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Hierarchical Binary Histograms for Summarizing
Multi-dimensional Data
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Abstract

Two new classes of histogram-based summariza-
tion techniques which are very effective for multi-
dimensional data are proposed. These classes are
based on a particular binary hierarchical parti-
tion scheme, where blocks of data are recursively
split into two sub-blocks, and use a tree structure
for the representation of blocks and their sum-
marized data. One of the two classes adopts a
constrained partition scheme, where the position
where a block is split must be laid onto a fixed,
discrete grid defined on the block itself. The
adoption of this constrained partitioning leads
to a more efficient physical representation w.r.t.
histograms using unrestricted partition schemes,
so that the saved space can be invested to obtain
finer grain blocks, which approximate data with
more detail. The problem of constructing effec-
tive partitions is addressed as well, and several
criteria for efficiently deciding where blocks have
to be split are defined and compared. Exper-
imental results show that our techniques yield
smaller approximation errors w.r.t. traditional
ones (classical multi-dimensional histograms as
well as other types of summarization technique).

1 Introduction

The need to compress data into synopses of summarized
information often arises in many application scenarios,
where the aim is to retrieve aggregate data efficiently,
possibly trading off the computational efficiency with the
accuracy of the estimation. Examples of these applica-
tion contexts are range query answering in OLAP ser-
vices [11], selectivity estimation for query optimization
in RDBMSs [2, 10], statistical and scientific data analy-
sis, window query answering in spatial databases [1, 8],
and so on. All of these scenarios are mainly interested in
aggregating data within a specified range of the domain
– these kinds of aggregate query are called range queries.
To support efficient query answering, information is often
represented adopting the multi-dimensional data model:
data are stored as a set of measure values associated to
points in a multi-dimensional space.
A widely used approach for summarizing multi-
dimensional data is the histogram-based representation
scheme, which consists in partitioning the data domain
into a number of blocks (called buckets), and then storing
summary information for each block [4, 5]. The answer

to a range query evaluated on the histogram (without
accessing the original data) is computed by aggregating
the contributions of each bucket. For instance, a sum
range query (i.e. a query returning the sum of the el-
ements contained inside a specified range) is evaluated
as follows. The contribution of a bucket which is com-
pletely contained inside the query range is given by its
sum, whereas the contribution of a bucket whose range
is external w.r.t. the query is null. Finally, the contri-
bution of the blocks which partially overlap the range
of the query is obtained estimating which portion of the
total sum associated to the bucket occurs in the query
range. This estimate is evaluated performing linear inter-
polation, i.e. assuming that the data distribution inside
each bucket is uniform (Continuous Values Assumption
- CVA), and thus the contribution of these buckets is
generally approximate (unless the original distribution of
frequencies inside these buckets is actually uniform).
It follows that querying aggregate data rather than the
original ones reduces the cost of evaluating answers (as
histogram size is much less than original data size), but
introduces estimation errors, as data distributions inside
buckets are not, in general, actually uniform. Therefore,
a central problem when dealing with histograms is find-
ing the partition which provides the “best” accuracy in
reconstructing query answers. This can be achieved by
producing partitions whose blocks contain as uniform as
possible data distributions (so that CVA is well-founded).
Many effective summarization techniques have been pro-
posed for data having a small number of dimensions. Un-
fortunately, these methods do not scale up to any num-
ber of dimensions, so that finding a technique effective
for high-dimensionality data is still an open problem.
In this paper we propose new classes of multi-dimensional
histograms which are based on binary hierarchical parti-
tions. These summary structures are obtained by recur-
sively splitting blocks of the data domain into pairs of
sub-blocks. We stress that binary hierarchical partition
approaches have already been adopted for constructing
histograms – indeed we shall discuss meaningful exam-
ples of such a class, that we call FBH, Flat Binary His-
tograms. The novelty of our histograms (namely, HBH
and GHBH) is that the hierarchy adopted for determin-
ing the structure of a histogram is also used as a basis
for representing it, thus introducing surprising efficiency
in terms of both space consumption and accuracy of es-
timations. In particular, HBHs (Hierarchical Binary His-

tograms) and GHBHs (Grid Hierarchical Binary Histograms)
differ from one another as the latter are based on a con-



strained partition scheme, where blocks of data cannot
be split anywhere along one of their dimensions, but
the split must be laid onto a grid partitioning the block
into a number of equally sized sub-blocks. The adoption
of this constrained partitioning enables a more efficient
physical representation of the histogram w.r.t. HBH as
well as other histograms using more traditional partition
schemes. Thus, the saved space can be invested to ob-
tain finer grain blocks, which approximate data in more
detail.
We also address the problem of constructing optimal
HBHs and GHBHs w.r.t. the well-known SSE metric
[4], which measures the effectiveness of histograms on the
basis of the uniformity of the distributions contained in-
side its buckets. We show that, unfortunately, comput-
ing the optimal solutions is too expensive, so we adopt
heuristics based on greedy approaches to construct sub-
optimal partitions in a reasonable amount of time. We
present a general greedy algorithm which is parametric
w.r.t. the kinds of histograms (HBH or GHBH) and to
various greedy criteria for deciding, at each partitioning
step, which blocks have to be split and at which points.
Experimental results show that GHBH give much smaller
approximation errors than HBH which, in turn, per-
form better than state-of-the-art summarization tech-
niques, such as wavelets [11, 12] and other types of multi-
dimensional histogram [1, 10]. Experiments also show
that particularly GHBH and, to a lesser extent, HBH
can be effectively applied on high-dimensionality data,
as their accuracy is shown to be almost unaffected by the
increase of dimensionality.

1.1 Related Work

Histograms were originally proposed in [6] in the con-
text of query optimization in relational databases. Query
optimizers compute efficient execution plans on the ba-
sis of the estimation of the size of intermediate results.
In this scenario, histograms were introduced to summa-
rize the frequency distributions of single-attribute val-
ues in database relations to allow an efficient selectiv-
ity estimation of intermediate queries [2]. The frequency
distribution of a single attribute A can be viewed as a
one-dimensional array storing, for each value v of the at-
tribute domain, the number of tuples whose A attribute
has value v. A one-dimensional histogram (on the at-
tribute A) is built by partitioning the frequency distri-
bution of A into a set of non-overlapping blocks (called
buckets), and storing, for each of these blocks, the sum
of the frequencies contained in it (i.e. the total number
of tuples where the value of the A attribute is contained
in the range corresponding to the bucket).
The selectivity (i.e. the result size) of a query of the form
v′ < R.A < v′′ is estimated on the histogram by evaluat-
ing a range-sum query, that is by summing the frequen-
cies stored in the buckets whose bounds are completely
contained inside [v′..v′′], and possibly by estimating the
“contributions” of the buckets which partially overlap the
query range. These contributions are evaluated by as-
suming that the frequency distribution inside each bucket
is uniform, thus performing linear interpolation. This in-
troduces some approximation error, but this error is often

tolerated as an approximate evaluation of the result size
of intermediate queries often suffices to compute an effi-
cient query execution plan.
One-dimensional histograms are not suitable to estimate
the selectivity of queries involving more than one at-
tribute of a relation, i.e. queries of the form v′

1 <
R.A1 < v′′

1 ∧ . . . ∧ v′
n < R.An < v′′

n. In this case,
the joint frequency distribution has to be considered [10],
i.e. a multi-dimensional array whose dimensions repre-
sent the attribute domains, and whose cell with coordi-
nates < v1, . . . , vn > stores the number of tuples where
A1 = v1, . . . , An = vn. The selectivity of a query Q of
the form v′

1 < R.A1 < v′′
1 ∧ . . . ∧ v′

n < R.An < v′′
n co-

incides with the sum of the frequencies contained in the
multidimensional range 〈[v′

