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Mining and Reasoning on Workflows

Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, Domenico Saccà

Abstract

Workflow management systems represent today a key technological infrastructure for advanced appli-

cations which is attracting a growing body of research, mainly focused in developing tools for workflow

management, that allow the users both to specify the “static” aspects, like preconditions, precedences

among activities, rules for exception handling, and to control its execution, by scheduling the activities

on the available resources.

This paper deals with an aspect of workflows which has so far not received much attention even though

it is crucial for the forthcoming scenarios of large scale applications on the web: providing facilities for

the human system administrator for identifying the choices performed more frequently in the past that

had lead to a desired final configuration.

In this context, we formalize the problem of discovering the most frequent patterns of executions,

i.e., the workflow substructures that have been scheduled more frequently by the system. We attacked

the problem by developing two data mining algorithms, on the basis of an intuitive and original graph

formalization of a workflow schema and its occurrences.

The model is used both to prove some intractability results, that strongly motivate the use of data

mining techniques, and to derive interesting structural properties for reducing the space of search for

frequent patterns. Indeed the experiments we have carried out show that our algorithms outperform

standard data mining algorithms adapted to discover frequent patterns of workflow executions.

Keywords: H.2.8.d Data Mining, H.2.4.p Workflow management.

I. Introduction

A workflow is a partial or total automation of a business process, in which a collection

of activities must be executed by humans or machines, according to certain procedural

rules. Modern enterprises increasingly use workflow technology for designing business

processes, by means of management systems that provide mechanisms for formally speci-

fying the schema of execution, for simulating its evolution under different conditions, for

validating and testing whether it behaves as expected, and for evaluating the ability of a

service to meet requirements with respect to throughput times, service levels, and resource

utilization.
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This paper deals with an aspect of workflows which has not so far received much at-

tention even though it is crucial for the forthcoming scenarios of large scale applications

on the web: providing facilities for the human system administrator to monitor the ac-

tual behavior of the workflow system in order to predict the “most probable” workflow

executions. Indeed, in real world-cases, the enterprise must perform many choices during

workflow execution; some choices may lead to a benefit, others should be instead avoided

in the future. Data mining techniques may, obviously, help the administrator, by look-

ing at all the previous instantiations (suitably collected into log files in any commercial

system), in order to extract unexpected and useful knowledge about the process, and in

order to take the appropriate decisions in the executions of future instances.

The discovered knowledge can be profitably used for solving problems such as:

Successful Termination Prediction: Assume that an execution is at a given point in

which the administrator has to choose an activity to start, from a given set of potential

activities. Then, she/he typically wants to know which is the choice performed in the

past, that more frequently had led to a desired final configuration.

Identification of Critical Activities: In every workflow schema, there are some activi-

ties that can be considered critical, it the sense that they are scheduled by the system,

in every successful execution. Some times, the system administrator may know in ad-

vance that a given activity is critical, but it often happens that this knowledge must

be inferred by looking at the actual behavior of the system.

Failure/Success Characterization: By analyzing the past experience, a workflow ad-

ministrator may be interested in knowing which discriminant factors characterize the

failure or the success in the executions.

Workflow Optimization: The information collected into the logs of the system can be

profitably used to reason on the “optimality” of workflow executions. For instance,

the optimality criterion can be fixed w.r.t. some real-case interesting parameter, such

as the quality of the service or the average completion time.

In this paper we concentrate on the first of the above problems: Successful Termination

Prediction. We show that a crucial step towards an automatic solution to this problem con-

sists of identifying the blocks of activities, called patterns, that have been more frequently

scheduled together during the execution by the workflow system. To this aim, we propose
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two distinct algorithms for frequent pattern mining implementing sophisticated techniques

which benefit from the peculiarities of the applicative context, thereby extending previous

proposals for mining frequent structures in complex domains (such as frequent sequences,

trees and graphs — see, e.g., [3], [31], [10], [16], [11], [28], [15], [29]) to the mining of

workflow executions.

A. Related Work

The paper is about applying data mining techniques to the area of workflows and, as

such, it presents a quite intuitive graph formalization of the main workflow concepts as

the basic data structure on which data mining algorithms work. Therefore, a first area of

related work is workflow modelling and analysis. Let us preliminarily point out that the

paper is not aimed at developing a comprehensive workflow specification; so, even though

our workflow model covers basic features required in workflow specification, it contains

some simplifying assumptions. For instance, our model does not incorporate compensation

or reset activities and assumes acyclicity, i.e., non-recursive workflows and non-iterative

executions. Furthermore, the model does not directly support scheduling or verification

tasks (see, e.g., [19]) and does not handle transactional properties of processes. The

reader interested in the description of advanced features in workflow modelling is referred

to [18], proposing a unifying model for concurrency control and recovery for processes.

Other elaborated models are: the Concurrent Transaction Logic-based model (CT R) [4],

which enables to both describe and reason about workflow, by introducing a rich set of

constraints [6]; the state chart model [26], [27], in which triggers are introduced in order

to define ECA (Event Condition Action) rules for describing transitions among states; the

active object oriented model [13], in which a workflow is modelled by integrating ECA

rules with object-oriented concepts; the Process algebra-based model [20]; and, the Petri

Nets-based model [21], that is a formalism having deep formal foundations, and that is

profitably used for investigating different interesting properties for the process, such as

liveness, and boundness (see, e.g., [22]).

Let us now review some work related to the the main topic of the paper, that is graph

mining techniques specialized to handle constraints derived by the structures of workflow

schemes and instances. The idea of mining execution traces has been already addressed in
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the context of process discovery (see, e.g.[1]), but the goal there is to use the information

collected at run-time for deriving an “a posteriori” schema, that can model all logged

executions and that is well suited for adapting the system to changing circumstances and

removing imperfections in the initial design (see [23] for a survey on this topic).

Instead, in our approach the workflow schema is the starting point not the result: a

number of executions are analyzed contextually and comparatively on the basis of the

schema and with the goal of finding frequent patterns of activities, thus discovering useful

knowledge for supporting the decision process in an enterprise. At the best of our knowl-

edge, our work is the first in handling such a problem, that is a problem of mining graphs

with constraints imposed by the structures of workflow schemes and instances. Under

this perspective, the techniques we propose must be compared with other efforts paid by

the database community for developing algorithms for mining frequent patterns both in

relational databases and in complex domains. Most of these approaches are based on the

anti-monotone property, first exploited in the seminal paper of Agrawal and Srikant [2]

that introduces the Apriori algorithm: the idea is to generate the set of candidates of

length k + 1, by combining in a suitable way the set of frequent patterns of size k, and

then to check their frequencies. A quite simple generalization of this method is presented

in [3] in order to mine sequential patterns.

A completely different approach has been proposed in [10], and goes under the name of

FP-growth method. Essentially, the idea is to mine frequent instances with a top-down

approach, i.e., by recursively projecting the database according to the frequent patterns

already found, and then by combining the results of mining the projected databases. The

extension to sequential pattern is the PrefixSpan algorithm [16]. A recent attempt for

combining such a method with the Apriori approach has been done in [17].

As for the problem of mining patterns in complex domains, the discovery of frequent

trees in a forest has been tackled in [31], while a first Apriori-based algorithm, called AGM,

for identifying frequent substructures in a given graph dataset has been presented in [11].

We stress that this latter task constitutes nowadays a very active and still promising area

of research for its interesting applications in web analysis and in bioinformatics.

For instance, the level-wise search performed by AGM has been adopted and further
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improved in the FSG algorithm [15], in which a smart strategy for labelling the generated

subgraphs avoids many computational expensive sub-graph isomorphism computations.

Moreover, some algorithms based on the projection method have been quite recently pro-

posed as well: gSpan [28] discovers all the frequent subgraphs without candidate generation

and false positive pruning, whereas CloseGraph [29] dramatically reduces the number of

unnecessary frequent subgraphs generated, by exploiting the notion of closed patterns,

i.e., patterns which are no proper subgraphs of any other pattern with the same support.

It is clear that such approaches could be in principle used to deal with the problem of

mining frequent workflow instances, after a suitable adaptation for fitting the peculiarities

of the specific applicative domain of workflow systems. In fact, one can think at modelling

the workflow schema as a graph, and the executions of the workflow as a set of subgraphs

complying with the graph representing the workflow schema.

However, the adaptation of the above mentioned methods to workflow mining is a chal-

lenging task, and it results unpractical from both the expressiveness and the efficiency

viewpoint. Indeed, generation of patterns with such traditional approaches does not ben-

efit from the exploitation of the executions’ constraints imposed by the workflow schema,

such as precedences among activities, synchronization and parallel executions of activi-

ties (see, e.g, [14], [24], [5]). In contrast, the algorithms proposed in the paper are novel

mining techniques specialized to handle constraints derived by the structures of workflow

schemes. And, in fact, several experiments, reported in Section V, confirmed that they

outperform traditional data mining algorithms, even though suitably reengineered (in our

implementations) to work with workflow instances.

