicate
is I-IDB then the body may also contain
choice predicates;

2. X-rule: the head predicate is X-IDB with
stage argument @(.), possible I-IDB pred-
icates in the body must have stage argu-
ments of the form @(.) or @(*); no choice
predicates are allowed in the body;

3. Y-rule: the head predicate is I-IDB with
stage argument @(+), X-IDB predicates
may occur in the body, and possible I-IDB
predicates must have the same symbol as
the head and stage argument @(.) or @(*);
the body may contain choice predicates.

Example 1 Spanning Tree. We are given two EDB
predicate symbols arc and node, defined by a num-
ber of suitable facts, which encode an undirected
graph, say G. We have two IDB-predicate sym-
bol, path and disconnected to preliminary check
whether the graph is connected or not. There is
one I-IDB symbol, st, which allows to construct

a spanning tree of G — a spanning tree is a sub-
graph of G where all nodes in G are reached from
its root and no two of its arcs enter into the same
node. An X-IDB predicate symbol reached is used
to verify whether, at the current stage of the infla-
tionary fixpoint, a node is reachable from the root.
At beginning, (i.e. at the stage @(0)) a node in the
graph is non-deterministically selected as root by
means of the choice predicate !, provided that the
graph is connected. After making this choice, the
Y-rule is triggered in order to select the arcs to be
included in the spanning tree:

path(X, X) ← node(X).
path(X, Y) ← arc(X, Z), path(Z, Y).
disconnected() ← node(X), node(Y),¬path(X, Y).
st(root, X)@(0) ←¬disconnected(), node(X), ! .
st(X, Y)@(+) ← arc(X, Y), reached(X)@(.),

¬reached(Y)@(.),
choice((Y), X).

reached(X)@(.) ← st( , X)@(*). 2

To simplify the notation, we use some syntactic
sugar for writing I-IDB or X-IDB literals with safe
negation (i.e., bound variables) in the rule bod-
ies: ¬a(X)@(S), where X is a list of arguments
containing some anonymous variables, stands for
¬a′(Y )@(.), where a′ is a new X-IDB predicated
symbol defined by the rule:

a′(Y )@(.) ← a(X)@(S).

where Y is the list of all variables in X that are
not anonymous. A similar notation is used also for
IDB or EDB negative literals.

Example 2 A different solution for the spanning
tree, using only one inflationary symbol and the
above shorthand notation, is presented next — we
only write inflationary rules as the declarative ones
remain unchanged:

st(root, X)@(0) ←¬disconnected(), node(X), ! .

st(X, Y)@(+) ← arc(X, Y), st( , X)@(*),
¬st( , Y)@(*), choice((Y), X).

By rewriting the negated I-IDB predicate with
anonymous variables we shall (almost) go back to
the original program of Example 1. 2

Example 3 Parity Query. This problem consists in
verifying whether the number of tuples in a relation
is even or odd. Suppose that such tuples are stored
as facts of an EDB predicate symbol r. We use an
I-IDB predicate symbol p to select one tuple X of
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r at each stage and flipping I from 0 (even number
of tuples) to 1 (odd number) and conversely.

p(X, 1)@(0) ← r(X), !.
p(nil, 0)@(0) ←¬r( ).
p(X, 1)@(+) ← p( , 0)@(.), r(X), ¬p(X, )@(*), ! .
p(X, 0)@(+) ← p( , 1)@(.), r(X), ¬p(X, )@(*), ! .
parity() ← p( , 0)@(^).

Note that the shorthand notation introduced above
is used for all negative literals, including the one
of the second rule.

2

Example 4 Propositional Horn Clauses. Given a
positive propositional logic program, we want to
find all propositional variables that are true in the
minimal model. To this end, we store all vari-
ables as facts of the EDB predicate symbol var;
moreover every clause r : A ← B1, ..., Bn, n > 0,
is represented by the facts r H(r, A), r B(r, B1), ...,
r B(r, Bn); finally, if n = 0 then the clause is stored
as fact(r, A). By means of the I-IDB predicate
symbol fired we select at each stage a rule whose
body is currently true and make true its head vari-
able. We also keep track of the rule fired in the
derivation of a propositional variable and, later,
the IDB predicate symbol true var drops out this
argument.

inactive(R)@(.) ← r B(R, X), ¬fired( , X)@(*).
fired(R, X)@(0) ← fact(R, X).
fired(R, X)@(+) ← r H(R, X), ¬fired( , X)@(*),

