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Abstract. Increasing attention has been paid recently to the problem of analyzing

and explaining “deviant” process cases (stored in some given execution log), i.e. in-

stances of the process that diverged from prescribed/expected/legal behavior (e.g.,

frauds, faults, SLA violations). Specifically, in many real settings, deviant cases are

labelled with a numerical deviance measure, and the analyst is interested in obtaining

a fine grain unsupervised classification of such deviances, which can help her recog-

nize and explain different deviance scenarios. Unfortunately, current approaches to the

explanation of process deviances rely on preliminary labelling the given cases as ei-

ther “deviant” or “non-deviant”, and then inducing a rule-based classifier for discrim-

inating among these two classes. By converse, we here propose a novel method for

discovering accurate and easily-interpretable deviance-aware clustering models, ex-

pressed in terms of readable clustering rules (i.e., propositional patterns over diverse

case and event properties). In particular, we devised an algorithm that heuristically

solves the problem of finding an optimal deviance-aware clustering model, effectively

and efficiently, and equips each discovered cluster with summary information, which

can be exploited to interactively provide the analyst with process maps and distri-

bution charts effectively showing distinctive characteristics of the cluster. Tests on a

real-world process logs confirmed the capability of the approach to find high-quality

clustering models.

Keywords: Clustering, Deviance Explanation, Business Process Intelligence.

1 Introduction

The analysis and explanation of deviant cases (a.k.a. instances), stored in a a given execu-

tion log of a business process, has been getting growing interest, as a way to identify, and

eventually solve, critical issues (like fraud, security breach, SLA violations etc.) that may

affect the compliance/performance of the process. In many real application scenarios, such

cases are labelled with a numerical deviance measure, e.g., quantifying their associated de-

gree of severity/risk. Several approaches have been proposed in the literature to tackle the

explanation of deviant instances. The prevalent strategy relies on setting a threshold for

separating “normal” outcomes from “deviant” ones, so that a set of (human-readable) clas-

sification rules can be learnt (by reusing some existing machine learning method, e.g. [3])

for discriminating the two resulting classes of cases. As in many real settings there not one

predefined way to set the deviance threshold and there is no guarantee that the discovered

rules identify really meaningful and interesting deviance groups, it may happen that many it-

erations of such a label-and-induce analysis process are needed, before eventually obtaining

useful deviance models.

As a matter of fact, we do believe that analysts are often more interested in directly obtain-

ing a finer grain data-driven classification of deviant cases, which help them recognize and
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Fig. 1. Conceptual view of the proposed approach.

explain different deviance scenarios without any manual labelling step. Consequently, we

want to address a more challenging task: automatically discover interesting data-driven de-

viance scenarios, while providing each with a readable explanation. In principle, one could

think of addressing such a problem by leveraging off-the-shelf conceptual clustering tech-

niques for inducing groups of deviant instances, such as those developed in the general field

of predictive clustering [6, 2], while considering case deviance measures as target features.

However, such methods (as shown in our experimentation) are likely to miss relevant deviant

groups, due to their aim of minimizing intra-cluster variance (over the target features) for all

of the discovered clusters (including those actually gathering non-deviant or lowly-deviant

cases), as well as to their sensitiveness to (high-deviance) outliers.

To overcome the above limitations of current solutions, we here propose a novel ap-

proach to discovering accurate and easily-interpretable deviance-aware clustering models,

expressed in terms of readable clustering rules (namely, propositional patterns over the non-

target attributes of the given log cases), each of which is meant to capture and explain a

distinguished deviance scenario. To this end, after formally stating the discovery of such a

model as a novel (hard) optimization problem, we propose an algorithm that heuristically

solves the problem in an effective and reasonably efficient way.

Besides extracting the very list of clustering rules (and the associated clusters), the pro-

posed approach eventually provides two kinds of summary information for each of the dis-

covered deviance clusters, say ĉ: (i) a graph-like process map (built upon an ad-hoc event

abstraction function, specifically discovered for the cluster) that compactly describes the

kinds of events happened when executing the cases in ĉ, and the main (possibly concurrent)

flows of execution followed by these cases; and (ii) a ranked list of characterizing attributes

for ĉ (which may well go beyond the ones appearing in the clustering rule of ĉ), which can

be used to produce comparative charts for the distribution of case attributes.

