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Abstract

Many research works deal with the phase of modeling workflow schemes and sev-
eral formalisms for specifying structural properties have been already proposed to
support the designer in devising all admissible execution scenarios. Most of such
formalisms are based on graphical representations in order to give a simple and
intuitive description of the workflow structure.

This paper presents a new formalism which combines a rich graph representation
of workflow schemes with simple (i.e., stratified), yet powerful DATALOG rules to
express complex properties and constraints on executions. Both the graph represen-
tation and the DATALOG rules are mapped into a unique program in DATALOGev!, that
is a recent extension of DATALOG for handling events. The high expressive power of
both the graphical formalism and the DATALOGev! rules provides the designer with
powerful mechanisms for reasoning on workflows: (i) modeling a workflow schema
with the possibility of expressing many types of constraints on the executions, (ii)
defining various execution scenarios (i.e., sequences of workflow executions for the
same schema) and (iii) simulating the actual behavior of the modeled scheme by fix-
ing an initial state and an an execution scenario and querying the state after such
executions. As a scenario may include a certain amount of non-determinism, the
designer can also verify under which conditions a given (desirable or undesirable)
goal can be eventually achieved.
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1 Introduction

Workflow management systems (WFMs) represent today a key technological
infrastructure for effectively managing business processes in several applica-
tion domains including finance and banking, healthcare, telecommunications,
manufacturing and production. Many research works deal with the phase of
modeling workflow schemes and several formalisms for specifying structural
properties have been already proposed to support the designer in devising all
admissible execution scenarios. In order to give a simple and intuitive descrip-
tion of the workflow structure, most of such formalisms are based on graphical
representations, such as the control flow graph, in which the workflow is rep-
resented by a labelled directed graph whose nodes represents the tasks to be
performed, and whose arcs describe the precedences among them. Moreover,
Workflow Management Coalition (WfMC [28]) has also identified additional
controls, such as loops and sub-workflows.

An example of control flow which will be used throughout the rest of the
paper, modelling a typical process for a selling company, is shown in Figure 1
by exploiting a notation whose meaning is informally presented below.

Example 1 A customer issues a request to purchase a certain amount of a
given product by filling in a request form on the browser (task ReceiveOrder).
After completion, the task will activate both its outgoing arcs as it is denoted
by the symbol ∧ in output. Then the request is forwarded both to the financial
department (task VerifyClient) and to each company store (task VerifyAvail-
ability) in order to verify respectively whether the customer is reliable and
whether the requested product is available in the desired amount in one of
the stores. The task VerifyAvailability (marked in input with ∗) is instanti-
ated for each store, and, hence, each instance, characterized by a unique task
identifier, either notifies to the task OneAvailable that the requested amount
is available (label ’T’) or otherwise it notifies the non-availability to the task
NoneAvailable (label ’F’). Observe that the task OneAvailable, denoted by
the symbol ∨ in input, is started as soon as one notification of availability
is received, whereas the task NoneAvailable, denoted by ∧ in input, needs
the notifications from all the stores to be activated. Indeed, both the tasks
NoneAvailable and OneAvailable have the effect of dropping the quantifica-
tions over the stores. In parallel, after the execution of VerifyClient, if the
client turns out not to be reliable, it is checked whether the reliability of the
client should be further checked by more detailed investigations. Eventually a
final decision will be made on whether the client is reliable for the order or not.
Finally, the order request will be eventually accepted if both OneAvailable has
been executed and the task VerifyClient has returned the label ’T’; otherwise
the order is refused. 2
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Fig. 1. Running Example: Sales Ordering Process.

Besides to an intuitive graphical notation, current workflow management sys-
tems do not provide other mechanisms for helping the designer in the modeling
phase of a complex process. Thus, the usage of most of the available systems
for treating real world cases with processes made of hundreds of tasks may be
complicated for two major reasons:

(1) The languages adopted for the specifications are not enough expressive
for modelling a number of properties, which cannot be captured by a
graph. In fact, as pointed out by many authors (e.g., see [5]), the essen-
tial limitation of the approach based on the control flow graph lies in the
ability of specifying local dependencies only, while complex properties,
also called in the literature global constraints, are left unstated. For in-
stance, in our running example, a natural global constraint is that the
company will try to satisfy the request by looking at the store nearest to
the client, in order to reduce transportation costs.

(2) There is no way for assessing and reasoning on the properties of the spec-
ification. For instance, prior to the enactment of the workflow it would
be very useful to simulate the actual behavior of the modelled scheme
by fixing an initial state and an execution scenario (i.e., a sequence of
executions for the same workflow) and querying the state after such ex-
ecutions. As the scenario includes a certain amount of non-determinism,
the designer may also verify under which conditions a given (desirable or
undesirable) goal can be eventually achieved.

In this paper, we face these problems by proposing a logic based environ-
ment, which combines a rich graphical representation of workflow schemas
with simple (i.e., stratified), yet powerful DATALOG rules to express complex
properties and global constraints on executions. Both the graph representa-
tion, the DATALOG rules as well as all the data needed for the instantiation of
the process are mapped into a unique program in DATALOGev![11,10], that is a
recent extension of DATALOG for handling events and temporal properties.

The attractive feature of this approach is that the resultant logic program
may serve as executable logical specification, well suited for reasoning on
its possible enactments and for being used as a run-time environment for
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the simulation. The simulation is carried out by equipping DATALOGev! with
a powerful querying mechanism, leading the ability of supporting reasoning
about events and actions. Thus, given a scenario, the problem consists in
verifying whether there exist particular sequences of further event occurrences
that eventually satisfy a given goal, and in returning a possible evolution which
satisfies it.

Example 2 Let us return to the selling company example. A typical scenario
of execution consists of a number of requests that are planned in a certain
period of time. For instance, by adopting the syntax of our language, the
list H : [ReceiveOrder(id1, c1, i1, 5)@(0), ReceiveOrder(id2, c2, i1, 10)@(2)]
specifies that two orders of clients c1 and c2 are planned at times 0 and 2,
consisting of the request of the item i1 in quantity 5 and 10, respectively.

Since for each order, the requested products with the desired quantity are
assumed to be taken from a single store, it is obvious that not all the possible
schedules will eventually lead to the satisfaction of all the orders. One impor-
tant feature of our language is the powerful querying mechanism, that can be
used for planning and scheduling purposes; for instance, by simple supplying
a query of the form ∃@(t)AcceptOrder(id2) for a suitable value of t, we could
check whether there exists a workflow execution that lead to acceptance of id2.
Obviously, in the case the query is evaluated false, we are ensured that there
is no way for satisfying such an order, and, hence, we can think at rejecting
it in advance, or at planning a new production. 2

1.1 Overview of the Proposal

Our logic framework for reasoning on workflows has been implemented into a
prototype system, consisting of a lightweight tool which can be put on the top
of any pre-existing commercial workflow engine, thus providing some add-on
functionalities that currently lacks in these products. The conceptual architec-
ture of the system, shown in Figure 2, evidences the fact that it is completely
independent on the particular Enactment Engine used in the organization.
This can be achieved by the use of a wrapper which translates specifications
written in the standards BPML and XPDL into DATALOGev! programs (and
vice-versa).

In the architecture we evidence the User Interface used for both designing
workflow schemas and specifying a list of envisioned events, used for simulation
purposes. The WF-model wrapper provides the ability of mapping workflows
specified both in our graphical interface or in external engines into the system.
Moreover, in the case an external workflow schema (e.g., written in BPML) is
loaded, this module notifies the user interface for a proper displaying. All the
information on the workflow model are stored in the Metadata Repository by
using the internal representation language, DATALOGev!.

4



Metadata
Repository

WF-model
Wrapper

Query
Wrapper

Simulation
Engine

Deductive DB
System

User
Interface

Enactment
Engine

Fig. 2. Architecture of the prototype.

As it will be later discussed in more details, the DATALOGev! program P(WS)
modeling a workflow WS consists of three distinct elements:

• A set DBws of facts used for modeling (i) the static aspects, i.e., the defini-
tion of the control flow prescribing the relationships of precedence among
activities, (ii) the actual status of dynamic ones, i.e., the definition of the
set of servers available and their actual scheduling on the tasks, and (iii)
some other additional information needed for the run-time support;

• A set KDBws of dynamic rules which are used for modeling the way in which
the knowledge in the database DBws is updated, thus, keeping trace of the
evolution of an execution. For instance, in the sales ordering process we need
some rule for choosing a store and for updating its quantity of products,
after the selling;

• A set EVws of event activations rules, which are used for modeling the en-
actment engine. Notice that this part is essentially independent of the par-
ticular type of workflow, since it prescribes in a declarative manner the
procedures that must be followed while executing an instance, by specifying
the way the tasks are scheduled on the servers and the rules according to
which a task become ready for its execution; under this perspective, these
rules provide the formal semantics for our specifications.