¬inactive(R)@(.), ! .
true var(X) ← fired( , X)@(*). 2

Given a DATALOG@(*) program P and a database
D, the standard version sv(PD) of PD is the choice
XY-stratified program obtained from PD by ap-
plying the following rewriting:

1. Replace every I-IDB or X-IDB predicate sym-
bol p, say with arity n, with a new predicate
symbol p′ with arity n + 1, and every predi-
cate p(X)@(S) in a rule r as follows:

– p(X)@(0) is substituted by p′(X, 0);
– p(X)@(.) is substituted by p′(X, I), where

I is a new variable;
– p(X)@(+) is substituted by p′(X, I ′) and

the predicate I ′ = I + 1 is added to the
body of r;

– p(X)@(*) is substituted as follows depend-
ing of the type of the rule r:

(a) r is an inflationary rule: p′(X, I ′) and
the predicate I ′ ≤ I is added to the rule
body;

(b) r is a declarative rule: p all(X), where
p all is a new IDB predicate symbol de-
fined by the rule: p all(X) ← p′(X, ).;

– p(X)@(^) is substituted by p last(X), where
p last is a new IDB predicate symbol de-
fined by:

p last(X) ← p′(X, I),¬non p last(I).
non p last(I) ← p′(X, I ′), I ′ > I.

2. for each X-rule, say with head p(X)@(.), if
no positive I-IDB or X-IDB literal occurs in
the body of r with stage argument @(.),
add the predicate q′( , I) to the body of the
rewritten rule, where q(X)@(S) is the first
I-IDB or X-IDB predicate occurring in the
body of r — this predicate serves to make
negation safe;

3. for each Y-rule, say with head p(X)@(+),
add the following literals to the body of the
rewritten rule:

– ¬p′′(X, I), to avoid that the same tuple is
added at different stages, where p′′ is a new
predicate symbol with arity n + 1 defined
by: p′′(X, I) ← p′(X, I ′), I ′ ≤ I.

– p′( , I) if no positive I-IDB or X-IDB lit-
eral occurs in the body of r with stage ar-
gument @(.) — as for X-rules, this predi-
cate serves to make negations safe.

4. all choice predicates are rewritten in the stan-
dard way.

Example 5 The standard version of the inflation-
ary rules of the program in Example 1 is:

st′(root, X, 0) ←¬disconnected(), node(X),
chosen0(X).

st′(X, Y, I′) ←¬st′′(X, Y, I), I′ = I + 1,

arc(X, Y), reached′(X, I),
¬reached′(Y, I), chosen1(Y, X).

reached′(X, I) ← st′( , , I), st′( , X, I′), I′ ≤ I.

st′′(X, Y, I) ← st′(X, Y, I′), I′ ≤ I.

chosen0(X) ←¬disconnected(), node(X),
¬diffchoice0(X).

chosen1(Y, X) ←¬st′′(X, Y, I), I′ = I + 1,

arc(X, Y), reached′(X, I′),
¬reached′(Y, I),
¬diffchoice1(Y, X).

diffchoice0(X) ← chosen0(X
′), X 6= X′.

diffchoice1(Y, X) ← chosen1(Y, X
′), X 6= X′.

2
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We next introduce the notion of stratification
for DATALOG@(*) programs. Given a DATALOG@(*)

program P , the dependency graph GP = (N, E) of
P is a directed graph, where the nodes in N are
all predicate symbols in P and an arc (q, p) is in
E if there exists a rule r in (P ) such that p is the
head predicate symbol and q occurs in the body of
r; moreover, the arc (q, p) is labeled with

’−’ in the following cases:

1. q is an EDB or IDB predicate symbol and a
predicate with this symbol occurs negated
in the body of r — this is the classical
stratification induced by negation;

2. r is a declarative rule, q is an I-IDB predi-
cate symbol and a predicate with this sym-
bol occurs (not necessarily negated) in the
body of r — to contribute to the defini-
tion of an IDB predicates symbol, an I-IDB
symbol must be at a lower stratum;

3. r is an X-rule, q is an X-IDB predicate sym-
bol and a predicate with this symbol oc-
curs negated in the body of r — recursion
through negation is not allowed among X-
IDB predicates;

’+’ if r is an Y-rule and q is an X-IDB predi-
cate symbol — recursion through negation is
allowed in this case because of the stage in-
crease.

