
A Logic-Based Formalism to Model and Analyze

Workflow Executions

Gianluigi Greco1, Antonella Guzzo1, and Domenico Saccà1,2

DEIS1, University of Calabria, Via Pietro Bucci 41C, 87036 Rende, Italy
ICAR, CNR2, Via Pietro Bucci 41C, 87036 Rende, Italy
{ggreco,guzzo}@si.deis.unical.it, sacca@icar.cnr.it

Abstract. Workflow management systems are a key technology for effectively
modeling, executing and monitoring business processes in several application do-
mains such as finance and banking, healthcare, telecommunications, manufac-
turing and production. Many research works deal with the phase of modeling
workflow schemes and several formalisms for specifying structural properties have
been already proposed to support the designer in devising all admissible execu-
tion scenarios. Most of such formalisms are based on graphical representations in
order to give a simple and intuitive description of the workflow structure. This
paper presents a new formalism which combines a rich graph representation of
workflow schemes with simple (i.e., stratified), yet powerful DATALOG rules to
express complex properties and constraints on executions. The graph represen-
tation allows one to specify quantified tasks which are instantiated in a number
of occurrences during an execution, on the basis of the actual values that can be
assigned to the quantified variables. Both the graph representation and the DAT-
ALOG rules are mapped into a unique program in DATALOGev!, that is a recent
extension of DATALOG for handling events. This mapping enables the designer
to simulate the actual behavior of the modeled scheme by fixing an initial state
and an execution scenario (i.e., a sequence of executions for the same workflow)
and querying the state after such executions. As the scenario includes a certain
amount of non-determinism, the designer may also verify under which conditions
a given (desirable or undesirable) goal can be eventually achieved.

1 Introduction

A workflow is as a collection of activities that must be performed by one or more
software systems, by one or a team of humans, or by a combination of these[4],
in order to accomplish some business process.

Workflow management system (WFMs) represent today a key technological
infrastructure for effectively managing business processes in several application
domains including finance and banking, healthcare, telecommunications, manu-
facturing and production. Many research works deal with the phase of modeling
workflow schemes and several formalisms for specifying structural properties have
been already proposed to support the designer in devising all admissible execu-
tion scenarios. Most of such formalisms are based on graphical representations in
order to give a simple and intuitive description of the workflow structure.

The most common formalism is the control flow graph, in which the workflow
is represented by a labelled directed graph whose nodes represents the task to
be performed, and whose arcs describe the precedences among them. Moreover,
Workflow Management Coalition [16] has also identified additional controls, such
as loops and sub-workflows.

As pointed out by many authors, see e.g [3], the essential limitation of the
approach based on the control flow graph lies in the ability of specifying local

dependencies only; indeed, properties such as synchronization, concurrency, or
serial execution of tasks cannot be expressed. These latter properties are called
in the literature global constraints. Such properties, which cannot be captured
by a graph, either are left unstated (thus delivering an incomplete specification)
or are eventually expressed using other formalisms, e.g., some form of logics to
specify elaborated execution constraints.

In this paper, we propose a logic based environment which combines a rich
graph representation of workflow schemes with simple (i.e., stratified), yet pow-
erful DATALOG rules to express complex properties and global constraints on
executions. In particular, the traditional graph representation is enriched with
quantified tasks which are instantiated in a number of occurrences during an
execution, on the basis of the actual values that can be assigned to the quan-
tified variables — e.g., the request of a certain amount of an item is executed
by several tasks inquiring for item availability, one for each store of the selling
company. Both the graph representation and the DATALOG rules are mapped
into a unique program in DATALOGev!, that is a recent extension of DATALOG for
handling events.

We must point out that a similar approach has been adopted in [3], by using
the Concurrent Transaction Logic (CT R) [2], in order to provide a way to both

1

describe and reason about workflow, by introducing a rich set of constraints. An
implementation of the technique is in [9], in which a compiler, named Apply,
accepts a workflow specification that includes a control graph, the triggers and
a set of temporal constraints; as result of the compilation process, an equivalent
specification in CT R is provided.

It is worth noting that CT R logic has been used for solving central problems
in the workflow management, such as the consistency, i.e., deciding whether a
workflow graph is consistent w.r.t. some global constraints, and the verification,
i.e., deciding whether any legal execution satisfies the global constraints.

The framework we propose is, instead, well suited for being used as a run-time
environment for the simulation; in fact, the mapping into DATALOGev!enables
the designer to simulate the actual behavior of the modeled scheme by fixing an
initial state and an execution scenario (i.e., a sequence of executions for the same
workflow) and querying the state after such executions. As the scenario includes
a certain amount of non-determinism, the designer may also verify under which
conditions a given (desirable or undesirable) goal can be eventually achieved.

