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Abstract. We propose a novel methodology for clustering XML docu-
ments on the basis of their structural similarities. The basic idea is to
equip each cluster with an XML cluster representative, i.e. an XML docu-
ment subsuming the most typical structural specifics of a set of XML doc-
uments. Clustering is essentially accomplished by comparing cluster rep-
resentatives, and updating the representatives as soon as new clusters are
detected. We propose an algorithm for computing an XML representative
through three phases. Tree matching is exploited to detect an initial sub-
structure that is common to the XML document trees in a cluster; the tree
merging phase aims at enriching the initial substructure with significant
information contents; finally, tree pruning has the objective of producing a
tree which minimizes the total distance with respect to the documents in
the cluster. Suitable techniques for identifying significant node matchings
and for reliably merging and pruning XML trees are investigated. Also,
experimental evaluation performed on both synthetic and real data shows
the effectiveness of our approach.

1 Introduction
Motivations. The increasing relevance of the Web as a means for sharing informa-
tion has made traditional approaches to information handling ineffective. Indeed,
they are mainly devoted to the management of highly structured information, like
relational databases, whereas Web data are semistructured and encoded using dif-
ferent formats. In particular, XML is touted as the driving-force for exchanging
data on the Web, since it benefits from several advantages with respect to other
data models. Examples are the flexibility for designing ad hoc markup languages
for the representation and exchange of semistructured data within any applica-
tion context, and the support of suitable document type definitions (DTDs) that
permit to specify both the structure and the content of the documents.

However, as the heterogeneity of XML sources increases, the need for organiz-
ing XML documents according to their structural features has become challenging.
In such a context, we address the problem of inferring structural specifics among
XML documents, by clustering structurally similar XML documents. This prob-
lem has several interesting applications related to the management of Web data.
For example, the detection of structural similarities among documents can help



in solving the problem of recognizing different sources providing the same kind of
information [3]. Also, structural analysis of Web sites can benefit from the iden-
tification of similar XML documents, conforming to a particular schema, which
can serve as the input for wrappers working on structurally similar Web pages.
Finally, query processing in semistructured data can substantially benefit from the
re-organization of documents on the basis of their structure. Grouping semistruc-
tured documents according to their structural homogeneity can help in devising
indexing techniques for such documents, thus improving the construction of query
plans.

Related Work. The problem of comparing semistructured documents has been
recently investigated from different perspectives: for example, in the context of
change detection [6, 16, 5], or with the purpose of characterizing a document with
respect to a given DTD [4]. Apart from their effectiveness in the application do-
mains considered here, most of these methods are based on the concept of edit
distance [17] and use graph-matching algorithms to calculate a (minimum cost)
edit script that contains the updates necessary to transform a document into an-
other. A rather different approach has been recently proposed in [9]. Here, the
structure of an XML document is represented as a time series, in which each
occurrence of a tag corresponds to an impulse. The degree of similarity among
documents is computed by analyzing the frequencies of the corresponding Fourier
transform.

Recent studies have also proposed techniques for clustering XML documents.
[8] proposes a partitioning method that adopts a vector-space model for repre-
senting an XML document. Vectors represent documents and model both textual
contents and structure information (i.e., relationships among tags). Documents
are hence clustered on the basis of the proximity of their feature vectors. By con-
trast, the approach in [15] proposes to measure structural similarity by means of an
XML-aware edit distance, and applies a standard hierarchical clustering algorithm
to evaluate how closely cluster documents correspond to their respective DTDs.

In our opinion, the main drawback of the above approaches is the lack of
a notion of cluster prototype, i.e. a summarization of the relevant features of the
documents belonging to a cluster. The notion of cluster prototype is crucial in most
significant application domains, such as wrapper induction, similarity search, and
query optimization. Indeed, in the context of wrapper induction, the efficiency and
effectiveness of the extraction techniques strongly rely on the capability of rapidly
detecting homogeneous subparts of the documents under consideration, whereas
similarity search can substantially benefit from narrowing the search space. In
particular, the latter can be achieved by discarding clusters whose prototype ex-
hibits features which do not comply with the target properties specified by a
user-supplied query.

