
Outlier Mining in

Large High-Dimensional Data Sets

Fabrizio Angiulli and Clara Pizzuti

ICAR-CNR

c/o DEIS, Università della Calabria

Via Pietro Bucci, 41C

87036 Rende (CS) - Italy

Email: {angiulli, pizzuti}@icar.cnr.it

Abstract

In this paper a new definition of distance-based outlier and an algorithm, called HilOut, designed

to efficiently detect the top n outliers of a large and high-dimensional data set are proposed.

Given an integer k, the weight of a point is defined as the sum of the distances separating it

from its k nearest-neighbors. Outlier are those points scoring the largest values of weight. The

algorithm HilOut makes use of the notion of space-filling curve to linearize the data set, and

it consists of two phases. The first phase provides an approximate solution, within a factor

O(kd1+ 1
t ), where d is the number of dimensions of the data set and t identifies the Lt metrics

of interest, after the execution of at most d+ 1 sorts and scans of the data set, with temporal

cost O(d2Nk) and spatial cost O(Nd), where N is the number of points in the data set. The

second phase calculates the exact solution with a final scan of temporal cost O(N ∗Nd), where

N∗ is the number of candidate outliers remained after the first phase. During this phase, the

algorithm isolate points candidate to be outliers and reduces this set at each iteration. Thus, if

this set becomes of size n, then the algorithm stops reporting the exact solution. Experimental

results show that the algorithm always stops, reporting the exact solution, during the first

phase after d steps, with d much less than d+1. We present both an in-memory and disk-based

implementation of the HilOut algorithm and a throughout scaling analysis for real and synthetic

data sets showing that the algorithm scales well in both cases.

1



1 Introduction

Outlier detection is an outstanding data mining task, referred to as outlier mining, that has

a lot of practical applications in many different domains. Outlier mining can be defined as

follows: “Given a set of N data points or objects and the number n of expected outliers, find

the top n objects that are considerably dissimilar, exceptional or inconsistent with respect

to the remaining data” [12]. Many data mining algorithms consider outliers as noise that

must be eliminated because it degrades their predictive accuracy. For example, in classification

algorithms mislabelled instances are considered outliers and thus they are removed from the

training set to improve the accuracy of the resulting classifier [7]. However, as pointed out in

[12], “one person’s noise could be another person’s signal”, thus outliers themselves can be of

great interest. Outlier mining can be used in telecom or credit card frauds to detect the atypical

usage of telecom services or credit cards, in medical analysis to test abnormal reactions to new

medical therapies, in pharmaceutical research, in financial applications, in weather prediction,

in marketing and customer segmentations to identify customers spending much more or much

less the average customer. Outlier mining actually consists of two subproblems [12]: first define

what data is deemed to be exceptional in a given data set, second find an efficient algorithm

to obtain such data. Outlier detection methods can be categorized in several approaches, each

assumes a specific concept of what an outlier is. Among them, the distance-based approach,

introduced by Knorr and Ng [15], provides a definition of distance-based outlier relying on the

Euclidean distance between two points. This kind of definition, is relevant in a wide range of

real-life application domains, as showed in [16].

In this paper we propose a new definition of distance-based outlier and an efficient algorithm,

called HilOut, designed to detect the top n outliers of a large and high-dimensional data set.

Given an application dependent parameter k, the weight of a point is defined as the sum of

the distances separating it from its k nearest-neighbors. Outlier are thus the points scoring

the largest values of weight. The computation of the weights, however, is an expensive task

because it involves the calculation of the k nearest neighbors of each data point. To overcome

this problem we present a definition of approximate set of outliers. Elements of this set have

a weight greater than the weight of true outliers within a small factor. This set of points

represents the points candidate to be the true outliers. Thus we give an algorithm consisting

of two phases. The first phase provides an approximate solution, within a factor O(kd1+ 1
t ),

where d is the number of dimensions of the data set and t identifies the Lt metrics of interest,

after executing at most d+ 1 sorts and scans of the data set, with temporal cost O(d2Nk) and

