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Abstract. Recently data mining techniques have been proposed to predict the “most prob-
able” workflow execution in order to discover which sequence of activities may lead to a
successful execution and which others should be avoided for they often preluding an un-
successful termination. Some previous work has addressed the problem with the aim of
discovering frequent connected patterns in workflow. On the other side, the problem of dis-
covering frequent unconnected patterns has not been dealt with despite of its relevance to the
process of workflow mining: indeed finding sequences of activities which frequently occur
together although they are not contiguous is crucial to discover meaningful execution pat-
terns. This paper investigates the problem of mining unconnected patterns in workflows and
presents for its solution two algorithms, both adapting the Apriori approach to the graph-
ical structure of workflows. The first one is a straightforward extension of the level-wise
style of Apriori whereas the second one introduces sophisticated graphical analysis of the
frequencies of workflow instances. The experiments show that graphical analysis improves
the performance of pattern mining by dramatically pruning the search space of candidate
patterns.

1 Introduction

Workflow management systems (WfMs) represent the most effective technological infrastruc-
ture for managing business processes in several application domains [6, 13, 5]. There is a growing
body of proposals aiming at enhancing this technology in order to provide facilities for the human
system administrator while designing complex processes as well as in order to offer an “intelli-
gent” support in the decisions which have to be done by the enteprise during the enactment [7, 3,
9,12].

Within this line of research data mining techniques have proved to be very effective [15]. Tra-
ditionally, they have been employed for using the information collected during the enactment
of a process not yet supported by a WfMS, such as the transaction logs of ERP systems like
SAP, in order to derive a model explaining the events recorded [4, 14, 1]. Then, the output of
these techniques, i.e., the “mined” synthetic model, can be profitably used to (re)design a de-
tailed workflow schema, capable of supporting automatic enactments of the process. Under this
perspective, these techniques offer a support in the design time of the workflow system and are
called process mining techniques.

A novel line of research has been, instead, introduced in [8], by investigating the ability of
predicting the “most probable” workflow execution. Indeed, in real world-cases, workflows are
intrinsically non-deterministic, since they offer alternative executions which may lead to different
results. Now, as actors make choices which influence the execution of a workflow, some choices
may be beneficial, whereas others should be avoided in the future. In this perspective, data mining
techniques can help the administrator, by looking at all the previous instantiations (collected into
log files in any commercial system), in order to extract unexpected and useful knowledge about



the process, and in order to take the appropriate decisions in the executions of further coming
instances.

The algorithm presented in [§8] is able to discover the connected structure of the executions,
that have been scheduled more frequently by the workflow system, i.e., whose frequency of
occurrence in the logs F is above a given threshold o. These structures are simply called frequent
connected patterns (short: frequent F-patterns) and they are the subprocesses that are frequently
performed during the enactment of the main process. The knowledge of the frequent F-patterns
can be profitably exploited by the administrator in order to identify anomalies in the enactment.

In this paper, we continue on this line of research by studying the problem of discovering some

correlations among the mined subprocesses. Thus, we assume that a set P of frequent F-patterns
is given and we are interested in discovering whether any of the subsets of P is frequent as well.
This problem, called frequent unconnected patterns discovery (short: FUPD), occurs very often in
practical scenarios and is crucial for the identification of the critical subprocesses that led often to
(un)desired final configuration. We show how the structure of the workflow together with some
elementary information such as the frequency of occurrences of elementary activities suffices
for pruning the search space and for deriving an efficient and practically fast algorithm, called
ws*-unconnected-find.
Organization. The rest of the paper is organized as follows. In the next section, we define the for-
mal model of workflow and we introduce the problem of mining frequent unconnected patterns.
In Section 3 we introduce an a-priori like algorithm, while the ws™-unconnected-find algorithm
is shown in Section 4. The description of the implementation of both approaches is reported,
while Section 5 discusses of several experiments that confirm the validity of the approach. Fi-
nally in Section 6 we draw our conclusions by pointing to further enhancements to the proposed
approach that are worth future research efforts.