We conclude the overview on related work by observing that, in order to model all the

details of a workflow system, one viable way is to consider more expressive approaches,

such as the multirelational data mining approaches [7]. Nonetheless, in Section V, we also

show that as consequence of their generality in modelling different domains they poorly

perform if compared with our algorithms specifically designed for the workflow domain.

B. Contribution of the Paper

In this paper, we investigate the possibility of exploiting data mining techniques within

workflow management contexts, by proposing two algorithms for mining frequent workflow
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patterns of execution. Specifically, our contribution is as follows:

• We model the Successful Termination Problem, and we provide some intractability results

that shed light into the intrinsic difficulty on reasoning over workflows. The in-depth

theoretical analysis we provide strongly motivates the use of Data Mining techniques,

thus confirming the validity of the approach.

• We define the notion of workflow pattern and of weak pattern of a workflow graph, where

the latter is a syntactic restriction of the former. In particular we prove that weak patterns

are well suited for mining tasks, as they can be recognized in a higly-parallelizable way

and can be easily composed to discovery frequent patterns because of their interesting

structural properties. Indeed we show that the space of all connected weak patterns

constitutes a lower semi-lattice w.r.t. a particular relation precedence (≺).

• By exploiting properties of weak patterns, we design two algorithms for mining frequent

patterns that conform to the workflow specifications:

– w-find, that performs a smart (level-wise) exploration of the lower semi-lattice, and

– c-find, that mines frequent instances by composing connected components.

• We test w-find and c-find, by evaluating their performance and their scalability. We

show that none of the algorithms is the best in absolute terms, by also evidencing the

discriminant factors. Moreover, we compare these algorithms with existing techniques

adapted to our particular domain. Several experiments confirmed the validity and the

usefulness of these approaches.

We stress that our approach does not consider cyclic graphs (i.e., recursive workflow

schemas and iterated executions) and other aspects of workflows such as compensation

or reset activities. These assumptions have been required by the necessity of starting

from a simplified model, yet covering important and typical features required in workflow

specification, to take up an interesting and relevant topic that has not been given much

attention in the literature so far. In fact, a significant number of technical challenges had

to be faced for dealing even with basic features only. However, since there is no conceptual

limitation in extending our algorithms for mining frequent instances w.r.t. more involved

workflow models, we believe that this work might stimulate the data mining community

in continuing our investigation and in facing some of the challenges we posed here.
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C. Organization

The paper is organized as follows. Section II provides a formal model of workflows, and

many complexity considerations on such a proposed model. A formalization of the prob-

lems of Successful Termination Prediction and of mining frequent patterns from workflow

schemas is devised in Section III. The levelwise theory of worklow patterns is presented

in Section IV, together with the algorithms w-find and c-find. Finally, Section V provides

experimental validation of the approach.

II. The workflow abstract model

A significant amount of research has been already done in the specification of mecha-

nisms for process modelling (see, e.g., [9] for an overview of different proposals). The most

widely adopted formalism is the control flow graph, in which a workflow is represented by

a labelled directed graph whose nodes correspond to the tasks to be performed, and whose

arcs describe the precedences among them. Moreover, Workflow Management Coalition1

has also identified additional controls, such as loops and sub-workflows.

In this paper, we do not refer to any particular model proposed in the literature. Rather,

we next provide a simple (state based) model that covers most of the important important

and typical features required in workflow specification. The model will be used for provid-

ing, in a rigorous way, both the syntax and the execution semantics. Hence, it will trace

the formal framework (whose limitations have been already described in the Introduction)

for developing our mining algorithms.

Definition II.1: A workflow schema WS is a tuple 〈A, E, a0, F, IN, OUTmin, OUTmax〉,

where A is a finite set of activities, E ⊆ (A − F ) × (A − {a0}) is an acyclic relation

of precedences among activities, a0 ∈ A is the starting activity, F ⊆ A is the set of fi-

nal activities, while IN, OUTmin, and OUTmax are three functions assigning to each node a

natural number (A 7→ N) as follows:

• ∀a ∈ A − {a0}, 0 < IN(a) ≤ InDegree(a);

• ∀a ∈ A − F , 0 < OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a);

• IN(a0) = 0, and ∀a ∈ F , OUTmin(a) = OUTmax(a) = 0.

where InDegree(a) is |{e = (b, a) | e ∈ E}| and OutDegree(a) is |{e = (a, b) | e ∈ E}|. ⊓⊔

1www.wfmc.org
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or-join

and-join

OUTmax=1

OUTmin=OutDegree

OUTmin<OutDegree

Fig. 1. An example Workflow Schema.

Roughly speaking, an activity a can start as soon as at least IN(a) of its predecessor

activities have been completed. Two typical cases are: (i) if IN(a) = InDegree(a) then a

is an and-join activity, for it can be executed only after all its predecessors are completed,

and (ii) if IN(a) = 1 is called or-join activity, for it can be executed as soon as one

predecessor is completed. As commonly assumed in the literature, we will limit ourselves

to consider only and-join and or-join activities, besides a0: Indeed, by means of these two

elementary types of nodes, it is possible to simulate also the behavior of any activity a

such that 1 < IN(a) < InDegree(a).

Once finished, an activity a activates some (non-deterministically chosen) subset of

its outgoing arcs with cardinality between OUTmin(a) and OUTmax(a). If OUTmax(a) =

OutDegree(a) then a is a full fork and if also OUTmin(a) = OUTmax(a) then a is a determin-

istic fork, for it activates all its successor activities. Finally, if OUTmax(a) = 1 then a is

an exclusive fork (also called XOR-fork in literature), for it activates exactly one of their

outgoing arcs.

For the sake of presentation, whenever it will be clear from the context, a workflow

schema WS = 〈A, E, a0, F, IN, OUTmin, OUTmax〉 will also be denoted by 〈A, E, a0, F 〉 or

even simpler by 〈A, E〉.

A workflow schema can be represented in a graphical way by means of a directed acyclic

graph, where the nodes corresponds to the activities in A, and the edges corresponds to the

relation of precedence E (see Figure 1). Moreover, in order to represent the functions IN,
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OUTmin, and OUTmax, if an activity is an and-join (resp. or-join), we draw the corresponding

node with a bold (resp. regular) circles; Finally, the nodes corresponding to exclusive fork

(resp. deterministic fork) activities are such that their outgoing edges are marked with

dotted (resp. bold) lines, while all the other edges are represented by dashed lines.

Example II.2: Figure 1 shows a sketch of a workflow schema representing a sales ordering

process. The process is as follows. A customer issues a request to purchase a given product;

the enterprise checks both the availability of the required stock and the reliability of the

client. Moreover, if the client is reliable but the products are partially stocked, then a

production will be planned. The final states can be the acceptance or the rejection of the

order. Specifically, the initial task S corresponds to the “receive order” activity, the final

tasks R1 and R2 are the rejecting of the order, while A is the acceptance. The activity

e is the production that sends the request to some storehouse (either e1 or e2), which, in

turns, forwards it to the respective repository (1, 2, 3 or 4, 5).

When at least one repository (no matter which one) has accepted the request, the task

j1 or j2 proceeds to notify j. If there is no availability, the task h may send a request

to the sales department (activity k) which forwards it to all wholesaler k1, k2, k3; on the

contrary the user request will be rejected (task R2). Finally, the financial department

(activity g) must assess if the reference are acceptable and if it is not, the order is rejected

immediately (R2); otherwise the activation of the task l will lead to a success.

It is worth noting that in this application, it could be crucial to characterize (with the

help of the data mining techniques that we shall develop in the paper) the discriminant

factors that will lead to an acceptance of the order requiring a planning of the production,

in order to preventively accommodate the requests. ⊳
The formal semantics is specified by mapping the workflow schema into a transition

system, where each execution consists of a sequence of states.

Definition II.3: Let WS = 〈A, E, a0, F 〉 be a workflow schema. Then, the state S of an

execution is identified by a tuple 〈Marked ,Ready,Executed〉, with Ready,Executed ⊆ A,

and Marked ⊆ E. ⊓⊔

Intuitively, the state of an execution is determined by the set (Executed) of activities

which have been already executed, by the set (Ready) of activities which have received the
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inputs they need and which are, hence, ready for being executed, and by the set (Marked) of

edges corresponding to the outputs of executed activities which will eventually be inputs to

other activities. An execution is modelled by means of a transition system over such states.

Then, if after t transitions (short: step t) the state is St = 〈Marked t,Ready t,Executed t〉,

the next state St+1 is one of the outcomes of a non-deterministic transition function δ

defined next.