The specification P(WS) can be further extended by specifying, by means
of other DATALOGev! rules: global constraints and additional constraints on the
scheduling of the activities, denoted by Constr(WS). Interestingly, the re-
sulting program is still an executable specification (after a proper automatic
translation which is performed by the Simulation Engine module according to
the technique presented in [11]) into Deductive Database Engines such as DLV
[14] or Smodels [18]. Thus, each time a simulation is required by the user, the
module Query wrapper translates the requirements in a proper query, which
is evaluated by the engine - in our application the DLV system, and the result
is eventually supplied to the user interface.
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1.2 Organization

The rest of the paper is organized as follows. A discussion on the basic con-
cepts of workflow specification, together with the overview of the formal model
we adopted, is provided in Section 2. The syntax and semantics of DATALOGev!

rules is briefly overview in Section 3. Then, in Section 4, we provide the for-
malization of the logic framework for workflow specification by discussing in
details all the components of the program P(WS), for a given workflow WS.
The query language providing simulation capabilities, together with some com-
plexity results assessing the ‘intrinsic’ difficulty in reasoning on workflow, is
reported in Section 5. Finally, in Section 6 we compare our approach with
other proposals in the literature and we draw our conclusions.

2 Formal Foundation of Workflows

A workflow is a partial or total automation of a business process, in which a col-
lection of activities must be executed by some servers (humans or machines),
according to certain procedural rules. Thus, any specification must focus both
on some static aspects, i.e., the description of the relationships among activi-
ties not depending from a particular instance, and on some dynamic aspects,
i.e., the description of workflow instances whose actual executions depend on
status of the system (available servers and other resources).

2.1 Workflow Schema

We next introduce the notion of workflow schema which is the formal foun-
dation for representing processes, by specifying a number of elementary tasks,
along with flow relationships among them. We have decided not to refer to
any particular formalisms proposed in the literature, even though the care-
ful reader will notice that our specifications have many features in common
with the syntax of the major commercial standards. In addition, we introduce
the quite original concept of replicated task, i.e., of a task which admits sev-
eral instantiations in the same execution, and whose usage may reduce the
complexity of the modelling complex processes, by providing compact rep-
resentations – this concept is actually available in the activity diagrams of
UML. For instance, in our running example the task Verify Availability is
instantiated for each store no matter of the number of stores, thus providing
a more flexible definition of the process. Moreover, replicated tasks provide a
formal way for defining the notion of cyclic sequence of tasks, where each task
involved in a cycle may be instantiated different times.
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Definition 3 (Workflow Schema) A workflow schema WS is a tuple
〈A, E, a0, F, A

∧
in, A

∨
in, A

∗
in, A

∗c
in, A

∗∧
in , A∗∨in , A∧out, A

∨
out, A

L
out, E

L, λ, L〉, where

• 〈A, E〉 is a graph, whose nodes A are the tasks and whose arcs E are the
relationships of precedences among tasks;

• 〈{a0}, A
∧
in, A

∨
in, A

∗
in, A

∗c
in, A

∗∧
in , A∗∨in 〉 and 〈F, A∧out, A

∨
out, A

L
out〉 are partitions of A;

• a0 is the unique initial task;
• F is a set of final tasks;
• L is a set of labels, EL is a subset of E also called labelled arcs s.t. ∀(a, b) ∈ EL,
a ∈ ALout, and λ : EL → L is a function assigning a label to each arc in EL.

All the nodes in A∗in ∪ A∗cin ∪ A∗∧in ∪ A∗∨in are called replicated tasks, whereas all
the others are called regular tasks. The following constraints hold:

• every task in A−{a0} has at least one incoming arc and every task in a−F

has at least one outgoing arc;
• each task a ∈ A∗in has exactly one preceding task, say p, and p is not repli-

cated;
• each task a ∈ A∗cin has exactly one preceding task p which is not replicated,

and one preceding task r which is in A∗∧
in ∪A∗∨

in - every arc (r, a) is called a
replication arc; we require that the graph obtained from WS by removing
all replication arcs be acyclic;

• for each task a in A∗∧
in ∪ A∗∨

in and for each (b, a) ∈ E, b is replicated;
• for each task b in A∗∧

in ∪A∗∨
in there exists a unique task a in A∗

in∪A∗c
in, denoted

by start∗(b), such that there is a path from a to b consisting of all replicated
tasks. 2

Notice that we are assuming that each task returns a label in L after its
execution that is used for the possible activation of labelled arcs — a special
label is “fail” which notifies an abnormal execution of the task. Then, an arc
(a, b) in EL can be activated only if the outcome of the task a coincides with the
label of the arc (we also require the tasks a to belong to AL

out). The activations
of the arcs determine the tasks that can be executed.

The informal semantics for the tasks (whose associated symbols adopted in
our graphical formalism are shown in Figure 3) is as follows:

• Each task a in A∗in has exactly one preceding task, say p, and p is not
replicated; once the arc (p, a) is activated, a number of instances for a,
distinguished by a proper task identifier tid, are started according to specific
criteria specified for each workflow instance;

• Each task a in A∗cin has exactly one preceding task p which is not replicated,
and one preceding tasks r which is replicated; once the arc (p, a) is activated,
an instance for a is started with tid = 1. Later on, each time the arc (r, a) is
activated by some instance of r with tid = t, a new instance of a is created
with a different tid t′ = t + 1 - but this may happen only if all replicated
tasks b for which a = start ∗ (b) and with tid = t have been executed;
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Fig. 3. Legend of the symbols for the graphical notation.

• Each task a in A∧in acts as a synchronizer (also called a and-join task in
the literature), thus, a cannot be started until after all its incoming arcs
are activated; observe that, in the case of an incoming arc coming from a
replicated task, say p, the arc must be activated for each replication of p
before a can be started;

• Each task a in A∨in is a or-join task and can be started as soon as one of its
incoming arcs is activated; notice that, in the case of an incoming arc leaving
a replicated task, say p, the task a is started even if the arc is activated for
only one replication of p;

• Each task a in A∗∧in has all preceding tasks replicated and for each two of
its preceding tasks, say p1 and p2, start∗(p1) = start∗(p2); the task a may
have several instances, one for each instance of start∗(a), say with task
identifier tid, and the task identifier of each instance of a coincides with tid;
an instance of a with identifier tid is actually started if each incoming arc
leaving a task, say p, is activated for the instance of p with identifier tid;

• Each task a in A∗∨in has all preceding tasks replicated and for each two of its
preceding tasks, say p1 and p2, start∗(p1) = start∗(p2); the task a may have
several instances, one for each instance of start∗(a), say with task identifier
tid, and the task identifier of each instance of a is tid; an instance of a with
identifier tid is actually started as soon as one of its incoming arcs leaving
a replicated task, say p, is activated by the instance of p with identifier tid;

• Each task a in A∨out activates exactly one of its outgoing arcs, that is non-
deterministically chosen; if a is replicated, the activation of one arc is re-
peated for each instance of a and two instances of a may activate different
arcs, thus the instances of a make their non-deterministic choice indepen-
dently from each other;

• Each task a in A∧out activates all its outgoing arcs; if a is replicated, every
arc is activated several times, one for each instance of a;

• Each task a in ALout activates those outgoing arcs whose labels coincide with
the label returned by a after completion; if a is replicated, an arc may be
activated several times, one for each instance of a and the label of the arc
must be checked against the outcome of the related instance.
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Fig. 4. Instances for the Sales Ordering Process.

2.2 Workflow Enactments

We next turn to the dynamic aspects of workflow specification, and specifically
in the way executions can be formalized.

In the following, given a task a ∈ A of a workflow schema WS, we denote by
ta = 〈a,tid〉 a generic tasks instance of a, with task(ta)= a, where tid is the
task identifier (natural number) if a is replicated or 1 otherwise.

Definition 4 (Instance) An instance ID of a workflow schema WS over
the nodes A and the labelled arcs E over L is a tuple 〈AID , EID , λID〉, where
task(AID) ⊆ A, EID ⊆ AID × AID s.t. ∀(ta, tb) ∈ EID , (task(ta), task(tb)) ∈ E,
λID : AID 7→ L. ID satisfies the following constraints:

• 〈a0, 1〉 ∈ AID ;
• ∀〈a, 1〉 ∈ AID with a ∈ A∧in, and ∀(p, a) ∈ E, there exists either
(i) (〈p, 1〉, 〈a, 1〉) ∈ EID , if p is not replicated or otherwise
(ii) for each 〈r, tid〉 ∈ AID , where r =start∗(p), there exists (〈p, tid〉, 〈a, 1〉) in

EID ;
• ∀〈a, 1〉 ∈ AID with a ∈ A∨in, there exists at least an arc (〈p, tid〉, 〈a, 1〉) in

EID ;
• ∀〈a, tid〉 ∈ AID with a ∈ A∗in, there exists the arc (〈p, 1〉, 〈a, tid〉) in EID ,

where p is the non-replicated task preceding a;
• ∀〈a, tid〉 ∈ AID with a ∈ A∗cin, there exists the arc (〈p, 1〉, 〈a, tid〉) in EID ,

where p is the non-replicated task preceding a; moreover, if tid > 1, the arc
(〈b, tid − 1〉, 〈a, tid〉) is in EID , where b is the replicated task preceding a;

