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ABSTRACT
This paper presents a rule-based declarative database language
which extends DATALOG to express events and nondeterministic
state transitions, by using the choice construct to model uncertainty
in dynamic rules. The proposed language, called Event Choice
DATALOG (DATALOG!ev for short), provides a powerful mecha-
nism to formulate queries on the evolution of a knowledge base,
given a sequence of events envisioned to occur in the future. A
distinguished feature of this language is the use of multiple tem-
poral dimensions in order to model a finer control of evolution. A
comprehensive study of the computational complexity of answer-
ing DATALOG!ev queries is reported.

1. INTRODUCTION
Finding a suitable declarative framework for modelling and reason-
ing about actions is a problem that has received a great deal of inter-
est in the past years. Indeed, logic-based languages (see, e.g., [18,
33]) developed in the context of logics for knowledge representa-
tion might be profitably exploited for defining and solving planning
problems, that often arise in AI applications. Traditional declara-
tive approaches for planning fall into three distinct categories: situ-
ation calculus ([27]), temporal reasoning (see, e.g., [30]) and event
calculus ([23]). Several recent proposals exploit, instead, logic pro-
gramming and, specifically, the answer set paradigm for develop-
ing domain-independent planning languages [?]. Besides the very
declarative modelling features of logic programming, the most in-
teresting aspects is that, since answer sets represent the solution of
the planning problem, planners may be easily implemented with
the support of efficient answer set engines such as XSB [?], GnT
[?], DLV [?], Smodels [?], DeReS [?], and ASSAT [?]. The lan-
guage K [15] is a prototypical representative of the languages ex-
ploiting such an approach. In fact, it is completely based on the
principles and methods of logic programming and its main feature
is the ability of dealing with incomplete knowledge, i.e., of mod-
elling scenarios in which the designer has a partial knowledge of
the world, only. Moreover, it has been actually implemented as a
front-end for the DLV system [].

One of the major limitation of the language K as well as of most
of the other logic-based languages for reasoning about action is the
lack of an explicitly support for time in the planning. Moreover, the
few logic-languages dealing with timed actions [?] rarely consider
the possibility of dealing with multiple time units, and, besides,
such proposals mainly consist in finding suitable extensions of the
event calculus (EC) [9]. Multiple time units are also called time
granularities in the temporal database community (see, e.g., [8]).
The basic idea is to explode the time into a number of dimensions
at different scales in order to model the validity of properties over
coarser or finer time intervals. We stress that the simple solution of
mapping all dimensions into the finest scale does not always work
as the coarser dimensions may impose restrictions on time validity.
Multiple time units can be profitably used for two main purposes:

¤ They can be used for modelling in a more realistic way a
given planning problem. In fact, recent research has recog-
nized that systems supporting multiple granularities of time
and reasoning involving these units are two important issues,
as all the human activities are essentially related to clock
units, such as weeks, days, and hours (an overview of dif-
ferent proposal and a definition of a unifying model for time
granularities is presented in [?]).

¤ They can be used for dealing with plans at different level of
details. In fact, each time dimension might be seen as a con-
ceptual dimensions; so we can employ a main dimension for
reasoning about some complex activities, and one auxiliary
time dimension for modelling the execution of the various
subtasks such activities are made of. Note that these subtasks
take in fact some time to be executed, but they can be seen
as instantaneous, as far as the main time scale is concerned.
This can be particularly useful if, at the complex activities
level, we are only interested in the effects of subtasks, rather
than on their detailed temporal succession, as the following
example shows.

We believe that both the above applications might be of interests
in practical contexts. In fact, as for the first issue a language sup-
porting multiple time units will increase its knowledge representa-
tion power, while for the second issue it becomes also a viable way
for Hierarchical Task Network (HTN) planning (Sacerdoti 1974).
HTN is an approach to planning where problem-specific knowl-
edge is used to remedy the computational intractability of classical
planning. This knowledge is in the form of task decomposition di-
rectives, i.e. the planner is given a set of methods that tell it how
a high-level task can be decomposed into lower-level tasks. The
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Figure 1: Blocksworld planning problem.

HTN planning problem consists in computing a sequence of primi-
tive tasks that corresponds to performing the initial set of high-level
tasks. First attempts to define languages able to explicitly deal with
time and HTN planning problems have been done in [?], designing
suitable extension of the Golog/ConGolog (Levesque et al. 1997;
De Giacomo, Lesperance, Levesque 2000) languages (based on sit-
uation calculus).

In this paper we tackle the above knowledge representation is-
sues in the logic programming context, and we propose a new lan-
guage, called Event Choice DATALOG (DATALOG!ev for short), for
modelling and querying action theories with different time granu-
larities. The language can be used for defining declaratively sub-
tasks that may be eventually combined in order to solve complex
activities, in a way that is completely transparent to the user. We
point out that the recombination of pieces of programs is not natural
in logic programming context, in which the union of two programs
may have unexpected semantics. Conversely, one interesting pe-
culiarity of DATALOG!ev is its modularity that constitutes the basis
for its applicability in HTN planning contexts. In fact, any program
dealing with some simple planning problem can be reused in more
complex systems by allowing it to work in a proper subunit of time
without any interference with previously defined modules. Indeed,
all the reasoning activities in subunits are seen instantaneously as
far as the main unit is concerned. The language achieves this flexi-
bility by exploiting two basic constructs for defining planning prob-
lems.

• Event Activation Rules: The language models transition
among the possible states of the world, in the same spirit
of C [20], by exploiting the notion of event. Indeed, the oc-
currence of an event might cause the application of a rule
that modifies the state by asserting or retracting some facts
(fluents) and that triggers other events in its turn. Besides
the internally triggered events, the language also support the
interaction with external ones. This latter features is of par-
ticular interest for simulating and reasoning about possible
scenarios, as we shall describe in the following.

• Choice construct: The ability to deal with the nondeter-
minism has been recognized as a key feature of logic based
languages. However, an undisciplined use of unstratified
negation and/or disjunction leads to higher computational
complexities and to hard-to-read programs. For this reason,
DATALOG!ev allows only stratified negation, but its rules may
contain choice constructs, that provide nondeterministic fea-
tures. In particular, if we are not interested in a particular
outcome (temporal evolution) of the program, the choice is
able to model the so called don’t-care nondeterminism.

We will show that DATALOG!ev is well suited for modelling and
reasoning about complex dynamic systems in real applicative sce-
narios, thereby being a powerful run-time environment for their
simulation. To this aim DATALOG!ev is equipped with a power-
ful querying mechanism. Since the same event may actually occurs
in different forms, because of the nondeterministic nature of transi-
tion rules, given a list of envisioned events, the problem consists in
verifying whether there exist particular sequences of further event
occurrences that eventually satisfy a given goal, and in returning a
possible future state satisfying this goal.