Definition II.4: Let WS = 〈A, E, a0, F 〉 be a workflow schema, and St =

〈Marked t,Ready t, Executed t〉 be the state at the step t. Then, δws(St) is the set of all

states 〈Marked t ∪ δMarked t+1,Ready t+1,Executed t ∪ Ready t〉, such that

i) δMarked t+1 is a subset X of {(a, b) | a ∈ Ready t, (a, b) ∈ E} s.t. ∀a ∈ Ready t,

OUTmin(a) ≤ |{(a, b)| (a, b) ∈ X}| ≤ OUTmax(a), i.e., each ready activity, say a, activates

a number of outgoing arcs in the range defined by OUTmin(a) and OUTmax(a);

ii) Ready t+1 = {a|a ∈ (A − (Executed t ∪ Ready t)), |{(b, a)| (b, a) ∈ Marked t}| ≥ IN(a)},

i.e., an activity a becomes ready for execution as soon as at least IN(a) of its predecessor

activities are completed. ⊓⊔

Now we are in the position to formally define a workflow execution. An execution starts

with the state S0 = 〈∅, {a0}, ∅〉, and at each step it applies the transition function δws,

until a final state is reached.

Definition II.5: Let WS = 〈A, E, a0, F 〉 be a workflow schema, and δws be a transition

function. An execution e on a workflow schema WS = 〈A, E, a0, F 〉 is a sequence of states

[S0, ..., Sk] such that

i) S0 = 〈{∅}, {a0}, {∅}〉, and

ii) St+1 ∈ δ(St) for each 0 < t < k.

Moreover, if Executed k∩F 6= ∅ or Readyk∪δMarkedk = ∅ then e is said to be terminating ;

otherwise, it is said to be partial. ⊓⊔

Given an instance e = [S0, ..., Sk], the set Executedk is also denoted by Executed(e). Note

that in the above definition, a terminating execution e for which Executed(e) ∩ F = ∅,

corresponds to an abnormal execution which does not reach a final state. In this case, there

are neither activities ready for being executed (i.e., Readyk = ∅), nor outputs which may

eventually activate other activities (i.e., δMarkedk = ∅); hence, e is said to be unsuccessful.

Otherwise, e is said to be successful — observe that, a successful execution may terminate
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step(t) 0 1 2 3 4 5 6 7
δMarked t (S, c) (c, e); (c, f); (c, g) (e, e1); (e, e2); (g, R2) (e1,1);(e1,2);(e1,3);(e2,4);(e2,5)

Ready t S c e; f ; g e1; e2; R2

Executed t S S S; c S; c S; c; e; f ; g S; c; e; f ; g S; c; e; f ; g; e1; e2; R2

Fig. 2. Example of execution over the workflow of Example II.2.

with some ready activity that will be never executed, i.e., with Readyk 6= ∅.

From now on, given a workflow schema WS , the set of all the successful executions is

denoted by Sws, while the set of all the unsuccessful executions is denoted by Uws.

Example II.6: An example of execution over the workflow schema presented in Example

II.2 is reported in Figure 2. The indexed columns represent the steps of the execution.

Note that at the 5-th step, the financial department (activity g) has rejected the order

(that is not been forwarded to l) causing the ending of the workflow execution. ⊳
As suggested by the previous example, the choices made during an execution may cause

a success or a failure. Moreover, checking whether the workflow has a sequence of choices

leading to a success is an intractable problem. Specifically, we next show that it is complete

for the class NP of problems that are solvable in polynomial time by nondeterministic

Turing machines — see [8], for some background on computational complexity.

Proposition II.7: Let WS = 〈A, E, a0, F 〉 be a workflow schema. Then, (i) deciding

whether there exists an execution e that reaches a final state (i.e., Executed(e) ∩ F 6= ∅)

is NP-complete, but (ii) the problem becomes P-complete if all nodes in A are full forks.

Proof:

(i) Membership in NP is trivial. For the hardness, recall that, given a Boolean formula Φ

over variables X1, ..., Xm the problem of deciding whether it is satisfiable is NP-complete

[8]. W.l.o.g. assume Φ to be in conjunctive normal form. Then, we define a workflow

schema WS(Φ) = 〈A, E, ao, {Sat}〉, such that A consists of an initial activity a0, of the

activities Xi, TXi, FXi for each 0 < i ≤ m, of the activities Cj for each distinct clause j

of Φ, and of a final state Sat . Moreover, we define IN(Sat) = n (where n is the number of

clauses contained in Φ), and IN(a) = 1 for any other activity a 6= a0.

The set of precedences E is defined as follows.
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• For each Xi, (Xi, TXi) and (Xi, FXi) are in E, with constraints OUTmin(Xi) =

OUTmax(Xi) = 1. Thus, each time the activity Xi is executed, it is required to make

a choice between its possible successors; note that in our encoding, TXi means that

Xi is true, while FXi means that Xi is false. Finally an arc (a0, Xi) is in E, and

constraints OUTmin(a) = OUTmax(a) = m are added.

• For each Cj, we have that (Cj, Sat) is in E, with constraints OUTmin(Sat) =

OUTmax (Sat) = 1 . Moreover, we have (TXi, Cj) ∈ E in the case Xj appears in the

clause Cj, while we have (FXi, Cj) ∈ E in the case Xi appears negated in the clause

Cj. Finally, for each node a ∈ {TXi, FXi}, OUTmin(a) = OUTmax(a) = OutDegree(a).

Now, assume Φ is satisfiable. Then, it is possible to choose the successor of each Xi, in a

way that all the activities Cj can be executed. Hence, the activity Sat will be eventually

reached. On the other side, if there exists a path leading to Sat , it can be easily mapped

into a satisfying assignment for Φ.

(ii) Assume that, for each a ∈ A, OUTmax(a) = OutDegree(a). It is easy to see that for the

problem of deciding whether a given activity can be executed, we can assume, w.l.o.g., that

OUTmin(a) = OutDegree(a), too. Indeed, it is always convenient to activate all the outgoing

arcs in a: if an activity cannot be executed with the activation of all the outgoing arcs in

a, then it cannot be executed in any other type of execution. Then, the problem can be

solved in polynomial time by applying the function δws, that it is actually a deterministic

function. For the hardness, we consider the AND/OR GRAPH ACCESSIBILITY

problem [12]: we are given an and/or graph G = (V, E) (i.e., a directed graph such that

each vertex is assigned either a ∨ or a ∧ label), and two vertices s and t; the problem is to

decide whether t can be reached from s. A vertex labelled by ∨ can be reached if and only

if at least one of its predecessors are reached, whereas a vertex labelled by ∧ can be reached

if and only if all its predecessors are reached. Notice that vertices without predecessors

can be reached by default. We construct a workflow schema WS(G) by adding a starting

activity connected to all the vertices without predecessors and s as well. For a vertex a

labelled by ∨ in G we fix IN(a) = 1, whereas IN(a) = InDegree(a) is a is labelled by ∧

in G. The only final activity is t. It is worth noticing that t is reachable from s in G if

and only if WS(G) admits an execution reaching the final state.
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III. Problem Description and Complexity Results

In this section we are interested in formalizing and analyzing the complexity of some

interesting reasoning tasks, whose usage can help the system administrator in predicting

the workflow evolution. The analysis is carried out on the basis of the formal model of

workflow schema and execution provided so far.

Let us first of all address the following problem: assume that an execution has arrived

at a given point and, before letting it proceed, the administrator wants to know whether

it will lead to a successful termination or not. The problem can be formalized as follows.

Let WS be a workflow schema, and e = [S0, . . . , Sh] be a partial execution on WS. A

successful execution e′ ∈ Sws whose first h+1 steps are [S0, ..., Sh] is said to be a successful

extension of e, and is denoted by e e′.

Definition III.1: (Successful Termination Prediction - STP)

Let WS be a workflow schema, and e be a partial execution. Then, the STP problem for

e is deciding whether there exists a successful extension of e. ⊓⊔

We point out that the STP problem appears in [18] in the form of guaranteed executions in

the more complex setting of transactional processes. We next show that STP is intractable.

Proposition III.2: Let WS be a workflow schema and e = [S0, ..., Sh] be an execution

that is not terminating. Then, the STP problem for e is NP-complete.

Proof: Membership derives from the fact that we can guess an execution e′ such that

e′ is successful, and check (in polynomial time in the size of WS) whether its first h + 1

steps are [S0, ..., Sh]. For the hardness, let h = 0, and w.l.o.g. assume in the workflow

schema the initial activity does not correspond to a final one. Thus, we can consider the

problem of deciding whether there exists a successful execution e′, with [S0]  e′. The

hardness follows, from Proposition II.7.

The above discussion sheds some light in the intrinsic difficulty of solving such problems

“statically”. Reasoning about the structure seems not to be a valuable approach; hence,

we are motivated in using data mining techniques, that can be directly applied to a set of

instances, collected in the log of the workflow system. Indeed, one could be interested in a

more pragmatic version of the STP problem: given the history of past executions, does the

current execution have a chance to eventually succeed? We formalize the problem next.
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Definition III.3: (Frequent Successful Termination Prediction - FSTP)

Let WS be a workflow schema, Se = {e1, . . . , en} be a set of successful executions on WS,

each one equipped with a frequency fi = fi(ei) ∈ N, minFreq be a natural number, and

e be a non-terminating execution on WS . Then, the problem FSTP for e w.r.t. Se and

minFreq is deciding whether
∑

{i|ei∈Se,e ei}
fi ≥ minFreq, i.e., whether there the number

of successful extensions of e in Se is greater than or equal to minFreq. ⊓⊔

As a matter of fact, the STP problem is equivalent to an instance of the FSTP problem.