1..v
′′
1 ], . . . , [v′

n..v′′n]〉 of the joint
frequency distribution. In order to retrieve this aggre-
gate information efficiently, a histogram can be built on
the joint frequency distribution as in the one-dimensional
case. A histogram on a multi-dimensional data distribu-
tion consists in a set of non overlapping buckets (hyper-
rectangular blocks) corresponding to multi-dimensional
ranges partitioning the overall domain.
The same need for summarizing multi-dimensional data
into synopses of aggregate values often arises in many
other application scenarios, such as statistical databases
[7], spatial databases [1, 8] and OLAP [11]. In the lat-
ter case, the data to be summarized do not represent fre-
quencies of attribute values, but measure values to be ag-
gregated within specified ranges of the multidimensional
space, in order to support efficient data analysis. This
task is accomplished by issuing range queries providing
the aggregate information which the users are interested
in. The approximation introduced by issuing queries on
summarized data (without accessing original ones) is tol-
erated as it makes query answering more efficient, and
approximate answers often suffice to obtain useful aggre-
gate information.
The effectiveness of a histogram (built in a given storage
space bound) can be measured by measuring the uni-
formity of the data distribution underlying each of its
buckets. As queries are estimated by performing lin-
ear interpolation on the aggregate values associated to
the buckets, the more uniform the distribution inside the
buckets involved in the query, the better the accuracy
of the estimation. Therefore the effectiveness of a his-
togram depends on the underlying partition of the data
domain. In [9], the authors present a taxonomy of differ-
ent classes of partitions, and distinguish arbitrary, hier-
archical, and grid-based partitions. Grid-based partitions
are built by dividing each dimension of the underlying
data into a number of ranges, thus defining a grid on the
data domain: the buckets of the histogram correspond
to the cells of this grid. Hierarchical partitions are ob-
tained by recursively partitioning blocks of the data do-
main into non overlapping sub-blocks. Finally, arbitrary
partitions have no restriction on their structure. Obvi-
ously, arbitrary partitions are more flexible than hierar-
chical and grid-based ones, as there are no restrictions
on where buckets can be placed. But building the “most
effective” multi-dimensional histogram based on an ar-
bitrary partition (called V-Optimal [4]) has been shown
to be a NP-Hard problem, even in the two-dimensional



case [9]. Therefore several techniques for building effec-
tive histograms (which can be computed more efficiently
than the V-Optimal one) have been proposed. Most of
these approaches are not based on arbitrary partitions. In
particular, MHIST-p [10] is a technique using hierarchi-
cal partitions. The MHIST-p algorithm works as follows.
First, it partitions the data domain into p buckets, by
choosing a dimension of the data domain and splitting it
into p ranges. Then, it chooses a bucket to be split and
recursively partitions it into p new sub-buckets. The cri-
terion adopted by MHIST-p to select and split the bucket
which is the most in need of partitioning (called MaxD-
iff) is described in more detail in Section 8.6. From the
experiments in [10], it turns out that MHIST-2 (based
on binary partitions) provides the best results. In [1] the
authors introduce MinSkew, a technique refining MHIST
to deal with selectivity estimation in spatial databases
(where data distributions are two-dimensional). Basi-
cally, MinSkew first partitions the data domain accord-
ing to a grid, and then builds a histogram as though
each cell of the grid represented a single point of the data
source. The histogram is built using the same hierarchical
scheme adopted by MHIST-2, using a different criterion
for choosing the bucket to be split at each step.
Other approaches to the problem of summarizing multi-
dimensional data are the wavelet-based ones. Wavelets
are mathematical transformations implementing a hier-
archical decomposition of functions [3, 11, 12]. They
were originally used in different research and application
contexts (like image and signal processing), and have re-
cently been applied to selectivity estimation [3] and to the
approximation of OLAP range queries over data cubes
[11, 12]. The compressed representation of a data distri-
bution is obtained in two steps. First, a wavelet transfor-
mation is applied to the data distribution, and N wavelet
coefficients are generated (the value of N depends both on
the size of the data and on the particular type of wavelet
transform used). Next, among these N coefficients, the
m < N most significant ones (i.e. the largest coefficients)
are selected and stored. Issuing a query on the com-
pressed representation of the data essentially corresponds
to applying the inverse wavelet transform to the stored
coefficients, and then aggregating the reconstructed (ap-
proximate) data values.

2 Basic Notations

Throughout the paper, a d-dimensional data distribution
D is assumed. D will be treated as a multi-dimensional
array of integers of size n1×. . .×nd. A range ρi on the i-th
dimension of D is an interval [l..u], such that 1 ≤ l ≤ u ≤
ni. Boundaries l and u of ρi are denoted by lb(ρi) (lower
bound) and ub(ρi) (upper bound), respectively. The size
of ρi will be denoted as size(ρi) = ub(ρi) − lb(ρi) + 1. A
block b (of D) is a d-tuple 〈ρ1, . . . , ρd〉 where ρi is a range
on the dimension i, for each 1 ≤ i ≤ d. Informally, a block
represents a “hyper-rectangular” region of D. A block b
of D with all zero elements is called a null block. Given
a point in the multidimensional space x = 〈x1, . . . , xd〉,
we say that x belongs to the block b (written x ∈ b) if
lb(ρi) ≤ xi ≤ ub(ρi) for each i ∈ [1..d]. A point x in b is
said to be a vertex of b if for each i ∈ [1..d] xi is either

lb(ρi) or ub(ρi). The sum of the values of all points inside
b will be denoted by sum(b).

Any block b inside D can be split into two sub-blocks
by means of a (d−1)-dimensional hyper-plane which is or-
thogonal to one of the axis and parallel to the other ones.
More precisely, if such a hyper-plane is orthogonal to the
i−th dimension and intersects the orthogonal axis by di-
viding the range ρi of b into two parts ρlow

i = [lb(ρi)..xi]
and ρhigh

i = [(xi + 1)..ub(ρi)], then the block b is di-
vided into two sub-blocks blow =〈ρ1, . . . , ρ

low
i , . . . , ρd〉 and

bhigh =〈ρ1, . . . , ρ
high
i , . . . , ρd〉. The pair < blow, bhigh > is

said the binary split of b along the dimension i at the posi-
tion xi. The i-th dimension is called splitting dimension,
and the coordinate xi is called splitting position.

Informally, a binary hierarchical partition can be ob-
tained by performing a binary split on D (thus generating
the two sub-blocks Dlow and Dhigh), and then recursively
partitioning these two sub-blocks with the same binary
hierarchical scheme.

Definition 1 Given a multi-dimensional data distribu-
tion D, a binary partition BP (D) of D is a binary tree
such that:

1. every node of BP (D) is a block of D;

2. the root of BP (D) is the block 〈[1..n1], . . . , [1..nd]〉;
3. for each internal node p of BP (D), the pair of chil-

dren of p is a binary-split on p.

In the following, the root, the set of nodes, and the set
of leaves of the tree underlying a binary partition BP will
be denoted, respectively, as Root(BP ), Nodes(BP ), and
Leaves(BP ). An example of a binary partition defined
on a two dimensional data distribution D of size n× n is
shown in Figure 1.

Figure 1: A binary partition

3 Flat Binary Histogram

As introduced in Section 1.1, several techniques proposed
in literature, such as MHIST and MinSkew, use binary
partitions as a basis for building histograms. In this
section we provide a formal abstraction of classical his-
tograms based on binary partitions. We refer to this class
as Flat Binary Histograms, to highlight the basic charac-
teristic of their physical representation model. The term
“flat” means that, classically, buckets are represented in-
dependently from one another, without exploiting the hi-
erarchical structure of the underlying partition.



Definition 2 Given a multi-dimensional data distribu-
tion D, the Flat Binary Histogram on D based on the
binary partition BP (D) is the set of pairs:

FBH(D) = {<b1, sum(b1)>, . . . , <bβ , sum(bβ)>},
where the set {b1, . . . , bβ} coincides with Leaves(BP ).

In the following, given a flat binary histogram FBH(D) =
{<b1, sum(b1)>, . . . , <bβ , sum(bβ)>}, the blocks b1, . . . , bβ

will be called buckets of FBH(D), and the set {b1, . . . , bβ}
will be denoted as Buckets(FBH(D)).
Fig. 2 shows how the 2-dimensional flat binary histogram
corresponding to the binary partition of Fig. 1 can be
obtained by progressively performing binary splits on D.
The histogram consists in the following set:
{ < 〈[1..x1], [1..n]〉 , 50 >, < 〈[x1+1..n], [1..y2]〉, 61 >,

< 〈[x1+1..x2], [y2+1..y1]〉, 0 >, < 〈[x2+1..n], [y2+1..y1]〉, 63 >,

< 〈[x1+1 .. n], [y1+1 .. n]〉, 82 > }.

Figure 2: Constructing a 2D FBH

A flat binary histogram can be represented by storing,
for each bucket of the partition, both its boundaries and
the sum of its elements. Assuming that 32 bits are needed
to encode an integer value, 2·d 32-bit words are needed to
store the boundaries of a bucket, whereas one 32-bit word
is needed to store a sum value. Therefore, the storage
space consumption of a flat binary histogram FBH(D) is
given by: size(FBH)=(2·d+1)·32 · |Buckets(FBH)| bits.
Thus, given a space bound B, the maximum number of
buckets of an FBH that can be represented within B is
βmax

FBH =
⌊

B
32·(2·d+1)

⌋

3.1 V-Optimal Flat Binary Histogram

As introduced in Section 1.1, one of the most important
issues when dealing with multi-dimensional histograms is
how to build the histogram which approximates “best”
the original data distribution, while being constrained to
fit in a given bounded storage space. The SSE of a par-
tition is a widely used metric to measure the “quality”
of the approximation provided by histogram-based sum-
mary structures. The SSE of a histogram (based on an
arbitrary partition) consisting in the buckets {b1, . . . , bβ}
is defined as

∑β
i=1 SSE(bi), where the SSE of a a sin-

gle bucket is given by SSE(bi) =
∑

j∈bi
(D[j]−avg(bi))2.