The proposed framework hence makes an original end-to-end framework (sketched in

Fig. 1) for analyzing quantitative business-process deviances, which allows the analyst to

easily explore each deviance cluster, and interactively visualize highly informative process

maps and charts (like those shown in Figures 3 and 4, resp.), which can effectively help the

analyst comprehend the behavior and properties of the discovered deviance scenarios.

We finally observe that one could think of addressing the above problem by adopting

a subgroup discovery approach, where the goal is to discovery a number of descriptive

patterns identifying each an instance group with a distribution of the given target con-

cept/measure that substantially differs from the global one [1, 8]. However, as discussed



briefly in the concluding section, these approaches generate overlapping subgroups of data

that avoid the precise identification (and explanation) of a unique deviant scenario.

2 Log Data and Deviances

The starting point of our analysis is a log L storing information on past executions of a

business process. Conceptually, we can regard L as a set of cases, each of which corresponds

to one process instance, and stores several data properties over a set A of (case) attributes

—each attribute A ∈ A is a function A : L → Dom(A) that maps any case c to a value in the

domain of A 1.

Besides such “flat” data, a log also stores a set of traces, providing each detailed infor-

mation on the steps performed along the execution of the respective process instance. Let

trace(c) ∈ E∗ be the trace associated with any c in L, where E is the universe of events

that the process may generate. For any such a trace τ, let len(τ) be the number of events

in τ, and τ[i] be the i-th event of τ, for i ∈ {1, . . . , len(τ)}. Since, usually, log events gather

multiple kinds of information (concerning, e.g., the executed activity, who executed it, etc.),

and can be encoded as tuples over a set AE of event attributes, which, w.l.o.g., we assume

to be categorical (possibly after pre-processing).

Finally, let traces(L) be the set all the traces associated with the L’s cases, and

events(L)⊆ E be the set of events that appear in some of these traces. For any c ∈ L (resp.,

e ∈ events(L), let prop(c) (resp., prop(e)) be a tuple encoding its data properties in terms

of attributes in A (resp., AE ).

Deviance indicators We assume that some deviance indicator is defined for the log cases, in

the form of a function δ : L→ [0,1]. Such a function maps any case c in L to a deviance score

δ(c) in the range [0,1] of real numbers, which quantifies how much c deviates from some

reference model representing the normal/expected/prescribed behavior of the process. In

many real-world settings, numeric deviance score are defined upon some case-oriented cost

measure, say ω, such as the (total or utilization) time spent to handle a process instance, or

the estimated risk that it infringed privacy/security policies. In such a case, a basic deviance

indicator for ω can be defined w.r.t. some given reference value r (possibly defined in a

data-driven way, as the minimum, mean, maximum of the scores) as : δ(c) = [max(ω(c)−
r,0)]/[maxc′∈L |ω(c

′)− r|].

Deviant vs. normal cases As mentioned in Sect. 1, current approaches to the explanation

of process deviances rely on extracting a collection of classification (human-readable) rules

that discriminate deviant cases from the other ones, once labelled any case c as deviant iff its

δ(c) overcomes a threshold γ indicated by the analyst. We name such a case a γ-deviant case

(or γ-deviance), and denote the set of all the γ-deviant cases in L by L>γ . The underlying

problem faced in the literature then amounts to inducing a binary (supervised) classifica-

tion model, possibly using any standard machine learning methods, using all information

available for a case as input data features.

3 Deviance-Aware Conceptual Clustering: Formal Framework

In order to address the peculiar clustering problem introduced in Section 1, we devise an ad-

hoc conceptual clustering model, where each of the discovered clusters (but the last, gather-

ing non-deviant cases) is meant to capture a relevant subset of γ-deviances, and is associated

1 For the sake of brevity, we assume that Dom(A) actually is the active domain of A w.r.t. L.



with a (conjunctive) propositional pattern, acting indeed as a clustering rule —notice that

hereinafter the terms “pattern” and (clustering) “rule” will be used interchangeably. More

specifically, final aim of our approach is to discover a conceptual clustering model that

mainly consists of a list of such clustering rules, by regarding each case c in the given log L

as a training tuple, represented over a set A+ of case attributes, which extends the set A orig-

inally available in L with a additional trace-based and context-based properties, computed

automatically as discussed in the next section. All the “descriptive” attributes of the cases

can be used to eventually define the clustering rules, while using each deviance scores δ(c)
as a target attribute biasing the learning process towards “interesting” clustering models.