2 Workflow Model and Problem Formulation

A workflow schema WS is atuple (A, E, ag, Ap, AY,, A}, AY . AN AS ) where A is a finite
set of activities, E C (A — Ar) X (A — {ag}) is an acyclic relation of precedences among
aclivities, ag € A is the starting activity, Ap C A is the sel of final activities, Ay, are the or-join
nodes in A, A} are the and-join nodes in A, AY,, are the or-fork nodes in A, A’,, are the and-
fork nodes in A, and A2, are the exclusive-fork nodes in A. The tuple (A, E) is often referred
to as the control graph of WS.

Informally, an activity in A2 acts as synchronizer (also called a join activity in the literature),
for it can be exccuted only after all its predecessors are completed, whereas an activity in AY,
can start as soon as at least one of its predecessors has been completed. Moreover, once finished,
an activity a in A?), activates all its outgoing activities, a in AY, . activates some of the outgoing
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activities, while a in A7, activates exactly one outgoing activity.

Example 1. An example of workflow schema is shown in Figure 1. In this schema, we adopt
the graphical convention of representing nodes in A}, with circles and nodes in A%, with bold
circles; moreover, nodes in A2 , exhibit dashed outgoing arcs, whereas nodes in Ay, exhibit
dotted arcs and nodes in AY,, exhibit bold arcs. Finally, nodes in Ar are represented by means
of a double circle. To summarize figure 1 represents a schema WS where A, = {d, ¢, b, f,e,n}
and A}, = {a,g,1,i,h,m,0,p}, while AS , = {a,h}, A, = {l,i,g,e, f,m,n,0}, AY,, 2

{b,¢,d}, and Ap = {p}.

The enactment of a workflow gives rise to an instance, i.¢., to a proper subgraph of the schema
which is derived satisfying the constraints imposed by the instances included.



Fig. 1. An example of workflow schema.

Definition 1 (Instance). Let WS be a workflow schema. Any connected subgraph I = (Ay, Er)
of the control flow graph, such that (i) ag € Ay, (ii) A; N Ap # 0, (iii) for each a € Ay, |{b |
(b,a) € Er}| > 0,(iv) foreacha € A;nA. ,{b]| (b,a) € E} C Ay, (v)foreacha € A;NA,,,

{bc AY | (a,b) € E} C Ap, and (vi) foreacha € A; N A2, |{b]| (a,b) € Er}| < 1 and

out?

{b| (a,b) € Er}| =1if{b€ A}, | (a,b) € E} #0,is an instance of WS (WS = I). ]

Example 2. With reference to the schema of fig. 1, the following are example instances:

N, N PN
~ N N

a—d—1—0—p a—d—1—-0—>p a—d—h—0—p

a—b—e—p a—b—=f—p a—b—-e—p a—c—m—p <

Each instance is properly stored by the workflow management system in the log file, which
can be seen as a set F = {I1, ..., I, } such that WS = I;, foreach 1 < 4 < n. In the following,
we denote by Z(WS) the set of all the instances of a given workflow WS.

Among the instances of F we are interested in discovering the most frequent patterns of exe-
cution as next defined.

Definition 2 (Pattern). A graphp = (A4,, E,) C WS is a F-pattern (cf. F |= p) if there exists
I = (A1, Er) € Fsuchthat A, C A; and p is the subgraph of I induced by the nodes in A,,. In
the case F = Z(WS), the subgraph is simply said to be a pattern. O

Let supp(p) = [{I|{I} = p A I € F}|/|F|, be the support of a F-pattern p. Then, given a
real number minSupp, we consider the following two relevant problems on workflows:

FCPD: Frequent Connected Pattern Discovery, i.e., finding all the connected patterns whose sup-
port is greater than minSupp.

FUPD: Frequent Unconnected Pattern Discovery, i.e., finding all the subsets of connected pat-
terns whose support is greater than minSupp.

