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Abstract. A workflow is a partial or total automation of a business process, in
which a collection of activities must be executed by humans or machines, according
to certain procedural rules. In recent years, much attention has been devoted in
developing tools for workflow management, that allow the users both to specify
the “static” aspects, like preconditions, precedences among activities, rules for
exception handling, and to control its execution, by scheduling the activities on
the available resources.
This paper deals with an aspect of workflows which has not so far received much
attention even though it is crucial for the forthcoming scenarios of large scale
applications on the web: providing facilities for the human system administrator
to monitor the actual behavior of the workflow system in order to predict the
“most probable” workflow executions. In this context, we develop a data mining
algorithm for identifying frequent patterns, i.e., the workflow substructures that
have been scheduled more frequently by the system. The algorithm is based on
an intuitive and original graph formalization of a workflow scheme and its oc-
currences, used both to prove some intractability results that strongly motivate
the use of data mining techniques and to derive interesting structural properties
for reducing the space of search for frequent patterns. Indeed the experiments we
have carried out show that our algorithm outperforms the standard approaches
adapted to mining frequent instances.
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1 Introduction

Even though the modern enterprisers increasingly use the workflow technology
for designing the business process, it is surprising to observe that a little effort
has been paid by the research to support workflow administrator’s tasks. For
instance, only in a recent paper [17], it is formally addressed the problem of
finding an appropriate system configuration that guarantees a domain-specific
quality of service.

Other attempts have been done in the context of process discovery [1]. The
idea is to use the information collected at run-time, in order to derive a structural
model of the interactions. Such a model can be used in both the diagnosis phase
and the (re)design phase. In this setting the problem encompasses the one of
finding sequential patterns; indeed, process graphs are richer in structure as they
admit partial ordering among activities and parallel executions (see, e.g, [21, 26,
10]).

In this paper, we continue on the way of providing facilities for the human sys-
tem administrator, by investigating the ability of predicting the “most probable”
workflow execution. Indeed, in real world-cases, the enterprise must do many
choices during workflow execution; some choices may lead to a benefit, others
should be avoided in the future. Data mining techniques may, obviously, help
the administrator, by looking at all the previous instantiations (collected into
log files in any commercial system), in order to extract unexpected and useful
knowledge about the process, and in order to take the appropriate decisions in
the executions of further coming instances.

Consider, for instance, Figure 1 reporting a simplified schema describing the
“sales ordering” process (the elements used for designing the properties of the
schema have been chosen according to the standards proposed by the Workflow
Management Coalition [28]). The process is as follows: a customer issues a request
to purchase a given product; the enterprice checks both the availability of the
required stock and the reliability of the client. Moreover, if the client is reliable
but the products are partially stocked, then a production will be planned. The
final states can be the acceptance or the rejection of the order.

Some applications of the discovered knowledge can be found in solving problems
as follows:

– Failure/success characterization: by analyzing the past experience, a work-
flow administrator may be interested in knowing which discriminant factors
characterize the failure or the success in the execution of a workflow.

– One Step Prediction: assume that the execution is at a given point in which the
administrator has to choose an activity to start, from a given set of potential
activities. Then, she/he typically wants to know which is the choice performed
in the past, that more frequently had led to a desired final configuration (e.g.,
to the acceptance of the order).
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Fig. 1. Sales Ordering Process

– General Graph Prediction: given a set of tasks that she/he need to achieve,
he wants to know the precise sequence of choices that, in past executions, had
lead to the desired result.

– Workflow Optimization: the frequent structures characterizing the successful
execution of a workflow can be profitably used to reason on the optimality
(w.r.t. some real-case interesting parameter) of workflow executions.

A first step toward an automatic solution to all these problems, consists of iden-
tifying the structure of the executions, that have been scheduled more frequently
by the workflow system. This problem encompasses well-known techniques, such
as frequent itemsets or sequences discovery [2, 4], and can be reconduced to more
involved pattern mining algorithms, that arise in complex domains.