1.1 Overview of the Language
In a nutshell, DATALOG!ev is a language for modelling the evolu-
tion of knowledge states, triggered by events and guided by non-
deterministic transition rules. It combines the capability of the
choice construct to express nondeterminism with the event acti-
vation rules, used for modelling events occurring at certain time
instants. Moreover, one can make queries on possible future states
of the knowledge base, given some list of events that are envisioned
to happen, i.e., it can be used for simulation and planning purposes.
We next give a brief exposition of such features of the language by
considering the Blocksworld planning problem [31]. The example
will be next enriched in order to show how DATALOG!ev can deal
with HTN planning problems as well.

1.1.1 Planning with Events and Choice
We have a table and a set of blocks. The table can hold arbitrarily
many blocks, while each block can hold at most one other block.
Initially blocks a and b are on the table, while block c is in the
top of a. We can move a block at time to the table or on the top
of another block, provided that its top is empty. We want to find a
sequence of moves leading to the configuration in which a is on the
table, b is on the top of a, and c on the top of b — see Figure 1.

The first component of a DATALOG!ev program used for mod-
elling such program is the background knowledge expressed as a
set of facts, denoted by EDB (extensional database), which are as-
sumed to do not change over the time. These facts specifies the
object involved in the modelled domain. In our example, EDB con-
sists of the facts

block(a). block(b). block(c).

The second component is a set of fluents, denoted by DDB (dynamic
database). These facts can be dynamically asserted or retracted
during the time, on the basis of the occurrence of the events. In
the example, we can assume to have the dynamic facts of the form
on(X, Y), which specifies that block X is on the top of Y. Initially,
the scenario shown in the leftmost part of Figure 1 is represented



by the following DDB

on(a, table). on(b, table). on(c, a).

The third component is constituted by a set of dynamic rules, de-
noted by D-KB (dynamic knowledge base). These rules are essen-
tially datalog rules (with stratified negation) whose predicates are
equipped with a time argument. Rules in D-KB are used for express-
ing properties that depend on the time, and hence they may relate
status of the world at different time units. For instance, a rule of the
form p(X)@T ← q(X)@T−(2) imposes that predicate p(X) is true
two instants of time after predicate q(X) is. In the special case that
predicates in dynamic rules deals with the same time instant, the
rules can be used for representing static knowledge, i.e., invariant
over the time – in such cases, the time argument is often stripped
off. For instance, in our running example, D-KB contains exactly
the rules

fixed(B)← on(B′, B) block(B).
goodLocation(D)← block(D), ¬fixed(D).
goodLocation(D)← D = table.

done()← on(a, table), on(b, a), on(c, a).

Intuitively, fixed(B) is false at a given time T if the block B has no
other block on the top of it, and, hence, if it can be freely moved.
Then, goodLocation(D) is true if D is the table or a block on the
top of which there are no other blocks. Moreover, done is true if
the desired final condition has been reached.

The most important component of our language consists in the
specification of the event activation rules. This rules states that
whenever a given event is (internally or externally) triggered, a set
of actions will be performed. In our example, we only consider the
event of requiring a move of a block.
[move()@T]

!move()@T+ (10),
−on(S, X),+on(S, D) ← ¬done(),

on(S, X), ¬fixed(S),
goodLocation(D), D 6= S,

choiceAny().

Intuitively, when move is triggered at time T we check for the
condition in the body of the rule. Notice that predicates in the
body of the rule do not have an explicit time argument; we will
use such shorthand in the case the time arguments are the same
of the one exploited in the invocation of the event, i.e., if we are
looking at the state of the world simultaneously to the occurrence
of an event. Specifically, in the above rule, we check whether the
planning has been not yet completed (done() is false) and whether
there is a block S that is not fixed that can be moved on the top of a
goodLocation. Obviously, there are several possible choices, i.e.,
several blocks to be moved and several locations for each block.
Then, the predicate choiceAny() is a directive of our language that
ensures that only one of these possibilities is non-deterministically
chosen. After the choice is done, the status of the world is updated
in the head of the rule, that is on(S, X) is retracted and on(S, D) is
asserted for denoting that S has been actually moved. Moreover,
since we have not yet completed the planning, the event move() is
internally triggered another time, in the next time unit (T+ (10)).
Thus, we are assuming that each move requires ten time units, e.g.,
ten seconds.

The interesting feature of the above formalization is that the user
had to write simple rules involving non-deterministic actions. The
focus in writing DATALOG!ev programs goes only in properly defin-
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Figure 2: Labyrinth.

ing one step of the transition only. Then, the non-deterministic tran-
sitions ensure that all the possible evolutions will be equally con-
sidered and represent in a compact way all the possible sequences
of moves (even the infinite, cyclic ones that do not lead to the fi-
nal configuration). Roughly speaking, the choiceAny() construct
ensures a form of don’t-care non-determinism in which any evo-
lution is admissible. Obviously, one is often interested in finding
a particular sequence of moves that led to the achievement of the
goal. This can be easily specified by means of the last compo-
nent of DATALOG!ev i.e., its query language. In order to query a
program, we have to specify a set of envision events that are the
external events that are already known to happen. In our case, the
list can be H = [move()@0], specifying that we start the planning
at time 0. Then, a query of the form Q = ∃@tdone() will be true iff
there exists a possible way for achieving the desired final condition
within time t. As we can see from the figure, the query will be
evaluated true for t ≥ 30 (seconds). In the following, we shall see
how the blockworld problem can be reused for solving a subgoal of
a more complex planning problem. Then, the event move()0 will
not constitute an external event, but will be internally triggered in
the program encoding such a complex problem.

1.1.2 Multidimensional Planning
Let us now consider a more complex scenario. You have to devise
a program that is able to control a robot in a labyrinth (the grid in
Figure 2). Indeed, the robot is in the position (0, 3) and must arrive
in position (4, 0). As far as this “main” problem is concerned, you
are only interested in counting the number of steps in the robot’s
escaping path, so that you care only at the spatial dimensions —
for instance, you might think at minimizing the length of the path.

However, while looking for the exit, the robot has to perform
some other subtasks within some time bounds, depending on his
position. For instance, when he is in position (6, 5) he has to solve
the blockworld problem in at most 30 seconds. Thus, as far as sub-
tasks are concerned, you are interested in actual time dimensions.
We stress that the scenario is prototypical of all such situation in
which we have to realize some goal which involves the achieve-
ment of other partial goals. We shall next see that DATALOG!ev

allow us to reuse in a quite simple and elegant way the program
that models the blocksworld problem, and that it can easily deal
with both the two dimensions of interests, i.e., the length of the
path and the time bounds of the subtasks.