Given a space bound B, the histogram which has mini-
mum SSE among all histograms whose size is bounded by
B is said to be V-Optimal (for the given space bound).
This notion of optimality can be trivially extended
to histograms based on binary partitions. The SSE
of a flat binary histogram FBH is SSE(FBH) =∑

bi∈Buckets(FBH) SSE(bi). Thus, FBH is V-Optimal
(for a given space bound B) if it has minimum SSE w.r.t.
all other flat binary histograms with space bound B.

Theorem 1 Given a d-dimensional data distribution D
of size O(nd), the V-Optimal flat binary histogram FBH�

on D can be computed in O( B2

d·2d · n2d+1)

Remark. Theorem 1 can be viewed as an extension of

the results presented in [9], where the problem of finding the

optimal binary hierarchical partition w.r.t several metrics (in-

cluding the SSE) has been shown to be polynomial in the

two-dimensional case 1. We stress that this result cannot be

extended to arbitrary partitions, where the problem of finding

the V-Optimal histogram has been shown to be polynomial

only in the one-dimensional case, and NP-hard even in the

two-dimensional case [9].

4 Hierarchical Binary Histogram

The hierarchical partition scheme underlying a flat bi-
nary histogram can be exploited to define a new class
of histogram, which improves the efficiency of the phys-
ical representation. It can be observed that most of
the storage consumption (2 · d · 32 · |Buckets(FBH)|) of
a flat binary histogram is due to the representation of
the bucket boundaries. Indeed, buckets of a flat binary
histogram cannot describe an arbitrary partition of the
multi-dimensional space, as they are constrained to obey
a hierarchical partition scheme. The simple representa-
tion paradigm defined in Section 2.2 introduces some re-
dundancy. For instance, consider two buckets bi, bi+1

which correspond to a pair of siblings in the hierarchi-
cal partition underlying the histogram; then, bi, bi+1 can
be viewed as the result of splitting a block of the multi-
dimensional space along one of its dimensions. Therefore,
they have 2d−1 coinciding vertices. For FBH histograms,
these coinciding vertices are stored twice, as the buckets
are represented independently of each other. We expect
that exploiting this characteristic should improve the ef-
ficiency of the representation.

The idea underlying Hierarchical Binary Histogram
consists in storing the partition tree explicitly, in order to
both avoid redundancy in the representation of the bucket
boundaries and provide a structure indexing buckets.

Definition 3 Given a multi-dimensional array D, a Hi-
erarchical Binary Histogram of D is a pair HBH(D) =
〈P, S〉 where P is a binary hierarchical partition of D, and
S is the set of pairs 〈p, sum(p)〉 where p ∈ Nodes(P ).

In the following, given HBH = 〈P, S〉, the term
Nodes(HBH) will denote the set Nodes(P ), whereas
Buckets(HBH) will denote the set Leaves(P ).

4.1 Physical representation

A hierarchical binary histogram HBH = 〈P, S〉 can be
stored efficiently by representing P and S separately, and
by exploiting some intrinsic redundancy in their defini-
tion. To store P , first of all we need one bit per node
to specify whether the node is a leaf or not. As the
nodes of P correspond to ranges of the multi-dimensional
space, some information describing the boundaries of
these ranges has to be stored. This can be accomplished
efficiently by storing, for each non leaf node, both the
splitting dimension and the splitting position which de-
fine the ranges corresponding to its children. Therefore,

1Indeed [9] addresses the dual problem which is equivalent to
finding the FBH which needs the smallest storage space and has a
metric value below a given threshold



each non leaf node can be stored using a string of bits,
having length 32 + �log d�+ 1, where 32 bits are used to
represent the splitting position, �log d� to represent the
splitting dimension, and 1 bit to indicate that the node is
not a leaf. On the other hand, 1 bit suffices to represent
leaf nodes, as no information on further splits needs to be
stored. Therefore, the partition tree P can be stored as
a string of bits (denoted as StringP (HBH)) consisting in
the concatenation of the strings of bits representing each
node of P .

The pairs 〈p1, sum(p1)〉, . . . , 〈pm, sum(pm)〉 of S
(where m = |Nodes(HBH)|) can be represented using an
array containing the values sum(p1), . . . , sum(pm), where
the sums are stored according to the ordering of the cor-
responding nodes in StringP (HBH). This array consists
in a sequence of m 32-bit words and will be denoted as
StringS(HBH). Indeed, it is worth noting that not all
the sum values in S need to be stored, as some of them
can be derived. For instance, the sum of every right-hand
child node is implied by the sums of its parent and its sib-
ling. Therefore, for a given hierarchical binary histogram
HBH, the set Nodes(HBH) can be partitioned into two
sets: the set of nodes that are the right-hand child of some
other node (which will be called derivable nodes), and
the set of all the other nodes (which will be called non-
derivable nodes). Derivable nodes are the nodes which
do not need to be explicitly represented as their sum can
be evaluated from the sums of non-derivable ones. This
implies that StringS(HBH) can be reduced to the repre-
sentation of the sums of only non-derivable nodes.

On the right-hand side of Fig. 3 this representation
paradigm is applied to the HBH shown on the left-hand
side of the same figure.

Figure 3: Representation of an HBH

In Fig. 3 non-derivable nodes are colored in grey,
whereas derivable nodes are white. Leaf nodes of HBH
are represented in StringP (HBH) by means of a unique
bit, with value 0. As regards non-leaf nodes, the first bit
of their representation has value 1 (meaning that these
nodes have been split); the second bit is 0 if the node is
split along the horizontal dimension, otherwise it is 1.

This representation scheme can be made more efficient
by exploiting the possible sparsity of the data. In fact it
often occurs that the size of the multi-dimensional space
is large w.r.t. the number of non-null elements. Thus we
expect that null blocks are very likely to occur when par-
titioning the multi-dimensional space. This leads us to
adopt an ad-hoc compact representation of such blocks
in order to save the storage space needed to represent
their sums. A possible efficient representation of null

blocks could be obtained by avoiding storing zero sums in
StringS(HBH) and by employing one bit more for each
node in StringP (HBH) to indicate whether its sum is
zero or not. Indeed, it is not necessary to associate one
further bit to the representation of derivable nodes, since
deciding whether they are null or not can be done by
deriving their sum. Moreover observe that we are not
interested in HBHs where null blocks are further split
since, for a null block, the zero sum provides detailed in-
formation of all the values contained in the block, thus no
further investigation of the block can provide a more de-
tailed description of its data distribution. Therefore any
HBH can be reduced to one where each null node is a leaf,
without altering the description of the overall data distri-
bution that it provides. It follows that in StringP (HBH)
non-leaf nodes do not need any additional bit either, since
they cannot be null. According to this new representa-
tion model, each node in StringP (HBH) is represented
as follows:

• if the node is not a leaf it is represented using a
string of length 32 + �log d� + 1 bits, where 32 bits
are used to represent the splitting position, �log d�
to represent the splitting dimension, and 1 bit to
indicate that the node is not a leaf.

• if the node is a leaf, it is represented using one bit to
state that the node has not been split and, only if it
is a non-derivable node, one additional bit to specify
whether it is null or not.

On the other hand StringS(HBH) represents the sum
of all the non-derivable nodes which are not null.
A possible representation of the HBH shown on the left-
hand side of Fig. 3 according to this new model is pro-
vided in Fig. 4. In particular, both non-leaf nodes and
derivable leaf nodes are stored in the same way as in Fig.
3, whereas non-derivable leaf nodes are represented with
a pair of bits. The first one of these has value 0 (which
states that the node has not been split), and the second
one is either 0 or 1 to indicate whether the node is null
or not, respectively.

Figure 4: Efficient Representation of an HBH

According to the physical representation model presented
above, it can be easily shown that maximum size of an
HBH with β buckets is given by β · (67+ �log d�)− (34+
�log d�), which corresponds to the case that all but one
leaf nodes are non-derivable, and all non-derivable nodes
are not null.

We point out that the size of a hierarchical binary
histogram HBH is less than the size of the “correspond-
ing” flat binary histogram FBH having the same par-
tition tree. In fact, the storage space needed to rep-
resent FBH with β buckets is (2 · d + 1) · 32 · β, and
(2 · d + 1) · 32 > 67 + �log d� for any d ≥ 1.



5 Grid Hierarchical Binary Histogram

In the previous section it has been shown how the ex-
ploitation of the hierarchical partition scheme underlying
a histogram yields an effective benefit. That is, a hier-
archical binary histogram can be represented more effi-
ciently than the corresponding flat histogram, thus the
available storage space can be used to represent a larger
number of buckets.
We now introduce further constraints on the partition
scheme adopted to define the boundaries of the buckets.
The basic idea is that the use of a constrained partition-
ing enables a more efficient physical representation of the
histogram w.r.t. histograms using more general partition
schemes. The saved space can be invested to obtain finer
grain blocks, which approximate data in more detail.
Basically, a Grid Hierarchical Binary Histogram GHBH
is a hierarchical binary histogram whose internal nodes
cannot be split at any position of any dimension: ev-
ery split of a block is constrained to be laid onto a grid,
which divides the block into a number of equally sized
sub-blocks. This number is a parameter of the partition,
and it is the same for every block of the partition tree. In
the following, a binary split on a block b =< ρ1, . . . , ρd >
along the dimension i at the position xi will be said a
binary split of degree k if xi = lb(ρi) +

⌈
j · size(ρi)

k

⌉
− 1

for some j ∈ [1..k − 1].