2



spatial cost O(Nd), where N is the number of points in the data set. The algorithm avoids

the distance computation of each pair of points because it makes use of the space-filling curves

to linearize the data set. We fit the d-dimensional data set DB in the hypercube D = [0, 1]d,

then we map D into the interval I = [0, 1] by using the Hilbert space filling curve and obtain

the approximate k nearest neighbors of each point by examining its predecessors and successors

on I. The mapping assures that if two points are close in I, they are close in D too, although

the reverse in not always true. To limit the loss of nearness, the data set is shifted d+ 1 times

along the main diagonal of the hypercube [0, 2]d. During each scan the algorithm calculates a

lower and an upper bound to the weight of each point and exploits such information to isolate

points candidate to belong to the solution set. The number of points candidate to belong to

the solution set is sensibly reduced at each scan. Hence, the first phase produces a set of

approximate outliers that are candidate to be the true outliers. The second phase calculates

the exact solution with a final scan of temporal cost O(N ∗Nd), where N∗ is the number of

candidate outliers remained after the first phase. Experimental results show that the algorithm

always stops, reporting the exact solution, during the first phase after d steps, with d much

less than d + 1. We present both an in-memory and disk-based implementation of the HilOut

algorithm and a throughout scaling analysis for real and synthetic data sets showing that the

algorithm scales well in both cases.

The rest of the paper is organized as follows. Next section gives an overview of the existing

approaches to outlier mining. Section 3 gives definitions and properties necessary to introduce

the algorithm and an overview of space filling curves. Section 4 presents the method, provides

the complexity analysis and extends the method when the data set does not fit in main memory.

In Section 5, finally, experimental results on several data sets are reported.

2 Related Work

The approaches to outlier mining can be classified in supervised-learning based methods, where

each example must be labelled as exceptional or not [18, 23], and the unsupervised-learning

based ones, where the label is not required. The latter approach is more general because in

real situations we do not have such information. In this paper we deal only with unsupervised

methods.

Unsupervised-learning based methods for outlier detection can be categorized in several

approaches. The first is statistical-based and assumes that the given data set has a distribution

3



model. Outliers are those points that satisfies a discordancy test, that is that are significantly

larger (or smaller) in relation to the hypothesized distribution [4]. In [30] a Gaussian mixture

model to represent the normal behaviors is used and each datum is given a score on the basis of

changes in the model. High score indicates high possibility of being an outlier. This approach

has been combined in [29] with a supervised-learning based approach to obtain general patterns

for outliers.

Deviation-based techniques identify outliers by inspecting the characteristics of objects and

consider an object that deviates from these features an outlier [3, 25].

A completely different approach that finds outliers by observing low dimensional projections

of the search space is presented in [1]. Thus a point is considered an outlier, if it is located

in some low density subspace. In order to find the lower dimensional projections presenting

abnormally low density, the authors use a Genetic Algorithm that quickly find combinations of

dimensions in which data is sparse.

Yu et al. [9] introduced FindOut, a method based on wavelet transform, that identifies

outliers by removing clusters from the original data set. Wavelet transform has also been used

in [28] to detect outliers in stochastic processes.

Another category is the density-based, presented in [6] where a new notion of local outlier is

introduced that measures the degree of an object to be an outlier with respect to the density of

the local neighborhood. This degree is called Local Outlier Factor LOF and is assigned to each

object. The computation of LOFs, however, is expensive and it must be done for each object.

To reduce the computational load, Jin et al. in [13] proposed a new method to determine only

the top-n local outliers that avoids the computation of LOFs for most objects if n¿ N , where

N is the data set size.

Distance-based outlier detection has been introduced by Knorr and Ng [15, 16] to overcome

the limitations of statistical methods. A distance-based outlier is defined as follows: A point p

in a data set is an outlier with respect to parameters k and δ if at least k points in the data

set lies greater than distance δ from p. This definition generalizes the definition of outlier in

statistics and it is suitable when the data set does not fit any standard distribution. The authors

present two algorithms, one is a nested-loop algorithm that runs in O(dN 2) time and the other

one is a cell-based algorithm that is linear with respect to N but exponential in the number of

dimensions d. Thus this last method is fast only if d ≤ 4.