Let us preliminary solve the problem of escaping from the
labyrinth without caring of the subtasks. The static knowledge con-



sists of the possible directions for the walk, i.e.,

dir(n). dir(s). dir(w). dir(e).

plus the facts determining the coordinates of the grid, i.e.,
coordX(X) for 0 ≤ X ≤ 9, and coordY(Y) for 0 ≤ Y ≤ 6, and
the facts asserting the presence of wall in a given position, i.e.,
wall(X, Y).

The dynamic database DDB comprises pos defining the current
position of the robot in the labyrinth (initially, we assert pos(0, 3)).
Then, D-KB consists of the rules

arrived()← pos(4, 0).
walk(D, X, Y+ 1)← D = n, pos(X, Y), Y < 6,¬wall(X, Y+ 1).
walk(D, X, Y− 1)← D = s, pos(X, Y), Y > 0.¬wall(X, Y− 1).
walk(D, X− 1, Y)← D = w, pos(X, Y), X > 0.¬wall(X− 1, Y).
walk(D, X+ 1, Y)← D = e, pos(X, Y), X < 9.¬wall(X+ 1, Y).

The first rule is used for determining whether the tasks of the robot
has been accomplished. Predicate walk contains instead the next
location of the robot after a walk — notice, that we check whether
the next location is admissible, i.e., if it falls within the grid and if
it is not in a place where a wall is.

Finally, in order to model the walk of the robot we exploit an
event pathFinder()@S, where S is the step of the path. This event
activets the following rules
[pathFinder()@S]

!pathFinder()@S++),
−pos(X, Y),
+pos(XN, YN)← ¬arrived(), dir(D),

coordX(XN), coordY(YN),
walk(D, XN, YN),
pos(X, Y),
choiceAny().

The first rule checks whether the robot is not arrived at the exit.
Then, it selects a new direction which can be pursued by the robot,
i.e., such that walk(D, XN, YN) is true. The selection is performed
non-deterministically, by means of the choiceAny() construct. Af-
ter the selection is done, the position of the robot is updated and the
event pathFinder is triggered for the successive step, denoted by
S++ (shorthand for S+ (1)).

We want to stress one more time the very interesting way of
defining DATALOG!ev programs, in which one has to specify only
the general way a transition is carried out. Then, the event activa-
tion rules models all the possible evolutions, i.e., all the possible
paths. Finally, if one is interested in a path leading to the exit it
suffice to query the program with Q = ∃@tarrived(), which intu-
itively means that we are looking for an evolution (path) that will
lead to the exit. We believe that this is a very interesting and intu-
itive way of specifying planning problems.

Let us consider now, the fact that when the robot is in position
(6, 5), he has to solve the blocksworld subtask. This can be easily
modelled by means of another event activation rule of the form

[pathFinder()@S]
!move()@sub(S)← pos(6, 5).

The above rule essentially triggers the execution of the planning
of the blocks in a lower dimension (sub(S)) w.r.t. the one used for
planning the path. Actually, this dimension is a temporal one as
we have described in the previous section. What is relevant in our
approach is that all the operations that are performed in such finer

dimension are seen instantaneously as far as the higher dimension
is concerned. It follows that in the sub-dimension we take care of
the time, but in the main dimension we take care of the steps.

Then, the query Q = ∃@〈s,30〉done()∧ ∃@12arrived() is true if
it is possible to find a path leading to the exit in 12 steps such that
the blocksworld problem can be solved in 30 seconds at most.

1.2 Organization
The paper is organized as follows. We introduce the multidimen-
sional time domain in Section 2, and in Section 3 we present the
language DATALOG!ev. We illustrate, in the subsequent section, its
model theoretic semantics, by introducing the notion of temporal
and stationary model. Next, in Section 5 we formulate queries on
DATALOG!ev programs and analyze their complexities. Finally,
in Section 6 we present related work, discuss the main novelties of
our language, and draw our conclusions.

2. PRELIMINARIES ON DATALOG
A Datalog program P is a finite set of rules r of the form H(r)←
B(r), where H(r) is an atom (head of the rule) and B(r) is a
conjunction of literals (body of the rule). A rule with empty body
is called a fact. The ground instantiation of P is denoted by
ground(P); the Herbrand universe and the Herbrand base of P
are denoted by UP and BP , respectively.

Let an interpretation I ⊆ BP be given — with a little abuse of
notation we sometimes see I as a set of facts. Given a predicate
symbol r in PD , I(r) denotes the relation {t : r(t) ∈ I}. More-
over, pos(P, I) denotes the positive logic program that is obtained
from ground(P) by (i) removing all rules r such that there exists
a negative literal ¬A in B(r) and A is in I , and (ii) by removing
all negative literals from the remaining rules. Finally, I is a (total)
stable model [18] if I = T

∞
pos(P,I)(∅), i.e., it is the least fixpoint

of the classical immediate consequence transformation for the pos-
itive program pos(P, I).

Given a program P and two predicate symbols p and q, we write
p→ q if there exists a rule where q occurs in the head and there is
a predicate in the body, say s, such that either p = s or p → s. P
is stratified if for each p and q, if q → p holds, then ¬p does not
occur in the body of any rule whose head predicate symbol is q, i.e.
there is no recursion through negation. The class of all DATALOG
programs is simply called DATALOG; the subclass of all stratified
programs is called DATALOG¬s .

Note that stratified programs have a unique stable model that
can be computed in polynomial time. However, they allow us to
express only deterministic queries. If we need the ability to deal
with nondeterminism, we have to use programs with unstratified
negation. Unfortunately, in this case, the complexity is higher and
sometimes programs become hard to read.

A solution to such drawbacks of negation is disciplining its use,
by adding to the basic stratified language some special construct
that provides nondeterministic features. In this paper, we consider
the choice construct [?], that allows us to express choices in logic
programs, by enforcing functional dependency (FD) constraints on
the consequences of rules.



Let a choice rule r with a choice construct1 be given:

r : A← B(Z), choice((X), (Y )).

where, B(Z) denotes the conjunction of all the literals in the
body of r that are not choice constructs, Z is the list of all vari-
ables occurring in B, and X, Y denote lists of variables such that
X ∩Y = ∅ and X,Y ⊆ Z — note that X can be empty and in this
case, it is denoted by “()”. The construct choice((X), (Y )) pre-
scribes that the set of all consequences derived from r, say R, must
respect the FD X → Y . Thus, if two consequences have the same
values for X but different ones for Y then only one consequence,
nondeterministically selected, will be eventually derived.

We denote by choiceAny() the construct choice((), (Z)) that
nondeterministically selects one consequence, where Z is the list
of all variables occurring in the rule body, according to the meaning
of the FD ∅ → Z.

A DATALOG program P with choice rules is called an extended
choice program. We say that P is stratified modulo choice (or sim-
ply stratified) if, by considering choice atoms as extensional atoms,
the program results stratified.