Given an I-IDB predicate symbol p, the X-
Component of p, denoted XC(p), is recursively de-
fined as: (i) p is in XC(p), and (ii) if q is an X-
IDB symbol and there exists a node q′ ∈ XC(p)
such that either (q′, q) or (q, q) is in GP . We
shall require that I-IDB symbols have disjoint X-
components; on the other hand, X-IDB symbols
not included in any X-component do not have any
meaning.

A program P is stratified if the following two
conditions hold:

1. no cycle in GP contains some edge with label
’-’ and no edges with label ’+’;

2. for any two distinct I-IDB predicate symbols
p and q, XC(p) ∩ XC(q) = ∅.

Example 6 The dependency graph of the program
of Example 1 contains 2 cycles, both without ’−’
arcs: the loop on path and the cycle between st

and reached having one arc with no label and the
other arc with label ’+’. So this program is strati-

fied. Note that in this case the label ’+’ in the cycle
does not play any role. To appreciate its relevance
suppose that the last two rules in Example 1 are
replaced by:

st(X, Y)@(+) ← arc(X, Y), ¬unreached(X)@(.),
unreached(Y)@(.), choice((Y), X).

unreached(X)@(.) ←¬st( , X)@(*).

This time the cycle between st and unreached

contains an arc with label ’−’ and the other one
with label ’+’: so the latter arc preserves stratifi-
cation.

Note that also the programs of Examples 3 and
4 are stratified. To see an example of non-stratified
program, replace the third rule of the program in
Example 1 with the following rule:

disconnected() ← node(X), ¬st( , X)@(*).

We get a cycle between disconnected and st

with ’−’ arcs but without ’+’ arcs: so the program
is not stratified. 2

Proposition 1 Let P be a stratified DATALOG@(*)

program. Then for each database D on DBP ,

1. sv(PD) admits at least one stable model and
every stable model is finite;

2. computing a stable model of sv(PD) can be
done in time polynomial in the size of D and
is P -hard;

3. if no choice predicates occur in the rules of P

then sv(PD) admits exactly one stable model.

Proof. (1) The rewriting of a stratified DATALOG@(*)

program guarantees that sv(PD) is locally strati-
fied. In fact, every cycle with negation that may
occur in the dependency graph must include an I-
IDB predicate symbol, say p. Let us now consider
the ground instantiation ground(sv(PD)) and ev-
ery ground instantiation of the above cycle. The
node p is instantiated by two distinct ground pred-
icates, say with stage arguments i and i + 1, resp.
So the cycle is broken and non cycle with ’−’ arcs
occur in the dependency graph of ground(sv(PD)).
Hence ground(sv(PD)) is locally stratified and,
then, it admits at least one stable model. The fact
that all stable models of ground(sv(PD)) are finite
depends from the fact that the stage argument is
increased only after at least a new tuple is added to
some I-IDB relation; as the number of all possible
such tuples is finite, all stable models are finite as
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well. Finally, as sv(PD) and ground(sv(PD)) have
the same stable models, Part (1) is proved.

(2) A stable model of sv(PD) can be computed
by dividing the program into a number of I-IDB
strata, one for each I-IDB predicate symbol and,
in turn, dividing each of such strata into classical
strata as for stratified negation. It is easy to see
that the computation is performed in a number
of steps bounded by the size of D. Finally, to see
that the computation is P -hard, observe that the
program of Example 4 allows to solve the well-
known P -complete problem of deciding whether a
propositional variable is derived from a horn clause
program whose rule bodies may contain more than
one variable.

(3) If there are no choice constructs, the pro-
gram is deterministic so there is at most one stable
model; by Part (1) of this proposition, there ex-
ists at least one stable model. This concludes the
proof. 2

3. Complexity of DATALOG@(*)

3.1. Preliminaries on Function Complexity

In analyzing expressiveness and complexity of
stratified DATALOG@(*) queries, we shall be mainly
referring to the following classes of languages: de-
terministic and non-deterministic polynomial time
(denoted by P and NP, resp.). The reader can re-
fer to [21,28] for excellent sources of information
on this subject. In addition we shall refer to com-
plexity classes of functions — the source for this
material is mainly [32,33]. Let us next recall some
of the basic consepts.