The definition of outlier given by Knorr and Ng, as observed in [22], has a number of benefits,

such as being intuitive and computationally feasible for large data sets, but it depends on the

4



p

q1

p1 p

q2

p2

Figure 1: Two points with same Dk values (k=10).

two parameters k and δ and it does not provide a ranking of the outliers. In order to address

these drawbacks, Ramaswamy et al. [22] modified the definition of outlier. The new definition

of outlier is based on the distance of the k-th nearest neighbor of a point p, denoted with Dk(p),

and it is the following: Given a k and n, a point p is an outlier if no more than n-1 other points

in the data set have a higher value for Dk than p. This means that the top n points having the

maximum Dk values are considered outliers. To detect outliers, a partition-based algorithm is

presented that first partitions the input points using a clustering algorithm, namely BIRCH [31],

then it prunes those partitions that cannot contain outliers. These partitions are determined

by computing upper and lower bounds on Dk for points in each partition. For each partition P ,

lower and upper bounds are also computed and only those partitions having an upper bound

greater than the lower bound determined for the n outliers are maintained. A final step finds

the outliers considering only the points contained in the candidate partitions. The experiments

presented, up to 10 dimensions, show that the method scales well with respect to both data set

size and dimensionality.

The authors note that ”points with large values for Dk(p) have more sparse neighborhoods

and are thus typically stronger outliers than points belonging to dense clusters which will tend

to have lower values of Dk(p).” However, consider Figure 1. If we set k = 10, Dk(p1) = Dk(p2),

but we can not state that p1 and p2 can be considered being outliers at the same way.

In the next section we propose a new definition of outlier that is distance-based but that

considers for each point p the sum of the distances from its k nearest neighbors. This sum is

called the weight of p, ωk(p), and it is used to rank the points of the data set. Outliers are

those points having the largest values of ωk. ωk(p) is a more accurate measure of how much

of an outlier point p is because it takes into account the sparseness of the neighborhood of a

point. In the above figure, intuitively, p2 does not seem to be an outlier, while p1 can be. Our

definition is able to distinguish this kind of situations by giving a higher weight to p1.

5



3 Definitions

In this section we present the new definition of outlier, the notion of space-filling curve, and we

introduce same further definitions that are necessary to describe our outlier detection algorithm.

3.1 Defining outliers

Let t be a positive number, then the Lt distance between two points p = (p1, . . . , pd) and

q = (q1, . . . , qd) of Rd is defined as dt(p, q) = (
∑d

i=1 |pi − qi|
t)1/t for 1 ≤ t < ∞, and as

max1≤i≤d |pi − qi|, for t =∞.

Definition 1 (Weight) Let DB be a d-dimensional data set, k a parameter and p a point

of DB. Then the weight of p in DB is defined as ωk(p) =
∑k

i=1 dt(p, nni(p)), where nni(p)

denotes the i-th nearest neighborhood of p in DB according to the Lt distance. That is, the

weight of a point is the sum of the distances separating that point from its k nearest neighbors.

Intuitively, the notion of weight captures the degree of isolation of a point with respect to its

neighbors, higher is its weight, more distant are its neighbors.

Definition 2 (Outlier) Let DB be a data set, k and n two parameters, and let p be a point

of DB. Then p is the n-th outlier with respect to k in DB, denoted as outliernk , if there are

exactly n− 1 points q in DB such that ωk(q) ≥ ωk(p). We denote with Out
n
k the set of the top

n outliers of DB with respect to k.

Thus, given n, the expected number of outliers in the data set, and an application depen-

dent parameter k, specifying the size of the neighborhood of interest, the Outlier Detection

Problem consists in finding the n points of the data set scoring the maximum ωk values.