To the best of our knowledge, the only approach from which a notion of cluster
prototype can be devised in [13]. Indeed, the authors propose to compare docu-
ments according to the structure graph (s-graph), i.e. a graph summarizing the
relations between elements within documents. Since the notion of s-graph can be
easily generalized to sets of documents, the comparison of a document with respect
to a cluster can be easily accomplished by means of their corresponding s-graphs.
However, a main problem with the above approach relies on the loose-grained sim-
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ilarity which occurs. Indeed, two documents can share the same prototype s-graph,
and still have significant structural differences, such as in the hierarchical relation-
ship between elements. It is clear that the approach fails in dealing with application
domains, such as wrapper generation, requiring finer structural dissimilarities.

Contribution. In this paper we propose a novel methodology for clustering XML
documents by structure, which is based on the notion of XML cluster representa-
tive. A cluster representative is a prototype XML document subsuming the most
relevant structural features of the documents within a cluster. The intuition at the
heart of our approach is that a suitable cluster prototype can be obtained as the
outcome of a proper overlapping among all the documents within a given cluster.
Actually, the resulting tree has the main advantage of retaining the specifics of the
enclosed documents, while guaranteeing a compact representation. This eventually
makes the proposed notion of cluster representative extremely profitable in the en-
visaged applications: in particular, as a summary for the cluster, a representative
highlights common subparts in the enclosed documents, and can avoid expensive
similarity searches against individual documents within the cluster.

The proposed notion of cluster representative relies on the notions of XML
tree matching and merging. Specifically, given a set of XML documents, our ap-
proach initially builds an optimal matching tree, i.e. an XML tree that is built
from the structural resemblances that characterize the original documents. Then,
in order to capture all such peculiarities within a cluster, a further tree, namely a
merge tree, is built to include those document substructures that are not recurring
across the cluster documents. Both trees are exploited for suitably computing a
cluster representative as will be later detailed. Finally, a hierarchical clustering
algorithm exploits the devised notion of representative to partitions XML docu-
ments into structurally homogeneous groups. Experimental evaluation performed
on both synthetic and real data states the effectiveness of our approach in identi-
fying document partitions characterized by a high degree of homogeneity.

2 Problem Statement

Clustering is the task of organizing a collection of objects (whose classification
is unknown) into meaningful or useful groups, namely clusters, based on the in-
teresting relationships discovered in the data. The goal is grouping highly-similar
objects into individual partitions, with the requirement that objects within distinct
clusters are dissimilar from one another.

Several clustering algorithms [12] can be suitably adapted for clustering semistruc-
tured data. We concentrate on hierarchical approaches, which are widely known as
providing clusters with a better quality, and can be exploited to generate cluster
hierarchies. Figure 1 shows XRep, an adaptation of the agglomerative hierarchical
algorithm to our problem. Initially each XML tree (derived by parsing the corre-
sponding XML document) is placed in its own cluster, and a matrix containing
the pair-wise tree distance is computed. Next, the algorithm walks into an itera-
tive step in which the least dissimilar clusters are merged. As a consequence, the
distance matrix is updated to reflect this merge operation. The overall process is
stopped when an optimal partition (i.e. a partition whose intra-distance within
clusters is minimized and inter-distance between clusters is maximized) is reached
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Input: A set S = {t1, . . . , tn} of XML document trees;
Output: A cluster partition P = {C1, . . . , Ck} of S.
Method:

let P := {C1, . . . , Cn}, where initially Ci = {ti};
set ri := ti as the representative for Ci;
compute a tree-distance matrix Md, where Md(i, j) = d(ti, tj);
repeat

choose clusters Ci and Cj such that d(rep(Ci), rep(Cj)) is minimized;
compute the representative r = rep(ri, rj) for cluster C = Ci ∪ Cj;
set P := P − {Ci, Cj} ∪ {C}, and update Md;

until P has maximal quality;

Fig. 1. The XRep algorithm for clustering XML documents.