Let f : Σ∗ 7→ Σ∗ be a partial multi-valued func-
tion. Let f(x) stand for the set of possible out-
comes (results) of the function f when applied to
the input string x. Thus, we write y ∈ f(x), if
y is a value of f on the input string x. Define
dom(f) = {x | ∃y(y ∈ f(x))} and graph(f) =
{〈x, y〉 | x ∈ dom(f), y ∈ f(x)}. If x 6∈dom(f), we
will say that f is undefined at x. The function f

is total if dom(f) = Σ∗.
A transducer is a (possibly, non-deterministic)

Turing machine T on Σ with a read-only input
tape, a read-write work tape, and a write-only out-
put tape. There are two types of final states: ac-
cepting and rejecting. For any string x ∈ Σ∗, we
say that T accepts x if there is a computation of

T on x that ends into an accepting state. For each
x ∈ Σ∗ accepted by T , we denote by T (x) the set
of all strings that are written by T on the output
tape in its accepting computations on input string
x. Any non-deterministic transducer T computes
the partial multi-valued function f such that for
each x, f(x) = T (x) if x is accepted by T or oth-
erwise f is undefined at x.

PF is the class of all single-valued functions com-
puted by deterministic polynomial-time bounded
transducers. The class NPMV is defined as the
set of all multi-valued functions computed by non-
deterministic polynomial-time bounded transduc-
ers. It is known that a function is in NPMV if and
only if it is both polynomially balanced (i.e., for
each x, the size of each result in f(x) is polyno-
mially bounded in the size of x) and graph(f) is
in NP. The subclass of NPMV for which graph(f)
is in P is denoted by NPMVg — this class is also
called FNP in the literature.

Given a multi-valued function f , it is often in-
teresting to establish whether there exists a single-
valued function f ′ which refines f , i.e., for each
input x in dom(f), f ′ returns one of the possible
results in f(x). Indeed, when asking for solving
the search problem defined by a multi-valued func-
tion (e.g., find a minimal spanning tree of an in-
put graph), we are usually interested in obtaining
one of its solutions. Therefore, in the actual com-
putation, the multi-valued function is eventually
replaced by a refining, single-valued one.

Let us now recall the formal definition of re-
finement [32]. Given two partial multi-valued func-
tions f and g, define g to be a refinement of f if
dom(g) =dom(f) and graph(g) ⊆ graph(f). Let F

and G be two classes of partial multi-valued func-
tions. Let f be a partial multi-valued function. Fol-
lowing [32], we define f ∈c G if G contains a refine-
ment of f . Moreover, we define F ⊆c G if, for all
f ∈ F , f ∈c G. An important practical question
is whether a result of a multivalued function can
be efficiently computed by means of a polynomial-
time, single-valued function or, more in general,
which classes of multivalued functions are refined
by PF.

3.2. Stratified DATALOG@(*) Queries

A (database non-deterministic) query Q =
〈D, g〉, where D is a database scheme and g is a
relation symbol not in D, is a partial recursive
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(i.e., computable), generic multi-valued function
from inst(D) to inst(g); for each D ∈ inst(D),
the set of results Q(D) is the answer of the query
on D and each G ∈ Q(D) is in instUD

(g), thus
the constants in a query result must also appear
in the database. Genericity for Q means that for
any D on D and for any isomorphism ρ on U ,
Q(ρ(D)) = ρ(Q(D)) [8,36]. Informally speaking,
the answer of a query does not depend on the inter-
nal representation of the constants in the database.
An important consequence of genericity is that Q

is a polynomially balanced function. To see a query
as a function, we assume a standard encoding of
both the input database and the answer relations
in the form of strings. Hence, in what follows, we
shall freely talk about classes of queries being sub-
sets of classes of functions.

A query Q =< D, g > will be said deterministic
if it is single valued; if g has arity 0, the query Q

is said to be boolean.
Classical complexity theory classifies languages

on the basis of how difficult is to decide that a
given input string belongs to the language. Deter-
ministic search queries have been classified in a
similar fashion, defining a recognition problem as-
sociated to them: given a deterministic query Q

and a database D over a fixed scheme D, the query
output tuple recognition problem (QOT) for Q(D)
amounts to determining whether a given tuple t

belongs to the unique result in Q(D). The QOT
is an appropriate tool for defining deterministic
query complexity classes since the overall result re-
lation can be constructed by iteratively checking
the QOT on all tuples (whose number is polyno-
mially bounded).