Clustering rules A pattern φ over the (extended) set A+ of case attributes can be seen as a

set φ = {ξ1, . . . ,ξm}, where, for i ∈ {1, . . . ,m}, ξi is a constraint of the form ξi : Dom(A)→
{true,false}, restricting the range of values that A may take. Details on the constraints

used in our approach are given in Sec. 4. The cover of φ over L, denoted by cov(φ,L) is the

(multi-)set of L’s tuples that satisfy all of the constraints in φ.

A conceptual clustering model for L (w.r.t. A+) is a list M = [φ1, . . . ,φk] of patterns

(over A+), for some k ∈N
+, encoding each a distinguished clustering rule (similarly to the

decision lists of certain rule-based classifiers). For any case c ∈ L and any i ∈ {1, . . . ,k}, it

is clusterIDM (c) = i iff c ∈ cov(φi,L) and c 6∈ cov(φ j,L) for any other index j such that

0 < j < i. Moreover, clusterM (L, i) is the i-th cluster produced by M , i.e. clusterM (L, i) =
{c ∈ L | clusterIDM (c) = i}. To have a complete partitioning of L, we hereinafter assume

that the last pattern in the list does not state any real constraint (i.e. φk = /0), hence acting as

an “immaterial” default rule gathering non-deviant cases.

Deviance-Aware Clustering Models In our deviance-centric setting, a clustering model is

expected to identify interesting groups of deviant cases, provided that there exist a list of

propositional patterns that can separate them. To quantify the level of interestingness of

a cluster (as representative of some relevant deviance scenario), we extend the notion of

deviance indicator to clusters, by defining a function I : 2L → [0,1] that maps any cluster

ĉ to a (average) deviance score, simply computed as I (ĉ) = |ĉ|−1 ·∑c∈ĉ δ(c).
We also assume that the analyst may want to state three kinds of requirements for every

deviance cluster: (i) a lower bound γ for the deviance score, (ii) a minimal cluster size σ,

and (iii) a maximal length maxLen for the associated rule/pattern. The kind of clustering

models constituting the search space of our learning task is defined next.

Definition 1 (DACM). Let γ ∈ [0,1), σ ∈ N
+ and maxLen ∈ N

+ ∪{∞} be three thresholds

stating the three kinds of requirements cited above. Then, a Deviance-Aware Clustering

Model (short DACM) M (for log L and deviance indicator δ) w.r.t. γ,σ and maxLen 2 is a list

M = [〈φ1, ĉ1,α1,AList1〉, . . . ,〈φk, ĉk,αk,AListk〉] such that:

(i) [φ1, . . . ,φk] is a conceptual clustering model for L (with φk = /0);
(ii) for each j ∈ {1, . . . ,k}, it is ĉ j = clusterM (L, j);

(iii) for each j ∈ {1, . . . ,k− 1} it holds I (ĉ j)> γ, |(ĉ j)| ≥ σ and |φ| ≤ maxLen;
(iv) for each j ∈ {1, . . . ,k−1}, α j is an event abstraction function that maps each event in E

to a label representing a distinguished class of event/activity, while AList j , is an ordered

list of case attributes that are distributed differently in ĉ j than in the rest of the log (the

higher the difference, the earlier the attribute features in the list). �

Notably, the description provided by such a model for the discovered deviance clusters goes

beyond the mere list of clustering rules, which may sometimes be a little difficult to inter-

pret, and give a partial explanation for deviant behaviors —indeed, each rule just describes

2 For better readability, we will omit L,δ,γ,σ and maxLen when they are clear from the context.



a (locally) minimal subset of characteristics allowing to discriminate a cluster from the

remaining ones, disregarding other distinguishing features of the cluster. The abstraction

function α j and attribute list AList j are right meant to fill this gap, by allowing to eventually

build an effective visualization of the clusters’ behavior, in terms of graph-like process maps

and of comparative charts for the distribution of case attributes. In general, event abstraction

is fundamental to obtain a meaningful process map, synthetically describing which kinds of

events were generated by the process, and which were the main (possibly concurrent) flows

of execution (across these kinds of event) that the analyzed process instances followed. In

particular, each abstraction function α j above is specifically meant to emphasize the behav-

ioral differences (in terms of event flows) between the cases of ĉ j and the remaining ones.

