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Abstract. Several recent works have addressed the problem of (re)discovering an
unknown workflow model of a given process, by looking at the logs of a number
of its executions. Most of these approaches assume a graphical representations of
the model, namely the control flow graph, which provides an intuitive description
of the precedence relationships between the underlying activities, often enriched
with some kind of local constraints, such as synchronization or parallel executions.
In this paper we extend such approaches by proposing a general framework for the
process mining problem which encompasses the assumption of workflow schema
with local constraints only, for it being applicable to more expressive specification
languages, independently of the particular syntax adopted. In fact, we provide
an effective process mining technique based on the rather unexplored concept of
clustering workflow executions, in which clusters of executions sharing the same
structure and the same unexpected behavior (w.r.t. the local properties) are seen
as a trace of the existence of global constraints.

1 Introduction

Process mining techniques, i.e., techniques that look at the information collected during
the enactment of a process, not yet supported by a Workflow Management System, in
order to derive a model explaining the event recorded, are increasingly exploited within
enterprises. In fact, they can be fruitfully exploited to assist the administrator in the
design of processes with complex and often unexpected dynamics, whose modelling with
traditional approaches would require expensive and long analysis which may eventually
result unviable under an economic viewpoint.

As for a typical applicative scenario, we shall consider throughout the paper the au-
tomatization of the (OrderManagement) process of handling customers’ orders within a
business company, consisting of the activities of (a) receiving an order, (b) authenticat-
ing the client, (c) checking in stock the availability of the required product, (d) verifying
the availability of external supplies, (f) registering a client in the company database, (i)
evaluating the trustworthiness of the client, (g) evaluating the plan of the production, (h)
rejecting an order, (l) accepting an order, (n) preparing the bill, (m) applying discount
for regular customers, and (o) contacting the mail department in order to speed up the
shipment of the goods.

In this scenario, the workflow designer might only have a look at some execution
traces, like the ones shown in Table 1, and then she can use some of the process mining
approaches proposed in the literature (see, e.g., [1, 15, 4, 12]), aiming at reconstructing



s1 : acdbfgih s5 : abicglmn s9 : abficgln s13 : abcidglmn

s2 : abficdgh s6 : acbiglon s10 : acgbfilon s14 : acdbiglmn

s3 : acgbfih s7 : acbgilomn s11 : abcfdigln s15 : abcdgilmn

s4 : abcgiln s8 : abcfgilon s12 : acdbfigln s16 : acbidgln

Table 1. Sample log traces from the process OrderManagement

the structure of the process. Most of these approaches exploit graphical models based on
the notion of control flow graph, which describe the process through a directed graph,
where nodes correspond to the activities and edges represent the potential flow of work,
i.e., the precedence relationships between activities. However, despite its intuitiveness,
the control flow completely lacks in the ability of formalizing complex global constraints
on the executions, often occurring in real scenarios, since it only can prescribe local
constraints in terms of precedence relationships.

In this paper, we extend previous approaches to process mining, by proposing an
algorithm which, besides discovering the control flow of a process, can also reveal the
presence of interesting global constraints, so providing the designer with a refined view
of the process. In order to substantiate the problem, one should specify the language to
be adopted for expressing global constraints — thus the problem is strongly dependent on
syntactical issues. Therefore, in order to devise a general approach, in Section 3 we find
an alternative (syntax-independent) way for evidencing global constraints, consisting in
replacing a unique target schema WS with a set of alternative schemata having no global
constraints but directly modelling the execution patterns those constraints prescribe.

Different patterns of executions are identified by means of an algorithm for hierar-
chically clustering workflow traces, presented in Section 4. In order to reuse well known
clustering methods, the algorithm exploits a “flat”, relational representation of the traces,
obtained by projecting the instances onto a set of suitably defined features. Specifically,
each feature is a frequent structure of execution which is discovered by means of proper
data mining techniques. Thus, the approach is similar in the spirit to the proposals (see,
e.g., [10]) of clustering sequences using the frequent itemsets as relevant features, but
technically more complex, for it deriving a hierarchical clustering for workflow schemata,
whose structure is more complex than simple sequences.