Related Work. A different type of specification consists in the use of triggers, in
order to define ECA rules for describing transitions among states. This approach
has been used in the state chart model [14], while in [15] a state and activity

chart is used into a distributed runtime executable workflow environment. The
interesting contribution is that, by providing a semantic partitioning of the state
charts, this approach produces components that can be executed on different
processing units. However, the system does not provide an efficient mechanism to
describe the synchronization and concurrency between tasks. This formalization
has bee adopted in two different project, i.e., OPERA and MENTOR [8, 1].

In [7] a workflow is modelled by integrating ECA rules with object-oriented
concepts; this approach is also know as active object oriented.

Finally we mention the Process algebra of [11], and the use of Petri Nets [12]
for modeling and analyzing workflows; this latter formalism has a deep formal
foundations, and is profitably used for investigating different interesting proper-
ties for the process, such as liveness, and boundness. A recently work [13] uses
the Petri-net theory and tools to analyze workflow graphs. The approach consists
in translating workflow graphs into so-called workflow-nets, which are are a class
of Petri nets tailored towards workflow analysis.

Organization. The rest of the paper is organized as follows. Section 2 presents
some preliminaries on logic programming and the logic language DATALOGev!. Sec-
tion 3 deals with the basic concepts related to workflow management, while Sec-
tion 4 describes our proposal for modelling static and dynamic aspect of workflow

2

specification. Section 5 illustrates the ability of the formalism to handle global
constraints and Section 6 introduce powerful non-deterministic query mechanisms
which allow the workflow designer to simulate and analyze meaningful workloads,
consisting of temporal sequences of workflow instances. Section 7 presents the
conclusion and discusses further work.

2 Preliminaries on DATALOG
ev!

A DATALOG¬rule r is a clause of the form a← b1, · · · , bk,¬bk+1, · · · ,¬bk+m where
k,m ≥ 0, and a, b1, · · · , bk+m are function-free atoms. If m = 0, then r is positive.

A DATALOG¬ program P is a finite set of DATALOG¬ rules. Predicate symbols can
be either extensional (i.e. defined by the facts of a database — EDB predicate

symbols), also called base predicates, or intensional (i.e. defined by the rules of
the program — IDB predicate symbols), also called derived predicates.

Positive DATALOG programs have a nice semantics and a very efficient imple-
mentation but not enough expressive power. Stratified negation is an important
but yet limited step forward. A drastic solution is to remove the condition that
there is no recursion through negation. Unfortunately, the usage of unrestricted
negation in programs is often neither simple nor intuitive, and, for example, might
lead to writing programs that have no total stable models. As argued in [5], a
promising compromise is to extend stratified DATALOG, with only predefined types
of non-stratified negation, hardwired into ad-hoc constructs. A first construct for
capturing a controlled form of unstratified negation was the choice, whose se-
mantics was defined in terms of stable models in [10] and which exploits the
nondeterminism implicit in the notion of stable model. Datalog with stratified
negation and choice rules is denoted by DATALOG¬s,c.

A second form of unstratified negation is represented by XY-stratification which
was first introduced in [19] and has later been used to model updated and ac-
tive rules [17, 18]. The recursive predicates of an XY-stratified program have a
temporal argument which is used to enforce local stratification.

Choice and a variation of XY-stratification, called XYZ-stratification, have
been recently combined into the language Event Choice DATALOG (DATALOGev!)
in [6] in order to deal with events, In addition to classical DATALOG predicate
symbols, the language includes event predicate symbols having an additional
argument which provides the time dimension. An event predicate atom has the
format p(X)@(T), where X is a list of arguments and T is the time argument
stating that the event occurs at the time T with the properties described in X.

A DATALOGev! program comprises: (i) the static definition that is a DATALOG¬s

program, and (ii) a number of event definitions. An event definition consists of

3

the event declaration within brackets and of one or more transition rules. It has
the following format:

[e(X)@(T)] t1 · · · tk

where e(X)@(T) is the event which enables the transition rules ti (1 ≤ i ≤ k,
k > 0) as soon as it occurs. A transition rule is of the form:

E1, ... , En, A1, ... , Am ← B,⊗ C1 ⊗ ...⊗ Cs.

where

1. Ei (1 ≤ i ≤ n, n ≥ 0) is an event atom that is triggered if the body of the
transition rule is true; Ei has one of the the two following formats:
– g(X)++ — informally, the event g will occur at the time T + δ where δ

is a sub-unit of time that is used to enable micro transitions for a finer
tuning of the program evolution; we stress that sub-units of time cannot
be directly handled but only incremented using the above syntax;

– g(X)+(T ′) — informally, the event g will occur at the time T + T ′ where
now T ′ is not a sub-unit of time but it is measured in the same scale as
T ;

2. Ai (1 ≤ i ≤ m, m > 0) is a DATALOG atom that is made true when the rule
body is true — observe that at least one DATALOG atom must be present in
the transition rule head;

3. B is a conjunction of DATALOG literals (negation is allowed in the body of the
transition rule);

4. Ci (1 ≤ i ≤ s, s ≥ 0) is a selection atom (i.e., choice((Y), (Z)), choiceAny(),
choiceLeast((Y), Z), choiceMin(Z), choiceMost((Y), Z), choiceMax(Z),
choiceCond((Y), (D)) or prefer(D)); the selections are applied in the order
they appears in the rule (i.e., as it often happens during an evolution, ordering
is relevant).