3. MULTIDIMENSIONAL DOMAINS
In this paper we consider a multidimensional model of time, that
allows us to consider different level of details, often called granu-
larities in the literature – see [21] and [8].

Each time instant is a tuple 〈t1, ..., tn〉, where n is the current
dimension of this instant and each ti is a natural number. The time
〈0〉 is a distinguished element standing for the beginning of the
time, and is denoted by 0. A (multidimensional) time domain T

is a set of time instants.

We often impose some restriction on the set of time instants,
either on the number of dimensions, or on the range of each di-
mension. For instance, the usual notion of time (in every-day life)
is modelled as a multidimensional time domain, where we have a
main infinite dimension (encoding, e.g., the number of years after
Christ) and a number of bounded range sub-dimensions (encoding,
e.g., days, hours, minutes, and seconds). We denote by T ω1,m this
temporal domain.

Note that this notion of time is very general, as we have just con-
ceptual dimensions, which can model any desired level of details
in reasoning about events. For instance, we can employ a main
dimension for reasoning about some complex activities, and one
auxiliary time dimension for modelling the execution of the vari-
ous subtasks such activities are made of. Note that these subtasks
take in fact some time to be executed, but they can be seen as in-
stantaneous, as far as the main time scale is concerned. This can
be particularly useful if, at the complex activities level, we are only
interested in the effects of subtasks, rather than on their detailed
temporal succession, as the following example shows.

All time domains T are linearly ordered according to the usual
lexicographic precedence relationship, that we denote by ≺. We
also equip time domains with temporal functions, for incrementing
or decrementing the current time of a given amount of time units.

Definition 3.1 Let T be a time domain. Then, to each time instant
1In general a choice rule may contain more than one choice con-
struct in the body but for this paper one will be enough.

t = 〈t1, ..., tn−1, tn〉, we can apply one of the following operators,
also called temporal functions over T:

• t + k, with k ≥ 0 natural number, that increments (if possible)
the time in the current dimension n of k units, i.e., it outputs
〈t1, ..., tn + k〉; if the increment k is not possible, because of
some bound on the current dimension n, then t+ k is undefined.

• t − k, with k ≥ 0 natural number, that decrements (if possi-
ble) the time in the current dimension of k units, i.e., it outputs
〈t1, ..., tn − k〉; if tn < k, then t− k is undefined.

• sup(t), which is defined if the current dimension n is greater
than 1, and returns the time instant sup(t) = 〈t1, ..., tn−1 + 1〉,
i.e., it projects t onto the preceding dimension n − 1 and incre-
ments the time in that dimension.

• sub(t), that outputs 〈t1, ..., tn−1, tn, 1〉, i.e., it creates (if possi-
ble) a new time dimension; if n is the maximum allowed number
of dimensions in T, sub(t) is undefined.

• t, i.e., the identity function.

Moreover, t++ and t-- are shorthand for t+ 1 and t− 1, respec-
tively. 2

The above functions is all we need for reasoning about events
with the language we present in this paper. Note however that many
other complex temporal operators have been proposed for different
purposes in the literature (e.g., the operators for converting time
instants and scaling intervals [14]).

4. EVENT CHOICE DATALOG
In this section we present Event Choice DATALOG (short:
DATALOG!ev), an extension of DATALOG that is able to deal with
events and dynamic knowledge, in a temporal framework with mul-
tiple dimensions.

4.1 Syntax
Roughly speaking, all DATALOG!ev predicates are enriched with
an additional argument that provides the time dimension: for any
literal p and each time instant t, p@t is true if p holds at time t.

We assume that three sets of constants, variables, and time vari-
ables symbols, σconst , σvars, and σtime vars are given, where the
constants symbols are disjoint from the (time) variables symbols.
Moreover, let T be a time domain.

A term s is an element in σconst ∪ σvars. Moreover, let σEDB,
σDDB, σIDB, and σEV be disjoint sets of predicate symbols, with as-
sociated arity (≥ 0). Then, an EDB atom has a ”classical” for-
mat p(s1, . . . , sn) where p is a symbol in σEDB and s1, . . . , sn are
terms. Instead DDB (dynamic extensional predicates), IDB (inten-
sional predicates), and EV (event predicates) atoms are of the form
p(s1, . . . , sn)@f(t), where p is a symbol in σDDB, σIDB, σEV), re-
spectively, n is the arity of p, s1, ...sn are terms, f is a temporal
function over the domain T, and t is a time instant or a time vari-
able in σtime vars.

An EDB,DDB, IDB, or EV literal is either an atom or its negation.
The set of all the EDB literals (resp. DDB, IDB, EV), is denoted by
LEDB (resp. LDDB, LIDB, LEV). Furthermore, for any set of literals
L, L+ and L− denote the sets of its positive and of its negative
literals, respectively.
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Figure 3: Project management.

Definition 4.1 A dynamic rule has the form p(X1, ..., Xn)@T ←
B1, ..., Bm.where p(X1, ..., Xn)@T ∈ L+

IDB
, m ≥ 0, and B1, ..., Bm ∈

LEDB ∪ LDDB ∪ LIDB. An event activation rule has the following
format:

[e(X1, ..., Xn)@T] TR1 ... TRk

where e(X1, ..., Xm)@T ∈ L+
EV

, and TR1, ..., TRk are transition rules.
Each transition rule is of the form

!EV1@f1(T), ..., !EVn@fn(T),
+A1, ...,+Ah,−Ah+1, ...,−A` ← B1, ..., Bm, C.

where n+ ` > 0, EV1, ..., EVn ∈ L+
EV

, m ≥ 0, A1, ..., Ah, Ah+1, ..., A`

∈ L+
DDB

, B1, ..., Bm ∈ LEDB∪LDDB∪LIDB, f1, .., fn are temporal func-
tions, and C is an optional choice atom in {choice, choiceAny}. 2

The informal semantics of an event activation rule is that, if the
event e(X1, ..., Xn) occurs at time t ∈ T and the body of the tran-
sition rule is evaluated true, then the facts A1, ..., Ah are asserted at
time t, the facts Ah+1, ..., A` are retracted at time t, and the events
EV1, ..., EVn are triggered to be executed at times f1(T), ..., fn(T).

Definition 4.2 Let us assume a time domain T is given. Then, a
DATALOG!ev program PT = 〈D-KB, EV〉 over T and the knowledge
base EDB consists of (i) a set D-KB of dynamic rules, called dynamic
knowledge base, and (ii) a set EV of event activation rules. If the
time domain is clear from the context, the program will be denoted
simply by P . The set of all DATALOG!ev programs whose dynamic
knowledge base is stratified is denoted by DATALOG!ev,¬s .