We conclude by stressing that all the techniques presented here have been imple-
mented and quantitatively tested by exploiting an interesting framework for assessing
the similarity between the original model and the discovered one. The results of such an
experimentation are discussed in Section 5.

2 Related Work

In this section, we next briefly review some recent advances in the application of data
mining techniques within the context of Workflow Management Systems.

The first approach to process mining, in a Software Engineering setting, is introduced in
[4], where three different methods are proposed to automatically derive a formal process
model from execution’s log. All these methods use an event stream, i.e., a sentence in a



three-token language, as input for inferring a Finite State Machine (FSM) model which
reflects the behavior of the process. In such a representation language, the activities,
corresponding to input tokens, are represented by edges and specify transitions between
states of the underlying process.

The application of process mining to the workflow management context is firstly inves-
tigated in [1]. Differently from the previous approach, based on the finite state machine
model, the authors adopt a directed graph model. The main restriction of such model is
that it does not consider either edges labelled or AND/OR of joins and splits. Actually,
in this model a dependency between two activities can be only represented as either a
directed edge or a path from an activity to the other one. Conversely, our model is able
to express richer control flow constructs, for specifying concurrency, synchronization and
choices.

In [16] a special kind of Petri nets, named Workflow nets (WF-net), is used to model the
control flow of a process. Tasks are modelled by transitions and causal dependencies are
modelled by places and arcs. In particular, a place corresponds to a condition which can
be used as pre- or post-condition for tasks. Such a model, which can be used to specify the
execution of a workflow instance, allows for expressing complex control flow constraints.
The mining task consists in deriving a WF-net from a workflow log (containing just
sequences of task executions, as usual), under the assumption that the log is complete,
in the sense that every causal relationship between tasks is witnessed by the consecutive
appearance of those tasks in at least one trace of the log. The approach relies on the
computation of some simple statistics on the consecutive appearance of tasks in the log,
from which a preliminary (acyclic) causal graph is derived. Such a model is possibly
enriched by introducing cycles (recursion and short-loop) and by determining the nature
of split and join nodes, still on the basis of the previously computed statistics. The final
result of the algorithm is a suitable WF-net which encodes all information on the behavior
of the process extracted from the log.

Finally, a strictly related but quite different data mining problem in workflow man-
agement context has been introduced in [6]. Rather than using logs for mining a process
model, the authors assume that a model is already know and consider the ability of
predicting the “most probable” workflow execution. Indeed, in real world-cases, many
choices can be done during a workflow execution: some of them can lead to a benefit,
other ones should be avoided in the future. Data mining techniques can help in taking the
appropriate decisions during in the execution of further coming instances, by extracting
unexpected and useful knowledge about the process from previous instantiations of the
workflow itself. The algorithm presented in [6] is able to discover the connected structure
of the executions that have been scheduled more frequently by the workflow system, i.e.,
whose frequency of occurrence in the logs is above a given threshold σ. These structures
are simply called frequent connected patterns (short: frequent F-patterns) and they are
the subprocesses that are frequently performed during the enactment of the main process.

3 Formal Framework

The control flow graph of a process P is a tuple CF(P ) = 〈A,E, a0, F 〉, where A is a
finite set of activities, E ⊆ (A − F ) × (A − {a0}) is a relation of precedences among



authenticate

client

check

stock

ask
suppliers

validate

order plan
decline
order

accept
order

fidelity

discount

fast

dispatch

prepare
bill

a

b

c

f

i

d

g

h

l

m

o

n

client

reliability

receive

order
AND

XOR

XOR

XOR

XOR

AND

OR
OR

OR

register

client

XOR

OR

OR

XOR

Fig. 1. Control flow graph for the sample OrderManagement process.

activities, a0 ∈ A is the starting activity, F ⊆ A is the set of final activities. For instance,
Figure 1 shows a possible control flow for the OrderManagement process presented in
the Introduction.