We remark that FCDP has been addressed in [8]. Then, in this paper we shall deal with an
efficient solution for FUDP by assuming that the set C'(F) of all the frequent (w.r.t. minSupp)
connected patterns in the set of instances F has been already computed using the approach of [8].
It is worth noting that FUPD has a straightforward solution consisting in the application of a level-
wise algorithm (in the a-priori style) [2, 11] which combines all the unconnected patterns in P



and then checks for their frequency. Indeed in Section 3 we present an implementation of Apriori
that takes into account some basic properties of workflows. However, in order to achieve a larger
amount of pruning of the search space, we need to further exploit the peculiarities of the workflow
graph. To this end, one might think of combining the dynamic information obtained from the
frequency of single nodes and edges, with the static information derived from the workflow
schema in order to predict (un)frequent patterns. To get an intuition of the approach, consider
again the schema in Figure 1. Observe that the activities a and p are frequent but not necessarily
any path from a to p is frequent as well (this is what happens, e.g., by considering the instances
of example 2 and minSupp = 30%). On the other hand, as every execution starting from a will
eventually terminate in p, we can then conclude that the frequency of any pattern containing a
remains equal if the pattern is extended with p. Therefore, we can conclude that nodes a and p
form a frequent unconnected pattern without looking at the actual co-occurrences in the log files.

Actually, many situations are less evident than the above trivial case. For instance, by analyzing
both the instances and the graph structure (with the techniques we shall develop in the paper),
we are also able to conclude that m frequently occurs together with a. Incidentally, note also that
m and b cannot co-occur frequently, since the only path connecting them is below the frequency
threshold (and hence the frequency of m cannot be related to that of b). In order to systematically
study such circumstances, we develop a graph theoretic approach for predicting whether two
activities are coupled just on the basis of the workflow structure and of the frequency of the
elementary activities alone.

3 A Level-Wise Algorithm for Unconnected Patterns

In this section we present a first simple solution to the FUPD problem, achieved by means of the
algorithm ws-unconnected-find shown in Figure 2. The algorithm receives in input the workflow
schema WS and the set C'(F) of frequent connected F-patterns, which are assumed to be aiready
computed, and returns all the frequent unconnected patterns.

Before detailing the mains steps we need some further definitions and notations. Given a un-
connected pattern p, we say that p is a starting pattern if it contains the starting activity of the
workflow schema; otherwise, it is said rerminating pattern. Rather than computing all the pos-
sible unconnected patterns, we limit on starting patterns and we show how the space of all the
connected starting patterns forms a lower semi-lattice that can be profitably explored in a bottom-
up fashion. In fact, given two starting patterns r and p we say that r directly precedes p, denoted
by r < p, if there exist a terminating pattern ¢ such that » = p U ¢. Moreover, r precedes p,
denoted by r <* p, if either r < p or there exists a starting pattern ¢ such that » <* ¢ and
q <* p. Itis not difficult to see that starting patterns can be constructed by means of a chain over
the < relation. Such an approach is, in fact, exploited by the algorithm in Figure 2 that computes
all the frequent starting patterns, by generating at each step k the patterns made of %k distinct
unconnected patterns (stored in the set Ly).

The algorithm starts by defining Ly as the set of frequent patterns in C'(F) that contains ag,
and " to be the set of all the terminating connected patterns — notice that the set is, in fact,
C'(F) minus the starting patterns in Ly.

Then, at each step it generates a number of candidates (stored in U) in the main cycle (steps
4-13). Each generated pattern p is obtained by the function UpdateCandidatelist, by
combining a starting pattern in L; with a connected terminating pattern ¢ in C’ which is not
in the set discarded(p). This latier set is used for optimization purposes. In fact, since we are
interested in unconnected components, given a pattern p we can compute in advance a set of
connected patterns that must not be combined with p, denoted by discarded(p). This set contains
all the patterns which have a non-null intersection with p, and it is initialized in the procedure
InitializeStructures.



Input: A workflow schema WS, a set F of instances of WS, the minimal support minSupp, the set C(F)
of frequent connected F-patterns.

Output: A set of frequent unconnected F-patterns.