It is worth noting that any DATALOGev! program P can be easily traduced into
an equivalent DATALOG¬s,c program with XYZ-stratification, called the standard

version sv(PD). Informally, the rewriting consists in expliciting a time parameter
for each predicate symbol. The interested reader can find more details in [6]. As
for the usage of the language in this paper, a few intuitions and a number of
exemplifications will be sufficient to grasp its semantics (or at least we hope so).

3 A Logic Based Environment for Analyzing Workflow

Executions

In this section we introduce some basic concepts regarding the specification of a
workflow, by focusing the attention both on the static aspects, i.e. the description

4

of the relationships among activities not depending from a particular instance,
and on the dynamic aspects, the description of workflow instances whose actual
executions depends on status of the system (available servers and other resources).

Any workflow system should provide facilities for modelling the control flow

graph, for defining the servers and some politic on their use, and for giving the
user the ability of define more involved constraint. The approach we propose
is summarized in Figure 3.1, where these three components are mapped into a
DATALOGev! program. We make use of three databases:

– DBCF (WS), storing the control frow structure,
– DBWE(ID), storing information on the instance evolution, such as the status

of the tasks and of the servers, and
– DBI(WS), storing additional information needed to the execution.

Note that, DBCF (WS) and DBI(WS) are shared among the different instances.
Details on each component will be given below.

Moreover, all the global constraints and additional constraints on the scheduling
of the activities can be translated into a DATALOGev! program PConstr(WS) over
the predicates contained in the above databases. Finally, the run-time execution
mechanism can be also defined in term of DATALOGev! rules (P(WS)).

The translation we make, can be profitably used for simulating executions and
for reasoning on the instances. Note that, the approach proposed in [3] make also
use of a similar mapping, but is not suited for reasoning on case of the executions.
Indeed, the CTR logic is useful as a model checking mechanism, but at the notion
of time is implicit in the specifications, it cannot be used for reasoning on actual
scenarios.

3.1 Workflow Schema

A workflow schema WS is a directed graph whose nodes are the tasks and the arcs
are their precedences. More precisely, WS is defined as a tuple 〈A, E, a0, F, A∧

in,

A∨

in, Ac
in, A∧

out, A∨

out, AL
out, EQ, EL, λ, L〉 where

– A is the set of tasks, a0 ∈ A is the initial task, F ⊆ A is the set of final tasks
and L is a set of labels; after completion, each task returns a value in L or
“fail” in case of an abnormal execution;

– E ⊆ (A− F)× (A− {a0}) is an acyclic relation of precedences among tasks;
after its completion, a task activates some (or all) of its outgoing arcs, and
in turn a task is started if some (or all) of its incoming arcs are activated,
according to the properties of the involved tasks and arcs, as described next;

5

DATALOG
ev!

DBCF()WS

Scenarios Evolutions

Global and

Scheduling

Constraints

DBWE(ID)DBI()WS P
Constr()WS

P()WS

Fig. 1. The run-time environment for workflow executions and simulations.

– EQ ⊆ E denotes a set of quantified arcs; each arc (a, b) ∈ EQ has associated a
formula ∀X : p(X), where p(X) is a relation storing the state of the workflow
execution, and the task b has no other incoming arc; once activated, (a, b)
instantiates several instances of the task b, one for each value assigned to X,
and all such tasks are immediately started;

– EL = {(a, b)| (a, b) ∈ E ∧ a ∈ AL
out} are all the arcs leaving the tasks in AL

out

and λ is a labelling function from EL to L; an arc (a, b) ∈ EL, say with label
o, is activated after the completion of the task a only if the output returned
by a coincides with o;

– A∧

in ⊆ A − {a0} are the tasks which act as synchronizer (also called a join

tasks in the literature), thus, a task in A∧

in cannot be started until after all
its incoming arcs are activated;

– A∨

in ⊆ A− {a0} are the tasks which can be started as soon as at least one of
its incoming arcs is activated;

– Ac
in ⊆ A − {a0} are the tasks whose conditions for starting involve more

elaborated properties on their incoming arcs — note that A∧

in, A∨

in and Ac
in

form a partition of A− {a0};
– A∧

out ⊆ A− F are the tasks which activate all their outgoing arcs;
– A∨

out ⊆ A−F are the tasks which activate exactly one of their outgoing arcs,
that is non-deterministically chosen;

– AL
out ⊆ A − F are the tasks which activate those outgoing arcs whose labels

coincide with the label returned by them after completion — note that A∧

out,
A∨

out and AL
out form a partition of A− F .