Any connected subgraph I = 〈AI , EI〉 of the control flow graph, such that a0 ∈ AI

and AI ∩ F 6= ∅ is a potential instance of P . In order to model restrictions on the
possible instances, the description of the process is often enriched with some additional
local or global constraints, requiring, e.g., that an activity must (or may not) directly (or
indirectly) follow the execution of a number of other activities.

Most of the approaches proposed in the literature, even though with possibly different
syntaxes, assume that the local constraints can be expressed in terms of three functions
IN, OUTmin, and OUTmax assigning to each node a natural number (A 7→ N) as follows:
– ∀a ∈ A− {a0}, 0 < IN(a) ≤ InDegree(a);
– ∀a ∈ A− F , 0 < OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a);
– IN(a0) = 0, and ∀a ∈ F , OUTmin(a) = OUTmax(a) = 0.

where InDegree(a) = |{e = (b, a) | e ∈ E}| and OutDegree(a) = |{e = (a, b) | e ∈ E}|.As for the semantics, an activity a can start as soon as at least IN(a) of its predecessor
activities have been completed. Two typical cases are: (i) if IN(a) = InDegree(a) then
a is an and-join activity, for it can be executed only after all of its predecessors are
completed, and (ii) if IN(a) = 1 then a is an or-join activity, for it can be executed as
soon as one of its predecessors is completed.

Once finished, an activity a activates one non-empty subset of its outgoing arcs with
cardinality between OUTmin(a) and OUTmax(a). If OUTmax(a) = OutDegree(a) then a is a
full fork and if also OUTmin(a) = OUTmax(a) then a is a deterministic fork (also known as
”and-split”), for it activates all of its successor activities. Finally, if OUTmax(a) = 1 then
a is an exclusive fork (also called xor-split in the literature), for it activates exactly one
of its outgoing arcs.

Global constraints are, instead, richer in nature and their representation strongly de-
pends on the particular application domain of the modelled process. Thus, they are often
expressed using other complex formalisms, mainly based on a suitable logic with an
associated clear semantics.

Let P be a process. A workflow schema for P , denoted by WS(P ), is a tuple
〈CF(P ), CL(P ), CG(P )〉, where CF(P ) is the control flow graph of P , and CL(P ) and
CG(P ) are sets of local and global constraints, respectively. Given a subgraph I of CF(P )
and a constraint c in CL(P ) ∪ CG(P ), we write I |= c whenever I satisfies c in the asso-
ciated semantics. Moreover, if I |= c for all c in CL(P ) ∪ CG(P ), I is called an instance



of WS(P ), denoted by I |= WS(P ). When the process P is clear from the context, a
workflow schema will be simply denoted by WS = 〈CF , CL, CG〉.

3.1 The Process Model Discovery Problem

Let AP be the set of task identifiers for process P . We assume the actual workflow schema
WS(P ) for P to be unknown, and we consider the problem of properly identifying it,
in the set of all the possible workflow schemas having AP as set of nodes. In order to
formalize this problem we need some preliminarily definitions and notations.

A workflow trace s over AP is a string in A∗P , representing a sequence of activities.
Given a trace s, we denote by s[i] the i-th task in the corresponding sequence, and by
lenght(s) the length of s. The set of all the activities in s is denoted by tasks(s) =⋃

1≤i≤lenght(s) s[i]. Finally, a workflow log for P , denoted by LP , is a bag of traces over
ΣP : LP = [ s | s ∈ A∗P ] and is the only input from which inferring the schema WS(P ).
Notice that any trace s is indeed a topological sort of some instance I = 〈AI , EI〉 of
W (P ), i.e., s is an ordering of the activities in AI s.t. for each (a, b) ∈ EI , i < j where
s[i] = a and s[j] = b – incidentally, we say that I is an instance corresponding to the
trace s and that s is a trace corresponding to the instance I.