Method: Perform the following steps:

1 InitializeStructures();

2 Lo={plpeC(F),anep}; /F ¥ frequent connected starting patterns
3 k:=0,R:=Lo; C':=C(F)— Lo,

4 repeat

5 U:=UpdateCandidateList(L)

6 Li41 := ComputeFreguentPatterns(U);

7 R:=RU Lk+1;

8 forall r € U — L1 do begin

9 p := starting(r);

10 forall p’ € Ly 1 st.p C p do

11 discarded(p’) := discarded(p’) U {terminating(r)};
12 end

13 until Ly, = 0;

14 return R;

Procedure InitializeStructures;
1s1 forallp € C(F)do
182 discarded(p):={q|lge C(F),pNg#0},

Function ComputeFrequentPatterns(U: set of candidates): set of frequent patterns;
CrPl return {r|r € U, supp(r) > minSupp};

Function UpdateCandidateList(Ly: set of candidates): set of candidate patterns;

ucLl U:=0
ucL2 forallp € L do //¥*Estarting pattern
ucL3 forall g € C' — discarded(p) do begin /FFterminating pattern

UcL4  r:=pUg; starting(r) = p; terminating(r) = ¢;
UCL5  discarded(r) := discarded(p) U discarded(q);
vcLe U :=UU{r};

UCL7 end;

UCL8 return U;

Fig. 2. Algorithm ws-unconnected-find(F WS minSupp,C(F))

Moreover, notice that each pattern r generated at the step £ is also equipped with two functions,
starting(r) and terminating(r), which store the starting and terminating patterns respectively
that have been used for generating r.

After all the candidates have been computed in the set U, the function
ComputeFrequentPatterns is invoked (step 6) for filtering the elements in U which
frequently occur in F, thus creating the set Liy; containing all the frequent unconnected
patterns made of £ + 1 unconnected patterns — notice that in this implementation this task is
simply done by means of a scan in the logs F.

Finally, the generated starting frequent patterns are added to the actual result i, and in the
steps 8—12 the set discarded is updated for the patterns which are discovered to be frequent.

The computational cost of the algorithm is related to the number of unconnected components
contained by the maximal frequent unconnected patterns. This number indeed influences the
number of scans to the log file.

Proposition 1. The algorithm ws-unconnected-find computes the set of all the unconnected fre-
quent patterns with at most |C'(F)| — | Lo| scans in the log file. o

The correctness of the algorithm follows from the following observation.



Theorem 1. For any two patterns p and q such that p U q is a frequent unconnected pattern,
there exists a pattern p’ containing both p and the initial activity ag such that p’ U q is frequent
as well. a

Informally, the theorem states that, since the starting activity is executed in each instance, each
unconnected frequent pattern can be extended with the initial activity. As a consequence, each
frequent unconnected pattern can be generated starting from the unconnected frequent starting
patterns.

Example 3. By assuming minSupp = 30% and the set F of instances of example 2, the patterns
{a,b}Up,aUmUp and {a,d} U o U p, are maximal unconnected frequent patterns. O

4 Optimizing Candidate Generation

In this section we present some techniques for efficiently pruning the search space which has
been identified by means of the level-wise algorithm ws-unconnected-find. Our idea is to exploit
the structure and the information regarding the frequency of each activity in order to identify,
before their actual testing w.r.t. the logs, those patterns which are necessarily (un)frequent.

In the following, we assume the existence of a set F of instances of a workflow schema WS.
Then, let ¢ be a non-necessarily connected component of WS with frequency f(q) and p be a
connected component with frequency f(p) such that ¢ and p are unconnected. Our aim is to
compute as efficiently as possible the number of instances in F executing both the components
p and g, denoted by f,,(q).

Obviously, the most trivial and inefficient way for computing f,(q) is to make a scan of the
log F. However, we shall show how some proper data structures and algorithms can be used for
effectively identifying a suitable lower bound and an upper bound for f,(g), denoted by ,(q)
and u,(q) respectively, in some efficient way not requiring the access to the log.

We next start with the basic situation in which p and ¢ are patterns each one made of a single
activity of WiS.

4.1 Computing Frequency Bounds for Activities

Given an activity a € A, let G, be the subgraph of the control flow of YWS induced by all the
nodes b such that there is a path from b to a in YUS. Note that all such nodes can be easily
determined by reversing the arcs in WS and computing the transitive closure of a.