In this paper, we follow the approach devised in [10], and address the problem
of clustering XML documents in a parametric way. More precisely, the general
scheme of the XRep algorithm is parametric to the notions of distance measure
and cluster representative.

The notion of proximity, between two patterns drawn from the same fea-
ture space, is essential to the definition of a cluster. We mainly focus on suit-
ably adapting the Jaccard coefficient [12]. In the context of proximity among
XML trees, a number of intuitive way of defining the Jaccard coefficient can
be provided. A first measure can be straightforwardly defined when the feature
space represents the set of labels (i.e. tag names) associated with the nodes in
a tree: if we denote with tag(t) the set of tag names for a tree t, then we de-
fine as d

(1)
J (t1, t2) = 1 − |tag(t1)∩tag (t2)|

|tag(t1)∪tag (t2)| the Jaccard distance between the trees
t1 and t2. An alternative (and more refined) definition is given by taking into
account the paths in the trees rather than only the node labels. For instance,
d
(2)
J (t1, t2) = 1 − |path(t1)∩path(t2)|

max{|path(t1)|,|path(t2)|} where path(ti) denotes the set of paths in
ti, and path(t1) ∩ path(t2) is the set of common paths between t1 and t2.

Intuitively, a representative of a cluster of XML documents is an XML doc-
ument which effectively synthesizes the most relevant structural features of the
documents in the cluster. The notion of representative in our application domain
can be formalized as follows.

Definition 1. Given a domain U , equipped with a distance function d : U × U �→
IR, and a set S = {t1, . . . , tn} ⊆ U of XML document trees, the representative of
S (denoted by rep(S)) is the tree t∗ that minimizes the sum of the distances:

t∗ = rep(S) ∈ U ⇐⇒ t∗ = argmint∈Uf(t)

where f(t) =
∑n

i=1 d(ti, t). �	
In general, the computation of the representative of a set is a hard problem,

i.e. it is difficult to devise solutions relying on polynomial-time algorithms. There-
fore we adopt a suitable heuristic for addressing the above minimization problem.
Viewed in this respect, our goal is to find a lower-bound-tree and an upper-bound-
tree for the optimal representative. The lower-bound-tree (resp. upper-bound-tree)
is a tree on which any node deletion (resp. node insertion) leads to a worsening
in function f . Thus, a representative can be heuristically computed by traversing
the search space delimited by the above trees. Two alternative greedy strategies
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can be devised: either a growing approach, which iteratively adds nodes to the
lower-bound, or a pruning approach, which iteratively removes nodes from the
upper-bound. In the following, we will denote the lower-bound-tree and the upper-
bound-tree as optimal matching tree and merge tree, respectively. Notice that the
optimal matching tree represents a stopping condition for the pruning approach,
whereas the merge tree is always a sub-optimal solution since it contains the opti-
mal representative. Dually, the latter defines a stopping condition for the growing
approach, whereas the former is a sub-optimal solution since it is contained in the
optimal representative.

We develop a pruning approach in which the computation of an XML cluster
representative divides into the following three main stages: the construction of an
optimal matching tree, the computation of a merge tree and the pruning of the
merge tree. Figure 3 sketches an algorithm which has been developed according to
the above three stages.

3 Mining Representatives from XML Trees

3.1 Preliminaries on tree matching
Depending on the specific application domain, the notion of tree matching can be
defined in a variety of ways. In this section we give some definitions which are at
the basis of our approach. A tree t is a tuple t = (rt, Vt, Et, λt) where Vt ⊆ IN
is the set of nodes, Et ⊆ Vt × Vt is the set of edges, rt is the root node of t,
and λt : Vt �→ Σ is a node labelling function where Σ is an alphabet of node
labels. In particular, we say that an XML tree is a tree where Σ is an alphabet
of element tags. Moreover, let deptht(v) denote the depth level of the node v in t,
with deptht(rt) = 0, and let patht(v) = 〈vi1 = rt, vi2 , . . . , vip = v〉 denote the list
of p nodes that lead up to the node v from the root rt.