• ∀〈a, tid〉 ∈ AID with a ∈ A∗∧in , and ∀(p, a) ∈ E, 〈a, tid〉 ∈ AID ;
• ∀〈a, tid〉 ∈ AID with a ∈ A∗∨in , there exists (〈p, tid〉, 〈a, tid〉) ∈ EID ;
• ∀〈a, tid〉 ∈ AID with a ∈ A∧out, it holds (〈a, tid〉, 〈b, tid〉) ∈ EID , ∀(a, b) ∈ E;
• ∀〈a, tid〉 ∈ AID with a ∈ A∨out, there exists exactly one arc, say

(〈a, tid〉, 〈b, tid〉) ∈ EID , outgoing from 〈a, tid〉;
• ∀〈a, tid〉 ∈ AID with a ∈ ALout and λID(〈a, tid〉) = l, ∀(a, b) ∈ E, with label l

the arc (〈a, tid〉, 〈b, tid〉) is in EID , . 2

Example 5 Two instances for the schema in Figure 1 are shown in Figure
4, where we only report the tasks that have been executed. In particular, we
assume that the company has two stores. On the left, the order has been
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Fig. 5. Cyclic instanc for the Sales Ordering Process.

accepted, as the requested amount is in the first store, while on the right the
order has been rejected since none of the store has enough availability. In both
cases the client turned out to be reliable and both instances have replicated
tasks. The case that the client is not considered reliable even after two checks
is shown in Figure 5 — the instance is cyclic. 2

Finally, we assume in our model that a number of servers are available to
perform the various tasks of the workflow instances which are being executed
in a given time period.

Definition 6 (Servers) Given a workflow schema WS over the set of tasks
A, we denote by Sws the set of servers (human and/or computers) who are
appointed to execute various tasks. Then, the functions

• task : Sws 7→ 2A,
• duration : Sws × A 7→ N, and
• stateServer : Sws 7→ {available, busy , outOfOrder}

assign to each server the tasks that it may execute, the time required for the
execution, and its current state, respectively. 2

The current status of a server is determined by the fact that it is executing
some tasks: Given an instantiation of the workflow, the state of a server is
busy if it is executing a certain task, is outOfOrder if it is not allowed to
execute any tasks, and is available if it is waiting for a task to execute. It is
worth noting, that also the tasks are characterized by a particular state among
the following: idle, thus the task is not yet activated as none of its incoming
arcs are active; activated, thus the task has received the notification for its
execution from at least one incoming arc but it is not yet started as it needs
the activation of some additional incoming arcs; ready, i.e., the task is ready
for execution and has been started but it is waiting for the assignment of a
server; running, i.e., the task is currently executed by a server; executed, i.e.,
the task has been terminated.
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3 DATALOGev! in a Nutshell

In this section we overview Event Choice DATALOG (short: DATALOGev!) [11,10],
an extension of DATALOG that is able to deal with events and dynamic knowl-
edge, and which is particulary suited for modelling and reasoning workflow
evolutions.

Roughly speaking, DATALOGev! is a language for modeling the evolution of
knowledge states, triggered by events and guided by nondeterministic transi-
tion rules. Its main features are:

• Event Activation Rules: The language models the transitions among
states of the world by exploiting the notion of event. The occurrence of
an event enables the application of a rule that may modify the state by
asserting or retracting some facts (fluents), and may trigger other events to
occur in the future. The language also supports the interaction with external
events. This latter feature is particularly useful for simulating and reasoning
about possible scenarios, as we shall describe in our motivating examples.

• Choice constructs: The ability to deal with the nondeterminism has been
recognized as a key feature of logic based languages. However, an undis-
ciplined use of unstratified negation and/or disjunction leads to higher
computational complexities and to hard-to-read programs. For this reason,
DATALOGev! programs are stratified, but their rules may contain choice atoms
[20], that provide nondeterministic features. In particular, if we are not in-
terested in a particular outcome (temporal evolution) of the program, the
choice construct is able to model a don’t-care form of nondeterminism.

Thus, DATALOGev! combines the capability of the choice construct to express
nondeterminism (mainly, don’t-care nondeterminism), with the event activa-
tion rules, used for modeling events occurring at certain specified time instants.

3.1 Syntax of Event Event Activation Rules

DATALOGev! is based on DATALOG syntax, by enriching the predicates with an
additional arguments that provides the multiple-time dimensions. In the pa-
per, we shall deal with only two dimensions, i.e., we do not exploit all the
modelling capabilities of the language. Hence, we assume each time instant
to be a tuple 〈t1, t2〉, where both t1 and t2 are natural numbers that can be
thought of as the integer and the decimal part of the time, respectively.

External events arise at the integer time 〈t1, 0〉 and subsequent time instants
at a finer scale are indicated by increasing the second component and are
used for sequencing almost immediate internal events triggered by the system.

11



Whenever the second component instant does not matter, a time instant can
be simply represented as t1.

The set T of all the pairs of natural numbers is the underlying time domain
of any program, which is linearly ordered according to the usual lexicographic
precedence relationship. Then, for any literal p, and each time instant t, p@t

is true if p holds at time t. Moreover, we define two temporal functions on
time instants: given t = 〈t1, t2〉 ∈ T, let t++ = 〈t1, t2 + 1〉, and let t+ (D) =
〈t1 + D, 0〉 for any natural number D.

We assume that three sets of constants, variables, and time variables symbols,
σconst , σvars, and σtime vars are given, where the constants symbols are disjoint
from the (time) variables symbols. A term s is an element in σconst ∪ σvars.
Moreover, let σEDB, σDDB, σIDB, and σEV be disjoint sets of predicate symbols,
with associated arity (≥ 0). Then, an EDB atom has a ”classical” format
p(s1, . . . , sn) where p is a symbol in σEDB and s1, . . . , sn are terms. Instead
DDB (dynamic extensional predicates), IDB (intensional predicates), and EV

(event predicates) atoms are of the form p(s1, . . . , sn)@t, where p is a symbol
in σDDB, σIDB, and σEV, respectively, n is the arity of p, s1, ...sn are terms, and
t is a time instant or a time variable in σtime vars. EV atoms can be also of the
form p(s1, . . . , sn)@f(t), where f is a temporal function over the domain T .

An EDB,DDB, IDB, or EV literal is either an atom or its negation. The set of
all the EDB literals (resp. DDB, IDB, EV), is denoted by LEDB (resp. LDDB, LIDB,
LEV). Furthermore, for any set of literals L, L+ and L− denote the sets of its
positive and of its negative literals, respectively.

Definition 7 A dynamic rule has the form p(X1, ..., Xn) ← B1, ..., Bm. where
p(X1, ..., Xn)@T ∈ L+

IDB, m ≥ 0, and B1, ..., Bm ∈ LEDB ∪ LDDB ∪ LIDB.

An event activation rule has the format [e(X1, ..., Xn)@T] TR1 ... TRk, where
e(X1, ..., Xm)@T ∈ L+

EV, and TR1, ..., TRk are transition rules. Each transition rule
is of the form

!EV1@f1(T), ..., !EVn@fn(T), +A1, ..., +Ah,−Ah+1, ...,−Aℓ ← B1, ..., Bm, ⊗ C.

where n + ℓ > 0, EV1, ..., EVn ∈ L+
EV, m ≥ 0, A1, ..., Ah, Ah+1, ..., Aℓ ∈ L+

DDB,
B1, ..., Bm ∈ LEDB ∪ LDDB ∪ LIDB, f1, .., fn are temporal functions, and C is the
optional choice atom choiceAny. 2

Roughly speaking, the construct choiceAny() nondeterministically selects one
consequence from the set of all consequences derivable from a rule r.

The informal semantics of an event activation rule is that, if the event
e(X1, ..., Xn) occurs at time t ∈ T and the body of the transition rule is evalu-
ated true, then the facts A1, ..., Ah are asserted at time t++, the facts Ah+1, ..., Aℓ

are retracted at time t++ (thus their temporal argument is implicit and of-
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ten omitted), and the events EV1, ..., EVn are triggered to be executed at times
f1(T), ..., fn(T). Finally, we shall also report a predicate in B1, ..., Bm without
temporal argument, whenever it coincides with the time t in which the event
is triggered.

3.2 DATALOGev! Programs

A DATALOGev! program P = 〈DB, DKB, EV〉 consists of (i) a set DB of both ex-
tensional and dynamic facts, called database, (ii) a set DKB of dynamic rules,
called dynamic knowledge base, and (iii) a set EV of event activation rules.

DATALOGev! programs can be naturally used for modelling ad-hoc workflow
specifications, by exploiting the notion of event activation rule. Intuitively,
the completion of each task is modelled by means of an event, which is trig-
gered after the execution of its predecessors according to the workflow schema;
moreover, an initial event occur for the starting of a new instance.

Example 8 We next built a program Ps = 〈DBs, DKBs, EVs〉 mod-
elling our running example. The database DBs contains the exten-
sional predicates product(IDitem, Description) and store(IDstore, City),
storing information about the stores, plus the dynamic predicate
availability(IDstore, IDitem, QTY) storing the quantity of product avail-
able in each store, and selectedStore(IDStore, IDItem, Quantity) encoding
the fact that a given quantity of an item is taken from a store in order to
satisfy a request. Figure 6 shows the database of a given company, and some
facts of the dynamic knowledge at the time instant 〈0, 0〉.