The starting point of our approach is to compute for each node b in GG, the number of instances
in F = {I1,...,I,} executing both the activities o and b, denoted by f,(b). As already said,
we actually turn for computing a lower bound /,(b) and an upper bound u,(b) — obviously
la(b) < Ua(b) < mln(f(a)a f(b))

In order to accomplish this task we need some auxiliary data structures besides the workflow
schema which are used for storing the occurrences of each activity and edge (connecting activi-
ties) in the log F.

Definition 3 (Frequency graph). Let {4, E) be the control flow of a workflow schema WS and
let 7 = {I,..., I, } be a set of instances of WS. The frequency graph WSz = (A, E, fa, fE)
is a weighted graph such that
- fa: A — N maps each activity a to the number of instances in F = {1, ..., [} executing
it, and
- fg : E — N maps each arc e to the number of instances in F = {I, ..., I, } containing this
arc.



fo iy
\, “/‘o

P

Fig. 3. Frequency graph associated with the schema of fig. 1.

Whenever no confusion arises, given an activity a € A (resp. an edge e € E), fa(a) (resp.
fe(e)) will be simply denoted by f{a) (resp. f(e)). 0

Figure 3 shows the frequency graph associated with the schema of fig. 1, built by taking into
account the set F of instances described in example 2.

In order to derive these bounds, we first determine a topological sort {a = by,bo, ..., bg) of
the nodes in G, of WS - as WS is acyclic a topological sorts exists for each of its subgraphs
including G,. Then we proceed as shown in Figure 4. In the step 1, the lower bound and the
upper bound of the activity a is obviously fixed to the known value f(a), determined through
G- Then, each node b; in GG, is processed according to the topological sort. In 3, the set of all
the activities C'(b;) that can be reached be means of an edge starting in b; and that are in G, is
computed — note that |C(b;)| # 0. Step 4 is responsible for computing the upper bound u,(b; )},
whereas steps 5-9 are responsible for computing the lower bound [,(b;). Intuitively, the upper
bound u4(b;) can be computed by optimistically assuming that each arc outgoing from b; is in
some path reaching ¢. This justifies the formula of step 4.

Concerning [, (b;), observe that each node ¢; € C(b;) is executed with a by at least [,(¢;) in-
stances. Therefore, we need to know how many of the instances executing b; contribute to [,(c; ).
Two cases arise: (i) b; € AY . U A" . so the nodes connected to b; may occur simultaneously
within an instance, and (ii) b; € A ,, then all ¢; are executed exclusively from each other. This
explains why in the first alternative L7 and LY are computed by maximizing the contribution
of each ¢;, whereas in the second alternative the single contributions are summated. Finally, ob-
serve that when ¢; € AY, it may be not the case that all of the la(c;) instances execute b;, thus
requiring to differentiate the formulas for LY and L7 (and, in the same way, for Ly and L%).

Observe that the final step in the algorithm possibly find tighter lower bounds by exploiting
the fact that, given two nodes b and ¢ in G if (b,¢) € WS, b is an and-fork node and ¢ is an

or-join node, then I, (c) < 1,(b) the activity b is executed each time the activity c is.

Theorem 2. The following properties hold for the algorithm in Figure 4:

1. The parameters U, LY, Ly, L} and L} are well defined, i.e., u,(b;) and 1,(b;) are computed
by exploiting already processed values.
2. Foreachnodeb; € G, the values 1,(b;) and u,(b;) are, respectively, lower and upper bound

of the frequency f,(b;).
3. The procedure can be computed in time O(|G,|?). o

Example 4. By applying the above formulas, we obtain the following bounds for node m:

lm(a) = 3, lm(b) = ]., lm(C) = ]., lm(d) = 0, lm(g) = 2, lm(h) = 0,
um(a) =4, un(d)=1, un{c)=2, un(d) =0, um(g) =2, um(h)=0.



Input: A workflow schema WS, an activity a, the graph G, and a topological sort (¢ = b1, b2, ..., bg) of
the nodes in G,.