If we are additionally given an extensional database EDB encod-
ing the (static) initial knowledge we are interested in, then we de-
note by PT

EDB the program PT ∪ {p←| p ∈ EDB}, i.e., the program
obtained by adding a fact for each atom in EDB. 2

4.2 Modelling Dynamic Systems
We next illustrate the peculiarities of DATALOG!ev in modelling
complex dynamic systems. Assume that you are the project man-
ager of a software house. Then, your clients ask you for implement-
ing novel tools. In order to supply each request, you might think

at activating a project involving some employees. However, if you
find that this is not convenient for your company or not possible
since, for instance, you do not have enough employees to guarantee
the satisfaction of the requirement, you might also refute the order.
Figure 3 shows a possible workflow implementing the process of
accepting/refusig an order. The process is quite complex for it in-
volving several subtasks: after the order is received (by means of
the event init), you have to decide whether it have to be accepted
(Check Requirements). This can be modelled by the rule

[init(P)@(T)]
!receiveOreder(P)@T
←[receiveOrder(P)@T]
!checkRequirements(P)@T++←

In the case you find the order convenient, you notify your decision
(Accept Order) and you start with the actual realization:

[OK(P)@T]
!acceptOrder(P)@T++←

Otherwise the order will be refused:
[notOK(P)@T]

!refuseOrder(P)@T++←

Then, when the order is accepted you will start the actual realiza-
tion and you will eventually release the tool. Here, we have as-
sumed just two phases: Requirement Analysis and Implementation.
Moreover, if some developer leave the company during the imple-
mentation this may cause the failing of the project. In any case, the
tool must be released within some time bound. The above tasks can
be modelled in an high-level way as previously done.

The power of DATALOG!ev is that it allows to model in a very
simple way also the subtasks. For instance, in the same figure,
the Check Requirement activity has been described. It comprises a
check for the reliability of the client, that, for instance, may take 1
day. Moreover, there is an other activity of staffing the employees
to the project. The activity Check Requirements can be formalized
as follows:

[checkRequirement(P)@T]
!verifyClient(P)@T++←

where verifyClient is not modelled here. However, we as-



sume that it may trigger either the event notOK (if the client is not
reliable) or the event verifyStaffing which is responsible for
checking also the staffing — notice that the staffing is performed in
a new dimension, since this is a conceptual activity.

[verifyStaffing(P)@T]
!staff(P)@sub(T)←

The staffing of the project is another complex task. In fact, each
project pi requires some specific skills, and thus the company has
to assign a suitable set of employees to the project, such that all the
required skills are granted to pi. Of course, once an employee is
assigned to a project team, she is not available for another project
until the current one has been ended. Then the staffing must be also
planned, since the management has to make a sequence of choices
for selecting the employees to be included in the team. However, at
the level of projects execution times, the details about this staffing
process are not relevant. Rather, it is crucial that such a process is
correctly performed, according to the above constraints.

For a given project, we want to set up a team of employees such
that: (i) an employee can be assigned to one project at a time, (ii) for
each skill required in the project, one employee must be present in
the working team. A project is staffed if both the above conditions
are satisfied.

Figure 4 shows a possible extensional database EDB encoding
the information about projects and employees in our project man-
agement example. For instance, we can see that project p1 must
be completed within 4 time units and requires a developer and a
consultant, that employee e1 has the skill s1 (developer), etc.

We next define a DATALOG!ev program Ps that represents our
staffing problem – here we give just a flavor of its meaning, as
the semantics of the language is presented in the next section. Ps

contains a set of DDB facts inTeam(Project#, Employes#)@t
to encode the fact that an employee is enrolled in a project at some
time t. The following D-KB rules in Ps determine whether a project
P is staffed at a time T .
staffed(P) ← project(P, ), ¬missingSkill(P).
missingSkill(P) ← requiredSkill(P, S, ),

¬skillInP(S, P).
skillInP(S, P) ← inTeam(P, E), employee(E, S, ).

Moreover, Ps also contains the following rules for inferring the
employees that are not currently involved into any project, and
whose skills are still missing.
candidate(E, P) ← employee(E, S), ¬inSomeTeam(E),

requiredSkill(P, S, ),
¬skillInP(S, P).

inSomeTeam(E) ← project(P, ), inTeam(P, E).
moreCandidates(P) ← candidate(E, P).

The only event transition rule for the staffing problem has been
already shown in Figure 3. Roughly speaking, the staff event
is responsible for choosing non-deterministically any employee for
the inclusion in the project having a skill that is still missing in
the staffing. After the project is staffed the event OK is eventually
triggered. Otherwise, i.e., if there are no more candidates but the
project is not yet staffed, then notOK is triggeered.

Finally, at the end of the project we release the team members
(note that, in this case, we do not choice a particular employee, and
in fact we want to delete all the employees in the team). This way,
these employees may be enrolled in a further project.

requiredSkill:

P# Skill# Description
p1 s1 developer
p1 s2 consultant
p2 s1 developer
p2 s3 researcher

project:
P# Duration
p1 4
p2 3

employee:

E# Skill#
e1 s1

e1 s1

e2 s2

e3 s3

Figure 4: An extensional database EDB for the program P in
the running example.

[end(P)@T]
−inTeam(P, E)← inTeam(P, E).

It is worthwhile noting that, as several projects may be initial-
ized, the staffing activities can be thought as concurrent processes
that share the same resources (the employees). It follows that, in
general, there exists bad combinations of choices such that some
project may not be staffed.

Since your incomes are mainly due to the ability of properly
managing the projects, you might think at developing a simulation
environment that can help your decision. DATALOG!ev might help
your job. In fact, after the process is modelled, given some orders
you might be interested in verifying whether there exists a proper
staffing that guarantees the satisfaction of all the order (and, obvi-
ously, in getting such a plan). Moreover, you might be interested in
identifying the employees which are crucial for the implementation
of a tool, i.e., the employees that will cause a failure of the project
after leaving the company.

5. SEMANTICS
Let PT

EDB = 〈D-KB, EV〉 be a DATALOG!ev program, over a time
domain T and a knowledge base EDB. As usual, the Herbrand Uni-
verse UPT

EDB

of a PT

EDB is the set of all constants appearing in PT

EDB.

A dynamic literal (resp., an event) in LDDB ∪ LIDB (resp. in LEV)
is ground if no variable occurs in it. The EDB (resp. DDB, IDB, EV)
Herbrand Base, denoted by BEDB (resp. BDDB, BIDB, BEV), is the set
of all ground extensional (resp., dynamic fact, intensional, event)
literals that can be constructed with the predicate symbols in σEDB

(resp., σDDB, σIDB, σEV), by replacing the variables in σvars by con-
stants in the Herbrand universe and the time variables in σtime vars

by time instants in T.