Definition 2 (strong matching). Given two trees t1 and t2, and two nodes v ∈
Vt1 , w ∈ Vt2 , a strong matching match(v, w) between v and w exists if λt1 (vi) =
λt2(wi) and deptht1(vi) = deptht2(wi), for each pair of nodes (vi, wi) such that
vi ∈ patht1(v) and wi ∈ patht2(w). �	
The above definition states that any two nodes, v and w, have a strong matching
if v and w together with their respective ancestors share both the same label (i.e.
tag name) and depth level. Figure 2(a) displays an example of strong matching
among the colored nodes.

The detection of the matching nodes between two trees allows the construction
of a new tree, called a matching tree, which resembles the intersection of the
original trees.

Definition 3 (matching tree). Given two trees t1 and t2, a tree t = (rm, Vm, Em, λm)
is a matching tree, denoted by t = match(t1, t2), if the following conditions hold:

1. there exist two mappings f1 : t �→ t1 and f2 : t �→ t2 associating nodes and
edges in t with a subtree in t1 and t2;

2. for each u ∈ Vm, there exists a strong matching between v = f1(u) and w =
f2(u) (i.e. match(v, w) holds); moreover, λm(u) = λt1(v) = λt2 (w);
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Fig. 2. (a) Strong and (b) multiple matching, and (c) their trees.

3. f1(rm) = rt1 , and f2(rm) = rt2 ; moreover, for each e = (u, v) ∈ Em, f1(e) =
(f1(u), f1(v)) and f2(e) = (f2(u), f2(v)). �	

Notice that, in general, multiple matchings may occur when a node in a tree has
a matching with more than one node in a different tree. More formally, given two
trees t1 and t2, a node v ∈ Vt1 has a multiple matching if ∃w′, w′′ ∈ Vt2 such
that both match(v, w′) and match(v, w′′) hold. An example of multiple matching
between nodes in two trees is shown in Figure 2(b). Multiple matchings trig-
ger ambiguities in defining matching trees: Figure 2(c) represents two alternative
matching trees for the documents in Figure 2(b).

3.2 XML tree matching

In order to capture as many structural affinities as possible, we are interested
in finding matching trees with maximal size. Formally, a matching tree tm =
match(t1, t2) is an optimal matching tree for two XML trees t1, t2 if there does not
exist another matching tree t′m = match(t1, t2) 
= tm such that |Vtm | ≥ |Vt′m |. We
describe a dynamic-programming technique for building an optimal matching tree
from two XML trees. The technique consists of the following steps: i) detection
of matching nodes, ii) selection of best matchings, and iii) optimal matching tree
construction.
Matching detection. Given two trees t1 = (rt1 , Vt1 , Et1 , λt1) and t2 = (rt2 , Vt2 , Et2 , λt2),
the detection of matching nodes is performed building a (|Vt1 | × |Vt2 |) matching
matrix Mm. In this matrix, the generic (i, j)-th element corresponds to nodes
vi ∈ Vt1 and wj ∈ Vt2 , and contains a weight ωm(vi, wj) to be associated with the
matching between vi and wj . Initially, the weight is 1 if match(vi, wj) holds, and 0
otherwise. In order to ease the construction of the matching matrix, nodes are enu-
merated by level, thus guaranteeing a particular block structure for Mm. Indeed,
for each level k, a sub-matrix Mm(k) collects the matchings among the nodes in
t1 and t2 with depth equal to k. Figure 4(a) displays two example XML trees with
numbered nodes. The corresponding matching matrix is shown in Figure 4(b).
Selection of best matchings. The problem of multiple matchings can be addressed
by discarding those matchings which are less relevant according to the weighting
function ωm. The weight ωm(v, w), associated to two matching nodes v ∈ Vt1 and
w ∈ Vt2 , is computed by taking into account the matches between the children
nodes of both v and w. Formally, ωm(v, w) = 1 +

∑
i,j ωm(vi, wj), where nodes
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Input:

An XML tree r1 = 〈rr1 , Vr1 , Er1 , λr1〉 as representative of cluster C1, and

an XML tree r2 = 〈rr2 , Vr2 , Er2 , λr2 〉 as representative of cluster C2.