Definition 4 Given a multi-dimensional data distribu-
tion D, a grid binary partition of degree k on D is a bi-
nary partition GBP (D) such that for each non-leaf node
p of GBP (D) the pair of children of p is a binary-split of
degree k on p.

Definition 5 Given a multi-dimensional array D, a
Grid Hierarchical Binary Histogram of degree k on D is a
hierarchical binary histogram GHBH(D) = 〈P, S〉 where
P is a grid binary hierarchical partition of degree k on D.

Fig. 5 shows an example of the construction of a two-
dimensional 4th degree GHBH.

Figure 5: A 4th degree GHBH

Constraining each split of the partition to be laid onto
a grid defined on the blocks of the histogram enables some
storage space to be saved to represent the splitting po-
sition. In fact, for a grid binary partition of degree k,
the splitting position can be stored using �log (k − 1)�
bits, instead of 32 bits. In the following, we will consider
degree values which are a power of 2, so that the space
consumption needed to store the splitting position will be
simply denoted as log k. Fig. 6 shows the representation
of the grid hierarchical binary histogram of Fig. 5.

Proposition 1 Given a multidimensional data distribu-
tion D and a space bound B, let HBH and GHBH be,

Figure 6: Representing the GHBHof Fig. 5

respectively, a hierarchical and a grid hierarchical binary
histogram on D within B. Then, the maximum number
of buckets of HBHand GHBH is reported in Table 1.

Histogram Maximum number of buckets

HBH βmax
HBH =

⌊
B+�log d�+2
35+�log d�

⌋

GHBH βmax
GHBH =

⌊
B+log k+�log d�−30

3+log k+�log d�
⌋

Table 1

The bounds reported in the table above are computed
by considering the case that the available storage space B
is equal to the minimum storage space consumption of the
HBH and the GHBH histogram (see Appendix for more
details). Comparing the results summarized in Table 1
to the maximum number of buckets of an FBH βmax

FBH

(see Section 3), the main conclusion that can be drawn
is that the physical representation scheme adopted for
an HBH permits us to store a larger number of buckets
w.r.t. an FBH within the same storage space bound, as
35+ �log d� < 32 · (2 · d+1). Analogously, the constraint
on the splitting position of a GHBH further increases the
number of buckets that can be represented within B, as
we can assume that 32 > log k.

As will be shown later, the main consequence of this is
that HBH provides a more effective summarization of D
than FBH, and, in turn, GHBH provides a more detailed
partition than HBH.

6 Optimal Hierarchical Histograms

We extend to HBH and GHBH both the notion of V-
Optimal histogram (introduced for FBH in Section 3),
and the results related to its computational complexity.

The SSE of a hierarchical histogram H based on a
binary partition (where H can be either HBHor GHBH)
is SSE(H) =

∑
bi∈Buckets(H) SSE(bi). Thus, H is V-

Optimal (for a given space bound B) if it has minimum
SSE w.r.t. all other histograms of the same type (resp.
HBH, GHBH) with space bound B.

Theorem 2 Given a d-dimensional data distribution D
of size O(nd), the V-Optimal histograms HBH� and
GHBH� on D can be computed in the complexity bounds
reported in the table below:

Type of Complexity bound of computing
histogram the V-Optimal histogram

HBH� O(d · B2

2d · n2d+1)
GHBH� O(d · B2

2d · kd+1 · nd)



Remark. Comparing results in Theorem 2 to that of The-

orem 1, we can observe that the computational complexity of

constructing a V-Optimal FBH is less than that of comput-

ing a V-Optimal HBH within the same storage space bound.

Essentially, this is due to the more complex representation

scheme adopted by HBH, whose buckets are represented dif-

ferently depending on whether they are null or not, derivable

or not (see Appendix for more details). However, the two

complexity bounds have the same polynomial degree w.r.t.

the size of the input data; moreover the aim of introducing

HBH is not to make the construction process faster, but to

yield a more effective histogram. The complexity of building

GHBH� is less than that of HBH� as, in the former case, the

number of splits that can be applied to a block are constrained

by the grid. Note that if k = n the complexities of the two

cases coincide.

7 Greedy algorithms

Although Theorem 2 states that finding optimal his-
tograms HBH�(D) and GHBH�(D) can be done in time
polynomial w.r.t. the size of D, the polynomial bound has
been obtained using a dynamic programming approach
(see proof of the theorem in Appendix), which is prac-
tically unfeasible, especially for large data distributions.
In order to reach the goal of minimizing the SSE, in favor
of simplicity and speed, we propose a greedy approach,
accepting the possibility of not obtaining an optimal so-
lution.
Our approach works as follows. It starts from the bi-
nary histogram whose partition tree has a unique node
(corresponding to the whole D) and, at each step, selects
the leaf of the binary-tree which is the most in need of
partitioning and applies the most effective split to it. In
particular, in the case of a GHBH, the splitting position
must be selected among all the positions laid onto the
grid overlying the block. Both the choices of the block to
be split and of the position where it has to be split are
made according to some greedy criterion. Every time a
new split is produced, the free amount of storage space is
updated, in order to take into account the space needed
to store the new nodes, according to the different repre-
sentation schemes. If any of these nodes corresponds to
a block with sum zero, we save the 32 bits used to rep-
resent the sum of its elements. Anyway, only one of the
two nodes must be represented, since the sum of the re-
maining node can be derived by difference, by using the
parent node.
A number of possible greedy criteria can be adopted for
choosing the block which is most in need of partitioning
and how to split it. The greedy strategies tested in our
experiments are reported in the table shown in Fig. 8.
Criteria denoted as marginal (marg) investigate marginal
distributions of blocks. The marginal distribution of a
block b along the i-th dimension is the “projection” of
the internal data distribution on the i-th dimension, and
can be viewed as an array margi(b) of size ni. Formally,
the j-th element of margi(b) is the sum of all elements
inside b whose i-th coordinate has value j. In the fol-
lowing, the term marginal SSE will be used to denote
SSE(margi(b)) for some i ∈ 1..d. Fig 7 shows marginal

distributions for a two-dimensional block.

Figure 7: Marginal distributions

The resulting algorithm scheme is shown below. It
uses a priority queue where nodes of the histogram are
ordered according to their need to be partitioned. At
each step, the node at the top of the queue is extracted
and split, and its children are in turn enqueued. Before
adding a new node b to the queue, the function Evaluate
is invoked on b. This function returns both a measure
of its need to be partitioned (denoted as need), and the
position (dim, pos) of the most effective split, according
to the adopted criterion. For instance, if Max-Var/Max-
Red strategy is used, the function returns the SSE of
b into need, and the splitting position which yields the
largest reduction of SSE. Otherwise, if Max-Red criterion
is adopted, the value of need returned by Evaluate(b) is
the maximum reduction of SSE which can be obtained by
splitting b, and the pair < dim, pos > defines the position
corresponding to this split.

Greedy Algorithm

Let B be the storage space available for the summary.

begin

q.initialize( ); //the priority queue q is initialized;
b0 := 〈[1..n1], . . . , [1..nd]〉;
H := new Histogram(b0);
B := B − 32 − 2; // the space to store H is subtracted from B
< need, dim, pos > = Evaluate(b0);
q.Insert(< b0, < need, dim, pos > >);
while (B > 0)

< b, < need, dim, pos > >= q.GetF irst( );
< blow, bhigh >= BinarySplit(b, dim, pos);
MemUpdate(B,b,dim,pos);
if (B ≥ 0)

H := Append(H, b, blow, bhigh);
// H is modified according to the split of b only if
// there is enough storage space to perform the split;
q.Insert

(
< blow, Evaluate(blow) >

)
;

q.Insert
(
< bhigh, Evaluate(bhigh) >

)
;

end if
end while
return H;

end

Therein:
• the instruction H := new Histogram(b0) builds a

hierarchical, or grid hierarchical, binary histogram
consisting in the unique bucket b0;

• the procedure MemUpdate takes as argument the
storage space B and the last performed split, and
updates B to take into account this split;

• the function Append updates the histogram by in-
serting < blow, bhigh > as child nodes of b.