Output: for each node b € G, the values I, (b) and uq(b).

Method: Perform the following steps:

la(a) := f(a); ua(a) := f(a);

—_

2 forall i = 2..k do begin
3 Clb):={b| (bi,b) e EAbE Ga};
4 Ua(bi) := min(f(b:), f(a),U), with U = Ze:(bi,cﬂcec‘(bi) min(f(e), ua(c))-
5 ifb; € AY,, U A2, then
6 lo(b;) == min(f(b;), max(Ly, LY)), with
Li = max. cco,)nap, 1lalc;)}, and
LY = machec@i)mAyn{maX(Oa la(c;) — Ze:(d,Cj)EWSA d#b; fleNt
7 else//case of b € A,
8 lo(bi) := min(f(b;), LY + LY), with

Ly = Ecjec@i)m;ﬂ {la(c;)}, and
Ly = zcjec@i)m% {max(0, la(c;) — ze:u,c,-)ewm db; fle)}
9 end ‘
10 end
11 forall (b, c) € G, do begin
12 ifbc A),;and c ¢ AY, then
13 lo(c) := max(ly(c), 1o (b))}
14 endfor

Fig. 4. Algorithm cornpute_frequency_bounds(WSr, a)

According to the these bounds, it is easy to see that m U a is a frequent unconnected pattern,
whereas m U b and m U d are not (even though b, d and m are frequent patterns). It is interesting
to analyze also the bounds for node o:

lo(a) = ]., lo(d) = ]., lo(h) = 1, lo(l) = 1, lo(l) =1
uc{a) =3, uo(d) =3, us(h)=1 i 1

Thus, even if d U o is a frequent unconnected pattern, lower bounds do not help in detecting such
pattern without resorting to the logs. This is essentially due (o the fact that, since d € AY,,, its
lower bound depends from the lower bounds of h, 1 and 1 (each of which belongs to G, with

frequency 1). <

4.2 Computing Frequency Bounds for Patterns

Let us now turn to the more general problem of approximating the value of f,,(b), for any pattern
p and any activity b, by means of a suitable lower and upper bound. Notice that the value f,(b) is
the number of instances in F executing both the component p and each activity b that precedes
one of the activities in p.

To this aim we simply reuse the technique described in the previous section with some
adaptations. Let INBORDER(p) denote the set of the activities in p which have no incom-
ing arcs in p. Let WS(p) be the workflow schema derived from WS by adding a new and-join
node, say a,, corresponding to the component p, and by adding an arc from each node b in
INBORDER(p) to a. In the frequency graph of WS(p) set f(a,) = f(p), and f(e) = f(p) for
each e = (b,a,) € E. Then, the function compute_frequency_bounds(WS z, p) is defined as
compute_frequency bounds(WS{(p)r, ap).



Theorem 3. Let WS be a workflow schema, F be a set of instances, and p a pattern. For any
activity b, let I, (D) and w,, () be the lower and upper bound of the occurrence of activity a,,
together with b, computed by means of the algorithm compute_frequency_bounds(WS(p) ).
Then, 1o, (b) and wu,,(b) are indeed lower and upper bounds of f, (D). 0

4.3 Algorithm ws*-unconnected-find

Once the frequency bounds for a given pattern (w.r.t. any activity) are computed, we can face
the more general problem. Let ¢ be a general component of WS with frequency f(q) and p be
a connected component with frequency f(p) such that ¢ and p are unconnected. A lower bound
and an upper bound of f,(g) are as follows:

- 1p(q) = max(0, maxpe,{lp(b) — (f(b) — f(9))})
- up(q) = min(f(a), >_,cQUTBORDER(q) Ur(b) )-

Here, OUTBORDER(p) refers to all the nodes in ¢ having outgoing arcs in WS — ¢. The intuition
behind the above formulas is the following. The value u,(g) is obtained by taking into account
the contribution of each node b of ¢ from which there is a path to a node in p. However we may
exclude in the upper bound computation all internal nodes of ¢ (i.e., those not in OUTBORDER(p))
as they are always executed together with at least one node in OUTBORDER(p). Concerning the
computation of 1,,(¢), observe that there are at least /,,(b) instances executing b € ¢ and p. So, as
f(b) > f(q), there are at least ,,(b) — (f(b) — f(q)) instances connecting ¢ and p and executing
b. It turns out that a suitable lower bound is provided by the node exhibiting the maximum such
value.