However, the QOT is not appropriate for classi-
fying non-deterministic queries as two tuples may
belong to two different results returned by the
query on the same input and, as a consequence,
does not allow to construct any of the query re-
sult relations. So a suitable approach for classify-
ing non-deterministic queries is to generalize, to
the framework of database queries, the so called
graph-recognition problem, which is used for classi-
fying the complexity of multi-valued functions[32].
This corresponds to adopt the Query Output Re-
lation problem (QOR for short), which, given a
non-deterministic query Q and a database D ∈
inst(D), and a relation R, amounts to determining
whether R ∈ Q(D).

Let C be P or NP. Then define the query class
NQ r C as the set of queries Q ∈ NQ such that
the QOR for Q can be solved within C.

Observe that the queries in NQ rNP corre-
spond to the generic functions of the class NPMV
and those in NQ r P correspond to the generic
functions in NPMVg. As pointed out in [24],
there are queries in either classes which, at the
current stage of knowledge, cannot be refined
by a polynomial-time single-valued function. Let
(NQ rNP)T denote the subclass of all queries in
NQ rNP that are total.

Fact 1 [24]

1. NQ r P 6⊆c PF and NQ rNP 6⊆c PF, unless
P = NP;

2. (NQ rNP)T 6⊆c PF, unless coNP = NP. 2

A stratified DATALOG@(*) query Q is of the form
〈P, g〉 where P is a stratified DATALOG@(*) program
and g is an IDB or I-IDB predicate symbol of
P , and represents the database non-deterministic
query 〈DP , g〉 such that for each D ∈ inst(PD),
Q(D) = {M(g)|M is a stable model of sv(PD)}.
Let Q-DATALOG@(*) denote the class of all strati-
fied DATALOG@(*) queries. From Proposition 1 we
immediately derive that this class is refined by PF.

Corollary 1 Q-DATALOG@(*)⊆c PF.

Proof. Let Q = 〈P, g〉 be a stratified DATALOG@(*)

query and D be a database on DP . Then a result
of Q(D) can be obtained by computing a stable
model M of sv(PD) and returning M(g). By Part
(2) of Proposition 1, M is computed in polynomial
time by a single-valued function. 2

As shown next, a severe drawback of a query in
Q-DATALOG@(*) is that finding a result is done in
polynomial-time but testing whether a given rela-
tion is a result is not (unless P=NP). This con-
trasts with the typical situation in classical NP-
hard search problems: the hard part is finding a
result rather than testing it. Let (NQ rNP)T de-
note the subclass of all queries in NQ rNP that
are total.

Proposition 2

1. Q-DATALOG@(*)⊆ (NQ rNP)T and the con-
tainment is strict unless P = NP ∩ coNP;

2. Q-DATALOG@(*) 6⊆ NQ r P unless P = NP.



10 A. Guzzo and D. Saccà / Semi-Inflationary DATALOG: A Declarative Database Language with Procedural Features

Proof. (1) The fact that Q-DATALOG@(*)⊆ NQ rNP
can be shown as follows. Take any stratified
DATALOG@(*) query Q = 〈P, g〉 and any database
D on DP . Let G be any relation on g. We have
that G ∈ Q(D) iff there exists a stable model
M of sv(PD) such that G = M(g). We non-
deterministically select an interpretation M of
sv(PD) and verify in (deterministic) polynomial
time whether M is a stable model and G = M(g).
So Q-DATALOG@(*)⊆ NQ rNP. To see that indeed

Q-DATALOG@(*) ⊆ (NQ rNP)T , observe that there
exists at least one stable model M of sv(PD) by
Part (1) of Proposition 1 and, then, Q(D) is not
empty for it contains at least M(g). So Q is to-
tal and, hence, Q-DATALOG@(*)⊆ (NQ rNP)T . The
fact that the containment is strict unless P =
NP ∩ coNP derives from Part (2) of Fact 1.

(2) In order to prove this part, it is sufficient to
show that Q-DATALOG@(*) is NP-hard. Consider
the NP-complete problem of deciding whether a
graph has a Hamiltonian path, i.e., there is a per-
mutation v1, ..., vn of all nodes of the graph such
that (v1, v2), ... (vn−1, vn) are arcs of the graph.
Consider the following Q-DATALOG@(*) program P :

path(root, X)@(0) ← node(X), ! .
path(X, Y)@(+) ← arc(X, Y), path( , X)@(.),

¬path(Y, )@(*), !
non hp() ← node(X), ¬path( , X)@(*).
is hp(0) ← non hp().
is hp(1) ←¬non hp().

and the query Q = 〈P, is hp〉. Given a graph G

encoded into a database D, G has a Hamiltonian
path iff the relation {(1)} belongs to Q(D). This
concludes the proof. 2