The event activation rules are as follows. When an order is received at time
t = 〈t1, t2〉, the event ReceiveOrder(ID, IDClient, IDItem, Qty)@(t) is trig-
gered, causing the enactment of a new workflow instance, with identifier ID,
in which the order of the client IDClient requesting the quantity Qty of the
item IDItem is processed.

At the instant 〈t1, t2 + 1〉, the events VerifyClient(ID, IDClient, CheckNo),
with CheckNo = 1, and VerifyAvailability(ID, IDStore, IDItem, Qty)
are internally triggered, where the latter is invoked for each store in
store(IDStore, City):

[ReceiveOrder(ID, IDClient, IDItem, Qty)@(T)]

VerifyAvailability(ID, IDStore, IDItem, Qty)@(T++) ← store(IDStore, City).
VerifyClient(ID, IDClient, 1)@(T++)

If there exists a store S with enough availability, the event
OneAvailable(ID, S, I, Qty) is internally triggered and the dynamic predicate
selectedStore(S, I, Qty) is asserted in order to keep trace of the quantity
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availability@〈0, 0〉:

IDStore IDItem QTY

s1 i1 5
s1 i2 6
s1 i3 4
s2 i1 10
s2 i2 7

store:

IDStore City

s1 Rome
s2 Milan

product:

IDItem Description

i1 d1

i2 d2

i3 d3

i4 d4

Fig. 6. The status of DBs at time 〈0, 0〉, in the Sales Ordering Process.

of items taken from each store at different executions. Note that in both
the above rules, we use the operator ++, and, hence, we increase the
secondary auxiliary time component. In fact, the events VerifyClient and
VerifyAvailability are internal and arise almost instantaneously.

Notice also that when more then one store has the desired availability one
is nondeterministically chosen according to the choiceAny construct. Finally,
in the case, no store is available, the event NoneAvailable(ID) is instead
triggered:

[VerifyAvailability(ID, S, I, Qty)@(T)]

OneAvailable(ID, S, I, Qty)@(T++),
+selectedStore(S, I, Qty) ← availability(S, I, AQty), AQty > Qty, ⊗ choiceAny().
NoneAvailable(ID)@(T++) ← ¬available(I, Qty).

where the rule available(I, Qty) ← availability(S, I, AQty), AQty > Qty.

is added to the dynamic knowledge base KDBs.

The order is eventually refused by triggering RefuseOrder(ID) if either no
store is available, or the client is not reliable – here we assumed the existence
of predicates reliable(IDClient, CheckNo) and maxCheckNo(CheckNo) since
we are not interested in the details of this aspect. Conversely, if the client is
reliable we store the fact that he was verified (verified(ID, IDClient)), and
we call the event AcceptOrder(ID):

[NoneAvailable(ID)@(T)]

RefuseOrder(ID)@(T++)

[OneAvailable(ID, IDStore, IDItem, Qty)@(T)]

AcceptOrder(ID)@T(++)

[VerifyClient(ID, IDClient, CheckNo)@(T)]

AcceptOrder(ID)@(T++), +verified(ID, IDClient) ← reliable(IDClient, CheckNo).
FurtherCheck(ID, IDClient, CheckNo)@(T++) ← ¬reliable(IDClient, CheckNo).

[FurtherCheck(ID, IDClient, CheckNo)@(T)]

RefuseOrder(ID)@(T++) ← maxCheckNo(Nmax), CheckNo ≥ Nmax.
VerifyClient(ID, IDClient, CheckNo1)@(T++) ← maxCheckNo(Nmax),

CheckNo < Nmax, CheckNo1isCheckNo + 1.
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The careful reader may have noticed that the event AcceptOrder(ID) is trig-
gered both when we find a store with the requested availability and when
the client is verified. Nonetheless, the actual acceptance may happen only
when both events occurred. Thus, in the event activation rule we further ver-
ify that both the client is verified (verified(ID, IDClient)) and a store has
been selected (selectedStore(S, I, Qty)). Then, the quantity of item is finally
updated, by aserting availability(S, I, AQty − Qty) and retracting the old
quantity availability(S, I, AQty).

[AcceptOrderID ()@(T)]

−availability(S, I, AQty),
+availability(S, I, AQty− Qty) ← verified(ID, IDClient),

selectedStore(S, I, Qty),
availability(S, I, AQty).

2

We stress that the above example is just an application of DATALOGev! for
modelling a particular workflow, and it has been presented for making the
reader familiar with its syntax. In Section 4, we shall generalize these ideas by
presenting a technique for automatically encoding any workflow specification
into a DATALOGev! program.

3.3 Semantics

The semantics of an DATALOGev! program is given in terms of its temporal
(stationary) models. As usual, we first introduce the notion of interpretation
and then add the conditions allowing an interpretation to be a model.

Let P = 〈DB, DKB, EV〉 be a DATALOGev! program. As usual, the Herbrand Uni-
verse UP of a P is the set of all constants appearing in P. A dynamic literal
(resp., an event) in LDDB ∪ LIDB (resp. in LEV) is ground if no variable occurs
in it. The EDB (resp. DDB, IDB, EV) Herbrand Base, denoted by BEDB (resp.
BDDB, BIDB, BEV), is the set of all ground extensional (resp., dynamic fact, in-
tensional, event) literals that can be constructed with the predicate symbols
in σEDB (resp., σDDB, σIDB, σEV), by replacing the variables in σvars by constants
in the Herbrand universe and the time variables in σtime vars by time instants
in T.

An interpretation for the program P consists of a pair 〈S,E〉, where S is a set
of ground literals and E is a set of ground events, such that

(i) S ⊆ BEDB ∪ BIDB ∪ BEV ∪ BDDB (ii) E ⊆ B+
EV

The minimum temporal argument occurring in the events in E is denoted by
nextTime(I), while the maximum temporal argument occurring in the predi-
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cates in S is denoted by curTime(I). Finally, an interpretation I is feasible if
E = ∅ or curTime(I) ≺ nextTime(I).

Intuitively, a feasible interpretation I determines a truth value for all the
predicates preceding the time curTime(I), and contains the information on
the events that are currently triggered to occur in the future. In particular, a
ground IDB or EDB predicate is true w.r.t. I if it is an element of it; a dynamic
ground fact p@t is true w.r.t. I if there exists an element p@t′ in I such
that t′ ¹ t, and there is no literal ¬p@t′′ ∈ I such that t′ ≺ t′′ ≺ t. Note
that in the above definition, we assume that any DDB predicate asserted at
a given time, remains valid till it is explicitly retracted from the database;
indeed, the behavior of the DDB predicates is essentially inertial, while the
truth value of the IDB predicates must be determined at each time instant.
Finally, the special choice literals are defined to be always true w.r.t. to any
possible interpretation I, regardless whether they occur or not in I.

Example 9 In the program of Example 8, the pairs:

I1 = 〈{selectedStore(s2, i3, 4)@5}, {RefuseOrder(id1)@8}〉, and
I2 = 〈{selectedStore(s2, i3, 4)@4,¬selectedStore(s2, i4, 6)@5},

{RefuseOrder(id1)@2, AcceptOrder(id2)@9}〉

are both interpretations,but, the latter is not feasible since nextTime(I2) = 2
and curTime(I2) = 8. Moreover, note that in the former interpretation the
predicate selectedStore(s2, i3, 4) is true in every time instant following 5,
since it has been never retracted after its assertion at time 5. 2

Given an interpretation I = 〈S,E〉, we denote by triggered(E) the set of
all events in E having temporal argument nextTime(I). Let TR(I) be the
subset of all transition rules such that all their activating events belong to
triggered(E), and C(I) be the set of all choice predicates occurring in the
rules in TR(I). Moreover, let ground TR(I) be the set of all the ground
instantiations R of the rules in TR(I) such that (i) all transition rules in R

are enabled, and (ii) the functional dependencies determined by the choice
constructs in C(I) are satisfied by R. Thus, ground TR(I) contains a set of
enabled ground rules (coming from instantiations of the rules in TR(I)) for
each possible way of enforcing the functional dependencies determined by the
choices in C(I).

Let chosen tr be any set of ground rules in ground TR(I). We denote by
AI(chosen tr) the set of all the dynamic atoms p such that +p occurs in the
head of some transition rule in chosen tr and p is false w.r.t. I. Such a dynamic
atom p is said to be asserted. Similarly, RI(chosen tr) is the set of all the
dynamic literals ¬p such that −p occurs in the head of some transition rule in
chosen tr and p is true w.r.t. I. In this case, we say that p has been retracted.
Finally, EI(chosen tr) is the set of the events triggered by all transition rules
r in chosen tr such that at least one dynamic atom is either asserted or
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retracted because of r. In the sequel, the set of all the interpretations of a
given program P is denoted by IP , while the set of all the subsets of IP is
denoted by 2IP .