The basic idea for mining global constraints is, first, to derive from the trace logs
an initial workflow schema whose global constraints are left unexpressed and, then, to
stepwise refine it into a number of specific schemata, each one modelling a class of traces
having the same characteristics w.r.t. global constraints. Let P be a process. A disjunctive
workflow schema for P , denoted by WS∨(P ), is a a set {WS1, ...,WSm} of workflow
schemata for P , with WSj = 〈CF j , Cj

L, ∅〉, for 1 ≤ j ≤ m. The size of WS∨(P ), denoted
by |WS∨(P )|, is the number of workflow schemata it contains. An instance of any WSj

is also an instance of WS∨, denoted by I |= WS∨.
Given LP , we aim at discovering a disjunctive schema WS∨ as “close” as possible to

the actual unknown schema WS(P ) that generated the log traces. This intuition can
be formalized by accounting for two criteria, namely completeness (i.e., all traces are
compliant with some instance) and soundness (i.e., every instance must be witnessed by
some trace in the log), constraining the discovered workflow to admit exactly the traces
of the log.

Let soundness(WS∨,LP ) denote the percentage of instances of WS∨ having no corre-
sponding traces in the log, and completeness(WS∨,LP ) denote the percentage of traces
in LP for which there are corresponding instances of WS∨. Then, given two real numbers
α and σ between 0 and 1 (typically α is small whereas σ is close to 1) we say that WS∨ is
α-sound w.r.t. LP , if soundness(WS∨,LP ) ≤ α, i.e. the smaller the sounder. Moreover,
WS∨ is σ-complete w.r.t. LP , if completeness(WS∨,LP ) ≥ σ, i.e., the larger the more
complete.

Our aim is We to discover a disjunctive schema WS∨ for a given process P which
is α-sound and σ-complete, for some given α and σ. However, it is easy to see that a
trivial schema satisfying the above conditions always exists, consisting of the union of
exactly one workflow schema (without global constraints) for each of the instances in
LP . Nonetheless, such model would be not a syntectic view of the process P , for its size



being |WS∨| = |LP |, where |LP | = |{s | s ∈ L}|. We therefore introduce a bound on the
size of WS∨, and we propose the following problem.

Definition 1. (Minimal Process Discovery) Let LP be a workflow log for the process
P . Given a real number σ and a natural number m, the Minimal Process Discovery
problem, denoted by MPD(P ,σ,m), consists in finding a σ-complete disjunctive workflow
schema WS∨, such that |WS∨| ≤ m and soundness(WS∨,LP ) is minimal. ut

It can be shown that in the above problem cannot be efficiently solved (unless, P =
NP). Thus, in the paper, we shall propose an efficient technique for solving the strictly-
related problem PD(P ,σ,m) of greedily finding a suitable approximation, that is a σ-
complete workflow schema WS∨, with |WS∨| ≤ m, which is as sound as possible.

4 Clustering Workflow Traces

In order to mine the underlying workflow schema of the process P (problem PD(P ,σ,m))
we exploit the idea of iteratively and incrementally refining a schema, by mining some
global constraints which are then used for discriminating the possible executions, starting
with a preliminary disjunctive model WS∨, which only accounts for the dependencies
among the activities in P .

The algorithm ProcessDiscover, shown in Figure 2, which computes WS∨ through a
hierarchical clustering, first mines a control flow CFσ,1 through the procedure minePrece-
dences according to the threshold σ, which mainly exploits techniques reported in Sec-
tion 4.1. Each workflow schema WSj

i , eventually inserted in WS∨, is identified by the
number i of refinements needed, and an index j for distinguishing the schemas at the
same refinement level. Moreover, we denote by L(WSj

i ) the set of traces in the cluster
defined by WSj

i . Notice that preliminarily WS1
0, containing all the logs in LP , is inserted

in WS∨, and in Step 3 we refine the model by mining some local constraints, too.
The algorithm is also guided by a greedy heuristic that at each step selects a schema

WSj
i ∈ WS∨, to be refined through the function refineWorkflow, by preferring the

schema which can be most profitably refined. In practice, we refine the the least sound
schema among the ones already discovered; however, some experiments have been also
conduced, where the schema WSj

i with the maximum value of |L(WSj
i )| is chosen.