Proposition III.4: Let a workflow schema WS and a non-terminating execution e be

given in input. Then, the STP problem is equivalent to the FSTP problem for e w.r.t. Sws,

where minFreq = 1 and fi(ei) = 1, for each execution ei ∈ Sws.

Proof: By definition, under the assumptions of the statement, the problem FSTP

corresponds to check whether |{ei|ei ∈ Sws, e  ei}| ≥ 1. This happens if and only if

there exists ei ∈ Sws such that e ei.

The complexity of the FSTP problem mainly depends on the number of executions in Se.

If this number is low (e.g., polynomially bounded by the size of WS) then the problem can

be effectively solved, as the following proposition shows. Nevertheless, when the size of Se

grows, one cannot expect to reduce the complexity by finding some succinct representation

of Se: also in this case a time exponential in the size of WS cannot be avoided unless

P=NP.

Proposition III.5: Let WS be a workflow schema and e = [S0, ..., Sh] be an execution

that is not terminating. Then, given a set Se = {e1, . . . , en} of terminating executions on

WS, each one equipped with a frequency fi = fi(ei) ∈ N, and a natural number minFreq,

i) the FSTP problem for e w.r.t. Se and minFreq can be solved in time polynomial in the

size of WS and Se, but

ii) the succinct FSTP problem, in which Se is represented by a data structure with size

polynomially bound in the size of WS, is NP-complete.

Proof:

i) Observe that, for each ei checking whether e  ei can be done in polynomial time in

the size of WS . Hence, a naive polynomial algorithm (in the size of WS and Se) consists

in summing the frequency associated to each execution ei ∈ Se with e  ei, and hence

checking whether the corresponding sum is greater than minFreq.
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Fig. 3. An instance of the workflow schema of Figure 1.

ii) Membership is trivial. For the hardness, observe that the FSTP problem in the state-

ment of Proposition III.4 can be obviously formulated in a succinct way: indeed Se needs

not to be explicitly stored. But the succinct problem is nothing but the STP problem

which is NP-complete by Proposition III.2.

An appealing way for solving the FSTP problem is to use specialized data mining tech-

niques for graphs. To this end, we first need to characterize workflow executions in terms

of connected subgraphs of the workflow schema.

Definition III.6: Let WS = 〈A, E, a0, F 〉 be a workflow schema and e = [S0, ..., Sk] be

an execution. Then, the instance associated to e is the graph Ie = 〈Ae, Ee, a0, Fe〉, where

Ae = ∪t=1,kExecuted t, Ee = {(a, b)|(a, b) ∈ ∪t=1,kMarked t, b ∈ Ae} and Fe = Ae ∩ F . In

case e is a successful execution, then Ie is said successful instance. ⊓⊔

An instance for the workflows schema presented in Example II.2 is shown in Figure 3.

In the following, given a workflow schema WS, we denote by 2WS the family of all the

subgraphs of the graph 〈A, E〉, and by I(WS) the set of all instances.

Observe that, while deciding whether a subgraph is an instance is polynomial, instead

deciding whether there exists a successful instance is not tractable.

Proposition III.7: Let WS = 〈A, E, a0, F 〉 be a workflow schema. Then,

i) given a subgraph I of WS, deciding whether I is an instance of WS can be done in

polynomial time in the size of E, and

ii) deciding whether WS admits a successful instance is NP-complete.

Proof:

i) We construct the sequence of states corresponding to I by traversing the subgraph I

starting from the initial node and by applying in a constructive way the function δ using

all arcs in I as marked. Clearly the algorithm is polynomial in the size of E.
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ii) Membership is trivial; for the hardness, observe that there exists a successful instance,

say Ie, if and only if there exists a successful execution, e, to which Ie is associated. The

hardness follows from Proposition II.7.

We now introduce the notion of pattern that will be crucial in the process of data

mining. To provide a more uniform notation, given a graph p (e.g., a workflow schema

or a pattern) and a node a of p, we denote by InDegreep(a) (resp. OutDegreep(a)) the

number of ingoing (resp. outgoing) edges of a.

Definition III.8: Let WS be a workflow schema, and F be a multiset of instances. Then,

a graph p = 〈Ap, Ep〉 ∈ 2WS is an F-pattern (cf. F |= p) if there exists I = 〈AI , EI〉 ∈ F

such that Ap ⊆ AI and p is the subgraph of I induced by the nodes in Ap. In the case

F = I(WS), the subgraph is simply said to be a pattern. Moreover, if Ap contains some

final activity in WS, then p is said to be successful. ⊓⊔

Roughly speaking, an F -pattern is a subgraph of a workflow instance in F . Thus, we are

using the notion of pattern with the meaning which is being adopted by the data mining

community in several other applicative domains. For instance, patterns are subtrees in

the mining of frequent trees (see, e.g., [31]), subsequences in the mining of sequences (see,

e.g., [3]), and so on. Hence, Definition III.8 is inserted into a data mining context and is

not related at all with the notion of pattern used in software engineering contexts (and

recently by van der Aalst [25] for supporting workflow modelling2).

Let us now consider the following problem of data mining on graphs that consists in

discovering patterns which frequently arise.

Definition III.9: (Frequent pattern mining - FPM)

Let WS be a workflow schema, F be a multiset of instances and, minSupp be a real

number with 0 ≤ minSupp ≤ 1. Then, the problem FPM for F consists in finding all

the frequent F -patterns, i.e. all the F -patterns for which supp(p) ≥ minSupp, where the

support supp(p) is defined as |{I|{I} |= p ∧ I ∈ F}|/|F|. ⊓⊔

Frequent patterns can be used for heuristically solving the problem FSTP, that is, for

deciding whether a sequence of states will very likely (e.g., with a reasonable support)

lead to a successful (or unsuccessful) termination. In fact, given a partial execution e and

2See also http://tmitwww.tm.tue.nl/research/patterns/.
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a support minSupp, e will very likely lead to a successful end if there exists at least one

successful frequent F -pattern containing all the activities executed in e. Then, in order to

make our approach effective, we shall show, in the following section, some techniques for

the efficient computation of frequent patterns of executions.

IV. Mining Connected Frequent Patterns

In this section we present two algorithms for mining connected frequent patterns

(i.e., subgraphs) in workflow instances. Let us assume that a workflow schema WS =

〈A, E, a0, F 〉 and a multiset of instances F = {I1, ..., In} are given. Then, a naive al-

gorithm for mining frequent patterns can generate directly the subgraphs, and test in

polynomial time whether they are instances of WS . Our approach is based on the idea of

reducing the number of patterns to generate, by only considering F -patterns that are not

only connected but also deterministically closed. This restriction is formalized next.

Definition IV.1: Given a graph p = 〈Ap, Ep〉 ∈ 2WS , the deterministic closure of p (cf.

ws-closure(p)) is inductively defined as the graph p′ = 〈Ap′, Ep′〉 such that: (i) Ap ⊆ Ap′,

and Ep ⊆ Ep′ (basis of induction), (ii) a ∈ Ap′ is an and-join implies that for each

(b, a) ∈ E, (b, a) ∈ Ep′ and b ∈ Ap′, (iii) a ∈ Ap′ is a deterministic fork implies that for

each (a, b) ∈ E with b or-join,3 (a, b) ∈ Ep′ and b ∈ Ap′. Moreover, a graph p such that

p = ws-closure(p) is said ws-closed. ⊓⊔

Intuitively, the above definition provides a way for extending a subgraph p, by including

all the activities that are enforced to be executed with some activity in Ap, by means of

the constraints issued over WS . And, in fact, the definition can be used to introduce a

notion of pattern which only depends on the structure of the workflow schema, rather than

on the instances F or I(WS). The need of this weaker notion will be clear in a while.

Definition IV.2: A weak pattern, or simply w -pattern, is a ws-closed graph p ∈ 2WS ,

such that for each node a, |{(a, b)|(a, b) ∈ Ep}| ≤ OUTmax(a). ⊓⊔

Example IV.3: Consider the workflow graph of Figure 1, and the following subgraphs.

3Notice that relaxing the condition for b to be an or-join might lead to closures that cannot be traced by any

execution. In fact, if b is an and-join synchronizing two mutually exclusive activities a and a
′ (e.g., that are

activated by some XOR-fork), then a will never occur in the same execution with b.



18

c

f

g

p1

c

e

f

g

p2

e1

1

2

3

p3

c

e

f

g

e1

1

2

3

p4

Then, p1 is not a w -pattern, since ws-closure(p1) = p2 6= p1, and hence condition ii) of Defi-

nition IV.2 is not satisfied. Notice that p2 is instead a w -pattern, since ws-closure(p1) = p2.