In this context, we mention the problem of discovering frequent substructures
of a given graph [22, 23], or the problem of discovering frequent subgraphs in
a forest of graphs [30]. It is clear that such approaches could be well-suited to
deal with the problem at hand. Indeed, we can model a workflow schema as a
graph, and the executions of the workflow as a forest of subgraphs complying with
the graph representing the workflow schema. However, many additional features,
such as the capability of specifying constraints on the execution of a workflow,
make the cited approaches unpractical both from the expressiveness and from the
efficiency viewpoint. One could think also at more expressive approaches, such
as the multirelational approaches, based on a first-order modeling of the features
of a workflow [13]. However, in our opinion, a more effective approach can be
obtained by properly formalizing the problem at hand in a suitable way.

Contribution. We investigate the problem of mining frequent workflow in-
stances; despite its particular applicative domain, the problem we consider is
of a wider interest because all the proposed techniques, can be profitably ex-
ported into other fields. The main reason of this claim is that the approach used
in workflow systems is to model the process as a particular directed graph.

Throughout the paper, we propose a quite intuitive and original formalization
of the main workflow concepts in terms of graph structures. This gives us the
possibility to prove some intractability results in reasoning over workflows. In-
deed, the in-depth theoretical analysis we provide strongly motivates the use of
Data Mining techniques, thus confirming the validity of the approach. Moreover,
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the formalization provides a viable mean for developing a levelwise theory which
characterizes the problem of mining frequent instances of workflows.

In more detail, we propose a levelwise algorithm for mining frequent sub-graph
structures (instances) that conform to a given schema (workflow specification).
Several experiments confirm that our approach outperforms pre-existing tech-
niques rearranged to this particular problem.

Organization. The paper is organized as follows. Section 2 provides a formal
model of workflows, and many complexity considerations on such a proposed
model. A characterization of the problem of mining frequent patterns from work-
flow schemas is devised in sect. 3, and in sect. 4 a levelwise theory of workflow
patterns (and a corresponding algorithm for mining such patterns) is developed.
Finally, sect. 5 provides an experimental validation of the approach.

2 The workflow abstract model

A workflow schema WS is a tuple 〈A,E,A�, A∨, E!, E?, E⊆, a0, F 〉, where A
is a finite set of activities, partitioned into two disjoint subsets A� and A∨;
E ⊆ (A − F ) × (A − {a0}) is an acyclic relation of precedences among activities,
partitioned into three pairwise disjoint subsets E !, E?, and E⊆; a0 ∈ A is the
starting activity, and F ⊆ A is the set of final activities.

For the sake of presentation, whenever it will be clear from the context, a
workflow schema WS = 〈A,E,A�, A∨, E!, E?, E⊆, a0, F 〉 will also be denoted by
〈A,E, a0, F 〉 or even simpler by 〈A,E〉.

Informally, an activity in A� acts as synchronizer (also called a join activity in
the literature), for it can be executed only after all its predecessors are completed,
whereas an activity in A∨ can start as soon as at least one of its predecessors has
been completed. Moreover, once finished, an activity a activates all its outgoing
E! arcs, exactly one among the E? arcs, and any non-empty subset of the E⊆

arcs.

A workflow schema can be represented in a graphical way by means of a directed
acyclic graph. We represent arcs in E !, E? and in E⊆ with bold, dotted and dashed
arcs, respectively; moreover, we draw activities in A� and in A∨ with bold and
regular circles, respectively. Finally the ending activities are also marked with
double circles.

An example of workflow that will be used throughout the paper, is shown in
Figure 2. It is easy to notice that the schema actually corresponds to the explosion
of the activities of the “sales ordering” process, described in the introduction1.

A workflow schema may have associated several executions consisting of a se-
quence of states, where a state S is a tuple 〈Marked ,Ready ,Executed〉, with Ready
and Executed subsets of activities, and Marked subset of the precedences.