Definition 5.1 An interpretation for the program PT

EDB consists of
a pair 〈S,E〉, where S is a set of ground literals and E is a set of
ground events, such that

S ⊆ BEDB ∪BIDB ∪BEV ∪BDDB

E ⊆ B
+
EV

The minimum temporal argument occurring in the events in E is
denoted by nextTime(I), while the maximum temporal argument
occurring in the predicates in S is denoted by curTime(I). Fi-
nally, an interpretation I is feasible if E = ∅ or curTime(I) ≺
nextTime(I). 2

Intuitively, a feasible interpretation I determines a truth value
for all the predicates preceding the time curTime(I), and contains
the information on the events that are currently triggered to occur



in the future. In particular, a ground IDB or EDB predicate is true
w.r.t. I if it is an element of it; a dynamic ground fact p@t is true
w.r.t. I if there exists an element p@t′ in I such that t′ ¹ t, and
there is no literal ¬p@t′′ ∈ I such that t′ ≺ t′′ ≺ t.

Note that in the above definition, we assume that any DDB pred-
icate asserted at a given time, remains valid till it is explicitly re-
tracted from the database; indeed, the behavior of the DDB predi-
cates is essentially inertial, while the truth value of the IDB predi-
cates must be determined at each time instant.

Finally, the special choice literals are defined to be always true
w.r.t. to any possible interpretation I , regardless whether they occur
or not in I .

We say that a ground transition rule tr is enabled if all the literals
occurring in the body of tr are true with respect to I .

Example 5.2 Let us consider again the Project Management plan-
ning problem. Then,

I1 = 〈{staffable(p1, e1)@3, inTeam(p2, e3)@5},
{end(p1)@8}〉

and

I2 = 〈{inTeam(p2, e3)@8,¬inTeam(p2, e4)@5},
{end(p2)@2, end(p1)@9}〉

are both interpretations. However, the latter is not feasible since
nextTime(I2) = 2 and curTime(I2) = 8. Moreover, note that
in the former interpretation the predicate inTeam(p2, e3) is true in
every time instant following 5, since it has been never retracted
after its assertion at time 5. 2

Given an interpretation I = 〈S,E〉, we denote by triggered(I)
the set of all events in E having temporal argument nextTime(I),
in the case nextTime(I) ∈ T; otherwise, we let triggered(I) = ∅.
Let TR(I) be the set of all transition rules such that all their ac-
tivating events belong to triggered(I), and C(I) be the set of all
choice predicates occurring in the rules in TR(I). Moreover, let
ground TR(I) be the set of all the ground instantiations R of the
rules in TR(I) such that (i) all transition rules in R are enabled,
and (ii) the functional dependencies determined by the choice con-
structs in C(I) are satisfied by R. Thus, ground TR(I) contains
a set of enabled ground rules (coming from instantiations of the
rules in TR(I)) for each possible way of enforcing the functional
dependencies determined by the choices in C(I).

Let chosen tr be any set of ground rules in ground TR(I). We
denote by AI(chosen tr) the set of all the dynamic atoms p such
that +p occurs in the head of some transition rule in chosen tr

and p is false w.r.t. I . Such a dynamic atom p is said to be as-
serted. Similarly, RI(chosen tr) is the set of all the dynamic lit-
erals ¬p such that −p occurs in the head of some transition rule in
chosen tr and p is true w.r.t. I . In this case, we say that p has been
retracted. Finally, EI(chosen tr) is the set of the events triggered
by all transition rules r in chosen tr such that at least one dynamic
atom is either asserted or retracted because of r.

In the sequel, the set of all the interpretations of a given program
P is denoted by IP , while the set of all the subsets of IP is denoted
by 2IP .

Definition 5.3 Let P = 〈D-KB, E〉 be an event choice Datalog pro-
gram. Then, we define T : 2IP 7→ 2IP to be the function
that, given a set of interpretations I, outputs a set of interpre-
tations T(I) containing, for any I = 〈S,E〉 ∈ I and any set of
transition rules chosen tr ∈ ground TR(I), all interpretations
〈S′, E′〉 such that

S′ ∈ SM(D-KB ∪ S ∪ AI(chosen tr)RI(chosen tr))∪
∪triggered(E), and

E′ = E ∪ EI(chosen tr)− triggered(E).

2

Note that, for any given interpretation I = 〈S,E〉, this function
computes the set of all feasible interpretations that can be obtained
by triggering events and by asserting or retracting predicates, ac-
cording to I . Note that any output interpretation I ′ = 〈S′, E′〉
takes into account the consequences of the events triggered at the
time nextTime(I). All these events are removed from the set of
envisioned events E′, while new events possibly planned to occur
in the future are added to E′ through the set EI(chosen tr). The
set S′ is any stable model of the dynamic knowledge base D-KB
evaluated over S plus the asserted and retracted predicates, and in-
cluding the recently occurred events, too.

We point out that, as a consequence of the non-deterministic
choices constructs, the output of T applied on a singleton {I} is
in general a set of multiple alternative interpretations, even in the
case the dynamic knowledge base is stratified (DATALOG!ev,¬s pro-
gram). However, it deterministically outputs a unique interpreta-
tion (for the given I) if the program is stratified and there are no
”active” choices, i.e., C(I) = ∅.

Definition 5.4 Let P be a DATALOG!ev program, EDB be an input
database, and H a list of ground events, also called list of envisioned
events. The evolution of the program P given EDB and H (short: the
evolution of PEDB,H) is the succession of sets of interpretations T̂

such that (i) T̂0 = {〈EDB, H〉}, and (ii) T̂i+1 = T(T̂i).

For every j > 0, any interpretation M ∈ T̂j is called a temporal
model for PEDB,H. 2

Note that the definition of temporal model refers to a list H of
envisioned events, containing the events that are deterministically
known to happen. Thus, H can be used for simulating the actual
behavior of a system modelled with DATALOG!ev. For instance, in
our running example the list [init(p1)@0, init(p2)@3] is used
for simulating a scenario in which two projects are going to be
staffed at times 0 and 3, respectively. Under an abstract perspec-
tive, the events in H are used for constraining the evolution of the
DATALOG!ev program.

Definition 5.5 Let P be a DATALOG!ev program, EDB be an input
database, and H a list of ground events. A temporal model M for
PEDB,H is a stationary model (for PEDB,H) if it is a fixpoint of T, i.e.,
if M ∈ T({M}). Then, curTime(M) is called the converging
time of M . 2

Another characterization of stationary models is provided by the
following result.

Proposition 5.6 A temporal model 〈S,E〉 for any program PEDB,H

is stationary if and only if E = ∅.
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Figure 5: A graphical view of a temporal model for Ps.

Example 5.7 Assume that the staffing of project p1 should start
at the time instant 0 and the staffing of project p2 at the time
instant 3. This is encoded through the list of envisioned events
H = [init(p1)@0, init(p2)@2]. Then, the graphic reported in
Figure 5 shows (the relevant atoms of) a temporal model of Ps,
given the extensional database EDB in Figure 4 and the list H, where
the project p1 is staffed at time 4, whereas project p2 is staffed
during the time instant 6. Note that during time 6, a number of
elementary steps are executed in the second time dimension (at in-
stants 〈6, 1〉 and 〈6, 2〉) for choosing the employees to be enrolled
in p2, namely, e1 and e3.