Next we provide two interesting characteriza-
tions of Q-DATALOG@(*). To this end, we first recall
the definition of the class of queries NQPTIME
as given in [24]: a non-deterministic query Q is in
NQPTIME if it can be computed by a polynomial-
time transducer such that for each input, each
branch of the transducer’s computation halts into
an accepting state. Note that NQPTIME was first
introduced in [2,4] to characterize the queries in
a language with inflationary fixpoint augmented
with a non deterministic construct, the witness.
We point out that some time in the literature
NQPTIME is imprecisely defined as: ’the class
of all non-deterministic database transformations
(i.e., total queries) which can be computed by a

non-deterministic Turing machine in polynomial
time’. Thus NQPTIME could be confused with
(NQ rNP)T .

Before giving our last result, we need an ad-
ditional definition. A non deterministic query
Q〈D, g〉 is listable if all results of Q can be com-
puted by a polynomial delay (deterministic) algo-
rithm (see [22,15]), i.e., for each D ∈ D with size
|D|:

– the algorithm executes at most pol(|D|) ma-
chine instructions before either producing the
first results or halting;

– after any result it executes at most pol(|D|)
machine instructions before either producing
the next results or halting.

Theorem 1

1. Q-DATALOG@(*)= NQPTIME;
2. All queries in Q-DATALOG@(*)are listable.

Proof.
(1) Let Q = 〈P, g〉 a stratified DATALOG@(*)

query. Given a database D on DP , by Proposi-
tion 1 we can write a non-deterministic algorithm
which computes the stable models of sv(PD). As
the non-determinism consists in selecting some tu-
ples during fixpoint computations and the fixpoint
will be eventually reached independently from the
selections made (don’t care non-determinism), the
algorithm can be easily encoded into a polynomial-
time transducer T such that for each input, each
branch of the transducer’s computation halts into
an accepting state. Let us now prove the reverse:
given any query Q = 〈D, g〉 computed by a trans-
ducer T with the above properties, there exists a
query Q′ = 〈P, g〉 such that D = DP and for each
D on D, Q(D) = Q′(D). Let pol be a polynomial
function such that, given D on D, pol(UD) ≥ S,
where UD is the active domain of D and S is the
maximum for all results of g in Q(D) of the sum
of the number of branches with non-deterministic
moves and the number of tuples in a result - obvi-
ously such a function exists. Let k be the degree of
the polynomial pol: then, by assuming and order
for UD, we can use the induced ordering on the
cartesian product Uk+2

D to keep track of the order
in which the non-deterministic move and the writ-
ing on the output tape are made. We also order
all possible choices for the next move at each non-
deterministic branch. We now construct a strati-
fied DATALOG@(*) program P with DP = D as fol-
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lows. We have two I-IDB predicate symbols. The
first one is used to preliminarily select an order-
ing of UD. The second one, say p, is used to store
data only on the following three types of moves
(y-moves): (1) non-deterministic move with or (2)
without writing on the output tape, and (3) de-
terministic move with writing on the output tape.
The predicate p has k+5 arguments: an argument
for stating the type of y-move, an argument for
the index of the chosen move (only for a y-move
of type 1 or 2), an argument for storing the value
written on the output tape (only for a y-move of
type 1 or 3), and k + 2 arguments for ordering the
tuples being constructed. The inflationary Y-rule
is:

p(I ′, V ′, T ′, U ′
1, ..., U

′
k+2)@(+) ←

p(I, V, T, U1, ..., Uk+2)@(.),
q(I ′, V ′, T ′, U ′

1, ..., U
′
k+2@(.).)

The X-IDB predicate symbol q computes the data
(including the ordering (k + 2)-tuple) for the next
y-move by consulting the data on the current y-
move, by using the stage argument ”@(.)”, as well
as the data on all previous y-moves, by using the
stage argument ”@(*)”. The computation of data
for the next y-move is obviously polynomial. So
it can be realized by a suitable subprogram defin-
ing q which uses stratified negation and the order-
ing preliminarily generated — recall that stratified
negation with a successor relation captures poly-
nomial time exactly, as pointed out in [27]. The
program is completed with a subprogram defining
the query goal g (say with arity m) which extract
from p all the tuples corresponding to y-move of
type 1 and 3 and collect the 3rd arguments of m

consecutive of such tuples. This operation is obvi-
ously polynomial and, then, can be implemented
by stratified negation with ordering. Hence, for
each D, Q(D) = Q′(D).