1 Due to space limits we do not explain this correspondence here but leave this task to the
reader

3



S

b

R1

c

e

e1

e2

1

2

3

h1

j1
4

5

h2

j2

f

g

h

j

k

k1 k2 k3

w

R2

l

m

n

o

A

Fig. 2. An example of Workflow Schema

An execution starts with the state S0 = 〈∅, {a0}, ∅〉. Later on, if the state at the
step t is St = 〈Marked t,Ready t,Executed t〉, then the next state St+1 is one of the
outcomes of a non-deterministic transition function δ, defined as follows: δ(St) is
the set of all states 〈Marked t ∪Marked !

t+1 ∪Marked ?
t+1 ∪Marked⊆

t+1,Ready∨
t+1 ∪

Ready�
t+1 − Ready t,Executed t ∪Ready t〉, such that

– Marked !
t+1 = {(a, b)| a ∈ Ready t, (a, b) ∈ E!}, i.e., all E ! arcs leaving ready

activities are marked;
– Marked ?

t+1 is any maximal subset of {(a, b)| a ∈ Ready t, (a, b) ∈ E?} s.t. there
are no two distinct arcs in it leaving the same node, i.e., exactly one E ? arc
is marked by a ready activity;

– Marked⊆
t+1 is any subset of {(a, b)| a ∈ Ready t, (a, b) ∈ E⊆} s.t. for each

a ∈ Ready t with outgoing E⊆ arcs, there exists at least one E⊆ arc in it;
– Ready∨

t+1 = {a|a ∈ (A∨ − Executed t),∃(c, a) ∈ Marked t}, i.e., an A∨ activity
becomes ready for execution as soon as one of its predecessor activities is
completed;

– Ready�
t+1 = {a|a ∈ (A� − Executed t), 6 ∃(c, a) ∈ (E − Marked t)}, i.e., an A�

activity is ready for execution after all its predecessor activities are completed.

We point out that the above semantics captures the behavior of most commer-
cial workflow products. Now we are in the position to formally define a workflow
execution.

Definition 1. Let WS be and δ be the transition function. An execution e on a
workflow schema WS = 〈A,E, a0, F 〉 is a sequence of states [S0, ..., Sk] such that

1. S0 = 〈{∅}, {a0}, {∅}〉,
2. St+1 ∈ δ(St) for each 0 < t < k, and
3. Executedk ∩ F 6= ∅ or Readyk = ∅. ut

4



S

c

e

e2

4

5

j2

f

g

j

l

m

n

o

A

Fig. 3. An instance of the workflow schema in Fig. 2

Note that the case Executed k ∩ F = ∅ and Readyk = ∅ (in condition 3) corre-
sponds to an abnormal execution which does not reach a final state. As shown
next, checking whether a workflow schema admits a successful execution is in-
tractable – the hardness of the problem depends on the exclusive choices for
marking the arcs in E?.

Proposition 1. Let WS = 〈A,E, a0, F 〉 be a workflow schema. Then, deciding
whether there exists an execution that reaches a final state (i.e., Executed k ∩F 6=
∅) is NP-complete, but the problem becomes P-complete if E? = ∅.

Proof (sketch). Membership in NP is trivial. For the hardness, recall that, given
a boolean formula Φ over variables X1, ..., Xm the problem of deciding whether
it is satisfiable is NP-complete [15]. We can define a workflow schema such that
each variable is associated to an activity that has two outgoing ?-arcs. Let Xi(t)
and Xi(f) be the activities that each Xi can activate, by means of these arcs;
indeed, the first step of any execution encodes a truth assignment for the variables.
Finally we can define a boolean circuit, whose size is polynomial in m, that verifies
whether the assignment is correct. The output gate of the circuit is the unique
final state, say s, of the workflow. By construction, Φ is satisfiable if and only
if there exists an execution that reaches s. On the other hand, if E ? = ∅ the
problem turns to be equivalent to the graph accessibility problem for a boolean
circuit. ut

Workflow executions can be seen as connected subgraphs of the workflow
schema and will be called instances under this graphical perspective.