For a better understanding, let us consider the following example, that will be
used throughout the rest of the paper. The example describes a typical process
for a selling company.

6

Example 1. A customer issues a request to purchase a certain amount of given
product by filling in a request form on the browser (task ReceiveOrder). The
request is forwarded to the financial department (task VerifyClient) and to each
company store (task VerifyAvailability) in order to verify respectively whether
the customer is reliable and whether the requested product is available in the
desired amount in one of the stores. The task ReceiveOrder is include in A∧

out as
it must activate both outgoing arcs after completion.

Receive
Order

Verify
Availability

Verify

Client

One
Available

None
Available

Accept
Order

Refuse
Order

T

F

F

T

X:
store(X)

C

C

v

v

v

v

v

v

v

L

L

Fig. 2. Example of workflow.

As the task VerifyAvailability must be instantiated for each store, the incoming
arc must be included in EQ, i.e., it is “quantified”. By the activation of the
corresponding arcs, each instance of VerifyAvailability either notifies to the task
OneAvailable that there the requested amount is available (label ’T’) or otherwise
it notifies the non-availability to the task NoneAvailable (label ’F’). Observe
that the task OneAvailable is started as soon as one notification of availability
is received whereas the task NoneAvailable needs the notifications from all the
stores to be activated. The order request will be eventually accepted if both
OneAvailable has been executed and the task VerifyClient has returned the label
’T’; otherwise the order is refused. ut

A workflow schema WS is represented by suitable tuples in the database
DBCF (WS), called control flow database, whose relation schemes are:
task(A), arc(A, A), startTask(a0), finalTask(F), qArc(A, A), inOR(A

∨

in
), inAND(A∧

in
),

inCond(Ac
in

), outOR(A∨
out

), outAND(A∧
out

), outLabel(AL
out

), lArc(AL
out

, A, L).

Example 2. The control flow database of the workflow schema of Example 1 is or-
ganized as follows. The relation task contains 7 tuples, the tuple in startTask is
(ReceiveOrder) and in finalTask there are (RefuseOrder) and (AcceptOrder).

7

The relation inAND contains the tuple (AcceptOrder); inOR consists of the tuples
(VerifyClient), (VerifyAvailability) and (RefuseOrder); in inCond we have
the tuples (OneAvailable) and (NoneAvailable). The tuple (ReceiveOrder) is
in outAND and the tuples (VerifyClient) and (VerifyAvailability) are in
outLabel. We insert the tuples (OneAvailable) and (NoneAvailable) in the re-
lation outAND but they could instead be included in outOR as they have only one
outgoing arc.

Concerning the arcs, we have that the relation arc contains 8 tuples, qArc con-
sists of the tuple (ReceiveOrder, VerifyAvailability), and the tuples in the
relation lArc are:
(VerifyAvailability, OneAvailable), (VerifyAvailability, NoneAvailable),
(VerifyClient, AcceptOrder), (VerifyClient, RefuseOrder). ut

3.2 Description of task executions and servers

The second aspect of the specification of a workflow concerns the the description
of how the tasks can be executed.

First of all, we are given a set of servers (human and/or computers) who are
appointed to execute various tasks, one at the time, in a given amount of time –
the execution duration of the same task is not necessarily the same for all servers.
Data about the servers are stored in the relation executable(Server, Task, Duration)
at the start of the execution of workflow instances.

A server is in one of the following states: available, busy, outOfOrder. The
latter state is registered into the relation outOfOrder(Server) whose tuples are
added or removed during the executions; the other states are derived using simple
rules as we shall show later in this section.

A workflow instance (also called workflow enactment, or case in the literature)
is activated at a certain time by an external event which starts the initial task.
Then subsequent tasks are executed in a order consistent with the precedences
and the constraints of the workflow graph — obviously not all tasks in the graph
are activated and a task after a quantified arc may be instantiated several times.
Thus a workflow instance is a subgraph of the workflow graph only if no quantified
arcs are activated.

During the execution of a workflow instance, each task may be in one of the
follows states:

1. idle, thus the task is not yet started as it needs that some incoming arc be
activated;

2. ready, i.e., the task is ready for execution and has been started but it is waiting
for the assignment of a server;

8

3. running , i.e., the task is currently executed by a server;
4. ended , i.e., the task has been terminated.

Given an instance ID, the database DBWE(ID) keeps trace of the state of the
execution by means of the following relations:

– startReady(ID, Task, Quantifiers, Time), storing the time when the Task

was started; observe that Quantifiers is a stack of values that are used to
instantiate tasks activated by quantified arcs — as several quantified arcs
(possibly none) may be activated in cascade, their values are collected in a
stack (possibly empty);

– startRunning(ID, Task, Quantifiers, Server, Time), storing the time a server
has started its execution;

– ended(ID, Task, Quantifiers, Time, Output), storing the Time when the exe-
cution of Task is completed and the Output of the execution.