In order to reuse well know clustering methods, and specifically in our implementation
the k-means algorithm, the procedure refineWorkflow translates the logs L(WSj

i ) to
relational data with the procedures identifyRelevantFeatures and project, which will
be discussed in Sections 4.2 and 4.3, respectively. Then, if more than one feature is
identified, it computes the clusters WSj+1

i+1 , ...,WSj+k
i+1 , where j is the maximum index

of the schemas already inserted in WS∨ at the level i + 1, by applying the k -means
algorithm on the traces in L(WSj

i ), and put them in the disjunctive schema WS∨.
Finally, for each schema inserted in WS∨ the procedure mineLocalConstraint is applied,
in order to identify local constraints as well. It can be shown that at each step of workflow
refinement the value of soundness decreases, thus the algorithm gets closer to the optimal
solution.
1 Roughly, the edges in CFσ represent a minimal set of precedences with at least a given support



Input: Problem PD(P ,σ,m), natural number maxFeatures.
Output: A process model.
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp); //See Section 3.1

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0); //See Section 3.1
3 WS∨ := WS1

0; //Start clustering with the dependency graph only
4 while |WS∨| < m do

5 WSj
i :=leastSound(WS∨);

6 WS∨ := WS∨ − {WSj
i};

7 refineWorkflow(i,j);
8 end while
9 return WS∨;

Procedure refineWorkflow(i: step, j: schema);

1 F :=identifyRelevantFeatures(L(WSj
i ), σ, maxFeatures, CFσ); //See Section 4.1

2 R(WSj
i ) :=project(L(WSj

i ),F); //See Section 4.2
3 k := |F|;
4 if k > 1 then

5 j := max{j | WSj
i+1 ∈ WS∨};

6 〈WSj+1
i+1 , ...,WSj+k

i+1 〉 := k-means(R(WSj
i ));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));

10 mineLocalConstraints(WSh
i+1);

11 end for
12 else //Leave of the tree

13 WS∨ = WS∨ ∪ {WSj
i}; //See Theorem 2.2

14 end if ;

Fig. 2. Algorithm ProcessDiscover

A main point of the algorithm is fixing the number k of new schemata to be added
at each refinement step. The range of k goes from a minimum of 2, which will require
several steps for the computation, to an unbounded value, which will return the result
in only one step. One could then expect that the latter case is most efficient. This is
not necessarily true: the clustering algorithm could run slower with a larger number of
classes, thus loosing the advantage of a smaller number of iterations. In contrast, there
is an important point in favor of a small value for k: the representation of the various
schemata can be optimized by preserving the tree structure and storing for each node only
the differences w.r.t. the schema of the father node. The tree representation is relevant
not only because of the space reduction but also because it give more insights on the
properties of the modelled workflow instances and provides an intuitive and expressive
description of global constraints.

4.1 Dependencies and Local Constraints

In this section we overview and extend some ideas proposed in the literature, for mining
both dependencies and local constraints. First, we need a notion for inferring precedences
among set of activities w.r.t. their actual occurrences in the log.

Let LP be a workflow log over ΣP , A ⊆ ΣP be a set of activities, and s a trace in LP .
The beginning (resp. ending) of A in s, denoted by b(A, s) (resp. e(A.s)), is the index i,
if exists, such that a = s[i], and ∀a′ ∈ A− {a}, a′ = s[j] with j > i (resp. j < i). Given



B ⊆ ΣP , and a threshold σ, we say that A σ-precedes B in LP , denoted by A →σ B, if
|{s ∈ LP | e(A, s) < b(B, s)}|/|LP | ≥ σ.

Exploiting this notions, we can characterize complex relationships among tasks. Given
two activities a and b, and a threshold σ, we say that:
– a and b are σ-parallel activities in LP , denoted by a‖σb, if there are activities

a = a1, ..., b = am with m > 1 such that {ai} →σ {ai+1} for 1 ≤ i < m, and
{am} →σ {a1}.