Output:

An XML tree rep as representative of cluster C = C1 ∪ C2.

Method:
compute the matching matrix Mm, with size (|Vr1 | × |Vr2 |);
compute the marking vectors Vm1 , Vm2 , where Vm1 .size = |Vr1 | and Vm2 .size = |Vr2 |;
set m1 := |{vi ∈ Vr1 |Vm1 [i] �= −1}|, and m2 := |{vi ∈ Vr2 |Vm2 [i] �= −1}|;
if (m1 > m2)

match := buildMatch(r1, r2, Vm1 , Vm2 ); merge := buildMerge(r1, r2, Vm1 , Vm2 );

else

match := buildMatch(r2, r1, Vm2 , Vm1 ); merge := buildMerge(r2, r1, Vm2 , Vm1 );

rep := prune(C1 ∪ C2, merge, match);

return rep;

Function buildMatch(t1, t2, Vm1 , Vm2 ) : t;

t := t1;

for each vi ∈ Vt1 , Vm1 [i] = −1 do

remove(t, vi); /* removes the subtree rooted at vi from t */

let Ij = {vi1 , . . . , vih
∈ Vt1 | Vm1 [ip] = j, p ∈ [1..h]};

for each Ij do

removeDuplicates(t, Ij); /* removes duplicated paths from t */

return t;

Function buildMerge(t1, t2, Vm1 , Vm2 ) : t;

t := t1;

for each vi ∈ Vt1 do

let J = {wj1 , . . . , wjh
∈ Vt2 | Vm2 [jp] = i, p ∈ [1..h]};

let v ∈ Vt1 such that (v, vi) ∈ Et1 ;

insert(t, v, vi, |J| − 1); /* inserts node vi as a child of v into t, |J| − 1 times */

for each wi ∈ Vt2 , Vm2 [i] = −1 do

let wj ∈ Vt2 such that (wj , wi) ∈ Et2 , and vh ∈ Vt1 such that Vm2 [j] = h;

insert(t, vh, wi); /* inserts node wi as a child of vh into t */

return t;

Function prune(C, t, t′) : r;

set r := t;

do

let L ⊆ Vr be the set of leaf nodes in r;

compute d0 :=
∑

t∈C d(t, r);

for each vl ∈ L do

compute r(l) := removeLeaf(r, vl);

l∗ = arg minvl
[
∑

t∈C d(t, r(l))];

set d∗ :=
∑

t∈C d(t, r(l∗));

if (d∗ < d0)

r := r(l∗);

while d∗ < d0 and Vr ⊆ Vt′ ;
return r;

Fig. 3. The algorithm for the computation of an XML cluster representative.

vi, wj are such that (v, vi) ∈ Et1 and (w, wj) ∈ Et2 . Figure 4(c) shows the weights
associated with each possible node pair. Notice that, according to the definition,
the computation of the weights within the matching matrix has to be performed
in a bottom-up fashion.
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Fig. 4. Data structures for the construction of an optimal matching tree.

Multiple matchings relative to any node of t1 (resp. t2) can be detected by
checking multiple entries with non-zero values within the corresponding row (resp.
column) of Mm. We now describe the process for detecting multiple matchings. In
the following we focus on the identification of nodes within t1 that have multiple
matchings with those in t2: the dual situation (i.e., identification of nodes within
t2 with multiple matching with nodes in t1) has a similar treatment.