Note that this temporal model is also stationary as no further
events are triggered to occur after the completion of the projects.
Thus, its converging time is 12, when the last project ends. 2

Proposition 5.8 Let P be a DATALOG!ev program, EDB be an in-
put database, H a list of ground events, and I be an interpretation of
P . Then, checking whether I is a temporal model, as well as check-
ing whether I is a stationary model are polynomial time tasks.

PROOF SKETCH. All the non-deterministic issues can be solved
by considering the actual values in the given interpretation I , both
in the computation of stable models in the case unstratified pro-
grams, and in enforcing the functional dependencies according to
the choice constructs.

The set of all the temporal (resp. stationary) models of a given
program PEDB,H is denoted by TM(PEDB,H) (resp. T SM(PEDB,H)).

6. QUERIES AND COMPLEXITY ISSUES
Let us now describe how to query a DATALOG!ev program about its
possible evolutions on the basis of a list of envisioned future events.

DATALOG!ev queries are formulae involving literals and special
temporal quantifiers, as defined inductively below. Let t be a time
instant and C a nonempty conjunction of ground literals having time
arguments at most t (w.r.t. to the ¹ ordering). Then, ∀@tC and
∃@tC are queries. Moreover, let t1 and t2 be two time instants such
that t1 ≺ t2, let C be a (possibly empty) conjunction of ground
literals with time arguments at most t1, and let Q be a query, whose

first quantifier is either ∃@t2 or ∀@t2 . Then, ∀@t1C∧Q and ∃@t1C∧Q
are queries.

A query Q starting with an existential (resp., universal) quanti-
fier is called an existential (resp., universal) query. Moreover, if
the maximum number of nested quantifiers alternations in Q is k,
then it is called a k-existential (resp., k-universal) query.

Hereafter, given a model M = 〈S,E〉 for a DATALOG!ev pro-
gram, and a time t, we denote byM@t = 〈S ′, E〉 the interpretation
consisting of all the atoms having any temporal argument t′ ¹ t.

Given two temporal modelsM andN , we say thatN is an evolu-
tion ofM from time t ifM@t = N@t. The set of all the evolutions
of M is denoted by evols(M).

LetM be a set of temporal models for a DATALOG!ev program
P . We say that a query Q is true with respect toM if one of the
following conditions hold:

• Q = ∃@tC, where C is a nonempty conjunction of ground
literals, and there exists M ∈ M s.t. all the literals in C are
true w.r.t. M ; or

• Q = ∀@tC, where C is a nonempty conjunction of ground
literals and, for all M ∈M, all the literals in C are true w.r.t.
M ; or

• Q = ∃@t(C ∧ Q′), where C is a (possibly empty) conjunction
of ground literals, and there existsM ∈M s.t. all the literals
in C are true w.r.t. M and Q′ is true w.r.t. evols(M); or

• Q = ∀@t(C ∧ Q′), where C is a (possibly empty) conjunction
of ground literals and, for all M ∈ M, all the literals in C

are true w.r.t. M and Q′ is true w.r.t. evols(M).

Otherwise, we say that Q is false w.r.t.M.

Definition 6.1 (Query answers) Let P be a DATALOG!ev pro-
gram, T a time domain, EDB an extensional database, H a list of
envisioned events, and Q a query. The answer of Q over the pro-
gram P w.r.t. to T , given EDB and H, denoted by Q(PT

EDB,H) is true
(resp., stationarily true) ifQ is true w.r.t. the set of temporal models
TM(PT

EDB,H) (resp., of stationary models TSM(PT
EDB,H)).

The following example shows how to query DATALOG!ev pro-
grams looking for suitable evolutions that meet some desired re-
quirements.

Example (contd.) Consider again the staffing program Ps in our
running example, the extensional database of Figure 4, and the list
of envisioned events H = [init(p1)@0, init(p2)@3].

Then, consider the query Q1 : ∃@6(end(p1) ∧ ∃
@7end(p2)).

This query is true over the staffing program, given EDB and H, iff
it is possible to staff and start the projects according to the given
list of envisioned events, in such a way that there exists a temporal
model where p1 is completed within time 6, and there is an evo-
lution of this model where p2 is completed within time 7. In our
case, Q1 is in fact true, as witnessed by the temporal model in M1

shown in Figure 6.a. In this model, during the gray time instants,
the staffing processes occur, while during the black time instants



the projects are executed. Note that each gray time instant may in-
volve a number of elementary steps that are executed in different
time instants of the second (finer) time dimension.

not staffable

p2

0 1 2 3 4 5 6
p1

staffing: e , e1 2

p2

0 1 2 3 4 5 6
p1

staffing: e1

staffing: e , e2 3

(a) (b)

Figure 6: Two evolutions for the program Ps.

Now, consider the (more stringent) query ∀@6(end(p1) ∧
∃@7end(p2)). It is easy to verify that this query evaluates to false
for the program Ps, given EDB and H. Indeed, for instance, the
temporal model in Figure 6.b is an evolution (from time 6) of a
temporal model such that p1 ends at time 6; however, in this model
p2 cannot be executed at all. Indeed, p2 requires a developer, but
both e1 and e2 are already busy for they are participating to p1. 2

6.1 Computational Complexity: setting and
assumptions

We next study the computational complexity of a number of prob-
lems related to DATALOG!ev programs and queries. In particular,
following the data complexity approach [34], in all results stated
below we will consider a given problem instance having as its in-
put the temporal domain T, the extensional database EDB, and the
list of envisioned events H, while both the programP and (possibly)
the query Q are fixed.

Moreover, since the general problem is (quite trivially) unde-
cidable, we next focus on the problem instances where the time
domain T is Tω1,m, with an unbounded main dimension and a
number of bounded range auxiliary dimensions (see Section 3), and
σvars∩σtime vars = ∅, i.e., variables and time variables occurring
in P are taken from disjoint sets.

First, we discuss the problem of deciding the existence of tem-
poral and stationary temporal models. For space reasons, we omit
theorems proofs.

Theorem 6.2 (Stationary model existence) Deciding whether
PT

EDB,H has a stationary model is PSPACE-complete. Hardness
holds even if P is stratified.

Note that the problem is much more easier, if we are satisfied
with any temporal model, rather than requiring that the model is
stationary.

Theorem 6.3 (Temporal model existence) Deciding whether
PT

EDB,H has a temporal model is NP-complete. However, if P is
stratified, then PT

EDB,H always have temporal models. Moreover,
any temporal model can be computed in polynomial time.