As discussed in Sect. 4, we concretely build α j upon a conceptual (event) clustering model

{φE
1 , . . . ,φ

E
q }, such that φE

1 , . . . ,φ
E
q are mutually-exclusive patterns over AE .

4 Problem Statement and Solution Approach

Before precisely stating the problem faced in this work, let us introduce an ad-hoc func-

tion measuring the interestingness of any DACM M , discovered for a log L with minimum

deviance threshold γ ∈ [0,1):

Q(M ,L>γ) = ∑
c∈L>γ

w(c,L>γ) ·I (clusterM (c)) (1)

where w(c,L>γ) is a weight assigned to any γ-deviant case c, based on its respective deviance

rank (the lower the rank, the higher the weight), and I (ĉ) is the deviance score of cluster

ĉ (i.e. the average deviance score of ĉ’s cases). For the sake of concreteness, we hereinafter

assume that w(c,L>γ) = |L>γ|+ 1− rank(δ(c)), for any c in L.

The discovery of an optimal DACM is then stated as follows: Given A log L with an associated

deviance indicator δ : L → [0,1], and thresholds γ ∈ [0,1), σ ∈N
+ and maxLen ∈N

+∪{∞};

Find A DACM M = [〈φ1, ĉ1,α1,caseAttList1〉, . . . ,〈φk, ĉk,α1,caseAttList1〉] for L and δ w.r.t.

γ,σ,maxLen such that Q(M ,L>γ) is maximal.

Clearly, solving this problem exactly is hardly feasible in many real settings, as a huge

amount (actually combinatorial in the number of constraints that can be defined over the

extended set of case attributes, including behavioral features with potentially large domains)

of candidate clustering models need to be evaluated. Thus, we solve the problem through a

two-phase heuristics algorithm, named DACM-mine and shown in Fig. 2.

The algorithm initially extends (through function extendCaseAttributes) the cases in

L with additional attributes, devoted to encode both context information (e.g., workload indi-

cators, environmental factors) and a summary of the associated trace. Such a pre-processing

step is needed to eventually extract readable deviance patterns, which would be hard to rec-

ognize looking at the very sequence of trace events, also due to the presence of complex

execution schemes (involving loops, concurrency, choices).

Steps 2-11 are meant to extract the list of clustering rules (i.e. description patterns) that

will constitute the backbone of the discovered DACM. Essentially, these rules are built itera-

tively (one after the other) through a sequential covering scheme.

Each iteration of the main loop (Steps 3-13) tries to extract the best possible clus-

tering rule out of dataset Z (initially encoding all the cases in L) by way of function

growClusteringRule, explained later on. The instances covered by the discovered rule

(hopefully identifying the most interesting deviance cluster possible), are removed from Z,

and are not used to induce any subsequent rule. This procedure is repeated until no further

γ-interesting cluster is found (i.e. a cluster ĉ such that I (ĉ) > γ) —as an extreme case,



Input: Log L with associated sets A (resp., AE ) of case (resp., event) attributes, deviance indicator

δ : L → [0,1], minimal deviance γ ∈ [0,1) and minimal size σ ∈ N
+ for deviance clusters, and

maximal length maxLen ∈ N
+ for clustering rules (patterns).

Output: A DACM model for L.