The state of a task can be derived using simple DATALOG rules, such as:

state(ID, Task, Quantifiers, ready) ← startReady(ID, Task, Quantifiers,),
¬ startRunning(ID, Task, Quantifiers, ,).

state(ID, Task, Quantifiers, running) ← startRunning(ID, Task, Quantifiers, Server,),
¬ ended(ID, Task, Quantifiers, ,).

To simplify the notation, we used some syntactic sugar for writing negative
literals in the body of the first of the above rules: ¬a(X), stands for ¬a′(Y),
where a′ is defined by the new rule: a′(Y) ← a(X), and Y is the list of all non-
anonymous variables occurring in X. We shall use this notation also in the rest
of the paper.

The following DATALOG rule is used to derive whether a server is available
to start some task:

available(Server) ← executable(Server, ,), ¬ outOfOrder(Server),
¬ (startRunning(ID, Task, Quantifiers, Server,),
¬ ended(ID, Task, Quantifiers, ,)).

In the above rule we have further simplified the notation for writing negated
conjunctions in the body of a rule r: ¬(C), where C is a conjunction, stands for
¬c(X), where c is defined by the new rule: c(X) ← C, and X is the list of all
variables occurring in C which also occur in r.

In addition to the control flow database DBCF (WS), each workflow has also as-
sociated an internal database DBI(WS) storing information to be shared among
the different instances, and used for computations purposes.

Example 3. In our running example, the company may want to store informa-
tion about the quantity of products available in each store into the relations:

9

store(IDstore, City), product(IDitem), and availability(IDstore, IDitem, QTY).
Note that the relation store is the one used in the quantified arc from ReceiveOrder

to VerifyAvailability. Finally a relation order(ID, IDitem, QTY) may be used
for storing the quantity of a product required in a workflow instantiation by a
customer living in a city. ut

4 Describing the Workflow Evolution in DATALOG
ev!

The aim of this section is to present a logic framework for the specification of the
executions of a workflow for a given scenario of instances. This framework can be
thought of as a simulation environment for workflow executions.

We use the setting of DATALOGev! for defining events in the logic description. In
order to simplify the presentation, in the following, a predicate p(ID, X), where X

is a generic list of arguments, will be denoted by pID(X).

The first event, called init, is an external event which starts a new workflow
instance at a certain time.

r1 : [init(ID)@(T)]
run()++, startedID (), startReadyID (ST, [], T)← startTask(ST).

Every time the event run()@(T) is internally triggered, the system tries to as-
sign the ready tasks to the available servers — as we do not use a particular
policy for scheduling the servers, the assignment is made in a nondeterministic
way. The predicate unsatID() is true if it has been already checked that the work-
flow instance does not satisfy possible constraints on the overall execution – this
check is performed during the event complete, described below. The predicate
executedID () is true if the workflow instance has already entered a final state so
that no other task need to be performed.

r2 : [run()@(T)]
evaluateID (Task, L, Duration)++,
startRunningID (Task, L, Server, T) ← ¬unsatID (), ¬executedID (),

stateID (Task, L, Ready), available(Server),
executable(Server, Task, Duration)
⊗ choice((Task), (Server))
⊗ choice((Server), (Task)).

Once the tasks are assigned to servers, their executions start. So information
on the assigned servers and the execution starting time are stored; moreover, an
event evaluate is triggered for each execution.

r3 : [evaluateID (Task, L, D)@(T)]
completeID (Task, L, OG)+(D),← evaluationID(Task, L, Output).

10

The predicate evaluationID (Task, L, Output) is used to model the function
performed by each task, typically depending on both the execution and internal
databases — this predicate must be suitably specified by the workflow designer.
The event for completing the task is triggered at the time T + D, where D is the
duration of the task for the assigned server.

Example 4. In our example, the task VerifyAvailability must check whether a
given store contains enough quantify of the required item. The task behavior is
captured by the following rules:

evaluationID(VerifyAvailability, [X], “T”) ← store(X), orderID (Item, QTY),
enoughItem(Store, Item, QTY).

evaluationID(VerifyAvailability, [X], “F”) ← store(X), orderID (Item, QTY),
¬ enoughItem(X, Item, QTY).

enoughItem(Store, Item, QTY) ← availability(X, Item, QTYavail),
QTYavail ≥ QTY.