It turns out that stratified programs have an efficient implemen-
tation as far as as the computation of one temporal model is con-
cerned. However, if we have to answer a given query Q, and hence
we are interested in some ”particular” temporal models, then the
complexity becomes much higher. Actually, it turns out that the

complexity of answering such temporal queries spans the polyno-
mial hierarchy, as stated by the following theorem.

Theorem 6.4 (Query answering under temporal models) If the
query Q is k-existential (resp., k-universal), deciding whether the
answer Q(PT

EDB,H) is true is ΣP
k -complete (resp. ΠP

k -complete).
Hardness holds even if P is stratified.

Interestingly, query answering under stationary models is not
more difficult then deciding the existence of a stationary model.

Theorem 6.5 (Query answering under stationary models)
Deciding whether the answer Q(PT

EDB,H) is stationarily true is
PSPACE-complete.

7. RELATED WORK AND CONCLUSION
In this paper we have presented an extension of DATALOG with
events and choice, called DATALOG!ev, which is particularly suit-
able to express queries on the evolution of a knowledge base, on
the basis of a given sequence of events that are envisioned to occur
in the future. The language allows to model a number of alternative
potential evolutions of a program by means of dynamic rules which
assert both dynamic facts and actions (i.e., triggered events), using
the capability of choice to express nondeterminism.

A distinguished feature of the language is the ability of handling
multiple time dimensions. Time granularities has been first intro-
duced in Event Calculus (EC). Given a set of event occurrences,
EC derives the maximal validity interval (MVIs) over which some
properties hold. The event occurrence as well as the relationship
between events and properties are specified by means of suitable
clauses, and, in fact, a declarative specification of the derivation
of MVIs can be straightforwardly obtained in PROLOG. The ap-
proach in [28] extended the single timeline of EC into a totally
ordered set of different timelines {T1, ..., Tn}, such that each Ti is
of a finer granularity that Ti−1. Similar ideas have been applied
in [11], which also considers indeterminacy in the occurrence of
events (for this latter aspect see also [17, 10]).

The main novelty w.r.t. to the above mentioned extensions of
Event Calculus lies in the ability of both defining external events
and modelling the non-deterministic effects of such events so that
the actual validity of properties over the time dimensions are tested
in a context of evolving knowledge bases. Indeed we face the
knowledge representation problem with a different perspective:
DATALOG!ev has been not designed for reasoning on maximal va-
lidity intervals, but rather for reasoning on the evolution of a given
(logically) modelled domain in which the effects of the actions are
not known in advance, as it is often the case in real applications.
Rather to event calculus, our language is closer to Dynamic Logic
Programming, which extends logic programming with amenities
for modelling and reasoning on evolving knowledge bases [2, 4, 3].

In this context, the rules of the program may be updated due to
some events and hence modify the global state of the world. Dif-
ferent states sequentially ordered may represent time periods as in
[3], that can be eventually combined with other dimensions, such
as credibility of the sources and specificity of the updates [24]. In
this field, we mention LUPS [4], whose core language is consti-
tuted by update commands, such as assert and retract), that can
be also made conditional on the occurring of a certain condition by
means of the clause when. Two extensions of LUPS, namely the



specification of commands whose execution depends on other con-
current commands and the inclusion of external events, have been
added into the language EPI [16]. In [2], it has been pointed out
that the above mentioned languages do not adhere deeply at the LP
doctrine, as they are too verbose and make use of many additional
keywords: In order to provide a more declarative way for specify-
ing updates [2] proposed EVOLP, in which we specify some rules
updating the original program. Each time the rules are in the model
of the program, the assertion are done, a new program is computed,
and the process continues.

Besides the points in common with DATALOG!ev we stress two
important differences: (i) The paradigm of multidimensional up-
dates cannot easily fit the need of representing multiple time dimen-
sion; in fact, the above mentioned works assume only one temporal
dimensions within a single granularity, while the other dimensions
refers to additional properties of the world. (ii) Languages such as
EVELOP are not query driven, in the sense that there is no notion
of finding updates to satisfy a query. An EVELOP program is con-
cerned with finding the meaning of a given KB after a succession of
updates. Conversely, DATALOG!ev has been specifically designed
for being queried in order to perform temporal reasoning.

When comparing DATALOG!ev with the growing body of the pro-
posals of action languages, we need to emphasize that our language
is able to model a static knowledge as well as a dynamic one, and,
hence, is able to model actions with both direct and indirect effects,
covering the main features of languages A, B (see, for a compar-
ison, [19]) and AC [32]. It also provides a set of primitives for
reasoning on past events, thus capturing the power of Past Tempo-
ralA. Moreover, it deals with concurrent actions such as languages
C [20] and AC [6], and it enables to reason about actual and hypo-
thetical occurrences of concurrent and non-deterministic actions,
such as language L2 [7]. Moreover a distinguishing feature w.r.t.
actual action languages is the ability of reasoning at any level of
details. As pointed out by Baral [5], situation and event calculus,
are close in their spirit as they aims at modelling a changing en-
vironment at a high level of detail, while the temporal reasoning
approach is designed to work at a low level of details, by taking
care of many aspects (e.g., the actual time of the occurrence of the
events) besides the effect of the actions in themselves.

Depending on the user needs, DATALOG!ev can be used as a
framework for abstract reasoning on situations, but it is also able
to plan at the desired level of details the actions to perform in order
to achieve a given temporal goal. Hence, the language shares the
same perspective of [5].

We conclude by pointing out that DATALOG!ev is essentially an
extension of DATALOG and hence should be compared to the dif-
ferent proposals of extending logic programming with temporal
logics (see, for a survey of the different proposals, [30]). Among
the first proposals, we recall Datalog1S [12] and Templog [1]. The
former is DATALOG extended with one successor modelling the
advance of the time, while the latter is an extension that allows a
restricted use of modal temporal operators. Despite their different
syntax (Datalog1S seems a rather trivial extension of DATALOG)
it has been proved that they are equivalent as for the expressive-
ness and the completeness. Starlog [13] is another logic language
that adds an additional time-argument to every PROLOG predicate,
and that is designed for general purpose programming, for simula-
tion, and for modelling reactive systems. We point out that none
of the above approaches deals with multiple time dimensions, and

with complex temporal functions besides classical modal opera-
tors. Moreover, more importantly, none of the above approaches
deal with external or internal events and with non-deterministic ef-
fect of actions. Hence, these are very unpractical for modelling
complex situations in which a knowledge base is updated due to
the occurrence of actions.

Finally, it is worth mentioning that we are implementing
DATALOG!ev as a front end extending the disjunctive Datalog sys-
tem dlv [25]. This implementation is based on an extension of the
notion of XY-stratification, which has been used to model updated
and active rules [35].
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[29] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A System
for Answer Set Programming. In Chitta Baral and Mirosław
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