Method: Perform the following steps:

1 extendCaseAttributes(L,AE );
2 M := []; M′ := []; Z := L; continue := true;

3 while continue do

4 φ := /0; // start with a dummy rule (i.e. a pattern with no constraints) covering all the instances in Z

5 φ := growClusteringRule(φ,Z,σ,maxLen,γ); // notice that it is ensured |cov(φ1,Z)| ≥ σ

6 if φ = /0 or I (cov(φ1,Z))< γ then continue := false;

7 else

8 φ := prune&OptimizeRule(φ,cov(φ,Z),σ,maxLen,γ);
9 M.append(〈φ∗,cov(φ∗,Z)〉; Z := Z \cov(φ∗,Z);

10 end

11 end

12 M.append(〈 /0,Z〉); // Insert the “default” rule, along with the corresponding set of “normal” cases, into M

13 M := prune&OptimizeModel(M);
14 for each pair 〈φ, ĉ〉 in M do

15 α := mineEventAbstraction(AE , ĉ,L);
16 attrList := rankCaseAttributes(A, ĉ,L);
17 M′.append(〈φ, ĉ,α,attList〉);
18 end

19 return M′

Fig. 2. Algorithm DACM-mine.

this will happen when all the γ-deviant cases in Z have been covered. The ordered set of

rules obtained this way is stored, along with the corresponding case clusters, into a list M of

(rule, cluster) pairs. Once built each new rule φ, we try to optimize it heuristically through

function prune&OptimizeRule, which possibly modifies the constraints in φ in the order

they were added. Specifically, each constraint ξ is removed if the resulting (pruned) rule

φ′ does not decrease the deviance score of the cluster. Otherwise, it tries to replace ξ with

a new constraint ξ′, and confirms the modification if a better cluster is obtained than that

produced by φ. A similar optimization procedure is iteratively applied (in Step 13), to all the

rules (from the oldest) in the discovered clustering model. Each explored rule modification

is kept if it (locally) improves the interestingness of the entire model (measured as in Eq. 1),

or (in the case of constraint removals) it simplifies the model with no quality decrease.

The second phase of the algorithm (Steps 14-19), is devoted to equip each of the dis-

covered clusters with an event abstraction model, and a (ranked) list of distinguishing case

attributes, computed with functions mineEventAbstraction and rankCaseAttributes,

respectively —details on both functions are presented later on.

The rest of the section gives more details on some computation steps of DACM-mine.

Function extendCaseAttributes In order to produce an abstract and compact repre-

sentation of the behavior captured by the traces (i.e. sequences of multi-dimensional events)

stored in L, for each of the event attributes in AE , the function extends each case c in L with

two sets of attributes: B = { #[A = v] | A ∈ AE and v ∈ Dom(A) } and Bpairs = { #[A = u →
v] | A ∈ AE and u,v ∈ Dom(A) }. The two kinds of attributes store as many times a specific

value (resp., two specific values) of A appears (resp., appear one after the other) in the se-

quence. More precisely: #[A= v](c) = |{i ∈ {1, . . . , len(τ)}|τ = trace(c) and A(τ[i]) = v} |;



and #[A = u → v](c) = |{i ∈ {1, . . . , len(τ)}|τ = trace(c) and τ[i] = u and A(τ[i + 1]) =
v and i < j}|. By the way, similar encodings are used other process mining approaches [9].

Function growClusteringRule. The induction of each clustering rule is based on a

greedy (top-down) iterative pattern-refinement scheme, similar to the one used in classi-

cal rule-based classification [3] and subgroup discovery [1, 8] approaches. Starting from an

empty pattern φcur (i.e. a pattern encoding no actual constraint, and hence covering all the

training instances left uncovered by previous rules), the function tries to iteratively expand

φcur by adding one constraint per time, hence obtaining a set of candidate refined patterns of

size |φcur|+ 1. Among all the candidate patterns (if any) fulfilling the size requirement ex-

pressed by σ, it selects the one identifying a cluster with the highest quality score, measured

through the following scoring function: Ĩ (ĉ) = I (ĉ) · f (I (ĉ)) · log (∑c∈ĉ∩L>γ w(c,L>γ)),
where f (x) = (1+ e−7.5·(x−0.5))−1. This function, computing a smoothed (non-normalized)

of the contribution of ĉ to Q(M ,L>γ). was found capable to yield interesting and compact

models over several datasets. This expansion procedure is stopped when either (i) the pat-

tern has reached the maximal size maxLen, or (i) no refinement has ben found for current

pattern φ that both satisfies the minimal size constraint indicated by σ, and improves the

quality score of φ. As to the kind of constraints used when expanding a pattern, for each

categorical attribute A and for each v ∈ Dom(A), we consider both the constraints A = v and

A 6= v (unless A is binary), as well as |Dom(A)| subsets of size 1,2, . . . , |Dom(A)|, respec-

tively, selected greedily according to the method in [7]. By converse, for each numerical

attribute A, we consider all conditions of the form A ≤ v or A > v, such that v is one of

the cut points separating two consecutive equal-size ranges of Dom(A), among all those

obtained by applying a dynamical binning procedure (similarly to [1]) to Z.