Definition 2. Let WS = 〈A,E, a0, F 〉 be a workflow schema and e = [S0, ..., Sk]
be an execution. Then, the instance associated to e is the graph Ie = 〈Ae, Ee, a0, Fe〉,
where Ae = ∪t=1,kExecuted t, Ee = Marked t and Fe = Ae ∩ F . ut

An instance of the workflow of Fig. 2 is reported in Fig. 3. In the following, we
denote the set of all instances of a workflow schema WS by I(WS).

Deciding whether a subgraph is indeed an instance of WS is tractable although
deciding the existence of an instance (i.e., whether I(WS) 6= ∅) is not because of
Proposition 1.
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Proposition 2. Let WS = 〈A,E, a0, F 〉 be a workflow schema and I be a sub-
graph of WS. Then, deciding whether I is an instance of WS can be done in
polynomial time in the size of E.

Proof (sketch). We can simply construct the sequence of states corresponding to
I by traversing the subgraph I starting from the initial node and by applying
in a constructive way the function δ using all arcs in I as marked. Clearly the
algorithm is polynomial in the size of E. ut

3 Mining frequent patterns

In this section we present an algorithm for mining frequent patterns (i.e., sub-
graphs) in workflow instances. It is important to remark here that the task of dis-
covering frequent patterns is computationally expensive. Indeed, even the prob-
lems of deciding whether an arc is included in some instance or whether a pair
of nodes always occur together in every instance are not tractable.

Proposition 3. Let WS = 〈A,E, a0, F 〉 be a workflow schema. Then,
1. given an arc (a, b) ∈ E, deciding whether there exists an instance I ∈ I(WS)

such that (a, b) ∈ I is NP-complete;
2. given two nodes a and b, deciding whether, for each I ∈ I(WS) a is in I

implies b is in I as well is co-NP-complete. ut

Let us now define the type of patterns we want to discover. Throughout the
section, we assume that a workflow schema WS = 〈A,E, a0, F 〉 and a set of
instances F = {I1, ..., In} are given. Let 2WS denote the family of all the subsets
of the graph 〈A,E〉.

Definition 3. A graph p = 〈Ap, Ep〉 ∈ 2WS is a F -pattern (cf. F |= p) if there
exists I = 〈AI , EI〉 ∈ F such that Ap ⊆ AI and p is the subgraph of I induced
by the nodes in Ap. In the case F = I(WS), the subgraph is simply said to be a
pattern. ut

Let supp(p) = |{I|{I} |= p ∧ I ∈ F}|/|F|, be the support of a F -pattern p.
Then, given a real number minSupp, the problem we address consists in finding
all the frequent F -patterns, i.e. all the F -patterns whose support is greater than
minSupp. A frequent F -pattern will be simply called F -frequent.

In order to reduce the number of patterns to generate, throughout the rest
of the paper, we shall only consider F -patterns that satisfy two additional con-
straints: connectivity and deterministic closure. As we shall see next, these con-
straints do not actually reduce the generality of our approach.

The first restriction is that the undirected version of an F -pattern must be
connected. Indeed, the extension of the mining algorithm to cover disconnected
F -patterns can be trivially tackled by observing that any F -pattern is frequent if
and only if each of its connected components is frequent as well. Hence, the com-
putation of frequent general patterns can be done by simply combining frequent
connected components.

The second restriction is formalized next.
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Definition 4. Given a graph p = 〈Ap, Ep〉 ∈ 2WS, the deterministic closure of p
(cf. ws-closure(p)) is inductively defined as the graph p′ = 〈Ap′ , Ep′〉 such that:

i) Ap ⊆ Ap′, and Ep ⊆ Ep′ (basis of induction),
ii) a ∈ Ap′ ∩ A� ∧ (b, a) ∈ E, implies (b, a) ∈ Ep′ and b ∈ Ap′,
iii) a ∈ Ap′ ∧ (a, b) ∈ E! implies (a, b) ∈ Ep′ and b ∈ Ap′ .

A graph p such that p = ws-closure(p) is said ws-closed. ut

The above definition can be used to introduce a third notion of pattern which
only depends on the structure of the workflow schema, rather than on the in-
stances F or I(WS). The need of this weaker notion will be clear in a while.