Note that these rules make use of the internal database DBI(WS). ut

As described in the next event, after the completion of a task, the selection
of which of its outgoing arcs be activated depends on whether the task is in
A∨

out, A∧

out, or AL
out and can be done only if the task execution is not failed. The

two actions of registering data about the completion and of triggering the event
run to possibly assign the server to another task are performed in all cases. The
fact unsatID(T) is added only if the predicate unsatGCID(Task, L) is true. This
predicate is defined by the workflow designer to enforce possible global constraints

— if not defined then no global constraints are checked after the completion of
the task. We shall return on the definition of this predicate for typical global
constraints in the next section. Observe that in the case of a final task, if the
global constraints are satisfied then we can register the successful execution of
the workflow instance.

r4 : [completeID (Task, L, Output)@(T)]
run()++, endedID (Task, L, T, Output).
unsatID () ← unsatGCID (Task, L).
executedID () ← finalTask(Task), ¬unsatGCID (Task, L).
activateArcID (Task, L, Next)++ ← outOR(Task), Output 6= “fail”, arc(Task, Next)

⊗ ChoiceAny().
activateArcID (Task, L, Next)++ ← outAND(Task), Output 6= “fail”, arc(Task, Next).
activateArcID (Task, L, Next)++ ← outLabel(Task), Output 6= “fail”,

arcLabel(Task, Next, Label), Label = Output.

The event activateArc performs two distinct actions, depending on whether
the arc involved in the notification is quantified or not. In the latter case, the

11

arc is immediately activated. Otherwise, first the quantification is evaluated by
means of the user defined predicate evaluateQ(Task, Next, X) and, then, for each
value x returned for the variable X, a new instantiation of the arc is both created
and activated by pushing x into the stack L. Each activated arc is then stored into
the relation activatedArcID(Task, Next, L). Finally the event activatedArc is
triggered in order to the verify whether the activation will make some task ready
for starting.

r5 : [activateArcID (Task, L, Next)@(T)]
checkNextID (Next, [X|L])++
activatedArcID (Task, Next, [X|L]) ← qArc(Task, Next), evaluateQ(Task, Next, X).
checkNextID (Next, L)++
activatedArcID (Task, Next, L) ← ¬qArc(Task, Next).

Example 5. In our running example, the quantification for the arc from the task
ReceiveOrder to VerifyAvailability is defined by the following rule:

evaluateQ(“ReceiveOrder”, “VerifyAvailability”, X)← store(X).

stating that the task VerifyAvailability must be “multiplied” for each store X of
the company. ut

The event checkNext stores each task which starts now and triggers the event
run in order to possibly assign a server for its execution.

r6 : [checkNextID (Task, L)@(T)]
run()++ ← .

startReadyID (Task, L, T) ← inOr(Task), ¬stateID (Task, L, ready).
startReadyID (Task, L, T) ← inAnd(Task),

¬ (arc(Prec, Task),¬ notifiedArcID (Prec, Task, L)).
startReadyID (Task, L′, T)← inCond(Task), ¬stateID (Task, L, ready),

declaredInCondID(Task, L, L′).

The predicate declaredInCondID(Task, L, L′) is to be defined by the workflow
designer.

Example 6. In our running example, we have:

declaredInCondID (OneAvailable, [X], [X]) ← evaluationID (VerifyAvailability, [X], “T”),
⊗ choiceAny().

declaredInCondID (NoneAvailable, [X], []) ← ¬ evaluationID (VerifyAvailability, , “T”).

Note that the second rule has the effect of dropping the quantification of the
stores if no store has the required quantity, thus collapsing all occurrences of the
task NoneAvailable into one. At most one occurrence is retained also for the
task OneAvailable because of the selection made by the choiceAny construct in
the first rule. ut

12

Finally we have two external events for putting a server out of order and for
resuming her/his/it availability.

r7 : [setOutOfOrder(Server)@(T)]
outOfOrder(Server).

r8 : [setInOrder(Server)@(T)]
run()++,¬outOfOrder(Server).

Definition 1. Let WS be a workflow schema, and ID be an instance. Then, the
logic program P(WS) modelling the behavior of a workflow system, consists of
the facts in DBCF (WS), and of the set of DATALOGev! rules {r1, · · · , r8}, over the
schema DBWE(ID) ∪DBI(WS). ut

5 Adding Global Constraints

In this section, we complete the model by showing how to specify global con-
straints. First, we formalize the types of constraints we want to model.

Definition 2. Given a workflow WS, a global constraint over WS is defined as
follows:

– for any a ∈ A, !a (resp. ¬!a) is a positive (resp., negative) primitive global
constraint,

– given two positive primitive global constraints c1 and c2, c1 ≺ c2 is a serial

global constraint,
– given any two global constraints c1 and c2, c1 ∨ c2 and c1 ∧ c2 are complex

global constraints. ut

Informally, a positive (resp., negative) primitive global constraint specifies that
a task must (resp., must not) be performed in any workflow instance — obviously
a negative constraints makes sense only as a sub-expression of a complex global
constraint. A serial global constraint c1 ≺ c2 specifies that the event specified in
the global constraint c1 must happen before the one specified in c2. The semantics
of the operators ∨ and ∧ are the usual.

Global constraints can be mapped into a set of DATALOGev! rules as follows:

– for each global constraint c =!a, we introduce the rules:

unsatGC1ID (c, gs) ← endedID (a, , , O), O = “fail”.

unsatGC1ID (c, gs) ← ¬ endedID (a, , ,).

where gs equals s if c only occurs as sub-expression of a complex global
constraint; otherwise (i.e., c is a global constraint), gs holds g.