Let vi ∈ Vt1 denote the node corresponding to the i-th row in Mm, and let Jvi =
{j1, . . . , jh} be the set of column indexes (corresponding to the nodes wj1 , . . . , wjh

of t2) such that Mm(i, jk) > 0 (i.e. such that ωm(vi, wjk
) > 0), k = [1..h]. Thus, vi

exhibits multiple matchings if |Jvi | > 1. For each node vi ∈ Vt1 , the best matching
node corresponds to the column index j∗vi

= arg maxj1,...,jh
{Mm(i, j1), . . . , Mm(i, jh)}.

If the maximum in {Mm(i, j1), . . . , Mm(i, jh)} is not unique we assume that j∗vi

corresponds to that with minimum index. The overall best matchings for nodes
of t1 can be easily tracked by using a marking vector Vm1 = {j∗v1

, . . . , j∗vn
}, whose

generic i-th entry indicates the node of t2 with which vi ∈ Vt1 has the best match-
ing. We set Vm1 [i] = −1 if the node vi ∈ Vt1 has no matching. Figure 4(c) shows
the marking vectors Vm1 and Vm2 associated with t1 and t2, respectively.
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optimal representative tree (c) relative to the trees of Figure 4(a).

Optimal matching tree construction. An optimal matching tree is effectively built
by exploiting the above marking vectors: it suffices that all nodes with no matching
are discarded. Figure 5(a) shows the optimal matching tree computed for t1 and t2
of Figure 4(a). As we can see in the figure, the optimal matching tree is obtained
from t1 by removing nodes 2, 5, 8, 11.

3.3 Building a merge tree

The optimal matching tree of two documents represents an optimal intersection
between the documents. The notion of merge tree resembles an optimized union
of the original trees. Notice that, in order to build an appropriate merge tree, an
optimal match tree has to be detected, in order to avoid redundant nodes to be
added. Indeed, a trivial merge tree could be simply built as the union of the trees
under investigation. Function buildMerge in Figure 3 details the construction of
a merge tree, which takes into account all the nodes discarded while building the
optimal matching tree. To this aim, give two trees t1 and t2, we first consider
nodes in t1 having duplicate nodes, and add such duplicates to the merge tree.
Next, nodes in t2 which do not match with any node in t1 are added.

Figure 5(b) shows the merge tree associated to the trees of Figure 4(a). Nodes
8, 11 from t1 and 9, 10, 11 from t2 have no matching, whereas nodes 2, 5 from t1
and 8 from t2 exhibit multiple matchings.

3.4 Turning a merge tree into a cluster representative

An effective cluster representative can be obtained by removing nodes from a merge
tree in such a way to minimize the distance between the refined merge tree and the
original XML trees in the cluster. Procedure prune, shown in Figure 3, iteratively
tries to remove leaf nodes until the distance between the refined merge tree and
the original trees in the cluster cannot be further decreased. It is worth noticing
that, on the basis of the definition of procedure prune, the representative of a
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cluster is always bounded by the optimal matching tree built from the documents
in that cluster.

The correcteness of the pruning procedure is established by the following result.

Theorem 1. Let t1, t2 be two XML trees. Moreover, let tM = merge(t1, t2), tm =
match(t1, t2) and t∗ = rep({t1, t2}). Then, tm ⊆ t∗ ⊆ tM . �	

Let us consider again the trees t1 and t2 of Figure 4(a) and their associated
merge tree merge(t1, t2) in Figure 5(b). Suppose that t1 and t2 belong to a same
cluster C. In order to compute a representative tree for C, the pruning procedure
for C is initially applied to the set of leaves L = {5, 8, ..., 12, 14, 15}. If we choose
to adopt the d

(2)
J distance, the procedure computes an initial intra-cluster distance

dC
0 = 5/8. This distance is is reduced to 4/7 as leaf node 14 is removed. Yet, dC

0

can be further decreased by removing node 12. Since at this point no further node
contributes to the minimization of dC

0 , the pruning process ends. Figure 5(c) shows
the cluster representative resulting from pruning the merge tree in Figure 5(b),
with the adoption of the d

(2)
J distance.