Function mineEventAbstraction. The function computes an event abstraction func-

tion for a given cluster ĉ by mainly applying a predictive clustering procedure [2] to an

ad-hoc dataset encoding a propositional view of the events in L. Specifically, for each event

e, the dataset contains a tuple ze where the original properties of prop(e) (expressed over AE

and regarded as descriptive features) is complemented with the following target features: a

boolean flag, indicating whether e concerns a case belonging to ĉ or not (and hence acts as

a sort of binary class label), and three numeric indicators that encode the relative/absolute

position occupied by e in its surrounding trace. Such an encoding scheme, similar to the one

proposed in [4], is meant to help put together events with similar intra-trace positions (and

similar properties), especially when they concern cases of the same class (i.e. either inside

ĉ or outside ĉ).

Function rankCaseAttributes. To extract a ranked list of characterizing case at-

tributes, for each discovered cluster ĉ and each A ∈ A , function rankCaseAttributes

compares the (sample) distribution of A over ĉ with the (sample) distribution of A all over

L. To this end, it exploits two popular divergence measures and associated tests, in order to

rank and select the attributes: the two-sample K-S measure for numerical attributes, and KL

(Kullback-Leibler) divergence for categorical ones —a case attribute is kept in the list if the

two distributions look significantly (level .95) different.

5 Experiments

We assessed the capability of our approach to recognize valuable and interpretable deviance-

aware clustering models, by conducting some tests on a log, named BPIC13, coming from

a real-life problem management system —provided by Volvo IT Belgium as a benchmark



dataset for the 2013 BPI Challenge [10]. Precisely, we used 1487 traces spanning from

January 2006 to May 2012, cumulatively gathering 9634 log events.

Each event stored for a (problem resolution) case p consists of 8 attributes: status,

substatus, support team, functional division, org line, and org country. The

resource currently operating on p and its nationality (res country) are also registered

in each event. We enriched the set of event attributes with a further one (lev) to represent

the expertise level (namely, 1st, 2nd, and 3rd) of the involved resolution team.

We also extended each case p in the log with the following kinds of context data (encoded

as case attributes): (i) the total number of cases open in the system (workload) at the time,

say t, when p started; (ii) several time dimensions (namely, week-day, month and year) de-

rived from t; and (iii) a few properties of the first event of p, including the support team and

resource allocated to the case, and their respective countries (resp., firstOrg, firstRes,

firstOrgCountry, and firstResCountry).

Each case p was associated with two cost measures: (i) the nr. of distinct resources that

worked on p (#Resources), and (ii) the total time spent to handle p (CycleTime). Then, for

each of these cost measures, say m, we computed the deviance indicator δ(p) of any case p

as the difference between m(p) and the minimum value of m in the log, normalized by the

maximal difference in the log. Observe that, when analyzing deviances w.r.t. #Resources, we

discarded the attributes status and substatus, which convey information (clearly related

to the cost measure) on resource assignment.

Evaluation measures. In the test we evaluated the quality of any discovered clustering

model according to two dimensions: (i) interestingness, and (ii) easiness of explanation.

For the former, we used an Interestingness measure (I), defined as a normalized version of

the function Q of Eq. 1 —computed by dividing the value of Q by the score the latter would

assign to an ideal (but overly detailed) model putting each γ-deviant case into a separate

deviance cluster, and all the “normal” ones in the last cluster.