Also, p3 is not a w -pattern, since condition ii) of Definition IV.2 is not satisfied (indeed,

ws-closure(p3) = p4 6= p3). Again, p4 is a w -pattern, as ws-closure(p4) = p4. ⊳
The following proposition characterizes the complexity of recognition for the three no-

tions of pattern; in particular, it states that testing whether a graph is a w -pattern is in

L [8], i.e., it can be efficiently solved by a deterministic logarithmic-space bounded Turing

machine. This efficiency is the result of the deterministic closure property and of the fact

that w -patterns are defined over the schema, rather than on the instances.

Proposition IV.4: Let p ∈ 2WS . Then

1. deciding whether p is a pattern is NP-complete.

2. given a multiset F of instances, deciding whether p is an F-pattern can be done in

polynomial time in the size of F , but

3. deciding whether p is an F-pattern is NP-complete, if F is succinct (i.e., if it can be

represented by a data structure whose size is polynomially bounded by the size of WS).

4. deciding whether p is a w-pattern is in L.

Proof:

1. The problem is in NP as we can guess a subgraph I, by choosing for each node a the

arcs to be activated, so that OUTmin(a) ≤ |{(a, b)|(a, b) ∈ Ep}| ≤ OUTmax(a). Then, from

Proposition III.7 we can check in polynomial time that I is an instance; finally, deciding

whether p is a subgraph of I, can be done in polynomial time.

The hardness follows from Proposition II.7; indeed, we can assume p to be formed by a

single activity, actually a final one (w.l.o.g. we can assume that WS has only one final

activity, indeed we can add a new activity f to which all the final ones can be connected).
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Thus, p is a pattern if and only if there exists a successful execution.

2. By definition of F -pattern, we can simply test if p is a subgraph of any instance.

3. Membership is trivial, as we can check in polynomial time whether, for each instance

I, {I} |= p and I ∈ F . For the hardness, observe that deciding whether p is a pattern

corresponds to checking whether p is a F -pattern with F = I(WS).

4. The proof is given by defining a Turing machine that, given a workflow schema and

a graph p encoded into the input tapes, can decide in deterministic logarithmic space

whether p is a w -pattern. In fact, both WS and p can be encoded by fixing an arbitrary

order on the activities. In order to verify properties i), ii), and iii) of Definition IV.2, we

simply need to access each arc of p and WS, and exploit two counters. Clearly, encoding

such counters requires logarithmic space.

It turns out that the notion of weak pattern is the most appropriate from the computa-

tional point of view. Moreover, working with w -patterns is not an actual limitation, since

the closure of each frequent F -pattern is, in turn, a frequent w -pattern as well. Rather,

it is a compact and efficient way for the mining of frequent patterns, as shown below.

Proposition IV.5: Let p be a frequent F-pattern. Then i) ws-closure(p) is both a weak

pattern and a frequent F-pattern, and ii) each weak pattern p′ ⊆ p is a frequent F-pattern.

Proof: In order to prove i), we observe that for each I ∈ F s.t. {I} |= p, prop-

erty {I} |= ws-closure(p) holds. Indeed, if p is not a weak pattern, then according to

Definition IV.1 there exists a ∈ Ap such that one of the following cases occur:

• a is an and-join and there exists an edge (b, a) /∈ E;

• a is a deterministic fork and there exists an edge (a, c) /∈ Ep, with c or-join.

By Definitions II.4 and III.6, each instance I ∈ F containing a, must contain b, c and

(b, a), (a, c) as well. As a consequence, ws-closure(p) is frequent as well.

In order to prove ii), it suffices to see that if there exists an unfrequent w -pattern p′ ⊆ p,

then it should contain at least either an unfrequent node a or an unfrequent edge (a, b).

But this is a contradiction, since both a and (a, b) belong to p as well.

However, a weak pattern is not necessarily an F -pattern nor even a pattern. As shown

in the next sections, we shall use weak patterns in our mining algorithms to optimize the

search space but we eventually check whether they are frequent F -patterns.
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A. Levelwise Search algorithm

The first algorithm we propose for mining frequent connected F -patterns uses a levelwise

theory. Roughly spraining, we incrementally construct frequent weak patterns, by starting

from frequent “elementary” weak patterns (defined below), and by extending each frequent

weak pattern using two basic operations: adding a frequent arc and merging with another

frequent elementary weak pattern. As we shall show, the correctness follows from the

results of Proposition IV.5, and from the observation that the space of all connected weak

patterns constitutes a lower semi-lattice, with a precedence relation ≺, defined next.

The elementary weak patterns, from which we start the construction of frequent pat-

terns, are obtained as the ws-closures of the single nodes.

Definition IV.6: Let WS = 〈A, E〉 be a workflow schema. Then, for each a ∈ A, the

graph ws-closure(〈{a}, {}〉) is called an elementary weak pattern (cf. ew -pattern). ⊓⊔

Observe that the empty graph, denoted by ⊥, is an elementary weak pattern. The set of

all ew -patterns is denoted by EW. Moreover, let p be a weak pattern, then EWp denotes

the set of the elementary weak patterns contained in p. Note that given an ew -pattern e,

EWe is not necessarily a singleton, for it may contain other ew -patterns.

Given a set E ′ ⊆ EW, Compl(E ′) = EW −
⋃

e∈E′ EWe contains all elementary patterns

which are neither in E ′ nor contained in some element of E ′.

We now introduce a precedence relation ≺ among connected weak patterns. First of all,

let us denote by E⊆ the subset of arcs in WS whose source is not a deterministic fork,

i.e., E⊆ = {(a, b) ∈ E | OUTmin(a) < OutDegree(a)}.

Definition IV.7: Given two connected w -patterns, say p = 〈Ap, Ep〉 and p′ = 〈Ap′, Ep′〉,

p ≺ p′ if and only if:

a) Ap = Ap′ and Ep′ = Ep ∪ {(a, b)}, where (a, b) ∈ E⊆ − Ep and OUTmax(a) >

OutDegreep(a) (i.e., p′ can be obtained from p by adding an arc), or

b) there exists p′′ ∈ Compl(EWp) such that p′ = p∪ p′′ ∪X, where X is either empty if p

and p′′ are connected or contains exactly an edge in E⊆ with endpoints in p and p′′ (i.e., p′

is obtained from p by adding an elementary weak pattern and possibly a connecting arc).

Note that ⊥≺ e, for each e ∈ EW. 2

Example IV.8: Consider again the workflow of Figure 1, and the following subgraphs:
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The subgraphs p1, p2 and p4 are elementary patterns: p1 = ws-closure(〈{e1}, ∅〉), p2 =

ws-closure(〈{e2}, ∅〉) and p4 = ws-closure(〈{c}, ∅〉)). p3 is not an elementary pattern, as

no node can generate it. Notice that p1 ≺ p3 and p2 ≺ p3. Finally, p4 is contained in both

p1 and p2 (and hence p4 ≺ p1 and p4 ≺ p2). ⊳
The following result states that all the connected weak patterns of a given workflow

schema can be constructed by means of a chain over the ≺ relation.

Lemma IV.9: Let p = 〈Ap, Ep〉 be a connected w -pattern. Then, there exists a chain of

connected w -patterns, such that ⊥≺ p1 ≺ ... ≺ pn = p.

Proof: We prove this by induction on the size of p, |p| = |Ap|+ |Ep|. The base case,

i.e. p ∈⊥, is trivial. For the case p 6∈ EW, assume that for each weak pattern p′, such that

|p′| < |p| there exists a chain ⊥≺ q1 ≺ ... ≺ qm = p′. Two situations may occur:

1. ∃(a, b) ∈ Ep∩E⊆, such that (a, b) does not belong to any elementary pattern contained

in p, and the graph p′ obtained from p by deleting such an arc (p′ = 〈Ap, Ep − {(a, b)}〉)

is connected. In such a case, p′ is a weak pattern, with p′ ≺ p. Hence, by induction,

⊥≺ q1 ≺ ... ≺ qm ≺ p. The theorem follows for n = m and p1 = q1, ..., pn = qn.