4 Evaluation

We evaluated the effectiveness of XRep by performing experiments on both syn-
thetic and real data. In the former case, we mainly aimed at assessing the effec-
tiveness of our clustering scheme with respect to some prior knowledge about the
structural similarities among the XML documents taken into account. Specifically,
we exploited a synthetic data set that comprises seven distinct classes of XML doc-
uments, where each such class is a structurally homogeneous group of documents
randomly generated from a previously chosen DTD. Tests were performed in order
to investigate the effectiveness of XRep in catching such groups.

To the purpose of automatically assembling a valuable data set, we developed
an automatic generator of synthetic XML documents, that allows the control of the
degree of structural resemblance among the document classes under investigation.
The generation process works as follows. Given a seed DTD, DTD0, a similarity
threshold, τ , and a number of classes, k, the generator randomly yields a set Sk

τ

of k different DTDs, hereinafter called class DTDs, that individually retain at
most τ percent of the element definitions within DTD0. The k class DTDs are even-
tually leveraged to generate as many collections of conforming XML documents,
on the basis of suitable statistical models ruling the occurrences of the document
elements [9].

The seed DTD was manually developed and exhibits a quite complex struc-
ture. For the sake of brevity, we only focus on its major features. DTD0 contains
30 distinct element declarations that adopt neither attributes nor recursion. Non
empty elements contain at most 4 children. Yet, the occurrences of such elements
are suitably defined by exploiting all kinds of operators, namely +,∗,?, and |. Fi-
nally, the tree-based representation of any XML document conforming to DTD0 has
a depth that is equal to 6.

Each test on synthetic data was performed on a distinct set of seven class
DTDs, sampled from DTD0, at increasing values of the similarity threshold τ : we
chose τ to be respectively equal to 0.3, 0.5 and 0.8.
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Real XML documents were extracted from six different collections available on
Internet1:
– Astronomy, a data set containing 217 documents extracted from an XML-based

metadata repository, that describes an archive of publications owned by the
Astronomical Data Center at NASA/GSFC.

– Forum, a data set composed of 264 documents containing messages sent by
users of a Web forum.

– News, a data set composed of 64 documents containing press news from all
over the world, daily collected by PR Web, a company that provides free
online press release distribution.

– Sigmod, a data set composed of 51 documents containing issues of SIGMOD
Record. Such documents were obtained from the XML version of the ACM
SIGMOD Web site produced within the Araneus project [7].

– Wrapper, a data set composed of 53 documents representing wrapper programs
for Web sites, obtained by means of the Lixto system [2].

– Xyleme Sample, a collection of 1000 documents chosen from Xyleme’s repos-
itory, which is populated by a Web crawler using an efficient native XML
storage system [14].

The distributions of tags within these documents are quite heterogeneous, due
to the complexity of the DTDs associated with the classes, and to the semantic
differences among the documents. In particular, wrapper programs may have sub-
stantially different forms, as a natural consequence of the structural differences
existing among the various Web sites they have been built on: thus, the skewed
nature of the documents in Wrapper should be taken into account. Also, documents
sampled from Xyleme exhibit a more evident heterogeneity, since they have been
crawled from very different Web sources.