Definition 10 Let P = 〈DB, DKB, EV〉 be an event choice Datalog program.
Then, we define T : 2IP 7→ 2IP to be the function that, given a set of
interpretations I, outputs a set of interpretations T(I) containing, for any
I = 〈S,E〉 ∈ I and any set of transition rules chosen tr ∈ ground TR(I), all
interpretations 〈S ′, E ′〉 such that

S ′ ∈ SM(DB ∪ DKB ∪ S ∪ AI(chosen tr) ∪RI(chosen tr)) ∪ triggered(E),

E ′ = E ∪ EI(chosen tr) − triggered(E).
2

Note that, for any given interpretation I = 〈S,E〉, this function computes
the set of all feasible interpretations that can be obtained by triggering events
and by asserting or retracting predicates, according to I. Note that any output
interpretation I ′ = 〈S ′, E ′〉 takes into account the consequences of the events
triggered at the time nextTime(I). All these events are removed from the set
of envisioned events E ′, while new events possibly planned to occur in the
future are added to E ′ through the set EI(chosen tr). The set S ′ is any stable
model of the dynamic knowledge base DKB evaluated over DB ∪ S plus the
asserted and retracted predicates, and including the recently occurred events.

We point out that, as a consequence of the non-deterministic choices con-
structs, the output of T applied on a singleton {I} is in general a set of
multiple alternative interpretations, even in the case the dynamic knowledge
base is stratified. However, it deterministically outputs a unique interpretation
(for the given I) if the program is stratified and there are no ”active” choices,
i.e., C(I) = ∅.

Definition 11 Let P = 〈DB, DKB, EV〉 be a DATALOGev! program, where EDB

is the set of extensional predicates in DB, and H a list of ground events, also
called list of envisioned events. The evolution of the program P given H (short:
the evolution of PH) is the succession of sets of interpretations ̂T such that (i)
̂T0 = {〈EDB, H〉}, and (ii) ̂Ti+1 = T( ̂Ti). For every j > 0, any interpretation
M ∈ ̂Tj is called a temporal model for PH. 2

Note that the definition of temporal model refers to a list H of en-
visioned events, containing the events that are deterministically known
to happen. Thus, H can be used for simulating the actual behavior
of a system modelled with DATALOGev!. For instance, in Example 8,
two orders id1 and id2 that arrive at time instants 0 and 3, re-
spectively, can be encoded through the list of envisioned events H =
[ReceiveOrder(id1, c1, i1, 5)@0, receiveOrder(id2, c2, i1, 10)@3].
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Under an abstract perspective, the events in H are used for constraining the
evolution of the DATALOGev! program.

Definition 12 Let P be a DATALOGev! program, EDB be an input database, and
H a list of ground events. A temporal model M for PH is a stationary model
(for PH) if it is a fixpoint of T, i.e., if M ∈ T({M}). Moreover, curTime(M)
is called the converging time of M . 2

Finally, the set of all the temporal (resp. stationary) models of a given program
PH is denoted by T M(PH) (resp. T SM(PH)).

4 Describing Workflow Evolutions in DATALOGev!

In this section, we provide an automatic mechanism for deriving logic specifi-
cations, which can be eventually used for simulating the behavior of the system
with different execution scenarios. Specifically, let WS be a workflow schema,
then we want to construct a DATALOGev! program P(WS) = 〈DBws, KDBws, EVws〉
modelling WS, by specifying both static and dynamic aspects, as well as the
general event transition rules for the its enactment.

4.1 Database and Dynamic Knowledge Bases

Given WS = 〈A, E, a0, F, A
∧
in, A

∨
in, A

∗
in, A

∗c
in, A

∗∧
in , A∗∨in , A∧out, A

∨
out, A

L
out, E

L, λ, L〉,
the database DBws is such that

• Each node a in A, the unique initial task a0 and each final task b in F are
defined by the predicates task(a), startTask(a0), finalTask(b), respec-
tively;

• Each regular task a is defined by regularTask(a), whereas each replicated
one is defined by replicatedTask(a);

• The arcs in E are defined by the predicates arc(PrecTask, NextTask), while
λ : EL → L is defined by arcLabel(PrecTask, NextTask, Label);

• Each task a in A∧in, A
∨
in, A

∗
in, A

∗c
in, A

∗∧
in , A∗∨in , A∧out, A

∨
out, and ALout is defined

by inAND(a), inOR(a), inRep(a), inRepCYCLE(a), inRepAND(a), inRepOR(a),
outAND(a), outOR(a), and outLabel(a) respectively.

Example 13 In our running example, DBs contains 8 atoms defin-
ing the tasks, startTask(ReceiveOrder), finalTask(RefuseOrder), and
finalTask(AcceptOrder). The predicate inAND contains exactly the
facts (AcceptOrder) and (NoneAvailable); inOR consists of the facts
(RefuseOrder), and (OneAvailable).
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We have the fact (VerifyAvailability) in inRep, the fact (VerifyClient)
in inRepCYCLE and the fact (FurtherCheck) in inRepOR. The facts
(ReceiveOrder), (OneAvailable) and (NoneAvailable) are in outAND. Fi-
nally the facts (VerifyClient), (FurtherCheck) and (VerifyAvailability)
are in outLabel.

Concerning the arcs, we have that the predicate arcLabel consists of
(VerifyAvailability, OneAvailable, T), (VerifyClient, AcceptOrder, T),
(VerifyAvailability, NoneAvailable, F), (FurtherCheck, RefuseOrder, F),
(FurtherCheck, VerifyClient, T), (VerifyClient, FurtherCheck, F). 2

DBws contains also the information needed for the execution. In the following,
we associate to each workflow instance a unique identifer ID , and, in order
to simplify the presentation, a predicate p(ID , X), where X is a generic list
of arguments, is denoted by pID(X). Then, given a workflow instance ID , the
state of the execution of a Task with identifier TID is kept by means of the
following relations:

• startActiveID(Task, TID, Time), storing the time when 〈Task, TID〉 was ac-
tivated;

• startReadyID(Task, TID, Time), storing the time when the task 〈Task, TID〉
was declared ready for execution;

• startRunningID(Task, TID, S, Time), storing the time a server S has started
its execution;

• executedID(Task, TID, Time, Output), storing the time when the execution
of the task 〈Task, TID〉 is completed and the result Output of the execution
— recall that Output is a label in L.

The state of a task 〈Task, TID〉 can be derived using simple DATALOG rules and
will be accessed with the predicate stateID(Task, TID, stateType). These rules
are in the dynamic knowledge base KDBws:

stateID (Task, TID, idle) ← ¬startActiveID (Task, TID, ).
stateID (Task, TID, activated) ← startActiveID (Task, TID, ), ¬ startReadyID (Task, TID, ).
stateID (Task, TID, ready) ← startReadyID (Task, TID, ), ¬ startRunningID (Task, TID, , ).
stateID (Task, TID, running) ← startRunningID (Task, TID, , ), ¬ executedID (Task, TID, , ).
stateID (Task, TID, executed) ← executedID (Task, TID, , ).

where, to simplify the notation, we used some syntactic sugar for writing
negative literals in the body of the first of the above rules: ¬a(X), stands for
¬a′(Y), where a′ is defined by the new rule: a′(Y) ← a(X), and Y is the list of
all non-anonymous variables occurring in X.

Servers are stored by the predicate server(ServerName), while predicate
executable(S, T, D) states that the server S can execute the task T and the
execution will have the duration D. Moreover, the predicate outOfOrder(S)
states that the server S cannot be temporally used for any execution. If not
out of order, a server S is available for a new task execution if it is not busy.
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The availability is checked with the following dynamic rule in KDBws:

available(Server) ← executable(Server, , ), ¬ outOfOrder(Server),
¬ ( startRunningID (Task, TaskIdentifier, Server, ),
¬ executedID (Task, Quantifiers, , ) ).

where we have further simplified the notation for writing negated conjunctions
in the body of a rule r: ¬(C), where C is a conjunction, stands for ¬c(X), where
c is defined by the new rule: c(X) ← C and X is the list of all variables occurring
in C which also occur in r. We shall use this notation also in the following.

Finally the fact that an instance of an arc (Prec, Next) has been activated
from an instance TIDP of the task Prec to an instance TIDN of the task Next

is stored in the predicate activeArc(Prec, TIDP, Next, TIDN).

4.2 Modelling the Enactment Engine

he core of the program P(WS) lies in the definition of the event activation
rules that guide the evolution of the workflow instances, and that enable to
realize a simulation environment for workflow executions, which is quite in-
tuitive, declarative in the spirit, yet so powerful to cover all the features of
current workflow systems. The whole set of rules in EVws is shown in Figure 7,
where bold predicates are used for denoting predicates that can be customized,
i.e., specialized for the need of any particular workflow designer.

The first event, called init, is an external event which starts a new workflow
instance at a certain time 〈t1, t2〉. The dynamic predicate startedID is used
for keeping trace of the fact that a new instance ID has been started. Notice
that these event causes also the triggering of run()@(T++), i.e., at a time
instant 〈t1, t2+1〉. Thus, it is an event which is seen instantaneously with the
init in the main (real) dimension, whereas it happens in the auxiliary internal
dimension. Every time the event run()@(T) is internally triggered in rule r2,
the system tries to assign the ready tasks to the available servers — as we do
not use a particular policy for scheduling the servers, the assignment is made
in a nondeterministic way.