2. for each (a, b) ∈ Ep ∩ E⊆, such that (a, b) does not belong to any elementary pattern

contained in p, the graph p′ = 〈Ap, Ep − {(a, b)}〉 is not connected. Two subcases can be

further devised:

(a) there exists an elementary weak pattern e ∈ EWp, which is connected to the graph

p−e by means of exactly one arc in E⊆; that is e ∈ Compl(EWp−e), and, hence (p−e) ≺ p,

and the theorem follows by induction, otherwise

(b) elementary patterns are not connected by means of arcs in E⊆. In this case, let

ep0, ep1, ..., epm be the elementary patterns contained in p, and q = (p−ep0)∪ep1∪...∪epm
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Input: A workflow Graph WS, a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 L0 := {e|e ∈ EW , e is frequent w.r.t. F};
2 k := 0, R := L0;
3 FrequentArcs := {(a, b)|(a, b) ∈ E⊆, 〈{a, b}, {(a, b)}〉 is frequent w.r.t. F};

4 E
⊆
f

:= E⊆ ∩ FrequentArcs;

5 repeat

6 U := ∅;
7 forall p ∈ Lk do begin

8 U := U ∪ addFrequentArc(p); //see (a) in Lemma IV.10
9 forall e ∈ Compl(EW p) ∩ L0 do

10 U := U ∪ addFrequentEWPattern(p, e); //see (b) Lemma IV.10
11 end

12 Lk+1 := {p|p ∈ U, p is frequent w.r.t. F}; //see (c) in Lemma IV.10
13 R := R ∪ Lk+1;
14 until Lk+1 = ∅;
15 return R;

Function addFrequentEWPattern(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;
p′ := 〈Ap ∪ Ae, Ep ∪ Ee〉;
if p′ is connected , then return p′ else return addFrequentConnection(p′, p, e);

Function addFrequentConnection(p′ = 〈Ap′ , Ep′ 〉, p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

S := ∅

forall frequent (a, b) ∈ E
⊆

f
− Ep s.t. (a ∈ Ap, b ∈ Ae) ∨ (a ∈ Ae, b ∈ Ap) do begin

q :=
〈

Ap′ , Ep′ ∪ (a, b)
〉

;
if WS |= q then S := S ∪ {q};

end

return S

Function addFrequentArc(p = 〈Ap, Ep〉): pattern;
S := ∅

forall frequent (a, b) ∈ E
⊆

f
− Ep s.t. a ∈ Ap, b ∈ Ap do begin

p′ := 〈Ap, Ep ∪ (a, b)〉
if WS |= p′ then S := S ∪ {p′};

end

return S

Fig. 4. Algorithm w-find(F ,WS)

the weak pattern obtained from p by deleting edges and nodes in ep0 which do no occur

in any other epi, with 0 < i ≤ m. By construction ep0 ∈ Compl(q), and hence q ≺ p.

As in the other case, since |q| < |p|, by induction there exists a chain of weak patterns

⊥≺ q1 ≺ ... ≺ qm = q.

It turns out that the space of all connected weak patterns is a lower semi-lattice w.r.t.

the precedence relation ≺. And, in fact, the algorithm w-find, reported in Figure 4, ex-

ploits an apriori-like exploration of this lower semi-lattice. Specifically, at each stage, the

computation of Lk+1 (steps 5-14) is carried out by extending any pattern p generated at the

previous stage (p ∈ Lk), in two ways: (i) by adding frequent edges in E⊆ (addFrequentArc

function), and (ii) by adding an elementary weak pattern (addEWFrequentPattern func-

tion). Each pattern p′, generated by the functions above, is an admissible subgraph of WS

(cf. WS |= p′), i.e., for each a ∈ Ap′, OutDegreep′(a) ≤ OUTmax(a). The properties of the
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w-find algorithm are reported below.

Lemma IV.10: In the w-find algorithm, the following propositions hold:

(a) addFrequentArc adds to U connected patterns, which are not necessarily F-patterns;

(b) addFrequentEWPattern add to U connected w-patterns, (not necessarily patterns);

(c) For each k, Lk contains only frequent connected F-patterns.

Proof: We shall prove the above statements by induction on k. The proof is struc-

tured as follows. First, observe that L0 contains a set of frequent connected F -patterns.

Indeed, by definition each elementary weak pattern is connected. Next, assuming that for

a given k ≥ 0, Lk contains only a set of frequent connected F -patterns, observe that:

• Statement (a) holds. Indeed, since the input graph p is a connected F -pattern, each

graph p′ obtained from p by adding a frequent arc (a, b) is connected as well. Notice

now that, if WS |= p′, then for each instance {I} |= p, the graph I ′ = I ∪ {(a, b)} is

an admissible instance, i.e., I ′ ∈ I(WS). Indeed, for each execution eI associated to I,

an execution eI′ can be obtained by adding (a, b) to δMarked t+1 whenever a ∈ Ready t.

Moreover, {I ′} |= p′ thus entailing that p′ is a pattern. Finally, notice that, in principle,

F may contain no I ′ satisfying the above condition.

• Statement (b) holds. Indeed, notice that addEWFrequentPattern returns any admissible

connected subgraph p obtained from the union of a F -pattern p′ with an elementary

pattern p′′. If p is not a w -pattern, then either there exists an and-join a ∈ Ap, and

(b, a) ∈ E such that (b, a) 6∈ Ep, or there exists a deterministic fork a ∈ Ap and (a, b) ∈ E,

with b or-join, such that (a, b) 6∈ Ep. In both cases, there exists a node a and an edge

e (containing a) such that e 6∈ Ep. But this cannot happen, since a is contained either

in p′ or in p′′: indeed, since p′ and p′′ are w -patterns, e is contained in any of them, and

consequently in Ep. Finally, notice that p′′ is not necessarily a pattern, and consequently

p is not necessarily a pattern as well.

• Statement (c) holds. Indeed, it follows from statements a and b that the set of candidate

graphs U contains either connected patterns or connected F -patterns. The consequence

is trivial, by noticing that step 12 of the algorithm adds to Lk+1 the only patterns in U

which are frequent w.r.t. F .

We next show that all the weak patterns are actually computed by the algorithm.
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Proposition IV.11: (Correctness) The algorithm of Figure 4 terminates and computes

all and only the frequent connected weak patterns.

Proof: The algorithm w-find computes all the elements in the lower semi-lattice

induced by the operator ≺ over w -patterns. The correctness follows from Lemma IV.9,

stating that any weak pattern is represented by a chain in this lower semi-lattice, and by

the observation that we also prune the chains that will lead to unfrequent pattern. The

latter is done by replacing the function addEWPattern in the definition of the relation ≺

with addFrequentEWPattern.

As conclusion of the presentation of w-find, we again remark that focusing on weak

patterns is an efficient way for computing frequent patterns. In fact, Proposition IV.5

states that (i) for each frequent F-pattern p′, there exists a frequent weak pattern p

(hence, computed by w-find) containing p′ and (ii) any subgraph of any frequent weak

pattern (again, computed by w-find) is a frequent F-pattern as well.

B. Mining by connecting components

The algorithm w-find, proposed in Figure 4, performs a smart levelwise exploration

of the lower semilattice, analyzed in Lemma IV.9. However, a different strategy can be

exploited by observing that, in general, any connected pattern can be obtained by either

composing two connected subgraphs, or by extending a subgraph by means of an edge.

Lemma IV.12: Let p ∈ (2WS − EW) be a connected F-pattern. Then, there exist two

F-patterns p1 and p2 (not necessarily distinct) such that p = p1 ∪ p2 ∪X, where X can be

either the empty set or the graph 〈{a, b}, {(a, b)}〉 with a ∈ p1 and b ∈ p2.

Proof: Let p be a connected pattern not in EW . Then, due to Proposition IV.5,

q = ws-closure(p) is a weak pattern. Due to Lemma IV.9, there exists a chain of connected

w -patterns, such that q0 =⊥≺ q1 ≺ ...qn−1 ≺ qn = q. Moreover, each qi+1 can be derived

from qi by either adding an edge in pi or by connecting an elementary weak pattern to

qi. By denoting with ∆qi the graph that we compose with qi, in order to derive qi+1, we

derive the following relationship: ∆q0 ≺ ∆q0 ∪ ∆q1 ≺ ... ≺
⋃

i=0,n−1 ∆qi = q. W.l.o.g. we

can assume that there exists 0 ≤ j < n such that p′1 =
⋃

i=0,j ∆qi and p′2 =
⋃

i=j+1,n−1 ∆qi

are connected (it trivially holds for j = n − 1). Then, by the definition of the relation of

precedence ≺, we have that p′1 and p′2 are either connected or can be connected by means
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of an edge. The result follows by letting p1 = p′1 ∩ p, and p2 = p′2 ∩ p.

The above lemma, states that candidates can be generated by iteratively connecting

components. In fact, we can generate a candidate at the n-th level of the lattice by

merging two components at the j-th and (n-j) -th level, respectively. It is clear that in

the worst case, for j = n-1, we degenerate to the levelwise search described in the previous

subsection; nonetheless, in the best case, this approach converges in exponentially fewer

iterations. Obviously, we also need an additional effort for identifying the components that

can be merged. Roughly speaking, these components must be such that their boundaries

can match, where the boundary of a graph in 2WS is the set of nodes that (according to

a workflow schema WS) admit either an input or an output edge.

In order to formalize the above intuitions, given a graph p = 〈Ap, Ep〉 ∈ 2WS , we denote

by INBORDER(p) = {a ∈ Ap | InDegreep(a) < InDegree(a)} the set of all the nodes in p

which admit a further incoming edge, and by OUTBORDER(p) = {a ∈ Ap | OutDegreep(a) <

OUTmax(a)} the set of all nodes in p which admit an outgoing edge. The sets INBORDER(p)

and OUTBORDER(p) represent the input and output boundaries of p, i.e., the set of nodes

inside p, which can reach (resp. can be reached by) other nodes outside p. Notice that,

by construction, the input boundary of a w -pattern cannot contain and-join activities.