(2) Let Q = 〈P, g〉 be a stratified DATALOG@(*)

query. By part (1) of this theorem, Q can be com-
puted by a polynomial-time transducer such that
for each input, each branch of the transducer’s
computation halts into an accepting state. It is
then easy to construct a polynomial delay algo-
rithm using a backtracking approach. 2

4. Extending the Choices in DATALOG@(*)

The core of DATALOG@(*) is the coexistence of
the declarative style of stratified negation with an

inflationary fixpoint which construct a relation by
selecting tuples at the different stages — the choice
construct serves here to introduce the power of
a controlled non-determinism in such a selection.
An interesting extension of the language is to fur-
ther increase the capability of making the selection
while performing the inflationary fixpoint.

Example 7 Team building.

We are given projects, employees and skills rep-
resented by the following EDB facts:

project(P#, Priority, NTeam).
employee(E#, Skill#, SubSkill#, Salary, Sex).
requiredSkill(P#, Skill#, SubSkill).

Each project has a priority (measuring its rele-
vance) and requires a number of employees, each
with a distinct skill and, possibly, a sub-skill. Such
skills must be granted by assigning the available
employees with the wanted skills - fitting also the
sub-skill is not mandatory although preferred. We
have to set up a team of employees of all projects,
if possible.

To solve the problem we use the I-IDB predicate
inTeam(Project#, Employee#) to encode the fact
that an employee is enrolled in a project. Step by
step, any employee candidate to be included into
the project team is non deterministically chosen
provided that the team is not yet fully staffed:

inTeam(P, E)@(+) ←¬staffed(P)@(.),
candidate(E, P)@(.), ! .

The X-IDB predicate symbol staffed checks
whether a project is staffed at current stage with
the wanted skills - the sub-skills are not taken into
account.
staffed(P)@(.) ← project(P, , ),

¬missingSkill(P)@(.).
missingSkill(P)@(.) ← requiredSkill(P, S, ),

¬skillInP(S, P)@(.).
skillInP(S, P)@(.) ← inTeam(P, E)@(*),

employee(E, S, , , ).

Moreover, we have the following X-rules for in-
ferring the employees that are not currently in-
volved into any project, and whose skills are still
missing:

candidate(E, P)@(.) ← employee(E, S, , , ),
¬inSomeTeam(E)@(.),
requiredSkill(P, S, ),
¬skillInP(S, P)@(.).

inSomeTeam(E)(.) ← project(P, , ),
inTeam(P, E)@(*).
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The program we have written is not satisfactory
for we would like to perform the selections accord-
ing to the following criteria, listed in order of their
relevances:

1. the projects should be staffed in order of their
priorities to avoid that high priority projects
will eventually result unstaffed because some
critical skills have been assigned to other
projects:

2. in selecting an employee to cover a skill, the
one who also fits the sub-skill should be pre-
ferred;

3. if possible, at least the 50% of the employees
in a team should be women;

4. the employees with lower salary should be pre-
ferred in order to reduce the overall cost of
each project. 2

Next we introduce additional constructs for
making choices inside Y-rules. We assume that
the universe U is ordered and define two pow-
erful variations of the choice: choiceMin(C) and
choiceMax(C), where C is a single variable de-
fined on an ordered domain, which select the
consequences with respectively the minimal and
the maximal value for C. Given a rule r with
choiceMin, say

a(Y ) ← B(Z), choiceMin((X), C).

where B(Z) is a conjunction of literals, Z is the list
of all variables occurring in B and B is a variable
in Z, r is rewritten as

a′(Y,C) ← B(Z).
nonMin(C) ← a′(Y,C), a′(Y ′, C ′), C ′ < C.

a(Y ) ← a′(Y,C),¬nonMin(C).

A rule with choiceMax is rewritten in a sim-
ilar way. We point out that both constructs
are indeed deterministic. Note also that they
are derived from two powerful variations of the
choice described in [19]: choiceLeast((X), C) and
choiceMost((X), C), where X is a list of variables
occurring in the body, which select respectively the
minimal and the maximal value for C, while en-
forcing the FD X → C. The fact that we only al-
low the choice inside Y-rule avoids some problems
with the semantics of such predicates that are re-
ported in [19].