In order to evaluate the second dimension onto any clustering model M , we intro-

duced a new measure, named Explanation Complexity (EC), defined as a weighted sum

of the “explanation costs” of all the deviant cases L>γ: EC(Ĉ,γ,L) = [∑c∈L>γ w(c,L,γ) ·

clusterIDM (c)]/[∑c∈L>γ w(c,L>γ)] where, for each γ-deviant case c, clusterIDM (c) is the

number of clustering rules that one need to read to eventually interpret c, and the rank-

oriented weight w(c,L>γ) of c is used to weight the explanation cost of c (remember, the

lower the rank, the higher weight). Notice that this measure is inspired to the prediction-

explanation size that was defined in [5] (based on the number of conditions evaluated for

eventually classifying, and explaining, a test instance) for decision-list classifiers, as a more

realistic measure of interpretability than the mere list length.

Since our main goal is to find maximally deviant scenarios, the Interestingness measure

is always prevalent over the Explanation Complexity one. Then, only when two approaches

achieve the same (or comparable) interestingness degrees, the model compactness becomes

discriminant.

5.1 Test results

Quantitative Results. Some interesting observations can be deduced from Table 1, which

also reports, as a term of comparison, the results obtained with two existing methods, which

both build a list of decision rules (alike those appearing in our models): the conceptual

clustering method M5Rules [6] and the rule-based classifier Ripper [3]. For both of them, we

used the implementation available in the popular Weka library, with the default parameters’



Table 1. Quality measures on the BPIC13 log by DACM-mine and the baseline methods ([6], [3]) at

varying of both the performance measures and the value x% (i.e. the percentages of deviant instances

allowed in the log used for setting the parameter γ). Best outcomes are shown in bold.

Setting Interestingness (I) Explanation Complexity (EC)

Cost measure x% DACM-mine Ripper [3] M5Rules [6] DACM-mine Ripper [3] M5Rules [6]

#Resources

5% 0.935 0.917 0.872 1.57 2.15 13.94

10% 0.955 0.902 0.887 3.68 3.18 12.62

20% 0.955 0.902 0.887 3.68 3.18 12.62

CycleTime

5% 0.982 0.892 0.887 2.33 1.06 16.85

10% 0.988 0.888 0.927 2.96 1.03 15.45
20% 0.988 0.910 0.951 3.97 1.18 14.14

setting. Since none of these two methods specifically addresses the problem faced in this

work, we will consider them both as a sort of baseline.

First, algorithm DACM-mine, irrespective of the cost measure and the setting adopted,

always performs better than the baselines over the main Interestingness measure. This con-

firms the capability of our approach to better recognize highly deviant scenarios than less

tailored techniques. Indeed, sensible average gains (over all percentages x%) are obtained

in terms of Interestingness w.r.t. Ripper (resp. M5Rules) —namely +4.6% (resp. +7.5%)

when deviances are measured over the cost measure #Resources, and +10% (resp. +7.1%)

when the reference cost measure is CycleTime, respectively.

As to the secondary Explanation Complexity measure, more mixed results are shown

for DACM-mine in Table 1. Indeed, it regularly overcomes algorithm M5Rules in terms of

model compactness, but it shows the tendency to generate longer decision lists (apart from

the case when the cost measure is #Resources and x% = 5%) than algorithm Ripper in-

stead. However, it is worth noticing that Ripper generally tends to produce fewer rules

since it performs an easier task (i.e. discriminating deviant from normal cases) than that of

separating the deviant cases in groups on the base of their deviance values (as both algo-

rithms DACM-mine and M5Rules do). Nonetheless, when the cost measure is #Resources,

DACM-mine even achieves a better result in terms of EC (1.57) than Ripper (2.15) in the

case x% = 5%, and it continues to show comparable outcomes (3.68) w.r.t. Ripper (3.18) in

both the remaining cases x% = 10% and x% = 20%, respectively.

When the deviance indicator is computed on the CycleTime instead, Ripper leads on

EC by the widest margin over DACM-mine (1.09 for the former and 3.09 for the latter when

averaged over x%), but it pays a substantial tribute to DACM-mine in terms of Interestingness

(in average 0.896 for the former and 0.986 for the latter) evidencing its inability to extract

as interesting models as those discovered by DACM-mine.