Definition 5. A weak pattern, or simply w-pattern, is a ws-closed graph p ∈
2WS . ut

The following proposition characterizes the complexity of recognition for the
three notions of pattern; in particular, it states that testing whether a graph is a
w -pattern can be done very efficiently in deterministic logarithmic space on the
size of the graph WS rather than on the size of 2WS as it in general happens for
F -patterns.

Proposition 4. Let p ∈ 2WS . Then

1. deciding whether p is an F-pattern is feasible in polynomial time in the size
of F ,

2. deciding whether p is a pattern is NP-complete (w.r.t. the input WS).
3. deciding whether p is a w-pattern is in L (w.r.t. the input WS).

Proof (sketch).

1. By definition of F -pattern, we can simply test if p is a subgraph of any
instance.

2. The problem is in NP as we can guess a subgraph I, by choosing the arcs in E ?

and in E⊆ to activate. Then, from Proposition 2 we can check in polynomial
time that I is an instance; finally, deciding whether p is a subgraph of I, can
be done in polynomial time.
The hardness follows from Proposition 1; indeed, we can assume the pattern to
be formed by a single activity, and observe that deciding if it can be executed
in some execution is NP-hard.

3. It is easy to see that we can construct a Turing machine that, given a workflow
schema and a graph p encoded into the input tapes, can decide in deterministic
logarithmic space whether p is a w -pattern. In fact, we can encode both
schema and graph by fixing an arbitrary order on the activities, and we can
verify properties i), ii), and iii) in Definition 5, by accessing each arc of p and
WS, by means of two counters. It is obvious that such an encoding requires
logarithmic space. ut
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It turns out that the notion of weak pattern is the most appropriate from
the computational point of view. Moreover, working with w -patterns rather than
F -patterns is not an actual limitation.

Proposition 5. Let p be a frequent F-pattern. Then

1. ws-closure(p) is both a weak pattern and a frequent F-pattern;
2. each weak pattern p′ ⊆ p is a frequent F-pattern as well.

Proof (sketch). In order to prove property 1, we observe that for each I ∈ F with
{I} |= p, we have {I} |= ws-closure(p). Indeed, if p is not a weak pattern, then
according to Definition 4 there exist a ∈ Ap such that one of the following cases
occur:

– a ∈ A� and there exists an edge (b, a) ∈ E − Ep;
– there exists an edge (a, c) ∈ E ! − Ep

By Definition 1, each instance I ∈ F containing a, must contain b, c and (b, a), (a, c)
as well. As a consequence, ws-closure(p) is frequent as well.
In order to prove property 2, it suffices to see that if there exists an unfrequent
p′ ⊆ p, then it should contain at least either an unfrequent node a or an unfre-
quent edge (a, b). But this is a contradiction, since both a and (a, b) belong to p
as well. ut

We stress that a weak pattern is not necessarily an F -pattern or even a pattern.
As shown in the next section, we shall use weak patterns in our mining algorithm
to optimize the searching space but we eventually check whether they are frequent
F -patterns.

4 The algorithm for mining frequent patterns

The algorithm we propose for mining frequent F -patterns, uses a levelwise theory,
which consist in constructing frequent weak patterns, by starting from frequent
“elementary” weak patterns, defined below, and by extending each frequent weak
pattern using two basic operations: adding a frequent arc and merging with an-
other frequent elementary weak pattern. As we shall show next, the correctness
follows from the results of Proposition 5, and from the observation that the space
of all connected weak patterns constitutes a lower semi-lattice, with a particular
precedence relation ≺, defined next.

The elementary weak patterns, from which we start the construction of frequent
patterns, are obtained as the ws-closures of the single nodes.