Theorem 4. Let WS be a workflow schema, F be a set of instances, and p and q two patterns.
Then, 1,(q) and u,(q) are lower and upper bounds of f,(q). O

Generalized upper and lower bounds can be finally used for pruning the search space of the
ws-unconnected-find algorithm. In fact, if for any two patterns u,(g) < minSupp then it is always
the case that p and ¢ never occur frequently together. Conversely, if {,,(¢) > minSupp then p and
q can be combined into a pattern that is frequent as well.

Thus, the algorithm ws-disconected-find can be optimized (see Figure 5), by suit-
ably adapting the procedures InitializeStructures, UpdateCandidatelList and
ComputeFrequentPatterns. Specifically, the former also compute the frequency graph
and all the frequency bounds for any pattern, by exploiting the above formulas. The second,
instead, verifies the frequency in the log F only for patterns which cannot be tested with the
frequency bounds only.

5 Experiments and Discussion

In this section we study the behavior of the ws*-unconnected-find algorithm, by examining its
pruning capability in experiments aimed at evaluating whether the computation of upper and
lower bounds avoids the generation of unnecessary candidate patterns to check for frequency
against the log data.

In our experiments, we use synthesized data whose generation can be tuned according to: i)
the size of WS, ii) the size of F, iii) the average number d of connected frequent patterns to
use in the generation of frequent unconnected patterns, and iv) the average number u of frequent
unconnected patterns to exploit in the generation of unfrequent unconnected patterns. Data are
generated according to the following strategy. First, a number d of frequent connected patterns
are generated; next, iteratively, a pair p, ¢ of frequent patterns is randomly chosen and merged



Procedure InitializeStructures;
1Sl WS = compute_frequency_graph(WS, F);
152 forall p € C(F) do begin
183  discarded(p) :={q|lq€ C(F),pNqg#b};
184 (lp,up) ;= compute_frequency_bounds(WS r,p)
I35 end;

Function ComputeFrequentPatterns(U: set of candidates): set of frequent patterns;
CEPl LF :={r|r €U, licrminating(r (starting(r)) > minSupp};
CEP2 LU = {r|r € U, Uterminating(r) (Starting(r)) < minSupp};
CFP3 return LF U {r|r € U — (LF U LU), r is frequent w.r.t. F };

Procedure UpdateCandidatelList(U: set of candidates);
ucLl forallp € L do //¥*%starting pattern
ucL2 forall g € C' — discarded(p) do begin //***terminating pattern
UCL3  r:=pUg; starting(r) = p; terminating(r) = ¢;
UCL4  discarded(r) := discarded(p) U discarded(q);
UCLS  lq(p) = max(0, maxsep{lq(b) — (f(b) — F(p))});
UCL6  uq(p) = min(f(p), 3_,c0UTBORDER(q) Ur (b)):
ucL?  U:=UU{r}
UCL8  end;

Fig. 5. Algorithm ws*-unconnected-find(F WS ,minSupp,C (F))
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Fig. 6. Performance Graphs.

into » = pU ¢ by connecting OUTBORDER(p) to INBORDER(q) in such a way that p U ¢ is frequent
but unconnected. More in details, let f, and f; be the frequencies of p and g, respectively. Each
node in OUTBORDER(p) is connected to a new node a € AY, N A® . Similarly, a new node

out*
be AY, N A2, is connected to each node in INBORDER(q). f, is then set to max(f,, f,), and a
connection between a and b is set by adding at most n = min(f,, f,) unfrequent nodes to r, and
by connecting a and b by means of paths traversing such nodes. Further nodes can be connected

either to @ or b in order to retain frequencies.