The predicate unsatID() is true if it has been already checked that the work-
flow instance does not satisfy possible constraints on the overall execution
– this check is performed during the event complete, described below. The
predicate executedID() is true if the workflow instance has already entered a
final state so that no other task needs to be performed.

Once the tasks are assigned to servers, their executions start. So information on
the assigned servers and the execution starting time are stored. Moreover, an
event evaluate is triggered for each execution in rule r3, where the predicate
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r1 : [init(WID)@(T)]
!run()@(T++),
+startedID (), +startReadyID (ST, 1, T) ← startTask(ST).

r2 : [run()@(T)]
!evaluateID (Task, L, Duration)@(T++)
+startRunningID (Task, TID, Server, T) ← ¬ unsatID (), ¬ executedID (),

stateID (Task, TID, ready),
available(Server),
executable(Server, Task, Duration)
⊗ choiceAny().

r3 : [evaluateID (Task, TID, Duration)@(T)]
!completeID (Task, TID, Output)@(T+(Duration)) ← evaluationID (Task, TID, Output).

r4 : [completeID (Task, TID, Output)@(T)]
!run()@(T++), executedID (Task, TID, T, Output).
+unsatID () ← unsatGCID (Task, TID).
+executedID () ← finalTask(Task), ¬unsatGCID (Task, TID).
!activateTaskID (Next, TID, Task)@(T++), ← outOR(Task), Output 6= “fail”, arc(Task, Next)

⊗ ChoiceAny().
!activateTaskID (Next, TID, Task)@(T++) ← outAND(Task), Output 6= “fail”, arc(Task, Next).
!activateTaskID (Next, TID, Task)@(T++) ← outLabel(Task), Output 6= “fail”,

arcLabel(Task, Next, Label), Label = Output.

r5 : [activateTaskID (Task, TID, Prec)@(T)]
!run()@(T++),
+startActiveID (Task, 1, T),
+startReadyID (Task, 1, T) ← inOR(Task),¬ stateID (Task, , active).
!run()@(T++),
+activeArcID (Prec, TID, Task, NewTID),
+startActiveID (Task, NewTID, T),
+startReadyID (Task, NewTID, T), ← inRep(Task), quantifyTID(Task, NewTID).
!run()@(T++),
+startActiveID (Task, NewTID, T),
+startReadyID (Task, NewTID, T) ← inRepCYCLE(Task), NewTID = TID + 1,

¬ (start ∗ (Task′, Task),
startActiveID (Task′, TID, ),
¬ executedID (Task′, TID, )).

!run()@(T++),
+startActiveID (Task, TID, T),
+startReadyID (Task, TID, T) ← inRepOR(Task),¬ stateID (Task, TID, active).
+activeArcID (Prec, TID, Task, TID) ← inRepOR(Task).
!checkForReadyID (Task, TID)@(T++),
+activeArcID (Prec, TID, Task, TID) ← inRepAND(Task).
+startActiveID (Task, TID, T) ← inRepAND(Task),

¬ stateID (Task, TID, active).
!checkForReadyID (Task, 1)@(T++),
+activeArcID (Prec, TID, Task, 1) ← inAND(Task).
+startActiveID (Task, 1, T) ← inAND(Task), ¬ stateID (Task, 1, active).

r6 : [checkForReadyID (Task, TID)@(T)]
!run()@(T++).
+startReadyID (Task, TID, T) ← inRepAND(Task),¬stateID (Task, TID, ready),

¬ (arc(Prec, Task),
¬ activeArcID (Prec, TID, Task, TID)).

+startReadyID (Task, 1, T) ← inAND(Task),¬stateID (Task, 1, ready),
¬ (arc(Prec, Task), possInstance(Prec, TIDP),
¬ activeArcID (Prec, TIDP, Task, 1)).

Fig. 7. DATALOGev! program P(WS), modelling the behavior of a workflow system.
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evaluationID(Task, TID, Output) is used to model the function performed by
each task, typically depending on both the execution and internal databases
— this predicate must be suitably specified by the workflow designer. The
event for completing the task is triggered at the time T + Duration.

Example 14 In our running example, the task VerifyAvailability must check
whether a given store contains enough quantity of the required item. This
behavior is captured by the following rules:

evaluationID (VerifyAvailability, TID, “T”) ← store(TID, City), orderID (Item, OQTY),
availability(TID, Item, AQTY), AQTY ≥ OQTY.

evaluationID (VerifyAvailability, TID, “F”) ← store(TID, City), orderID (Item, OQTY),
availability(TID, Item, AQTY), AQTY < OQTY.

Note that, besides availability and store, we are also assuming the exis-
tence of the dynamic predicate orderID(Item, OQTY) storing information about
client request. 2

As described in the event r4, after the completion of a task, the selection of
which of its successor tasks to be activated depends on whether the task is in
A∨out, A

∧
out, or ALout and can be done only if the task execution is not failed. The

two actions of registering data about the completion and of triggering the event
run to possibly assign the server to another task are performed in all cases. The
fact unsatID() is added only if the predicate unsatGCID(Task, TID) is true.
This predicate is defined by the workflow designer to enforce possible global
constraints — if not defined then no global constraints are checked after the
completion of the task. We shall return on the definition of this predicate for
typical global constraints in the next section. For a final task, if the global
constraints are satisfied then we can register the successful execution of the
workflow instance.

The event activateTask in rule r5 is used for activating the target task in an
arc. If the task is in A∨in ∪ A∗in ∪ A∗∨in ∪ A∗cin the activation also implies that the
task is ready for the execution. For tasks in A∗in, we activate as many instances
as specified in the predicate quantifyTID, whereas for tasks in A∗cin we activate
a new instance at time, but only after having checked that all replicated tasks
created in the previous iteration have been executed. The predicate start∗ is
defined next:

start∗ (Task, TaskR) ← arc(Prec, Task),
replicated(Prec), start∗ (Prec, TaskR).

start∗ (Task, Task) ← inRep(Task).
start∗ (Task, Task) ← inRepCYCLE(Task).

Notice that we also keep track of all activated arcs through the predicate
startActive. As for tasks in A∧in and A∗∧in we have to check more elaborated
conditions by means of the event checkForReady, defined by rule r6, which
decides whether a given activated task is ready for execution, by implement-
ing the semantics informally described in Section 2. Finally, the predicate
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possInstance is defined next:

possInstance(Task, 1) ← regular(Task).
possInstance(Task, TIDR) ← replicated(Task), start∗ (Task, TaskR), inRep(TaskR),

startReady(TaskR, TIDR, ).

4.3 Global Constraints

We complete the model by showing how to specify global constraints on
the executions. Actually, the workflow designer may define the predicate
unsatGCID(Task, TID), used within the event complete, in order to account
for any desired behavior. Obviously, these constraints are all those expressible
by means of DATALOG rules; nonetheless, some common types of constraints
are next discussed.

Definition 15 Given a workflow WS, a scheduling constraint over WS is de-
fined as follows: (i) for each task a ∈ A, !a (resp. ¬!a) is a positive(resp.,
negative) primitive scheduling constraint, (ii) given two positive primitive
scheduling constraints c1 and c2, c1 ≺ c2 is a serial constraint, whereas given
any pair of scheduling constraints c1 and c2, c1 ∨ c2 and c1 ∧ c2 are complex
constraints. 2

Informally, a positive (resp., negative) primitive constraint specifies that a
task must (resp., must not) be performed in any workflow instance. A serial
constraint c1 ≺ c2 specifies that the event specified in the global constraint
c1 must happen before the one specified in c2. The semantics of the operators
∨ and ∧ are the usual. The set of global constraints over a workflow WS,
denoted by Constr(WS), can be also mapped into the program P(WS) =
〈DBws, KDBws, EDB〉, and specifically in a suitable set a set of dynamic rules in
KDBws, denoted by PConstr(WS), constructed as follows.

• For each global constraint c =!〈Task, TID〉, PConstr(WS) contains
unsatGC1ID (c, gs) ← executedID (Task, TID, T, “fail”).
unsatGC1ID (c, gs) ← ¬ executedID (Task, TID, T, ).

where gs equals s if c only occurs as sub-expression of a complex global
constraint; otherwise, gs holds g.

• For each global constraint c = ¬ !〈Task, TID〉, PConstr(WS) contains
unsatGC1ID (c, gs) ← executedID (Task, TID, T, “fail”).

• For a global constraint c =!〈Task1, TID1〉 ≺!〈Task2, TID2〉, PConstr(WS)
contains

unsatGC1ID (c, gs) ← executedID (Task2, TID2, , “fail′′)).
unsatGC1ID (c, gs) ← executedID (Task2, TID2, T2, O2), O2 6= “fail”

executedID (Task1, TID1, T1, O1), O1 6= “fail”, T2 < T1.

• For each global constraint c : c1 ∨ c2, PConstr(WS) contains
unsatGC1ID (c, gs) ← unsatGC1ID (c1, ), unsatGC1ID (c2. ).
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• For each global constraint c : c1 ∧ c2, PConstr(WS) contains
unsatGC1ID (c), gs ← unsatGC1ID (c1, )
unsatGC1ID (c), gs ← unsatGC1ID (c2, ).