– a σ-strictly precedes b in LP , denoted by a ⇒σ b, if a and b are not σ-parallel
activities, and if there are traces s1, ..., sk in LP , with k = σ × |LP |, such that for
each si, b({a}, si) < b({b}, si), and ∀j s.t. b({a}, si) < j < b({b}, si), si[j]‖σb.

Parallel activities and strictly precedences are the basic blocks from which the control
flow is inferred. Indeed, the σ-control flow of P is the graph CFσ(P ) = 〈ΣP , Eσ〉 contain-
ing an arc (a, b) in Eσ for each pair of nodes a and b, such that either (i) a ⇒σ b or (ii)
{a} →σ {b} and does not exist a set of activities {h1, ..hm} with a ⇒σ h1, hi ⇒σ hi+1

for 1 ≤ i < m, and hm ⇒σ b.
Finally, the set of σ-local constraints, denoted by CLσ, can be mined by exploiting the

control flow:
OUTmin(a) = |succ(a)| −maxS⊆succ(a),{a}6→σS |S|
OUTmax(a) = |succ(a)| −minS⊆succ(a),{a}6→σS |S|
IN(a) = minS⊆prec(a),S→σ{a} |S|

where succ(a) = {b | (a, b) ∈ Eσ} and prec(a) = {b | (b, a) ∈ Eσ}, and A 6→σ B simply
denotes that relation A →σ B does not hold.

4.2 Dealing with Relevant Features

A crucial point in the algorithm for clustering workflow traces is the formalization of the
procedures identifyRelevantFeatures and project. Roughly, the former identifies a set
F of relevant features [10, 11, 14], whereas the latter projects the traces onto a vectorial
space whose components are, in fact, these features.

Some works addressing the problem of clustering complex data considered the most
frequent common structures, also called frequent patterns, to be the relevant features
for the clustering. Since we are interested in features that witness some kind of global
constraints, we instead exploit the more involved notion of unexpected (w.r.t. the local
properties) frequent rules.

Let L be a set of traces, CFσ be a mined control flow, for threshold σ, and Eσ be the
edge set of CFσ. Then a sequence [a1...ah] of tasks is σ-frequent in L if |{s ∈ L | a1 =
s[i1], ..., ah = s[ih] ∧ i1 < ... < ih}|/|L| ≥ σ. We say that [a1...ah] σ-precedes a in L,
denoted by [a1...ah] →σ a, if both [a1...ah] and [a1...aha] are σ-frequent in L.

A discriminant rule (feature) φ is an expression of the form [a1...ah] 699Kσ a, s.t. (i)
[a1...ah] is σ-frequent in L, (ii) (ah, a) ∈ Eσ, and (iii) [a1...ah] →σ a does not hold.
Moreover, φ is minimal if (iv) there is no b, s.t. [a1...ah] 699Kσ b and [b] →σ a, and (v)
there is no j, s.t. j > 1 and [aj ...ah] 699Kσ a.



Input: A log L, a threshold σ, the max nr. of features maxFeatures, the control flow graph CFσ , with edge
set Eσ .

Output: A set of minimal discriminant rules.
Method: Perform the following steps:

1 L2 := {[ab] | (a, b) ∈ Eσ};
2 k := 1, R := L2, F := ∅;
3 repeat
4 M := ∅; k := k + 1;
5 forall [ai...aj ] ∈ Lk do
6 forall [ajb] ∈ L2 do
7 if [ai+1...aj ] 699Kσ b is not in F then
8 M := M ∪ [ai...ajb];
9 end for
10 forall p ∈ M of the form [ai...ajb] do
11 if p is σ-frequent in L then Lk+1 := {p};
12 else F := F ∪ {[ai...aj ] 699Kσ b}; //See Theorem 3.2
13 end for
14 R := R ∪ Lk+1; //See Theorem 3.1
15 until Lk+1 = ∅;
16 return mostDiscriminant(F);