Similarly, the output boundary of a w -pattern cannot contain deterministic forks.

The boundaries can be exploited to connect components. Since an arc connects the

boundaries of two components, it suffices to concentrate on frequent arcs and iteratively

generate new candidates by merging the frequent components whose boundaries are con-

nected by means of those arcs.

Based on this ideas, we have developed an other algorithm (c-find), whose details are

reported in Figure 5. It starts by computing frequent elementary patterns (step 1). Then,

the core of the algorithm is a main loop (steps 3-24), in which the following operations

are performed. For each node a ∈ WS, the set INF(a) (resp. OUTF(a)) of F -patterns

containing a in the input (resp. output) boundary is computed (steps 5-6). In the step 8

and 9, the variables FA and PF are used to store frequent arcs that may connect patterns,

and candidates that may be generated by composing “compatible” patterns.
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Input: A workflow Graph WS = (A, E), a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 R := { e | e ∈ EW , e is frequent w.r.t. F }; ∆R := R;
2 forall (a, b) ∈ E do connected by(a, b) = ∅;
3 repeat

4 forall a ∈ A do begin

5 INF(a) := { p ∈ R | a ∈ INBORDER(p) }, INFP(a) = ∅;
6 OUTF(a) := { p ∈ R | a ∈ OUTBORDER(p) }, OUTFP(a) = ∅;
7 end

8 FA := { (a, b)| (a, b) is frequent w.r.t. F , OUTF(a) 6= ∅, INF(b) 6= ∅ }
9 FP := { p ∪ q | p ∩ q 6= ∅, p ∈ R, q ∈ ∆R,WS |= p ∪ q };
10 forall (a, b) ∈ FA do

11 forall p1 ∈ OUTF(a), p2 ∈ INF(b) s.t. (a, b) 6∈ p1 ∪ p2 and (p1, p2) 6∈ connected by(a, b) do begin

12 q := p1 ∪ p2 ∪ {(a, b)};
13 if WS |= q then begin

14 FP := FP ∪ {q};
15 INBORDER(q) := ComputeInBorder (b, p1, p2);
16 OUTBORDER(q) := ComputeOutBorder (a, p1, p2);
17 forall a ∈ INBORDER(q) do INFP(a) := INFP(a) ∪ {q};
18 forall a ∈ OUTBORDER(q) do OUTFP(a) := OUTFP(a) ∪ {q};
19 connected by(a, b) := connected by(a, b) ∪ {(p1, p2)};
20 end

21 end

22 ∆R := { p ∈ FP | p is frequent w.r.t. F };
23 R := R ∪ ∆R;
24 until ∆R = ∅;
25 return R;

Function ComputeInBorder (b, p1, p2);
if |InDegreep1∪p2

(b)| < InDegree(b) − 1 then INBORDER := {b} else INBORDER := ∅;
forall c ∈ (INBORDER(p1) ∪ INBORDER(p2)) − {b} do

if |InDegreep1∪p2
(c)| < InDegree(b) then INBORDER := INBORDER ∪ {c};

return INBORDER;

Function ComputeOutBorder (a, p1, p2);
if |OutDegreep1∪p2

(a)| < OUTmax(a) − 1 then OUTBORDER := {a} else OUTBORDER := ∅;
forall c ∈ (OUTBORDER(p1) ∪ OUTBORDER(p2)) − {a} do

if (|OutDegreep1∪p2
(c)| < OUTmax(b)) then OUTBORDER := OUTBORDER ∪ {c};

return OUTBORDER;

Fig. 5. Algorithm c-find(F ,WS)

Then, boundaries are recomputed for the new candidate F -patterns (steps 11-21), and

frequent F -patterns are detected by computing the frequency of each candidate (step

22). Notice that boundaries for candidate F -patterns can be incrementally computed

by extending the boundaries of the connected components, and that new candidates can

be generated also by merging F -patterns sharing some nodes. The algorithm terminates

when no further candidates can be found, i.e., when the computed patterns have empty

input-output boundaries.

Theorem IV.13: (Correctness) The c-find algorithm terminates and computes all and

only the frequent connected weak patterns.

Proof: Correctness trivially holds by step 22 of the algorithm: indeed, no pattern

is included in R unless it is not a F -pattern. As for completeness, let p be a F -pattern.
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We prove by induction on |p| that p ∈ R. The case p ∈ EW statement trivially holds as a

consequence of step 1 of the algorithm. Let us consider the case |p| > 1. By lemma IV.12,

there exist p1, p2 such that p = p1 ∪ p2 ∪ X, where X can be the empty set or an edge

connecting p1 and p2. By induction, both p1 and p2 are in R. Let us assume w.l.o.g. that

p1 is added to R at iteration k1 and that p2 is added to R at iteration k2 > k1. Two

situations may occur.

1. p1 ∩ p2 6= ∅ and p = p1 ∪ p2. In such a case, p is added to PF at the iteration k2 + 1,

and consequently it is added to R.

2. p = p1 ∪ p2 ∪ {(a, b)}. Again, without loss of generality we can assume that a ∈

OUTBORDER(p1) and b ∈ INBORDER(p2). In such a case, by step 8 of the algorithm, (a, b) ∈

FA at iteration k2 + 1. By steps 11 and 12 of the algorithm, p ∈ PF at iteration k2 + 1,

and hence p ∈ R.

Observe finally that each candidate pattern p is considered at most k times, where k is

the number of connected patterns contained in p. Since the number of candidate patterns

is finite, the algorithm must terminate.

In comparing the performance of the c-find algorithm with the w-find algorithm proposed

in the previous section, it is interesting to notice that the c-find algorithm can generate

more candidates than w-find, but in general reaches convergence more quickly (number of

iterations).

Proposition IV.14: Let C be the set of candidate patterns generated by c-find and let Nc

be the steps required for its execution. Let W the set of candidate patterns generated by

w-find and let Nw the steps required for its execution. Then, W ⊆ C, and Nc ≤ Nw.

Proof: It is easy to see that c-find considers all the candidate patterns considered

by w-find. This is a trivial consequence of Lemma IV.12, and of the observation that

c-find degenerates in w-find each time it considers elementary patterns in R. This also

entails Nc ≤ Nw. However, in general, C = W does not hold. Indeed, let us consider the

situation in which there are four patterns p1, p2, p3 and p4, and the patterns p1 ∪ p2 and

p2 ∪ p4 are frequent, but the pattern p1 ∪ p3 is not. Assume also that patterns p1 ∪ p2 and

p3 ∪p4 are connected by means of an edge (a, b). In such a case, c-find would generate the

(unfrequent) candidate pattern p1 ∪ p2 ∪ p3 ∪ p4 ∪ {(a, b)}, but w-find would not.
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As a consequence of the above statements, the two algorithms can be considered as

viable alternatives, and a preference can be carried out only by considering the particular

structure of the workflow schema that had generated the instances. The next section will

also provide a discussion and a comparison between the two algorithms.

V. Experiments and Discussion

In this section we study the behavior of the algorithms w-find and c-find, by evaluat-

ing both their performance and their scalability. As shown in the previous section, the

algorithms are sound and complete w.r.t. the set of frequent w -patterns. Nevertheless,

in principle the number of candidate w -patterns generated could be prohibitively high,

thus making the algorithms unfeasible on complex workflow schemas. Moreover, we also

compare the performance of our implementations w.r.t. several existing techniques for

computing frequent itemsets adapted to the particular applicative domain.

In our experiments, we mainly use synthetic data. Synthetic data generation can be

tuned according to: i) the size of WS, ii) the size of F , iii) the size |L| of the frequent

weak patterns in F , and iv) the probability p⊆ of choosing a E⊆-arc. The ideas adopted

in building the generator for synthetic data are essentially inspired by [2].

A. Performance of w-find

In a first set of experiments, we tested the w-find algorithm by first considering some

fixed workflow schemas, and generating synthesized workflow instances. In particular,

the nondeterministic choices in the executions are performed according to a binomial

distribution with mean p⊆. Frequent instances are forced into the system by replicating

some instances (in which some variations were randomly performed) according to |L|.

Figure 6 reports on the left the number of operations (matching of a pattern with an

instance), for increasing values of |F|. The figure shows that the algorithm scales linearly

in the size of the input (for different supports).