Definition 6. Let WS = 〈A,E〉 be a workflow schema. Then, for each a ∈ A,
the graph ws-closure(〈{a}, {}〉) is called an elementary weak pattern (cf. ew-
pattern). ut

The set of all ew -patterns is denoted by EW. Moreover, let p be a weak pattern,
then EWp denotes the set of the elementary weak patterns contained in p. Note
that given an ew -pattern e, EWe is not necessarily a singleton, for it may contain
other ew -patterns.
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Given a set E ′ ⊆ EW, Compl (E ′) = EW−
⋃

e∈E′ EWe contains all elementary
patterns which are neither in E ′ nor contained in some element of E ′.

Let us now introduce the relation of precedence ≺ among connected weak
patterns. (Observe that the empty graph, denoted by ⊥, is a connected weak
pattern as well.) Given two connected w -patterns, say p and p′, p ≺ p′ if and only
if:

a) Ap = Ap′ and Ep′ = Ep ∪ {(a, b)}, where (a, b) ∈ E⊆ ∪ E? (i.e., p′ is obtained
from p by adding an arc), or

b) there exists p′′ ∈ Compl (EWp) such that p′ = p ∪ p′′ ∪ X, where X is empty
if p and p′′ are connected or otherwise X = {q} and q ∈ E⊆ ∪ E? connects p
to p′′ (i.e., p′ is obtained from p by adding an elementary weak pattern and
possibly a connecting arc).

Note that for each e ∈ EW, we have ⊥≺ e.

The following result states that all the connected weak patterns of a given
workflow schema, can be constructed by means of a chain over the ≺ relation.

Lemma 1. Let p be a connected w-pattern. Then, there exists a chain of con-
nected w-patterns, such that ⊥≺ p1 ≺ ... ≺ pn = p.

Proof (sketch). We prove this by induction on the size of p, |p| = |Ap|+ |Ep|. The
base case, i.e. p ∈⊥, is trivial. For the case p 6∈ EW, assume that for each weak
pattern p′, such that |p′| < |p| there exists a chain ⊥≺ q1 ≺ ... ≺ qm = p′.

Two situations may occur:

1. ∃(a, b) ∈ Ep ∩ (E⊆ ∪ E?), such that (a, b) does not belong to any elementary
pattern contained in p, and the graph p′ obtained from p by deleting such arc
(p′ = 〈Ap, Ep − {(a, b)}〉) is connected. In such a case, p′ is a weak pattern,
with p′ ≺ p. Hence, by induction, ⊥≺ q1 ≺ ... ≺ qm ≺ p. The theorem follows
for n = m and p1 = q1, ..., pn = qn.

2. for each (a, b) ∈ Ep ∩ (E⊆ ∪ E?), such that (a, b) does not belong to any
elementary pattern contained in p, the graph p′ = 〈Ap, Ep − {(a, b)}〉 is not
connected. Two subcases can be further devised:
(a) there exists an elementary weak pattern e ∈ EWp, which is connected

to the graph p − e by means of exactly one arc in E⊆ ∪ E?; that is
e ∈ Compl (EWp−e), and, hence (p − e) ≺ p, and the theorem follows
by induction, otherwise

(b) elementary patterns are not connected by means of arcs in E⊆ ∪ E?. In
this case, let ep0, ep1, ..., epm be the elementary patterns contained in p,
and q = (p − ep0) ∪ ep1 ∪ ... ∪ epm the weak pattern obtained from p by
deleting edges and nodes in ep0 which do no occur in any other epi, with
0 < i ≤ m. By construction ep0 ∈ Compl (q), and hence q ≺ p. As in
the other case, since |q| < |p|, by induction there exists a chain of weak
patterns ⊥≺ q1 ≺ ... ≺ qm = q. ut
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It turns out that the space of all connected weak patterns is a lower semi-
lattice w.r.t. the precedence relation ≺. The algorithm w-find, reported in Figure
4, exploits an apriori-like exploration of this lower semi-lattice.

At each stage, the computation of Lk+1 (steps 5-14) is carried out by extending
any pattern p generated at the previous stage (p ∈ Lk), in two ways:

– by adding frequent edges in E⊆ or E? (addFrequentArc function), and
– by adding an elementary weak patterns (addEWFrequentPattern function).

The properties of the algorithm are reported in the following lemma.