Procedure mostDiscriminantFeatures(F : set of unexpected rules): set of unexpected rules;
1 S′ := L; F ′ := ∅;
2 do
3 let φ = argmaxφ′∈F |w(φ′, S′)|;
4 F ′ := F ′ ∪ {φ};
5 S′ := S′ − w(φ, S′);
6 while (|S′|/|LP | > σ) and (F ′ < maxFeatures);
7 return F ′;

Fig. 3. Algorithm IdentifyRelevantFeatures

For instance, in the OrderManagament process, [fil] 699K5/16 m is a minimal discrim-
inant rule, witnessing the global constraint that fidelity discount is not applied for new
clients. Notice that [dgl] 699K5/16 o is a minimal discriminant rule as well.

The identification of discriminant rules can be carried out by means of the level-wise
algorithm shown in Figure 3. At each step k of the computation, we store in Lk all the
σ-frequent sequences whose size is k. Specifically, in the Steps 5–9, the set of potential
sequences M to be included in Lk+1 are obtained by combining those in Lk with the
relationships of precedences in L2 — notice that Step 7 prevents the computation of
not minimal unexpected rules. Then, only σ-frequent pattern in M are included in Lk+1

(Step 11), while all the others will determine unexpected rules (Step 12). The process is
repeated until no other frequent traces are found. The correctness of the algorithm can
be easily proven.

Theorem 1. In the algorithm of Figure 3, before its termination (Step 16):
1. the set R contains exactly all the σ-frequent sequences of tasks, and
2. the set F contains exactly all the minimal discriminant rules.
Notice that the algorithm IdentifyRelevantFeatures does not directly output F , but it

calls instead the procedure mostDiscriminantFeatures, searching for a proper subset of
F which discriminates the log traces at best.

This intuition can be formalized as follows. Let φ be a discriminant rule of the form
[ai, ..., aj ] 699Kσ b, then the witness of φ in L, denoted by w(φ,L), is the set of logs in
which the pattern [ai, ..., aj ] occurs.

Moreover, given a set of rules R, then the witness of R in L is
⋃

φ∈R w(φ,L). For a
fixed k, R is the most discriminant k-set of features if |R| = k and there exists no R′ with



Traces s1... s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

sφ1 0 ... 0 0.8212 0.9018 0.8212 0.9018 0.9018 0 0 0 0

sφ2 0 ... 0 0 0 0 0.9018 0.9018 0.8212 0.8212 0.8212 0.9018

Table 2. Sample traces from OrderManagement in the feature space

|w(R′,L)| > |w(R,L)|, and |R′| = k. Notice that the most discriminant k-set of features
can be computed in polynomial time by considering all the possible combinations of
features of R, with k element.

The minimum k, for which the most discriminant k-set of features, say S, covers all
the logs, i.e., w(S,L) = L, is called dimension of L, whereas S is the most discriminant
set of features.

Theorem 2. Let L be a set of traces, n be the size of L (i.e., the sum of the lengths of
all the traces in L), and F be a set of features. Then, computing any most discriminant
set of features is NP hard.

Due to the intrinsic difficulty of the problem, we turn to the computation of a suitable
approximation. In fact, the procedure mostDiscriminantFeatures, actually implemented
in the algorithm for identifying relevant features, computes a set F ′ of discriminant rules,
guided by the heuristics of greedily selecting a feature φ covering the maximum number
of traces, among the ones (S′) not covered by previous selections.

4.3 Projecting Traces

The last aspect to overview for the algorithm ProcessDiscover, shown in Figure 2,
concerns the way in which the selected features can be used for mapping traces in a
proper vectorial space, where k-means algorithm can be applied. This is carried out
within the procedure project. Due to its simplicity we do not report the code here, and
we give just a flavor of its behavior.

The main idea is that the set of relevant features F can be used for representing each
trace s as a point in the vectorial space R|F|, denoted by −→s .