In a second set of experiments, we randomly generate the workflow schemas to test the

efficiency of the approach w.r.t. the structure of the workflow. To this aim, we fix |F|

and generate workflow instances according to the randomly generated schema. The actual

number of nodes and arcs is chosen by picking from a Poisson distribution with fixed mean
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Fig. 6. w-find performance. Left: Number of operations w.r.t. |F|. Center: Number of candidates w.r.t.

f , for different minSupp values. Right: Number of candidates w.r.t. number of nodes, for randomly

generated workflow schemas.

value. In order to evaluate the contribution of the complexity of workflow schemas, we

exploit the factor f = |E⊆|
|E|

, which represents the degree of potential nondeterminism within

a workflow schema. Intuitively, workflow schemas exhibiting f ≃ 0 produce instances with

a small number of candidate w -patterns. Conversely, workflow schemas exhibiting f ≃ 1

produce instances with a large number of candidate w -patterns. Figure 6 shows on the

center the behavior of w-find when f ranges between 0 (no nondeterminsm) and 1 (full

nondeterminism), for different values of minSupp values. It is interesting to observe that

even for significantly higher values of f (real workflow schema are expected to have a

degree of non-determinism less then 0.5), the smart way of searching the search space

reduces drastically the number of candidates being generated.

Finally, on the right, we report the number of candidates at the varying of the number

of nodes, for different values of f . It is worth noting the exponential behavior, due to the

combinatorial explosion of the search space.

B. Comparing w-find and Apriori

We consider an implementation of the Apriori algorithm which only computes frequent

itemsets of edges in E⊆. Such an approach is significant for analyzing the performance

overhead suffered by traditional frequent-pattern mining methods, which typically can be

easily adapted to mine workflow instances but are not tuned to take into account domain

information about the workflow schema. We perform several experiments comparing the

performance of the Apriori approach with the ones of w-find on increasing values of |F|

and minSupp. For a dataset of instances generated as said before w.r.t. the workflow
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F

Apriori

Fig. 7. w-find vs Apriori. Left: Number of candidates w.r.t. f . Right: Number of candidates for different

minSupp values.

schema of Figure 1, the comparison is reported in Figure 7 (on the right).

As expected, w-find outperforms Apriori by an order of magnitude. This is mainly

due to the fact that, contrarily to w-find, in the Apriori implementation arcs in E⊆ are

combined without taking into account the information provided by the workflow schema.

Figure 7 shows instead on the left the behavior of both Apriori and w-find when f

ranges between 0 (no nondeterminsm) and 1 (full nondeterminism). Again, Apriori is

outperformed by w-find. Notice that, for small values of f , both the algorithms produce a

small number of candidates; however, in this situation, w-find still performs significantly

better than Apriori for small minSupp values (e.g., 0.1). In fact, for lower values of

of minSupp, the number of candidates increments significantly, and, hence, the focused

strategy of w-find leads to a significant gain. However, we point out that the adaptation

of Apriori tested here might be a viable solution for the mining of “nearly deterministic”

workflows, if we are, moreover, interested in very frequent patterns (minSupp> 0.2).

C. Comparing w-find with WARMR and Prefix-Span

A possible further approach to consider is the WARMR algorithm devised in [7] which

allows an explicit formalization of domain knowledge (like, for example, the connectivity

information provided by the workflow schema) which can be directly exploited by the

algorithm. The setting file that we have used is reported in Figure 8 (predicates to be

mined are on the right).

The results of the comparison are shown in Figure 9 (on the left), where we report the
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warmodekey(instance(−I)). rmode(startarc(+I,#N)). type(startnode(pic, obj)).
talking(3). rmode(endnode(+I,#N). type(endnode(pic, obj)).
usepacks(0). rmode(andarc(+I,#S,#D)). type(andarc(pic, obj, obj)).
minfreq(0.2). rmode(xorarc(+I,#S,#D)). type(xorarc(pic, obj, obj)).
typedlanguage(yes). rmode(optarc(+I,#S,#D)). type(optarc(pic, obj, obj)).

rmode(arc(+I,#S,#D)). type(arc(pic, obj, obj)).
rmode(node(+I,#N)). type(node(pic, obj)).

Fig. 8. The setting file used in the WARMR approach.

WARM

Fig. 9. Left: Comparison of w-find with WARM, over a fixed workflow schema. Right: Comparison of

w-find with PrefixSpan.

correlation between the number of candidate patterns and the number of the nodes in the

workflow schema, at the varying of f .

In the evaluation of the algorithm, we also have made some comparison w.r.t. methods

for mining sequential pattern. However, a workflow is not a sequence; nonetheless, we

can assume to represent each instance as a sequential pattern by considering the ordering

of execution of each activity. For example, the instance reported in Figure 3 can be

described by the sequence s1 = 〈S, c, (eg), (e2l), (4, 5), j2, j, l, (mno), A〉, if we assume that

each activity requires the same amount of time to be executed. Note that we grouped all

the activities that we assume to be executed at the same time. Conversely, if the activity

g requires more time, a possible ordering of executions associated to the same instance

is s2 = 〈S, c, e, (e2), (4, 5), j2, j, g, l, (mno), A〉. Thus, s1 and s2 are distinct sequences

associated to the same instance. It follows that any sequential pattern algorithm can be

used for extracting frequent instances, but it cannot be complete, in the sense that some

frequent instances will not be mined since the sequences associated to the executions are

possibly quite different (and hence infrequent). In our testing, we compared w-find with

the PrefixSpan algorithm [16], but, in order to achieve a finer analysis, we assume each

activity to require the same time to be executed; essentially, PrefixSpan has been applied
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2 , f=0.7 2 , minSupp=0.2

Fig. 10. Comparison of w-find with c-find. Left: Number of candidates for different minSupp values.

Right: Number of candidates at the varying of the nondeterminism.

on the sequences constructed from each instance by performing a breadth-first search,

starting from the initial activity.

The results are reported in Figure 9, where on the right we report the number of

candidates generated at each stage of the computation, for a fixed workflow schema. Again,

this experiment is significative only for understanding the advantage of a more focused

method, and is not a comparison on “pure” sequences where PrefixSpan is expected to

outperform both w-find and c-find. In fact, we can see that the more elaborate and domain

dependent way of searching patterns in the lattice leads to a smaller number of patterns

to be generated.

D. Comparing w-find and c-find

Finally, we report the experimental results of the comparisons between w-find and c-find.

In a first set of experiments, we fixed a value of f (0.7), and generated 5000 random

instances. In Figure 10, we report on the left the number of candidates generated over

such instances at the varying of the minimum support. It is interesting to observe that

w-find performs better than c-find especially for lower values of minSupp.

For a second set of experiments we fixed minSupp=0.2, and we made the comparison at

the varying of f . This second set of experiments, whose results are reported in the right

of Figure 10 confirmed the quality of w-find of generating fewer candidates, for every type

of workflow (regardless of the degree of non-determinism).

The factor that may instead lead to a preference of c-find is in the number of steps
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, minSupp=0.2 , f=0.9

Fig. 11. Left: Number of candidates generated at the different steps. Right: Comparison of w-find with

c-find.

performed. Let us consider Figure 11 which reports the number of candidates generated

at the different steps of the algorithm (the scale is logarithmic). Here, the behavior of

c-find is somehow dual to that of w-find (as reported on the right of Figure 9). Indeed,

c-find at each successive step generates more candidates than in the previous one, and

this leads the process to converge quickly. Conversely, w-find after a certain number of

steps reduces dramatically the number of new frequent patterns discovered, and, hence, it

requires more iterations. A more direct comparison is reported on the right of Figure 11,

from which it is evident that the faster rate of convergence of c-find is payed with a bigger

number of candidates generated. Since the number of steps coincides with the number of

scans of the database, in the case of huge databases c-find may be convenient.

More generally, c-find is expected to exhibit better performance than w-find with dense

workflow databases. More specifically, a set of workflow instances is dense if the number

of expected frequent patterns is large w.r.t. the size of the workflow. If a database of

instances exhibits this peculiarity, the number of candidate patterns to be generated is

likely to be of the same order of magnitude as the number of frequent patterns (that is,

the number of unfrequent patterns is small w.r.t. the set of frequent ones). In such a

case, both c-find and w-find are expected to compute (almost) the same set of candidates.

However, the look-ahead strategy of the c-find algorithm guarantees a faster convergence

rate. Clearly, more efficient extensions could be devised to the proposed algorithms for

dense databases, in order to avoid candidate generation (e.g., in the style of [10]).
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VI. Conclusions

We have introduced the problem of mining frequent instances of workflow schemas,

motivated by the aim of providing facilities for the system administrator to monitor the

actual behavior of the workflow system in order to predict the “most probable” workflow

executions. We have shown that the use of mining techniques is justified by the fact that

even “simple” reachability problems are intractable.

We have proposed two novel graph mining algorithms specialized to deal with constraints

imposed by the structures of workflow schemes and instances, and we have studied their

properties both theoretically and experimentally, by showing that they represent an effec-

tive means of investigating some inherent properties of the executions of a given schema.

Following our approach, future research might develop more elaborated algorithms that

are able to deal with more expressive modelling features, which have been not considered

in our formal framework. For instance, a valuable on-going extension is dealing with

supporting cyclic instances, by integrating our techniques with well known approaches for

mining periodic patterns (see, e.g., [30]).
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