Lemma 2. In the algorithm w-find, reported in Figure 4, the following proposi-
tions hold:

a. L0 contains a set of frequent connected F-pattern;
b. addFrequentArc add to U connected patterns, which are not necessary F-

patterns;
c. addFrequentEWPattern add to U connected w-patterns, which are not neces-

sary patterns;
d. Lk+1 contains only frequent connected F-patterns. ut

Corollary 1. (Soundness) The set R computed by the algorithm of Figure 4
contains only frequent connected F-patterns. ut

Proposition 6. (Completeness) The algorithm of Figure 4 terminates and com-
putes all the frequent connected weak patterns. In particular, let R be the set of
F-patterns computed by the algorithm. Then, for each frequent connected weak
pattern p, we have p ∈ R.

Proof (sketch). The algorithm w-find computes all the element in the lower semi-
lattice induced by the operator ≺ over w -patterns. The completeness follows from
Lemma 1, that states that any weak pattern is represented by a chain in this lower
semi-lattice, and by the observation that we also prune the chains that will lead to
unfrequent pattern. The latter is done by replacing the function addEWPattern
in the definition of the relation ≺ with addFrequentEWPattern . ut

5 Experiments

In this section we study the behavior of the algorithm, by evaluating both its per-
formances and its scalability. As shown in the previous section, the algorithm is
sound and complete w.r.t. the set of frequent w -patterns. Nevertheless, the num-
ber of candidate w -patterns generated could be prohibitively high, thus making
the algorithm unfeasible on complex workflow schemas.

As already mentioned in Section 1, several existing techniques for comput-
ing frequent itemsets can be viable solutions to the problem of mining frequent
instances in a workflow, provided that suitable representations of instances is ex-
ploited. Thus, we compare the w-find algorithm with some of them. In particular,
we consider an implementation of the Apriori algorithm which computes frequent
itemsets of edges in E⊆ ∪ E?, and next connects such arcs with arcs in E !.
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Input: A workflow Graph WS, a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 L0 := {e|e ∈ EW , e is frequent w.r.t. F}; //see Lemma 2.a
2 k := 0, R := L0;
3 FrequentArcs := {(a, b)|(a, b) ∈ (E⊆ ∪ E?), 〈{a, b}, {(a, b)}〉 is frequent w.r.t. F};

4 E
⊆
f

:= E⊆ ∩ FrequentArcs, E?
f

:= E? ∩ FrequentArcs;

5 repeat

6 U := ∅;
7 forall p ∈ Lk do begin

8 U := U ∪ addFrequentArc(p); //see Lemma 2.b
9 forall e ∈ Compl(EW p) ∩ L0 do

10 U := U ∪ addFrequentEWPattern(p, e); //see Lemma 2.c
11 end

12 Lk+1 := {p|p ∈ U, p is frequent w.r.t. F}; //see Lemma 2.d
13 R := R ∪ Lk+1;
14 until Lk+1 = ∅;
15 return R;

Function addFrequentEWPattern(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

p′ := 〈Ap ∪ Ae, Ep ∪ Ee〉;
if p′ is connected , then return p′ else return addFrequentConnection(p, e);

Function addFrequentConnection(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

S := ∅
forall frequent (a, b) ∈ (E⊆

f
∪ E?

f
) − Ep s.t. (a ∈ Ap, b ∈ Ae) ∨ (a ∈ Ae, b ∈ Ap) do begin

p′ := 〈Ap, Ep ∪ (a, b)〉;
if WS |= p′ then S := S ∪ {p′};

end

return S

Function addFrequentArc(p = 〈Ap, Ep〉): pattern;

S := ∅
forall frequent (a, b) ∈ (E⊆

f
∪ E?

f
) − Ep s.t. a ∈ Ap, b ∈ Ap do begin

p′ := 〈Ap, Ep ∪ (a, b)〉
if WS |= p′ then S := S ∪ {p′};

end

return S

Fig. 4. Algorithm w-find(F ,WS)

A possible further approach to consider is the WARMR algorithm devised
in [13], that allows an explicit formalization of domain knowledge (like, for exam-
ple, the connectivity information provided by the workflow schema) which can be
directly exploited by the algorithm. However, due to space limitations, we omit
the results of such comparison here.