• Finally, PConstr(WS) contains

unsatGCID (Task, L) ← finalTaskID (Task), unsatGC1ID ( , g).

Notice, that the last rule we added enforces the check for scheduling con-
straints to be done after the completion of a final task. Observe that we do
not check satisfaction for constraints which are only used as sub-expressions;
moreover, we point out that some global constraint check can be anticipated.
For instance, the global constraint c =!a1 ≺ !a2 can be checked just after the
execution of the task a2. An interesting optimization issue is to find out which
global constraints could be effectively tested after the completion of each task.

Unsuccessful Executions: As discussed in the previous section, a successful
or unsuccessful completion for a workflow instance ID is registered by means of
the predicate executedID() or unsatID(), respectively. If both predicates are
not true, then the are two case: either (i) the execution is not yet finished for
some task is currently ready or running, or (ii) non more tasks are scheduled
even though a final task was not reached. The latter case indeed corresponds
to an unsuccessful completion of the workflow instance and can be modelled
as follows:

failedID () ← unsatID ().
failedID () ← startedID (), ¬ executedID (),¬ workingID ().
workingID () ← stateID (T, , ready)).
workingID () ← stateID (T, , running)).

These predicates are definitively useful while querying the workflow in order
to reconstruct the actual status of an execution.

5 Querying for an Evolution

After having introduced the model P(WS) for specifying structural and dy-
namic aspects of a workflow WS, the next step is to provide a mechanism
for querying the model in order to obtain information on its (possible) evo-
lutions. For instance, in our running example, the designer may be interested
in knowing whether (and when) a given task has been executed for a given
pre-defined scenario.

The scenario is modelled by means of a list containing all the requests (with the
corresponding arrival time), and it is denoted with (S). For instance, the sce-
nario [init(id1)@0, init(id2)@2, init(id3)@4, init(id4)@5] specifies a new
instantiation of the workflow at time instants 0, 2, 4 and 5. This scenario is
used for querying the P(WS) DATALOGev! program.
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Roughly, a query is a triple 〈S, G, R〉, where S is a scenario, which lists all the
events envisioned to happen, G is the goal we want to achieve (e.g., the schedul-
ing of all the orders), and R is a list of results. Goals are formulae involving
literals and special temporal quantifiers, as defined inductively below. Let t

be a time instant and C a nonempty conjunction of ground literals. Then, ∃@tC

is a goal. Moreover, let t1 and t2 be two time instants such that t1 < t2, let
C be a (possibly empty) conjunction of ground literals, and let Q be a goal,
whose first quantifier is ∃@t2 . Then, ∃@t1(C ∧ Q) is a goal.

Hereafter, given a model M = 〈S,E〉 for P(WS), and a time instant t, we
denote by M@t = 〈S ′, E〉 the interpretation consisting of all the atoms having
any temporal argument t′ ≤ t. Given two temporal models M and N , we say
that N is an evolution of M from time t if M@t = N@t. The set of all the
evolutions of M from time t is denoted by evols@t(M).

The semantics of goals is as follows.

Definition 16 Let WS be a workflow, and let M be a set of temporal models
for P(WS). We say that a goal G is true with respect to M if one of the
following conditions holds:

• G = ∃@tC, where C is a nonempty conjunction of ground literals, and there
exists M ∈ M s.t. all the literals in C are in M at time t; or

• G = ∃@t(C∧Q′), where C is a (possibly empty) conjunction of ground literals,
and there exists M ∈ M s.t. all the literals in C are in M at time t and Q′

is true w.r.t. evols@t(M) ∩M.

Otherwise, we say that G is false w.r.t. M. 2

We are now in the position of formalizing the notion of querying a workflow.

Definition 17 Let WS be a workflow. A query on WS is an expression of
the form 〈S, G, R〉 where

• S is a scenario;
• G (goal) is a goal;
• R (result) is a list [r1(X1)@(t1), . . . , rm(Xm)@(tm)], m > 0 and t1 ≤ . . . ≤ tm,

where ri is any predicate symbol of the program P(WS), say with arity
ki, and Xm is a list of ki terms. 2

The semantics of a query is as follows.

Definition 18 (Query answers) Let WS be a workflow, and Q = 〈S, G, R〉,
where R = [r1(X1)@(t1), . . . , rm(Xm)@(tm)], be a query on it. The answer of Q
(resp. stationary answer of Q), denoted by Q(WS) (resp. Qs(WS)), is either

• the list of relations [r1, . . . , rm] such that ri = {xi|ri(xi)@ti ∈ M ∧
xi unifies with Xi}, where M is a model with curTime(M) ≥ tm in
the set of temporal models TM(P(WS)S) (resp., of stationary models
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TSM(P(WS)S), such that G is true in {M} or
• the empty list if G is false in TM(P(WS)S) (resp. TSM(P(WS)S)).

In the former case the query is true, whereas in the latter is false. 2

Example 19 Assume, in our running example, the company has planned to
have a number of requests, constituting a scenario S. The designer want to
know the possible evolutions; this aim can be achieved by supplying the query
〈S, ∅, R〉. Indeed, the list R, in the case is not empty, stores the log of the
executions that satisfy the goal G, for a given scenario S.

For the following, let tmaxws be the sum of all the durations of the tasks, declared
by any server. Observe that such tmaxws is an upper bound on the completion time
of any instance. Assume the requests order(id1, i1, 5) and order(id2, i1, 10)
are given and that the database is the one shown in Figure 6.

Then, the query 〈H, G, R〉, where

• H : [init(id1)@0, init(id2)@3],
• G : ∃@tmaxws (executed(id1) ∧ executed(id2)), and
• R : [availability(X, I, Q)@tmaxws ]

will output the availability of products in each store after the satisfaction of
the orders — the careful reader may check that these orders may be satisfied
by selecting store s1 for request id1, and store s2 for request id2. Conversely,
assuming an other order of the form order(id3, i3, 5), the query with the goal
G : ∃@tmax executed(id3) and H : [init(id1)@0, init(id3)@2] will output the
empty list since there is no way for selling the desired quantity of item i3. 2

5.1 Computational Complexity of Reasoning on Workflows

We have just seen how to equip our framework of an interesting querying
mechanism which enable to reason on possible execution. We next study the
computational complexity of the most common reasoning tasks. In particular,
following the data complexity approach [25], in all results stated below we will
consider a given problem instance having as its input the temporal domain T ,
the database DB, and the list of envisioned events H, while both the program
P and (possibly) the query Q are fixed. Recall that the (data) complexity of
computing a stable model of a DATALOG¬s program on a given database EDB can
be done in time polynomial on the size of EDB, whereas it requires exponential
time (unless P = NP) if the program is not stratified. In fact, in the latter
case, deciding whether there exists a stable model or not is NP-complete [16].

First, we discuss the problem of deciding the existence of temporal and station-
ary temporal models, evidencing how constraints represent an actual source
of complexity.
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Theorem 20 (Temporal model existence) Let H be a list of envisioned
events. Then, deciding whether P(WS)H, for a given workflow WS, has a
temporal model is

• NP-complete, for general WS. Hardness holds even if H contains one event
only, the schema WS is acyclic, and Constr(WS) contains one constraint
only (no matter of the type).

• feasible in polynomial time if Constr(WS) = ∅.

PROOF.

• Membership. Recall that an interpretation I is a model for P(WS)
iff there exist j > 0, such that I ∈ ̂Tj, where T is the function de-

fined in Definition 11. We claim: ̂T1 6= ∅ ⇔ TM(P(WS)H) 6= ∅. In fact,

(⇒) If there exists M ∈ ̂T1, then M is a temporal model (with j = 1);
(⇐) Let t be the first time which is triggered in the program P(WS),

i.e., t = nextTime(〈EDBws, H〉). If there exists M ′ ∈ TM(P(WS)H),
then M ′@t must belong to ̂T1, i.e., M ′@t is the first evolution that
had lead to the model M ′.

It follows that the problem reduces to deciding the non-emptiness of
T({I0}), where I0 = 〈EDBws, H〉. By definition, T({I0}) contains for any set
of transition rules chosen tr ∈ ground TR(I0), all interpretations 〈S ′, E ′〉
such that (i) S ′ ∈ SM(DBws∪DKBws∪S∪AI0(chosen tr)∪RI0(chosen tr))∪
triggered(H), and (ii) E ′ = H∪EI0(chosen tr)− triggered(H). Hence, in order
to check whether this set is empty we can equivalently check whether the
program DBws ∪ DKBws ∪ S ∪AI0(chosen tr) have stable models. This latter
task is feasible in NP[16].
Hardness. Recall that, given a boolean formula Φ over variables X1, ..., Xm

the problem of deciding whether it is satisfiable is NP-complete [6]. W.l.o.g.
assume Φ to be in conjunctive normal form. Then, we define a workflow
schema WS(Φ) = 〈A,E, ao, {UnSat , Sat}〉, such that A consists of an initial
activity a0 with a0 ∈ A∧

out, of the activities Xi, TXi, FXi for each 0 < i ≤ m,
of the activities Cj and Cj for each distinct clause j of Φ, and of two final
states UnSat and Sat such that Sat ∈ A∧

in, and UnSat ∈ A∨
in. The set of

precedences E is defined as follows.
· For each Xi, (Xi, TXi) and (Xi, FXi) are in E, with Xi ∈ A∧

in ∩ A∨
out,

TXi ∈ A∧
in ∩A∧

out, and FXi ∈ A∧
in ∩A∧

out. Thus, each time the activity Xi

is executed, it is required to make a choice between its possible successors;
note that in our encoding, TXi means that Xi is true, while FXi means
that Xi is false. Finally an arc (a0, Xi) is in E.