Let φ : [a1...ah] 699K a be a feature in F , then the value assigned to the component of −→s
associated with φ is 0 if {a1, ..., ah} 6⊆ tasks(s), and (1 + α(s, φ)× β(s, φ)2)−1 otherwise.
The coefficient α(s, φ) represents an empirical (inverse) estimation of the impact feature
φ could have in pruning the space of the possible execution branches when producing
trace s. Conversely, β(s, φ) represents a correction factor, which takes into account the
number of other activities which occurred in s before or in between those of φ, and which
could have influenced the sequel of the execution as well:

α(s, φ) = | FG(ah) ∩ { t∈tasks(s) | s[i]=t ∧ i≥e({ah},s) } |
| FG(ah) | ; β(s, φ) = b({ah},s) − | tasks(body(φ)) |

b({ah},s)

where FG(a) is the set of tasks which can be reached from a in G, whereas the functions
e and b hold the same meaning as in the previous section.

Table 2 reports the results of projecting the sample traces in Table 1 over the features
φ1 = [bfil] 699K m and φ2 = [cdgl] 699K o.
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Fig. 4. Fixed Schema. Left: Soundness w.r.t. levels. Right: Scaling w.r.t. number of traces.

5 Experiments

In this section we study the behavior of the ProcessDiscover algorithm for evaluating
both its effectiveness and its scalability, with the help of a number of tests performed on
synthetic data. The generation of such data can be tuned according to: (i) the size ofWS,
(ii) the size of LP , (iii) the number of global constraints in CG, and (iv) the probability p
of choosing any successor edge, in the case of nondeterministic fork activities. The ideas
adopted in generating synthetic data are essentially inspired by [3], and the generator we
exploited is an extension of the one described in [6].

In order to asses the effectiveness of the technique, we adopted the following test pro-
cedure. Let WS(I) be a workflow schema for the input process I, and LI a log produced
with the generator. The quality of any workflow WS∨(O), extracted by providing the
mining algorithm with LI , is evaluated, w.r.t. the original one WS(I), essentially by
comparing two random samples of the traces they respectively admit. This allow us to
compute an estimate of the actual soundness and completeness. Moreover, in order to
avoid statistical fluctuations in our results, we generate a number of different training
logs, and hence, whenever relevant, we report for each measure its mean value together
with the associated standard deviation. In the test described here, we focus on the in-
fluence of two major parameters of the method: (i) the branching factor k and (ii) the
maximum number (maxLevels) of levels in the resulting disjunctive scheme. Notice that
the case k = 1 coincides with traditional algorithms which do not account for global con-
straints. All the tests have been conduced on a 1600MHz/256MB Pentium IV machine
running Windows XP Professional.

We considered a fixed workflow schema and some randomly generated instances. Fig-
ure 4 (on the left) reports the mean value and the standard deviation of the soundness
of the mined model, for increasing values of |LI | by varying the factor k. Notice that
for k = 1, the algorithm degenerates in computing a unique schema, and in fact, the
soundness is not affected by the parameter maxLevel — this is the case of any algorithm
accounting of local constraints only. Instead, for k > 1, we can even rediscover exactly
the underlying schema, after a number of iterations. These experiments have been con-
duced on an input log of 1000 instances. Finally, on the right, the graph shows that our
approach scales (almost) linearly at the varying of the number of logs in LI .



6 Conclusions

In this paper, we have continued on the way of investigating data mining techniques for
process analysis, by providing a method for discovering global constraints, in terms of
the patterns of executions they impose. This is achieved through a hierarchical clustering
of the logs, where each trace is seen as a point in a properly identified feature space. The
complexity of the task of constructing this space is provided, as well as a viable algorithm
for its solution. We conclude by mentioning that a problem that we did not address in this
paper is how to handle the presence of noise on the logs, due to erroneous insertions or
non-insertions of activities or bad reporting of order time sequence. A promising solution
is to introduce a weak notion of trace based on the edit distance of two strings [9].
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