The functions MemUpdate and Append work differ-
ently depending on the type of histogram which is being
built, as the space consumption of the splitting position
is different in the two cases (32 bits for HBH, and log k



Criterion
The node b to be split, and the
position <dim, pos> where b is
split

Max-Var/

Max-Red

the block b having maximum SSE
is chosen, and split at the posi-
tion < dim, pos > producing the
maximum reduction of SSE(b) (i.e.
SSE(b)−(

SSE(blow) + SSE(bhigh)
)

is
maximum w.r.t. every possible split on
b)

Max-Varmarg/

Max-Redmarg

for each block, the marginal SSE along
its dimensions are evaluated, and the
block b having maximum marginal
SSE is chosen (dim is the dimension
s.t. SSE(margdim(b)) is maximum).
Then, b is split at the position pos lay-
ing onto dim which yields the max-
imum reduction of SSE(margdim(b))
w.r.t. every possible split along dim

Max-Red

the strategy evaluates how much the
SSE of every block is reduced by
trying all possible splits. b and
< dim, pos > are the block and
the position which correspond to
the maximum reduction of SSE (i.e.
SSE(b)−(

SSE(blow) + SSE(bhigh)
)

is
maximum w.r.t. every possible split on
all non-split blocks of the histogram)

Max-Redmarg

the strategy tries all possible splits
along every dimension of every block,
and evaluates how much the marginal
SSE (along the splitting dimension)
is reduced by the split. b and
< dim, pos> are returned if the reduc-
tion of SSE(margdim(b)) obtained by
splitting b along dim at position pos
is maximum w.r.t. the reduction of
any SSE(margi(b)) (where i ∈ [1..d])
which could be obtained by performing
some split along i

Figure 8: Splitting strategies

bits for GHBH). As regards the function Evaluate, in
the case of HBH, the splitting positions to be evaluated
and compared are all the positions between the bound-
aries of every dimension, whereas for GHBH the function
computes only all possible splits laid onto the grid.

The computation of Evaluate(b) can be accomplished
more efficiently if the array F of partial sums and the ar-
ray F 2 of partial square sums are available. Both F and
F 2 have the same size as D and are defined as follows:
1) each element F [i1, . . . , id] is the sum of all the val-
ues D[j1, . . . , jd] with jx ≤ ix, for each x ∈ [1..d] (i.e.
F [i1, . . . , id] = sum(〈1..i1, . . . , 1..id〉);
2) each element F 2[i1, . . . , id] is the sum of all the values
(D[j1, . . . , jd])2 with jx ≤ ix, for each x ∈ [1..d]. It can
be shown that using F and F 2 both the SSE of a block
and the reduction of SSE due to a split can be computed
in constant time. In Appendix it is also shown how the
evaluation of the reduction of the marginal SSE along any
dimension can be reduced to the computation of the re-
duction of the SSE. Obviously, the determination of the

complexity of the proposed greedy algorithm when par-
tial sums and partial square sums are used should take
into account the cost of computing F and F 2, which is
O(2d · nd).

Theorem 3 The complexity of greedy algorithms com-
puting, respectively, a hierarchical and a grid hierarchical
binary histogram, in the cases that pre-computation of F
and F 2 are either performed or not, are listed in the fol-
lowing table, for all the greedy criteria reported in Fig.
8:

where α = n if the Max-Varmarg/Max-Redmarg criterion
is adopted, and α = k for all other greedy criteria.

Remark 1. From Theorem 3 it follows that, if we do not

use pre-computation, an HBH can be constructed faster than

a GHBH, as βmax
HBH < βmax

GHBH (see Proposition 1). However we

point out that the aim of GHBH is not to make the histogram

construction more efficient w.r.t. HBH, but to build more ef-

fective partitions of the data domain.

Remark 2. When pre-computation is used, the cost of con-

structing F and F 2 dominates the complexity of producing

the histogram. We point out that, although the complexity

bounds in the cases where no pre-computation is performed

are of the same order of magnitude (w.r.t. the size of D) as the

cases where F and F 2 are used, greedy algorithms performing

pre-computation work much better in practice. Indeed, pre-

computation becomes very difficult to manage for large data

distributions, as F and F 2 are dense and, when their volume

is “large”, they cannot be represented in main memory.

Remark 3. When pre-computation is used, the cost of

producing a GHBH (except the cost of constructing F and

F 2) does not depend on the data size, for all greedy criteria

other than Max-Varmarg/ Max-Redmarg. In fact, all the other

greedy criteria need the computation of either the variance of

a block (Max-Var/Max-Red), or all the possible reductions of

variance (Max-Var/Max-Red and Max-Red), or all the possi-

ble reductions of marginal variance (Max-Redmarg). All these

quantities can be computed in constant time by using F and

F 2 (see the appendix). On the other hand, the Max-Varmarg/

Max-Redmarg criterion has to compute the marginal variances

of candidate blocks: to accomplish this, all the marginal dis-

tributions of the blocks must be computed, thus introducing

a O(n) computational overhead w.r.t. the other cases (see the

appendix).

8 Experimental Results

In this section we present some experimental results
about the accuracy of estimating sum range queries on
hierarchical histograms. First, experiments analyzing the
effectiveness of the proposed greedy algorithms (based on
the greedy criteria reported in the table of Fig. 8) are
presented. Then, performances (in terms of accuracy)
of HBHs and GHBHs are evaluated, and compared with



some state-of-the-art techniques in the context of multi-
dimensional data summarization. Finally, our techniques
are tested on high-dimensionality synthetic and real-life
data.

8.1 Measuring approximation error

The exact answer to a sum query qi will be denoted as
Si, and the estimated answer as S̃i. The absolute error of
the estimated answer to qi is defined as: eabs

i = |Si − S̃i|.
The relative error is defined as: erel

i = |Si−S̃i|
Si

. Observe
that relative error is not defined when Si = 0.
The accuracy of the various techniques has been evalu-
ated by measuring the average absolute error ‖ eabs ‖ and
the average relative error ‖ erel ‖ of the answers to the
range queries belonging to the following query sets:

1. QS+(V ol): it contains the sum range queries defined
on all the ranges of volume V ol whose actual answer
is not null;

2. QS0(V ol): it contains the sum range queries defined
on all the ranges of volume V ol whose actual answer
is null.

8.2 Synthetic data

Our synthetic data are similar to those of [3, 12]. They
are generated by creating an empty d-dimensional array
D of size n1×. . .×nd, and then by populating r regions of
D by distributing into each of them a portion of the total
sum value T . The size of the dimensions of each region
is randomly chosen between lmin and lmax, and the re-
gions are uniformly distributed in the multi-dimensional
array. The total sum T is partitioned across the r re-
gions according to a Zipf distribution with parameter z.
To populate each region, we first generate a Zipf distribu-
tion whose parameter is randomly chosen between zmin

and zmax. Next, we associate these values to the cells
in such a way that the closer a cell to the centre of the
region, the larger its value. Outside the dense regions,
some isolated non-zero values are randomly assigned to
the array cells. As explained in [3, 12], data-sets gener-
ated by using this strategy well represent many classes of
real-life distributions.

8.3 Real life data

Real-life data were obtained from the U.S. Census Bureau
using their DataFerret application for retrieving data.
The data source is the Current Population Survey (CPS),
from which the March Questionnaire Supplement (1994)
file was extracted. 9 attributes have been chosen. Our
measure attribute is Total Wage and Salary Amount,and
the 8 functional attributes are Age, Parent’s line number,
Major Occupation, Marital Status, Race, Family Type,
Public Assistance Type, School Enrollment. The corre-
sponding 8 dimensional array has about 143 million cells,
and contains 14328 non-null values.

8.4 Comparing Greedy Criteria

Performances (in terms of accuracy) of our greedy algo-
rithms adopting the proposed greedy criteria have been
compared. Results for greedy algorithms finding an HBH

are shown in Fig. 9. The diagrams in this figure are ob-
tained on a data distribution of size 500×500×500 having
a density of 0.2%. In this figure, the accuracy of the vari-
ous criteria is evaluated w.r.t. the storage space available
for the compressed representation (fixing the skew z in-
side each region as equal to 1), and w.r.t. the skew inside
each region (provided that the number of 32 bit words
available is 5000), for queries whose volume is 0.5% of
the data domain.
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Figure 9: Comparing greedy criteria

The above diagrams show that the Max-Var/Max-Red
criterion provides the best results, and, in particular, is
less affected by the skewness of data. Interestingly, all the
criteria are more effective in handling low and high lev-
els of skew than intermediate ones (z = 1.5). When the
skew is high, only a few values inside each region are very
frequent, so that the dense regions contain mainly these
values. Thus, the histogram groups these values into the
same blocks causing small errors. Analogously, when the
skew is small, the frequencies corresponding to different
values are nearly the same and thus the data distribution
is quite uniform, so that the CVA assumption generates
small errors.
The fact that Max-Red gives worse performances than
Max-Var/Max-Red can be motivated by observing that
this criterion tends to progressively split “small” regions,
as this often provides a greater reduction of the SSE
metric. Fig. 10 shows the partitions obtained adopt-
ing, respectively, Max-Red and Max-Var/Max-Red on a
two-dimensional data distribution with 9 dense regions,
within the same storage space:

Max-Red Max-Var/Max-Red

Figure 10: Two-dimensional partitioning

From Fig. 10 it emerges that the algorithm adopt-
ing Max-Red tends to split blocks belonging to the same
dense region (yielding several small buckets), whereas
Max-Var/Max-Red is “fairer” in selecting which region
needs to be split.
Analogous results hold for GHBH: even in the case that
splits are constrained to be laid onto a grid, the Max-



Var/Max-Red criterion provides the best accuracy. Dia-
grams are not shown for the sake of brevity.
Therefore, in the following only HBH and GHBH using
the Max-Var/Max-Red criterion will be considered.