Clustering results were evaluated by exploiting the standard precision and re-
call measures [1]. However, in the case of Xyleme Sample, we had no knowledge
of an a-priori classification. As a consequence, we resorted to an internal quality
criterium that takes into account the compactness of the discovered clusters. More
precisely, given a cluster partition P = {C1, . . . , Cn}, where Ci = {xi

1, . . . , x
i
ni
}, we

defined an intra-cluster distance measure as: IC(P) = 1
n

∑
Ci∈P

1
ni

∑
x∈Ci

d(x, rep(Ci))).
Table 1 summarizes the quality values obtained testing XRep on both syn-

thetic and real data. All the experiments have been carried out by adopting the
Jaccard distance d

(2)
J introduced in Section 2. Tests on synthetic data consist in

evaluating the performance of XRep on three collections of 1400 documents (200
documents for each class DTD). Experimental evidence highlights the overall ac-
curacy of XRep in distinguishing among classes of XML documents characterized
by different average sizes due to different choices for the threshold τ . As we can see,
XRep exhibits an excellent behavior for τ = {0.3, 0.5}, while the acceptable perfor-
mance reported on row 3 (i.e. τ = 0.8) is due to the intrinsic difficulty in catching
minimal differences in the structure of the involved XML documents. Indeed, two
clearly distinct class DTDs, namely DTDi and DTDj, may share a number of element
definitions inducing similar paths within the conforming XML documents. If such

1 The datasets are respectively available at: http://adc.gsfc.nasa.gov/, http://
userland.com/, http://www.prweb.com/rss.php, http://www.dia.uniroma3.it/
Araneus/Sigmod/, http://www.xyleme.com/.
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type docs avg size classes clusters τ precision recall F-measure IC
synth 1400 0.13KB 7 7 0.3 0.979 0.978 0.978 0.219

synth 1400 0.81KB 7 7 0.5 0.802 0.909 0.852 0.304

synth 1400 3.19KB 7 7 0.8 0.689 0.773 0.728 0.369

real 649 5.74KB 5 5 - 1 1 1 0.208

real 500 8.56KB - 7 - - - - 0.376

real 1000 9.42KB - 9 - - - - 0.43

Table 1. Quality results

definitions assign multiple occurrences to the elements of the common paths, the
initial class separation between DTDi and DTDj may be potentially vanished by a
strong degree of document similarity due to a large number of common paths in
the corresponding XML trees.

Tests on real data take into account separately the first five collections (649
XML documents with an average size that is equal to 5.74KB), and the Xyleme Sample
collection. In the first case, XRep shows amazingly optimal accuracy in identifying
even latent differences among the involved real documents. As far as Xyleme Sample
is concerned, we conducted two experiments (rows 5 and 6 in Table 1), where in
the first one we considered only one half of the dataset. However, as we expected,
in both cases intra-cluster distance provides fairly good values: this is mainly due
to the high heterogeneity which characterizes documents in Xyleme Sample.

5 Conclusions and further work

We presented a novel methodology for clustering XML documents, focusing on
a notion of XML cluster representative which is capable of capturing the signifi-
cant structural specifics within a collection of XML documents. By exploiting the
tree nature of XML documents, we provided suitable strategies for tree matching,
merging, and pruning. Tree matching allows the identification of structural simi-
larities to build an initial substructure that is common to all the XML document
trees in a cluster, whereas the phase of tree merging leads to an XML tree that
even contains uncommon document substructures. Moreover, we devised a suitable
pruning strategy for minimizing the distance between the documents in a cluster
and the document built as the cluster representative. The clustering framework
resulting from the adoption of the above described notion of cluster representative
was validated both on synthetic and real data, revealing high effectiveness.

We conclude by mentioning some directions for future research. The approach
described in the paper has to be considered an initial approach to clustering tree-
structured data. Further notions of cluster representative can be investigated, e.g.
by relaxing the requirement that a prototype corresponds to a single XML doc-
ument. Indeed, there are many cases in which a collection of XML documents is
better summarized by a forest of subtrees, where each subtree represents a given
peculiarity shared by some documents in the collection. A typical case raises, for
instance, when the collection has an empty matching tree, and still exhibits sig-
nificant homogeneities.

From an application viewpoint, we believe that the proposed clustering scheme
can be profitably applied in at least two relevant applications, namely wrapper
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generation and query optimization. To this purpose, our future studies shall be
focused on how the proposed clustering scheme can be effectively applied to such
domains.
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