In our experiments, we mainly use synthetic data. Synthetic data generation
can be tuned according to: i) the size of WS, ii) the size of F , iii) the size |L| of
the frequent weak patterns in F , and iv) the probability p⊆ of choosing a ⊆-arc.
The ideas adopted in building the generator for synthetic data are essentially
inspired by [3].

In a first set of experiments, we consider some fixed workflow schemas, and
generate synthesized workflow instances, by simulating a number of execution. In
particular, for each node a in a ready state, exactly one of the edges (a, b) ∈ E ?

11
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Fig. 5. Left: Number of candidates w.r.t. minSupp. Right: Number of matching operations
w.r.t. |F|.
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Fig. 6. Number of candidates w.r.t. f , for randomly generated workflow schemas. Left: compar-
ison with a-priori. Right: w-find performances for different minSupp values.

and a subset of the edges (a, b) ∈ E⊆ are randomly chosen. The number of ⊆-
arcs is chosen by picking from a binomial distribution with mean p⊆. Frequent
instances are forced into the system by replicating some instances (in which some
variations were randomly performed) according to |L|.

We perform several experiments comparing the performance of Apriori and w-
find on increasing values of |F| and minSupp. For a dataset of instances generated
w.r.t. the workflow schema of Figure 2, the comparison is reported in Figure 5. As
expected, w-find outperforms Apriori of an order of magnitude. This is mainly
due to the fact that, contrarily to w-find, in the Apriori implementation arcs in
E? ∪ E⊆ are combined without taking into account the information provided by
the workflow schema.

Figure 5(on the right) reports the number of operations (matching of a pattern
with an instance), for increasing values of F . The figure shows that the algorithm
scales linearly in the size of the input (for different supports).

12



F

Fig. 7. Number of candidates w.r.t. the number of nodes in the workflow schema.

In a second set of experiments, we randomly generate the workflow schemas to
test the efficiency of the approach w.r.t. the structure of the workflow. To this
purpose, we fix |F| and generate workflow instances according to the randomly
generated schema. The actual number of nodes and arcs (i.e., each of |A�|, |A∨|,
|E!|, |E?| and |E⊆|), is chosen by picking from a Poisson distribution with fixed
mean value.

In order to evaluate the contribution of the complexity of workflow schemas,

we exploit the factor f =
|E?|+|E⊆|

|E?|+|E⊆|+|E!|
, which represents the degree of poten-

tional nondeterminism within a workflow schema. Intuitively, workflow schemas
exhibiting f ' 0 produce instances with a small number of candidate w -patterns.
Conversely, workflow schemas exhibiting f ' 1 produce instances with a huge
number of candidate w -patterns. Figure 5 shows the behavior of both Apriori
and w-find when f ranges between 0 (no nondeterminsm) and 1 (full nondeter-
minism). Again, Apriori is outperformed by w-find, even though for small values
of f both the algorithms produce a small number of candidates.

Finally, Figure 7 reports the correlation between the number of candidate w-
patterns and the number of nodes in the workflow schema.

6 Conclusions

In this paper we presented an efficient algorithm for mining frequent instances
of workflow schemas. The main motivation for this work was aimed at providing
facilities for the human system administrator to monitor the actual behavior of
the workflow system in order to predict the “most probable” workflow executions.
In this context, the use of mining techniques is justified by the fact that even
“simple” reachability problems become intractable.

The proposed algorithm was shown to efficiently explore the search space;
hence, it can be exploited as an effective mean for investigating some inherent
properties of the executions of a given workflow schema.

13



We conclude by mentioning some directions of future research. The proposed
model is essentially a propositional model, for it assumes a simplification of the
workflow schema in which many real-life details are omitted. However, we believe
that the model can be easily updated to cope with more complex constraints, such
as time constraints, pre-conditions and post-conditions, and rules for exception
handling.
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