8.5 Comparing HBHs with GHBHs

These two classes of histogram have been compared on
three-dimensional data distributions of size 200 × 200 ×
200 and 800 × 800 × 800 having density 0.2% with T =
5 · 107. In particular, several GHBHs of different degrees
have been tested. The term GHBH(x) is used to denote
a GHBH which uses x bits to store the splitting position.
For instance, GHBH(0) is a GHBH where blocks can only
be split only at the half way point of any dimension,
so that no bit is spent to store the splitting position.
Analogously, GHBH(3) is a GHBH where splits must be
laid onto a grid partitioning block dimensions in 23 equal
size portions, and so on.
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Figure 11: HBH vs GHBH on 200 × 200 × 200 distr.
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Figure 12: HBH vs GHBH on 800 × 800 × 800 distr.

From diagrams in Fig. 11 and Fig. 12, it emerges that
GHBH algorithms perform better than HBH ones. This is
due to the fact that, although the HBH algorithm is able
to perform more effective splits at each step, the number
of blocks generated by GHBH algorithms is much more.
For instance, the GHBH(0) algorithm on average gener-
ates about two times the number of splits performed by
the HBH algorithm within the same storage space bound.
It is interesting to note that histograms generated by
GHBH(0) are a little more sensitive w.r.t. data skewness
than GHBH using finer grids (see Fig. 11(b)). This result
is rather expected, as the constraint to split blocks into
two equal size halves makes it necessary to define a lot
of buckets to approximate a highly skewed region effec-
tively. However, GHBH(0) counterbalances the rigidity
of the partition scheme with a larger number of blocks

which can be obtained w.r.t. the other techniques work-
ing with the same storage space bound.

From these results, we can draw the conclusion that
the use of grids provides an effective trade-off between
the accuracy of splits and the number of splits which
can be generated within a given storage space bound.
The effectiveness of this trade-off depends on the degree
of the allowed binary splits. In fact, when a high de-
gree is adopted, a single split can be very “effective” in
partitioning a block, in the sense that it can produce a
pair of blocks which are more uniform w.r.t. the case
that the splitting position is constrained to be laid onto
a coarser grid. On the other hand, the higher the degree
of splits, the larger the amount of storage space needed
to represent each split. From our results, it emerges that
GHBH(2) and GHBH(3) (using binary splits of degree 4
and 8, respectively) give the best performances in terms
of accuracy, and as the number of bits used to define
the grid increases, the accuracy decreases. Moreover, the
diagrams in Fig. 11 and Fig. 12 suggest that even if
the size of data dimensions increase (from 200 to 800),
the use of “few” bits (w.r.t. the size of the dimensions)
for defining admissible splitting positions still give better
performances (in terms of accuracy).
In the rest of the paper, all results on GHBHwill be pre-
sented by using 3 bits for storing splitting positions.

8.6 Comparison with other techniques

We compared the effectiveness of HBH and GHBH al-
gorithms with the state-of-the-art techniques for com-
pressing multi-dimensional data. In particular, we an-
alyzed the histogram-based techniques MHIST [10] and
MinSkew [1], and with the wavelet-based techniques pro-
posed respectively in [11] and [12]. The experiments were
conducted at the same storage space. First, we briefly de-
scribe these three techniques; then, we present the results
of the comparison.
MHIST (Multi-dimensional Histogram). An MHIST his-

togram is built by a multi-step algorithm which, at each step,

chooses the block which is the most in need of partitioning

(as explained below), and partitions it along one of its di-

mensions. The block to be partitioned is chosen as follows.

First, the marginal distributions along every dimension are

computed for each block. The block b to be split is the one

which is characterized by a marginal distribution (along any

dimension i) which contains two adjacent values ej , ej+1 with

the largest difference w.r.t. every other pair of adjacent val-

ues in any other marginal distribution of any other block. b is

split along the dimension i by putting a boundary between ej

and ej+1. For each non-split block b, the sum of its elements,

and the positions of the front corner and the far corner of the

minimal bounding rectangle (MBR) containing all non-null el-

ements of b are stored.

MinSkew. The MinSkew algorithm works as the MHIST

one. The main difference between the two algorithms is that

MinSkew uses the Max-Redmarg criterion to select the block

to be split and where to split it. Indeed, MinSkew was intro-

duced to deal with selectivity estimation in spatial databases

(where 2D data need to be considered), so that it stores into

each buckets a number of aggregate data which are useful in

this context [1]. Our implementation is a straightforward ex-



tension of MinSkew to the multidimensional case, where each

bucket stores only the sum of the contained data and the co-

ordinates of the MBR.

Wavelet-based Compression Techniques. We have

considered the two wavelet-based techniques presented in [12]

(that will be referred as WAVE1) and in [11] (WAVE2). The

former applies the wavelet transform directly on the source

data, whereas the letter performs a pre-computation step.

First, it generates the partial sum data array of the source

data, and replaces each of its cells with its natural logarithm.

Then, the wavelet compression process is applied to the array

obtained in such a way.

The diagrams of Fig. 13 are obtained on four-
dimensional synthetic data of size 8 × 32 × 256 × 2048,
with density 0.1% and z=1, whereas the diagrams of Fig.
14are obtained on real-life data. All the diagrams show
that GHBH and HBH perform better than the other tech-
niques.
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Figure 13: Comparing techniques (synthetic data)
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Figure 14: Comparing techniques (real-life data)

8.7 Sensitivity on dimensionality

We have tested the behavior of all the techniques when
both synthetic and real-life data with increasing dimen-
sionality are considered. Diagrams 15(a) and (b) refer to
synthetic data. These diagrams were obtained by start-
ing from a 7-dimensional data distribution (called D7)
containing about 18 million cells, where 15000 non null
values (density=0.08%) are distributed among 300 dense
regions. The data distributions with lower dimensionality
(called Di, with i ∈ 3..6) have been generated by project-
ing the values of D7 on the first i of its dimensions. In
this way, we have created a sequence of multi-dimensional
data distributions, with increasing dimensionality (from
3 to 7) and with decreasing density (from 11% to 0.08%).
Diagram 15(a) has been obtained by considering, for each

Di, all the range queries whose edges are a half of the size
of the corresponding dimension of Di. That is, we con-
sidered queries of size 1

23 · V ol(D) (that is 12.5%) in the
3D case, 1

24 · V ol(D) (that is 6.25%) in the 4D case, up
to 1

27 · V ol(D) (that is 0.78%) in the 7D case. Likewise,
diagram 15(b) has been obtained by considering range
queries whose edges are 30% of the corresponding dimen-
sion of Di.
We point out that we could not consider queries with
constant sizes (w.r.t. the volume of the data), as the size
of “meaningful” queries in high dimensions is likely to be
smaller than in low dimensions. For instance, in the 3D
case a cubic query whose volume is 10% of the data vol-
ume can be considered “meaningful”, as each of its edges
is less than a half of the size of its corresponding dimen-
sion (as 0.1 ≈ 0.463; in the 10D case, a 10% query is not
so meaningful, as it selects about the 80% of the size of
every dimension (0.1 ≈ 0.810).
Both the two diagrams of Fig. 15 have been obtained by
setting the compression ratio equal 10% (the compression
ratio for Di is given by the ratio between the number of
words used to represent the histogram, and the number
of words used for the (sparse) representation of Di).
Diagrams show that the accuracy of every technique de-
creases as dimensionality increases, but GHBH and HBH
get worse very slightly. The worsening of MHIST and
MinSkew at high dimensions could be due to the fact
that, as dimensionality decreases, the projection has the
effect of collapsing several distinct dense regions into the
same one. This means that low dimensionality data con-
sists in much less dense regions than high dimensional-
ity ones. Therefore, every kind of histogram needs much
more buckets to locate dispersed dense regions in the high
dimensionality case w.r.t. the low dimensional one. Thus,
we can conjecture that the number of buckets produced
by MHIST and MinSkew, within the given space bound,
does not suffice to distribute dense regions among differ-
ent buckets: that is, these two techniques tend to include
several dense regions into the same bucket, thus provid-
ing a poor description of their content. On the contrary,
GHBH (due to the larger number of buckets built in the
same storage space, and to the different criterion adopted
to determine how to split buckets) manages to locate and
partition dense regions by means of different buckets.
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Figure 15: Sensitivity on dimensionality (synthetic data)

The same kind of experiments were performed on real-
life data, yielding analogous results (Fig. 16).