Qualitative Results. For the sake of space, we only show here some findings obtained by

DACM-mine on the log BPIC13 when using #Resources as cost measure and setting x% =
10%. As a result, 9 deviant clusters were found, and to give an hint, the details relative

to the first four clusters are extensively reported in Fig. 4(a). Notice that these specific

patterns feature only a series of attributes extracted from the cases’ traces (by the function

extendCaseAttributes of algorithm DACM-mine). For instance, the pattern of cluster#2

(covering 20 cases), shown in Fig. 4(a), is composed by three conjuncts, the first (resp.,

third) of which states that at least 9 (resp. at most 18) events concern the organizational

line C (resp. the 2nd level), while the second conjunct states that at least a couple of events

associated with the 2nd level occur consecutively.

In addition to the cluster description, each cluster is also equipped with a separate work-

flow schema meant to visually summarize the deviant behavior captured by the cluster.

Figure 3 (b) shows a process map derived (using the plug-in Fuzzy Miner available in



(a) (b)

Fig. 3. Process maps discovered, w.e.t. the cost measure #Resources, for the whole log (a) and the

deviance cluster#2 (b). Nodes corresponds to event patterns that were discovered for the cluster. E.g.,

node e1 corresponds to the pattern “lev = 2nd ∧ org line = C’.

ProM [11]) for cluster#2, side-by-side to an excerpt of the global map derived from the

whole log (Fig. 3 (a)). Notably, both maps were produced by preliminary making each

log event undergo the event abstraction model automatically discovered by DACM-mine for

cluster#2 — which, for this specific cluster, essentially projects the events onto the sole

attributes lev and org line. Besides being more compact than the global process map, the

map in Fig. 3 (b) helps us reckon that the 20 problems assigned to cluster#2 follow quite a

particular handling policy. Indeed, (part of) the deviant cases followed a path toward their

completion (i.e. e1 → e4 → e5) that is not so frequent in the whole log. The same holds for

another feature captured by the map of cluster#2, where the cycle e1 → e2 → e1 is possibly

executed multiple times before completion.

Finally, Fig. 4 (b) reports a chart where the distribution within cluster#2 of case attribute

firstResCountry (reckoned by DACM-mine as a highly characterizing one for the cluster)

is contrasted to the global distribution of the same attribute.

6 Discussion and Future work

The framework proposed above is original in several respect, compared to current ap-

proaches to the explanation of quantitative business process deviances. Indeed, to the best

of our knowledge there is no existing method that can solve effectively the specific prob-

lem stated in this work, where (i) a number (not known a-priori) of deviance scenarios are

searched for, which may exhibit quite different levels of deviance, and (ii) and an inter-

pretable explanation is to be provided for each of them (in terms of either context factors or

behavioral features, or both). Experimental findings confirm that our approach overcomes

the naive solution of employing an existing rule-based classifier or conceptual method to

solve the problem. As an alternative, one could think of exploiting solutions developed in

the fields of Subgroup Discovery and of Exceptional Model Mining. However, most of these

are likely not not fit well our setting, due to their inherent risk of producing two many (over-

lapping) subgroups of cases, which exhibit lowly different descriptions and hence capture

highly correlated deviance scenarios. Anyway, as future work, we plan to investigate on

possibly hybridizing our approach with such techniques, while trying to make them fit bet-

ter our problem setting —to this respect, we will pay attention to recent efforts [8] towards

producing an optimal collection of subgroups having a minimal global degree of overlap.



cluster id cluster description (pattern) cluster size

1
#[lev = 3rd] > 0 ∧

#[org line = C] > 11
19

2

#[org line = C] > 9 ∧

#[lev = 2nd → 2nd] > 0 ∧

#[lev = 2nd] ≤ 18

20

3

#[org line = A2 → G3] > 0 ∧

#[org line = A2] > 2 ∧

#[lev = 3rd] > 6

21

4 #[org line = C → B] > 0 10

. . . . . . . . .

(a) (b)

Fig. 4. Decision list (for 4 patterns out of 9) induced by DACM-mine for the log BPIC13 (a), and

distribution of attribute fistResCountry in the cluster#2 compared to that in the whole log (b).

Moreover, we will try to improve both the scalability of our learning method (e.g., by ex-

ploiting a parallelized computation of clusters and fast indexing structures) and the quality

of the mined clusters (e.g., by replacing our greedy sequential-covering scheme with a beam

search one).
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