· For each Cj, we have that (Cj, Sat) is in E, with Cj ∈ A∨
in∩A∧

out. Moreover,
we have (TXi, Cj) ∈ E in the case Xj appears in the clause Cj, while we
have (FXi, Cj) ∈ E in the case Xi appears negated in the clause Cj.

· For each Cj, we have that (Cj,UnSat) is in E, with Cj ∈ A∧
in ∩ A∧

out.
Moreover, we have (FXi, Cj) ∈ E in the case Xj appears in the clause
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Cj, while we have (TXi, Cj) ∈ E in the case Xi appears negated in the
clause Cj.

Finally let H = [init(id1)], i.e., we consider one instantiation of the above
schema.

We claim that: Φ is satisfiable ⇔ the instance id1 may activate the task
Sat . In fact, if Φ is satisfiable, then, it is possible to choice the successor
of each Xi, in a way that all the activities Cj can be executed. Hence, the
activity Sat will be eventually reached. On the other side, if there exists a
path leading to Sat , it can be easily mapped into a satisfying assignment
for Φ. Conversely, if the truth assignment of the variables do not satisfy Φ,
then all the activities Cj are executed leading to UnSat .

The theorem follows by observing that the reaching of the task Sat can
be enforced both by constraint !Sat and by !Sat ≺!UnSat .

• In the case no constraints are issued on the global schema, it easily fol-
lows that the program P(WS) is stratified modulo choice by construction.
Thus, we can exploit the results in [20] and concluding the fact that we can
compute any temporal model in polynomial time. 2

Note that the problem is harder, if we are not satisfied with any temporal
model, and we require the model to be stationary.

Theorem 21 (Stationary model existence) Let H be a list of envisioned
events. Then, deciding whether P(WS)H has a stationary model is

• PSPACE-complete, for general WS, and
• NP-complete, if the associated control flow is acyclic. In this case, if

Constr(WS) = ∅, then P(WS) always have a stationary model, and any
stationary model can be computed in polynomial time.

PROOF.

• Membership. We can simply apply in a constructive way the procedure for
computing a temporal model T. We start with I0 = 〈EDBws, H〉, and we
nondeterministically compute (if exists) a model in I1 ∈ T({I0}). Similarly,
at each step j > 1 we select Ij ∈ T({Ij−1}). Since the number of possible
models is bounded by all the possible combinations of the literals in it,
we can avoid to return two times in the same state, and hence after an
exponential number of steps we can possibly reach a stationary model or
deciding that there not exists any. The membership derives from the fact
that NPSPACE = PSPACE.
Hardness. Let us consider the language Datalog1S proposed in [4], for dealing
with finite representation of infinite query answers. Datalog1S is an extension
of DATALOG in which each predicate has a distinguished temporal argument
on which the increment function (+1) can be possibly applied. It is im-
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mediate to see that any Datalog1S rule can be reformulated in a suitable
event activation rule in DATALOGev! by preserving the underlying semantics.
The results follows from the fact PSPACE-completeness of reasoning on
Datalog1S programs.

• Membership. In the case of acyclic control flow, an upper bound on the
completion time of any instance is provided by the sum of all the durations
of the tasks, declared by any server. Let tmax this time. Then, we can guess
an interpretation I in which the time instants must be in the range [0..tmax],
and we can verify that I is indeed a model in polynomial time [10].
Hardness. It is sufficient to observe that in the case of acyclic control flow
there exists a stable model if and only if there exists a stationary one. Thus,
both the NP-hardness result and the tractable case for case Constr(WS) =
∅) easily follow from Theorem 20, which does not require the acyclicity of
the graph. 2

It turns out that acyclic workflows have an efficient implementation as far as
as the computation of one temporal model is concerned. However, if we have
to answer a given query Q, and hence we are interested in some ”particular”
temporal models, then the complexity becomes much higher.

Proposition 22 (Query answering under temporal models) Let WS
be a workflow, and Q = 〈S, G, R〉 be a query on it. Then, deciding whether
the answer Q(WS) is true is NP-complete. Hardness holds even for acyclic
workflows, with Constr(WS) = ∅, and G containing a literal only.

PROOF. Membership. Let tmax be the maximum time instant occurring in
the literals of G. Then, we can guess an interpretation I in which the time
instants must be in the range [0..tmax], and we can verify that I is indeed a
model in polynomial time [10].

Hardness. It easily derives from Theorem 20, by letting in the construction
G = ∃@4Sat , assuming each activity to have unitary duration. 2

Interestingly, query answering under stationary models is not more difficult
then deciding the existence of a stationary model.

Proposition 23 (Query answering under stationary models) Let WS
be a workflow, and Q = 〈H, G, R〉 be a query on it. Then, deciding whether the
answer of Qs(WS) is true is

• PSPACE-complete, for general WS, and
• NP-complete, if the associated control flow is acyclic. Hardness holds even

with Constr(WS) = ∅.
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PROOF.

• It easily derives from Theorem 21. In fact, the problem is at least hard
as deciding the existence of a stationary model, which is PSPACE-hard.
Moreover, it can be done in non-deterministic polynomial space with the
same argument of the membership in Theorem 21.

• Membership in NP derives from the same observations in Theorem 21. For
the hardness, it suffices to let G = ∃@4Sat in the NP-hardness proof of
Theorem 20 (which does not require the acyclicity of the graph). 2

6 Comparison with Related Work and Conclusion

We have presented a new formalism which combines a rich graph representa-
tion of workflow schemes with simple (i.e., stratified), yet powerful DATALOG
rules to express complex properties and constraints on executions. We have
shown that our model can be used as a run-time environment for workflow
execution, and as a tool for reasoning on actual scenarios. The latter aspects
gives also the designer the ability of finding bugs in the specifications, and of
testing the system’s behavior in real cases.

Approaches with a slightly similar spirit have been already appeared in the
literature. For instance, in [5] the use of the Concurrent Transaction Logic
(CT R) [3] is proposed in order to provide a way to both describe and reason
about workflow, by introducing a rich set of constraints. An implementation of
the technique is in [19], in which a compiler, named Apply, accepts a workflow
specification that includes a control graph, the triggers and a set of temporal
constraints; as result of the compilation process, an equivalent specification in
CT R is provided. Among the other graphical formalisms, we mention the use
of Petri Nets [23] for modeling and analyzing workflows; this latter formalism
has a deep formal foundations, and is profitably used for investigating dif-
ferent interesting properties for the process, such as liveness, and boundness.
A recently work [24] uses the Petri-net theory and tools to analyze workflow
graphs. The approach consists in translating workflow graphs into so-called
workflow-nets, which are are a class of Petri nets tailored towards workflow
analysis.

However there are some important differences both in the spirit and in the
technical solutions of these letter approaches w.r.t. our framework. First, CT R
logic and Petri Nets have been used for solving different problems than the
simulation on scenarios, which is, instead, the focus of the application of
DATALOGev!. Specifically, they considered other central problems in the work-
flow management, such as the consistency, i.e., deciding whether a workflow
graph is consistent w.r.t. some global constraints, and the verification, i.e.,
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deciding whether any legal execution satisfies the global constraints. Nonethe-
less, neither the notion of querying the state of the workflow after some envi-
sioned executions nor the ability of planning the actions to perform in order
to satisfy some goal have been treated there.

Moreover, DATALOGev! is a language for modelling not only the schema of the
workflow but also the resources and the servers involved in the process, thus,
providing a way for capturing both static and dynamic aspects of the mod-
elling. Specifically, as for the dynamic aspects, such as checking whether a
desired amount of products is available in a given store at a given time,
DATALOGev! provides a great flexibility since it allows the designer to explicitly
introduce in the modelling the notion of time and of happening of events.

Finally, a very important and distinguishing feature of our DATALOGev! lan-
guage is the ability to deal with external events, other then internal ones. For
instance, in our running example, natural external events are the closing of a
store, and the purchasing of a given quantity of products to assign at a given
store. All these events can be naturally modelled by means of very simple and
intuitive rules, that can be incrementally inserted into the specifications with-
out modifying any other part. This feature will eventually lead to modular
specifications and results very important for real workflow systems.

On this way, our long-term goals is to devise workflow systems that auto-
matically fix “improperly working” workflows (typically, a workflow systems
supply, at most, warning message when detect such cases). In order to achieve
this aim, we shall investigate formal methods that are able to understand when
a workflow system is about to collapse, to identify optimal scheduling of tasks,
and to generate improved workflow (starting with a given specification), on
the basis of some optimality criterion.
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