Results shown in Fig. 16 can be motivated using the
same conjectures as those used for synthetic data; in-
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Figure 16: Sensitivity on dimensionality (real-life data)

deed, it often occurs that high-dimensionality real-life
data come very close to the adopted synthetic model,
as they are likely to consist in several clusters dispersed
randomly in the data space.
Observe that GHBH and, to a lesser extent, HBH pro-
vide accurate answers even for “small” queries, where the
other techniques are out of scale (Fig. 16(b)).

8.8 Remarks on experimental results

On the basis of the experimental results, we can draw the
following conclusions:

1. the best performing greedy criterion among the con-
sidered ones is Max-Var/Max-Red : it produces more
effective partitions and is not more costly (in terms
of time complexity) w.r.t. the other criteria;

2. the physical representation scheme adopted for HBH
introduces an effective improvement w.r.t. classi-
cal approaches based on binary partitions (MinSkew
and MHIST): it enables us to produce more buckets
within the same storage space, thus yielding more
detailed partitions and better accuracy of the query
estimates;

3. introducing a grid constraining the splitting position
further enhances the effectiveness of the histogram:
although splits in GHBH are less flexible than HBH,
they can be represented more efficiently, and the
space saved can be invested to perform further splits;

4. the effectiveness of GHBH is related to the granu-
larity of the grid: experiments show that partitions
whose degree is “small” (w.r.t. the data domain size)
suffice to obtain effective histograms. Although it is
not possible to state the existence of a degree value
which, regardless of the data distribution, yields the
most effective histogram, our experiments show that
the use of two or three bits to encode the degree of
the GHBH leads to the most accurate estimates for
a wide class of data distributions;

5. HBH and GHBH are much less affected by the in-
crease of dimensionality w.r.t. other techniques, and
provide high accuracy even for queries with “small”
size (w.r.t. the volume of data).

9 Conclusions

We have studied the use of binary hierarchical partitions
as a basis for effective multi-dimensional histograms. We
have introduced two new classes of histogram (namely,
HBH and GHBH) which exploit their particular partition

paradigm to make the representation of the histogram
buckets more efficient w.r.t. the traditional “flat” repre-
sentation scheme adopted for classical histograms. HBH
and GHBH differ from one another in the type of split
they allow on the data blocks. More precisely, in the
partition underlying an HBH each block can be split at
any position along any dimension, whereas in a GHBH
every split must lie onto a grid dividing the block into a
fixed number of equally sized sub-blocks. The adoption
of this grid further improves the efficiency of the physical
representation (w.r.t. HBH), enhancing the accuracy of
estimating range queries on the histogram.
The problem of constructing optimal HBH and GHBH
(w.r.t. the “classical” SSE metric) has been addressed
too, as well as the issue of finding sub-optimal greedy
solutions. Moreover we have provided several experimen-
tal results (on both synthetic and real-life data) com-
paring our histograms with other state-of-the-art multi-
dimensional compression techniques, proving the effec-
tiveness of our proposal, also for high-dimensionality data
distributions.
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Appendix

Proposition 1 Given a multidimensional data distribu-
tion D and a space bound B, let HBH and GHBH be,
respectively, a hierarchical and a grid hierarchical binary
histogram on D within B. Then, the maximum number
of buckets of HBHand GHBH is reported in the following
table:

Histogram Maximum number of buckets

HBH βmax
HBH =

⌊
B+�log d�+2
35+�log d�

⌋

GHBH βmax
GHBH =

⌊
B+log k+�log d�−30

3+log k+�log d�
⌋

Table 1

Proof. An HBH (as well as a GHBH) with β buckets has
a space consumption which can vary between a minimum
and a maximum value (depending on the partition tree
and on the data distribution). We denote by sizemin

HBH(β)
and sizemin

GHBH(β) the minimum space consumption of any
HBH and, respectively, any GHBH having β buckets.
There exists an HBH (resp. GHBH) with space bound
B and β buckets if and only if sizemin

HBH(β) ≤ B (resp.
sizemin

GHBH(β) ≤ B). βmax
HBH and βmax

GHBH are obtained as the
largest values of β which satisfy the latter inequalities.
We will next compute sizemin

HBH and sizemin
GHBH as functions

of β.
According to the physical representation of an HBH
described in Section 4.1, the size of an HBH with
β buckets can be expressed as the sum of four con-
tributions: size(HBH) = (2 · β − 1) + (β − 1) ·
(�log d�+32) + ndl(HBH) + 32 · ndn+(HBH), where
ndl(HBH) and ndn+(HBH) stand for the number of
non-derivable leaves of HBH and, respectively, the
number of non-null non-derivable nodes of HBH. Anal-
ogously, we will denote by ndl+(HBH) and ndl0(HBH)
the number of non-null non-derivable leaves and,
respectively, the number of null derivable leaves of
HBH. As ndl(HBH) = ndl+(HBH) + ndl0(HBH)
and ndn+(HBH) = β − ndl0(HBH), then
size(HBH) = (2 · β − 1) + (β − 1) · (�log d� +
32) + 32 · β + ndl+(HBH)− 31 · ndl0(HBH). The latter
expression has minimum value when ndl+(HBH) = 0
and ndl0(HBH) = β − 1, which occurs for an HBH with
β buckets where all but one leaves are non-derivable
and null. Analogously the size of a GHBH having β
buckets is size(GHBH) = (2 · β − 1) + (β−1) · (�log d�+
log k) + 32 · β + ndl+(GHBH) − 31 · ndl0(GHBH).
Thus the minimum storage consumption of an HBH
and a GHBH having β buckets are, respectively:
sizemin

HBH(β) = β · (35 + �log d�) − �log d� − 2 and
sizemin

GHBH(β) = β ·(3+�log d�+log k)−�log d�−log k+30.
As said above, values of βmax

HBH and βmax
GHBH are straightfor-

ward.

Theorem 1 Given a d-dimensional data distribution
D of size O(nd), the V-Optimal flat binary histogram
FBH� on D can be computed in O( B2

d·2d · n2d+1).

Proof. The problem of finding the V-Optimal
FBHon D can be solved by the following dynamic
programming approach. Given a block b of D, denoting
the storage space needed to represent a single block as
γ = (2 · d + 1) · 32, the minimum SSE of any FBH H on
b with size(H) ≤ S can be defined recursively as follows:

1. SSE∗(b, S) = ∞, if S < γ;

2. SSE∗(b, S) = SSE(b), if S ≥ γ ∧
(S < 2·γ ∨ V olume(b)=1);

3. SSE∗(b, S)= min{SSE∗(blow, S1) + SSE∗(bhigh, S2)|
〈blow, bhigh〉 is a binary split on b,
S1>0, S2>0, S1+S2=S}, otherwise

Our optimization problem consists in evaluating
SSE∗(D,B). As implied by the above recursive defi-
nition, SSE∗(D,B) can be computed after evaluating
SSE∗(b, S) for each block b of D and each S in [0..B]
which is multiple of γ. At each step of the dynamic
programming algorithm, SSE∗(b, S) is evaluated by
accessing O(d · n · B

d ) values computed at the previous
steps, as the possible binary splits of a block are O(d · n)
and there are O(B

d ) possible ways to divide S into two
halves which are multiple of γ.
The number of different SSE∗(b, S) to be computed are
O(B

d · n2d

2d ), as the number of sub-blocks of D are O(n2d

2d ),
and the number of possible values of S are O(B

d ).
On the other hand, the SSE of all the sub-blocks of
D must be computed. It can be shown that the cost
of accomplishing this task is dominated by O(n2d). It
follows that the overall cost of the dynamic programming
algorithm is O( B2

d·2d · n2d+1).

Theorem 2 Given a d-dimensional data distribution
D of size O(nd), the V-Optimal histograms HBH� and
GHBH� on D can be computed in the complexity bounds
reported in the table below:.

Type of Complexity bound of computing
histogram the V-Optimal histogram

HBH� O(d · B2

2d · n2d+1)
GHBH� O(d · B2

2d · kd+1 · nd)

Proof.1. The problem of finding the V-optimal HBH can
be formalized and solved following the same approach as
the one just described for FBHs. The main difference is
that when evaluating the optimal HBH on a block b, two
distinct optimization problems must be addressed, cor-
responding to the cases that b appears in HBH∗(D) as
either a left-hand child or a right-hand child of some node.
In fact, due to the physical representation paradigm (sec-
tion 4.1), the storage consumption of HBH(b) is different
in these two cases. Intuitively enough, this leads to a
recursive formulation of the V-optimal problem which is
different from the one described for FBHs. We define the
minimum SSE of any HBH H on b having size(H) ≤ S
both in the case that b is considered as a left-hand child
node (which we denote by SSE∗

left(b, S)) and a right-
hand child node (which we denote by SSE∗

right(b, S)).