We also introduce an additional construct for
making selection that is not disciplining another
form of unstratified negation but it is simply a

shorthand for a particular stratified negation. The
construct is possibly(D), where D is any literal:
EDB, IDB, I-IDB or X-IDB. This predicate selects
from all tuples being added at a stage of the infla-
tionary fixpoint, those which satisfy D if any or,
otherwise, all of them — thus if the literal D is not
satisfied we want to accept all consequences rather
than reject them. Given an Y-rule with possibly,
say:

a(X)@(+) ← B(Z), possibly(D).

we perform the following rewriting:

a(X)@(+) ← B(Z), D.

a(X)@(+) ← B(Z), ¬D.

In using choice construct and their variations,
we shall assume that if a Y-rule contains more
than one choice constructs, then their selections
are made in the order such construct occur in the
body. Thus, given a Y-rule of the form:

p(X)@(+) ← B,C1, ..., Cn.

where B is a conjunction of EDB, IDB, I-IDB and
X-IDB literals and Ci, 1 ≤ i ≤ n are choice pred-
icates or the constructs we have just introduced,
the consequences of the rules will be first filtered
by C1, then the selected tuples will be further fil-
tered by C2 and so on up to the final selection of
Cn. We enforce the ordering of choices by a suit-
able rewriting. In particular, after rewriting the
I-IDB and X-IDB predicates, we introduce n − 1
further new predicate symbols in addition to p′:
p′1, ..., p

′
n−1. Then we write n copies of the Y-rule:

p′1(X)@(+) ← B,C ′
1.

p′2(X)@(+) ← p′1(X), B,C ′
2.

. . .

p′n−1(X)@(+) ← p′n−2(X), B,C ′
n−1.

p′(X)@(+) ← p′n−1(X), B,C ′
n.

Finally, we allow aggregate predicates count{X :
q(Y )@(.)} or count{X : p(Y )@(.)} to occur into
the body of a Y-rule or and X-rule — in the lat-
ter case we require that q is not recursive with
the head predicate symbol. Aggregate predicates
are used as terms into comparison predicates: e.g.,
N = count{X : q(Y )@(.)}.

Example 8 Team Building with Extended Selec-

tion.

The Y-rule becomes:

inTeam(P, E)@(+)
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← project(P, Prty, ), ¬staffed(P)@(.),
candidate(E, P),
employee(E, Sk, SubSk, Sal, Sex),
choiceMax(Prty),
possibly(requiredSkill(P, Sk, SubSk))
possibly(equalOpp(P, Sex)@(.)),
choiceMin(Sal) !.

The order of selection constructs correspond to
the relevance we assign to the various properties:
first the priority of the project, then the availability
of skills and, if possible, of the sub-skill; later on,
the equal opportunity, then the minimal cost and
finally only one of the remaining consequences is
selected.

The X-IDB predicate symbol is defined by:

equalOpp(P, f)@(.) ← lessWomen(P)@(.).
equalOpp(P, Sex)@(.) ← project(P, , ),

¬lessWomen(P)@(.).

lessWomen(P)@(.) ← project(P, , Nteam),
count{E : women(P, E)@(.)}
< Nteam ∗ 0.5.

women(P, E)@(.) ← inTeam(P, E)@(.),
employee(E, , , f).

2

5. Conclusion

In this paper we have presented an extension of
DATALOG called DATALOG@(*), which combines least
fixpoint on stratified negation and inflationary fix-
point augmented with choice constructs. This lan-
guage is particularly suitable to express algorithms
in a mixed style: declarative rules interleaved with
inflationary ones that are used any time it becomes
easier to just list sequences of single actions rather
than providing a complex declarative definition.
The complexity complexity and expressive power
of DATALOG@(*) queries have been precisely char-
acterized and some lights are put on the related
class NQPTIME as well.

In the paper we have also sketched some exten-
sions to the choice constructs of DATALOG@(*) to
express inflationary fixpoint in a simpler and more
declarative way, thus providing a powerful formal-
ism for describing greedy algorithms. By further
exploiting the idea of adding procedural features
to a declarative language, on-going research [16]
is devoted to defining an extension of DATALOG to
express events and nondeterministic state transi-

tions, by using choice constructs to model uncer-
tainty in dynamic rules. The proposed language,
called Event Choice DATALOG provides a power-
ful mechanism to formulate queries on the evo-
lution of a knowledge base, given a sequence of
events envisioned to occur in the future. A distin-
guished feature of this language is the use of multi-
ple spatio-temporal dimensions in order to model
a finer control of evolution for a large class of prob-
lems, such as those involving planning tasks and
workflow systems.
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