13

– for each global constraint c = ¬ !a, we introduce the rule:

unsatGC1ID (c, gs) ← endedID (a, , , O), O 6= “fail”.

– the rules for a global constraint c =!a1 ≺!a2 are:

unsatGC1ID (c, gs)← endedID (a2, , , O2), O2 6= “fail”
endedID (a1, , , “fail”).

unsatGC1ID (c, gs)← endedID (a2, , T2, O2), O2 6= “fail”
endedID (a1, , T1, O1), O1 6= “fail”, T2 < T1.

– for each global constraint c : c1 ∨ c2, we have the rule:

unsatGC1ID (c, gs)← unsatGC1ID (c1,), unsatGC1ID (c2.).

– for each global constraint c : c1 ∧ c2, the rules are:

unsatGC1ID (c)← unsatGC1ID (c1,)
unsatGC1ID (c)← unsatGC1ID (c2,).

Let us now define the predicate unsatGCID(Task, L) used inside the event
complete. The problem is selecting the time for checking global constraints. Ob-
viously this check must be done after the completion of a final task. So we can
use the following definition :

unsatGCID (Task, L) ← finalTaskID (Task), unsatGC1ID (, g).

Observe that we do not check satisfaction for constraints which are only used as
sub-expressions.

Note that some global constraint check can be anticipated. For instance, the
global constraint c =!a1 ≺ !a2 can be checked just after the execution of the task
a2; so we may introduce the rule:

unsatGCID (a2, L) ← unsatGC1ID (c, g).

An interesting optimization issue is to find out which global constraints could
be effectively tested after the completion of each task.

Observe that, as discussed in the previous section, a successful or unsuccessful
completion for a workflow instance ID is registered by means of the predicate
executedID() or unsatID(), respectively. If both predicates are not true, then
the are two case: either (i) the execution is not yet finished for some task is
currently ready or running, or (ii) non more tasks are scheduled even though a
final task was not reached. The latter case indeed corresponds to an unsuccessful
completion of the workflow instance and can be modelled as follows:

failedID () ← unsatID ().
failedID () ← startedID (), ¬ executedID (),¬ workingID ().
workingID ()← stateID (T, , ready)).
workingID ()← stateID (T, , running)).

14

6 Querying for an evolution

Once introduced a model for specifying structural and dynamic aspects of a
workflow, the next step is to provide a mechanism for querying the model in order
to obtain information on its (possible) evolutions. For instance, in our running,
the designer may be interested in knowing whether (and when) a given task has
been executed for a given pre-defined scenario.

The scenario is modelled by means of a list containing all the request (with
the corresponding arrival time), and it is denoted with (S). For instance, the sce-
nario [init(id1)@(0), init(id2)@(2), init(id3)@(4), init(id4)@(5)] specifies a
new instantiation of the workflow at time 0, 2, 4 and 5. This scenario is used for
querying the P(WS) DATALOGev! program.

Definition 3. A query on a DATALOGev! program P is of the form 〈E, G, R〉 where

– S is a scenario — say that tSmax is the last time of the events in S;
– G (goal) is a list of query conditions of the form [g1@(t1), . . . , gn@(tn)] (n ≥

0), where 0 ≤ t1 < t2 < . . . < tn ≤ tSmax; each gi can be:
• ∃(A), where A is a conjunction of ground DB literals;
• ∀(A), where A is a (possibly negated) conjunction of ground DB literals;
• opt(X : A), where opt = min or max, X is a variable and A is a conjunc-

tion of literals containing no variables except X;
– R (result) is a list [r1(X1)@(t1), . . . , rm(Xm)@(tm)], m > 0 and t1 ≤ . . . ≤ tm ≤

tSmax, where ri is any predicate symbol, say with arity ki, and Xm is a list of
ki terms. ut

Given a query Q = 〈S, G, R〉 where R = [r1@(t1), . . . , rm@(tm)], on a DATALOGev!

program P , and a database D, an (nondeterministic) answer of Q on D, denoted
by Q(D), is either:

1. the list of relations [r(X1)1, . . . , r(Xi)m] such that ri = {xi|r
′

i(xi, ti,maxsubT

(M, ti)) ∈M and xi unifies with Xi}, where r′ is the temporal version of the
predicate symbol r and M is a Q-filtered stable model of sv(PD) ∪ sv(S),

2. or (ii) the empty list if there is no Q-filtered stable model.

Assume, in our running example, the company has planned to have a number
of requests, constituting a scenario S. The designer want to know the possible
evolutions; this aim can be achieved by supplying the query 〈S, ∅, R〉. Indeed, the
list R, in the case is not empty, stores the log of the executions that satisfy the
goal G, for a given scenario S.