Both SSE∗
left(b, S) and SSE∗

right(b, S) can be defined re-
cursively in a way that is similar to the recursive defini-
tion of SSE∗(b, S) for FBHs. The main differences are
that the non-recursive cases (i.e. the cases such that no
HBH can be constructed or no split can be performed on
b) express more complex conditions on the storage space
(depending also on whether b is null or not). Moreover
the recursive case is defined as the minimum value of
SSE∗

left(b
low, S1) + SSE∗

right(b
high, S2), for each possi-

ble binary split < blow, bhigh > on b, and for each S1 and
S2 which are consistent with the bound S on the over-
all space consumption allowed on b. The dynamic pro-
gramming algorithm must compute both SSE∗

left(b, S)
and SSE∗

right(b, S) for each sub-block of D and for each

S in [0..B]. This algorithm computes O(B · n2d

2d ) values
of SSE∗

left(b, S) and O(B · n2d

2d ) values of SSE∗
right(b, S),

where each one is computed in time O(d · n · B).
2. The problem of finding the V-Optimal GHBH of de-
gree k can be formalized by means of some minor adapta-
tion in the definition of SSE∗

left(b, S) and SSE∗
right(b, S)

introduced for HBHs: 1) each constant which represents
a storage space consumption is changed by replacing the
32 bits needed to represent the splitting position with
log k bits. 2) the minimum value of SSE∗

left(b, S) +
SSE∗

right(b, S) which define the recursive case is evalu-
ated by considering only the binary splits of degree k.
The dynamic programming algorithm which computes all
the values of SSE∗

left(b, S) and SSE∗
right(b, S) needed to

compute SSE∗
left(D,B) exhibits a different complexity

bound as:

1. The cost of computing a single value of SSE∗
left(b, S)

or SSE∗
right(b, S) is reduced to O(d · k ·B), since all

the possible binary splits of degree k on a block are
d · k (instead of n · k).

2. Due to the restriction on the possible binary splits
of a block, the recursive definition of SSE∗(D,B)
induces the computation of SSE∗

left(b, S) or
SSE∗

right(b, S) for a proper subset of all the pos-
sible sub-blocks of D. It can be shown that the
number of such blocks is O(nd · kd

2d ) (instead of
O(n2d

2d )). Thus the number of values of SSE∗
left(b, S)

or SSE∗
right(b, S) to be computed is O(nd · kd

2d ) for
each S in [0..B].

3. The cost of computing the SSE of all the O(nd · kd

2d )
blocks is O(nd · kd).

All considered, the cost of the dynamic programming
algorithm which computes the V-Optimal GHBH of de-
gree k on D is O(d · B2

2d · kd+1 · nd). �

Theorem 3 The complexity of greedy algorithms com-
puting, respectively, a hierarchical and a grid hierarchical
binary histogram, in the cases that pre-computation of F
and F 2 are either performed or not, are listed in the fol-
lowing table, for all the greedy criteria reported in Fig.
8:

where α = n if the Max-Varmarg/Max-Redmarg criterion
is adopted, and α = k for all other greedy criteria.

Proof. The cost of the greedy algorithm is given
by the sum of two contributions:
TU : the cost of all the updates to the priority queue,
TE : the cost of computing the function Evaluate for all

the nodes to be inserted in the queue.

As to term TU , at each iteration of the algorithm
the first element of the priority queue is extracted and
two new elements are inserted. The cost of either top-
extraction and insertion is logarithmic w.r.t. the size of
the queue, which is in turn bounded by the number of
buckets of the output histogram. On the other hand, the
number of iterations of the greedy algorithm is equal to
the number of buckets it produces. Thus, if we denote as
β the number of buckets of the histogram produced by
the greedy algorithm, the overall cost TU of the priority
queue updates is O(β · log(β)).

Moreover, if we denote as T (Evaluate(b)) the cost of
computing the function Evaluate on the single block
b, and we denote as H the binary histogram pro-
duced by the greedy algorithm, term TE is given by∑

b∈Nodes(H) T (Evaluate(b)).
We now discuss the complexity of computing the func-

tion Evaluate(b) by distinguishing between the cases that
pre-computation is either performed or not.
If pre-computation is not performed, the computational
complexity of the function Evaluate(b) is the same for
all the proposed criteria. In fact, evaluating the SSE of a
block b is trivially equivalent (in terms of complexity) to
evaluating all the marginal SSE of b along its dimensions,
as both these tasks can be performed by accessing once
every element inside b. As regards the evaluation of the
reduction of either SSE(b) or SSE(margdim(b)) due to a
split at < dim, pos >, these tasks can be accomplished in
the same complexity bound. In fact, the following holds:

Red(b, dim, pos) = Redmarg(b, dim, pos)/Pdim

where: 1) Red(b, dim, pos) and Redmarg(b, dim, pos)
are the reduction of SSE(b) and, respectively,
SSE(margdim(b)) due to the split of b along dim at po-
sition pos, 2) Pdim is the ratio between the volume of b
and its size along the dimension dim. This result im-
plies that the computation of the reductions of SSE(b)
corresponding to all the possible splits of b can be re-
duced to the computation of all the marginal distribu-
tions of the block (which can be performed by a linear



scanning of b), followed by the computation of the reduc-
tion of SSE(margdim(b)) along all the splitting points on
dim, for each dim = 1, .., d (which, on the whole, can be
achieved by a linear scanning of all the marginal distri-
butions).
Therefore, the function Evaluate(b) implementing any
of the criteria reported in Fig. 8 works in time linear
in the size of b (in the case that no pre-computation is
adopted).
We now consider the complexity of Evaluate(b) in the
case that pre-computation is performed before construct-
ing the histogram. From the definition of SSE of a block,
it holds that:
SSE(b) =

∑
i∈b(D[i] − avg(b))2 =∑

i∈b D[i]2 − 2 · ∑i∈b D[i] · avg(b) +
∑

i∈b(avg(b))2 =
∑

i∈b D[i]2−2 ·
(∑

i∈b
D[i]

)2

V olume(b) +
( ∑

i∈b
D[i]

V olume(b)

)2

·V olume(b) =

∑
i∈b D[i]2 −

(∑
i∈b

D[i]
)2

V olume(b) .

The terms
∑

i∈b D[i] and
∑

i∈b D[i]2 in the expression
above can be evaluated as follows:

∑
i∈b D[i] =

∑
j∈vrt(b)(−1)C(j,uv(b)) · F [j]

∑
i∈b D[i]2 =

∑
j∈vrt(b)(−1)C(j,uv(b)) · F 2[j]

In these expressions:
1) vrt(b) is the set of vertices of b;
2) uv(b) = 〈ub(ρ1), . . . , ub(ρd)〉 is the “upper” vertex of

b;

3) C(i, j) =
∑d

k=1 f(ik, jk), where: f(a,b) =




1, a �=b;

0, a=b.

Therefore the SSE of a block can be evaluated access-
ing 2d elements of F and 2d elements of F 2, instead of
accessing all the elements of the block. Clearly, also the
reduction of SSE(margdim(b)) due to the split of b along
any point on dim can be computed in O(2d), as it can
be derived from the reduction of SSE(b) due to the same
split. On the contrary, evaluating SSE(margdim(b)) re-
quires the computation and scanning of the marginal
distribution of b along dim, which, using the array of
partial sums, can be done in O(2d · n). Therefore,
for all the proposed greedy criteria but Max-Varmarg/
Max-Redmarg, in the case that pre-computation is used,
T (Evaluate(b)) = O(2d · η), where η is the number of re-
ductions of SSE or marginal SSE which have to be com-
puted. That is η = d · n for HBH, whereas η = d · k for
GHBH.
In the case that Max-Varmarg/ Max-Redmarg is the
adopted greedy criterion and pre-computation is used,
the cost of computing the d marginal SSEs of the block
is O(2d ·d ·n) for either HBH and GHBH, and dominates
the cost of computing the reductions of marginal SSE.

To sum up, in the case that no pre-computation is
used, T (Evaluate(b)) = O(V olume(b)), whereas, when
pre-computation is adopted, T (Evaluate(b)) = O(2d ·
d · n) for HBH, and T (Evaluate(b)) = O(2d · d · α) for
GHBH (where α = k for all the greedy criteria but Max-
Varmarg/ Max-Redmarg, for which α = n).

Therefore the above defined term TE (i.e. the cost of
computing the function Evaluate for all the blocks of the
produced partition) gives different contributions to the
cost of the greedy algorithm, according to the following
three cases:

• in the case that no pre-computation is used TE is
O(

∑
b∈Nodes(H) V olume(b)), which is O(nd · log(β))

in the worst case (the produced binary partition is a
complete binary tree).

• in the case that pre-computation is used, for HBH,
TE is O(2d · d · n · β) (as |Nodes(H)| is O(β));

• in the case that pre-computation is used, for GHBH,
TE is O(2d · d · α · β), where α is defined above.

TU (i.e. O(β · log(β)) is always negligible w.r.t. TE ,
for all the three cases above but the last one (GHBH with
pre-computation) when α = k.

Considering that, for each type of binary histogram,
β is bounded by the expressions reported in Table 1, the
overall cost of the greedy algorithm is straightforward for
all the discussed cases.