Unfrequent unconnected patterns are built, starting from frequent (either connected or uncon-
nected) patterns according to a similar strategy. Two randomly chosen frequent patterns p and ¢
generate an unfrequent unconnected pattern r by connecting OUTBORDER(p) and INBORDER(q)
with exactly one edge exhibiting a low frequency. Further nodes are added and connected either
to QUTBORDER(p) or to INBORDER(g) in order to retain frequencies. The resulting graph r still
has f, = max(fp, f;), but p U ¢ has frequency 1.
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The u and d parameters influence the number of frequent and unfrequent unconnected patterns
to be generated. Starting from a set d of connected patterns, unconnected frequent patterns are
generated until « patterns are obtained. These are used to iteratively generate unfrequent uncon-
nected patterns, until a single graph is obtained. On the basis of this description, we can expect
that, the larger the difference between d and u, the higher is the number of unconnected frequent
patterns contained within synthesized data. On the other side, the lower is the difference, the
higher is the number of unconnected unfrequent patterns. Notice also that the frequency of each
unconnected frequent pattern is related to the number of unfrequent components and the number
of desired total instances. Indeed, if w is the desired number of frequent unconnected patterns to
compose infrequently, the number of instances F necessary to compose them with frequency at
least fis |F| ~u x f.

In a first set of experiments, we evaluated the ratio f = n../n., between the number n,. of
candidate patterns checked against the logs and the total number 7, of candidate patterns. Low
values of f represent a higher pruning capability of the algorithm ws*-unconnected-find w.r.t ws-
unconnected-find. Figure 6(a) shows the behavior of f for d = 10, minSupp = 5% and increas-
ing values of F and u. As we can see, f is quite low, except when u = 8. Figures 7(a)and 7(b)
exhibit the number of unfrequent and frequent unconnected patterns discovered by resorting to
upper and lower bounds, respectively.

Figure 6(b) exhibits the ratio f for increasing values of minSupp and u, when |F| = 1.000
and d = 15. Peaks within the graphs are mainly due to the fact that we are mining unconnected
components: at low support values, patterns are mined as frequent connected (i.e., the frequency
of paths connecting the components is greater than the given threshold). As soon as support
threshold increases, paths are no more frequent, and hence a higher number of unconnected
frequent patterns is detected by the algorithm. Despite of these irregularities, we can notice that
increasing values of v influence the pruning ability. In particular, by figures 7(c) and 7(d) we can
see that, with high values of u«, upper bounds provide substantial pruning ability.

More in general, upper bounds are better in pruning, as also demonstrated by figures 8(a)
and 8(b). In these graphs, the number of pruned unfrequent and frequent patterns is shown for
increasing values of minSupp and d, with u fixed to 2 and F to 1.000. Interestingly, lower
bounds are quite effective at high values of minSupp, which guarantee several disconnections
among frequent patterns.

As a final remark, it is worth mentioning that upper bounds tend to be effective in the first steps
of the algorithm (i.e., in the computation of L. for low values of k), whereas lower bounds effec-
tiveness distributes throughout the entire execution of the algorithm. More extensive graphical
analysis, omitted here for lack of space, gives evidence of the claim.

6 Conclusions

In this paper we have addressed the problem of mining frequent unconnected workflow patterns.
We have developed a graph theoretic approach for predicting whether activities in a workflow
are coupled in the executions, on the basis of the workflow structure and of the frequency of the
elementary activities alone. The approach has been adopted in a level-wise algorithm for mining
frequent patterns, and revealed as a powerful tool for pruning the search space of candidate
patterns.

We conclude by sketching some directions of future research. The models proposed in this pa-
per and in [8] are essentially propositional models, for they assume a simplification of the work-
flow schema in which many real-life details are omitted. However, we believe that the models can
be easily updated to cope with more complex constraints, such as time constraints, pre-conditions

11
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Fig. 7. Performance Graphs (cont.).

and post-conditions, and rules for exception handling. Furthermore, we believe that many of the
observations we exploit in the paper can be used for performing similar optimizations in different
contexts in which the model of the data is assumed to be a graph [10, 11, 16].
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