Let tmax be the sum of all the durations of the tasks, declared by any server.
Observe that such tmax is an upper bound on the completion time of any instance,

15

tSmax. The following proposition states that our model is sound and complete w.r.t.
the satisfaction of the global constraints (the predicate executed(ID) is the one
defined in the previous section).

Proposition 1. Let WS be a workflow schema, Constr(WS) a set of global

constraint, and Q be the query 〈init(id1)@(0),∃(executed(id1)@(tmax), R〉) on

the program P(WS)∪PConstr(WS). Then, R is empty if and only if there exists

no instance that satisfies the given constraints. ut

7 Conclusions and Further Work

We have presented a new formalism which combines a rich graph representation
of workflow schemes with simple (i.e., stratified), yet powerful DATALOG rules
to express complex properties and constraints on executions. We have shown
that our model can be used as a run-time environment for workflow execution,
and as a tool for reasoning on actual scenarios. The latter aspects gives also
the designer the ability of finding bugs in the specifications, and of testing the
system’s behavior in real cases.

On this way, our long-term goals is to devise workflow systems that automat-
ically fix “improperly working” workflows (typically, a workflow systems supply,
at most, warning message when detecty such cases). In order to achieve this aim,
we shall investigate formal methods that are able to understand when a work-
flow system is about to collapse, to identify optimal scheduling of tasks, and to
generate improved workflow (starting with a given specification), on the basis of
some optimality criterion.

References

1. G. Alonso, C. Hagen and A. Lazcano. Processes in electronic commerce. In ICDCS Work-
shop on Electronic Commerce in Web-Based Applications, pages ??-??, 1999.

2. A. Bonner. Workflow, Transactions, and Datalog. In Proc. of the 18th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 294–305, 1999.

3. H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic Based Modeling
and Analysis of Workflows. InProc. 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 25–33, 1998.

4. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3(2), pages 119–153, 1995.

5. S. Greco, D. Saccà and C. Zaniolo. Extending Stratified Datalog to Capture Complexity
Classes Ranging from P to QH. In Acta Informatica, 37(10), pages 699–725, 2001.

6. A. Guzzo and D. Saccà. Modelling the Future with Event Choice DATALOG. Proc. AGP
Conference,, pages 53-70, September 2002.

16

7. G. Kappel, P. Lang, S. Rausch-Schott and W. Retschitzagger. Workflow Management Based
on Object, Rules, and Roles. Bulletin of the Technical Committee on Data Engineering,
IEEE Computer Society, 18(1), pages 11–18, 1995.

8. P. Muth, J. Weienfels, M. Gillmann, and G. Weikum. Integrating Light-Weight Workflow
Management Systems within Existing Business Environments. In Proc. 15th Int. Conf. on
Data Engineering, pages 286–293, 1999.

9. P. Senkul, M. Kifer and I.H. Toroslu. A logical Framework for Scheduling Workflows Under
Resource Allocation Constraints. In VLDB, pages ??–??, 2002.

10. D. Saccà and C. Zaniolo. Stable Models and Non-Determinism in Logic Programs with
Negation. In Proc. ACM Symp. on Principles of Database Systems, pages 205–218, 1990.

11. M. P. Singh. Semantical considerations on workflows:An algebra for intertask dependencies.
In Proc. of the Int. Workshop on Database Programming Languages, pages 6–8, 1995.

12. W. M. P. van der Aalst. The Application of Petri Nets to Worflow Management. Journal
of Circuits, Systems, and Computers, 8(1), pages 21–66, 1998.

13. W. M. P. van der Aalst, A. Hirnschall and H.M.W. Verbeek. An Alternative Way to
Analyze Workflow Graphs. In Proc. of the 14th Int. Conf. on Advanced Information Systems
Engineering, pages 534–552, 2002.

14. D. Wodtke, and G. Weikum. A Formal Foundation for Distributed Workflow Execution
Based on State Charts. In Proc. 6th Int. Conf. on Database Theory (ICDT97), pages 230–
246, 1997.

15. D. Wodtke, J. Weissenfels, G. Weikum, and A. Dittrich. The Mentor project: Steps towards
enterprise-wide workflow management. In Proc. of the IEEE International Conference on
Data Engineering ,pages 556–565, 1996.

16. The Workflow Management Coalition, http://www.wfmc.org/.
17. Zaniolo, C., Transaction-Conscious Stable Model Semantics for Active Database Rules. In

Proc. Int. Conf. on Deductive Object-Oriented Databases, 1995.
18. Zaniolo, C., Active Database Rules with Transaction-Conscious Stable Model Semantics. In

Proc. of the Conf. on Deductive Object-Oriented Databases, pp.55–72, LNCS 1013, Singa-
pore, December 1995.

19. Zaniolo, C., Arni, N., and Ong, K., Negation and Aggregates in Recursive Rules: the LDL++
Approach, Proc. 3rd Int. Conf. on Deductive and Object-Oriented Databases, 1993.

17