The computation of the weights is an expensive task because it involves the calculation of k

nearest neighbors of each data point. While this problem is well solved in any fixed dimension,

requiring O(logN) time to perform each search (with appropriate space and preprocessing time

bounds) [21], when the dimension d is not fixed, the proposed solutions become impracticable

since they have running time logarithmic in N but exponential in d. The lack of efficient

algorithms when the dimension is high is known as “curse of dimensionality” [5]. In these cases

a simple linear scan of the data set, requiring O(N 2d) time, outperforms the proposed solutions.

From what above stated, at the present, when large and high-dimensional data sets are

considered, a good algorithm for the solution of the Outlier Detection Problem is the naive

nested-loop algorithm which, in order to compute the weight of each point, it must consider

6



the distance from all the points of the data set, thus requiring O(N 2d) time. Data mining

applications, however, require algorithms that scale near linearly with the size of the data set

to be practically applicable. An approach to overcome this problem could be to first find an

approximate, but fast, solution, and then obtain the exact solution from the approximate one.

This motivate our definition of approximation of a set of outliers.

Definition 3 (Approximation of Outn
k
) Let DB be a data set, let Out∗ = {a1, . . . , an}

be a set of n points of DB, with ωk(ai) ≥ ωk(ai+1), for i = 1, . . . , n − 1, and let ε be a

positive real number greater than one. We say that Out∗ is an ε-approximation of Outnk , if

εωk(ai) ≥ ωk(outlier
i
k), for each i = 1, . . . , n.

In the following sections we give an algorithm that computes an approximate solution within a

factor O(kd1+ 1
t ), where t is the Lt metrics of interest, runs in O(d

2Nk) time and has spatial

cost O(Nd). The algorithm avoids the distance computation of each pair of points because it

makes use of the space-filling curves to linearize the data set. To obtain the k approximate

nearest neighbors of each point p it is sufficient to consider its successors and predecessors on

the linearized data set. The algorithm produces a set of approximate (with respect to the above

definition) outliers that are candidate to be the true outliers. The exact solution can then be

obtained from this candidate set at a low cost.

In the next subsection the concept of space-filling curve is recalled.

3.2 Space-filling curves

The concept of space-filling curve came out in the 19-th century and is accredited to Peano

[24] who, in 1890, proved the existence of a continuous mapping from the interval I = [0, 1]

onto the square Q = [0, 1]2. Hilbert in 1891 defined a general procedure to generate an entire

class of space-filling curves. He observed that if the interval I can be mapped continuously

onto the square Q then, after partitioning I into four congruent subintervals and Q into four

congruent sub-squares, each subinterval can be mapped onto one of the sub-squares. Sub-

squares are ordered such that each pair of consecutive sub-squares share a common edge. If this

process is continued ad infinitum, I and Q are partitioned into 22h replicas for h = 1, 2, 3 . . ..

Figure 2 shows the first three steps of this process. Sub-squares are arranged so that the

inclusion relationships and adjacency property are always preserved. In practical applications

the partitioning process is terminated after h steps to give an approximation of a space-filling

curve of order h. For h ≥ 1 and d ≥ 2, let Hd
h denote the h-th order approximation of a

7



Figure 2: The Hilbert Space-Filling Curve.

d-dimensional Hilbert space-filling curve that maps 2hd subintervals of length 1/2hd into 2hd

sub-hypercubes whose centre-points are considered as points in a space of finite granularity.

The Hilbert curve, thus, passes through every point in a d-dimensional space once and once

only in a particular order. This establishes a mapping between values in the interval I and the

coordinates of d-dimensional points. Let D be the set [0, 1]d and p a d-dimensional point in D.

The inverse image of p under this mapping is called its Hilbert value and is denoted by H(p).

Let DB be a set of points in D. These points can be sorted according to the order in which

the curve passes through them. We denote by H(DB) the set {H(p) | p ∈ DB} sorted with

respect to the order relation induced by the Hilbert curve. Given a point p the predecessor and

the successor of p, denoted Hpred(p) and Hsucc(p), in H(DB) are thus the two closest points

with respect to the ordering induced by the Hilbert curve. The m-th predecessor and successor

of p are denoted by Hpred(p,m) and Hsucc(p,m). Space filling curves have been studied and

used in several fields [10, 11, 14, 2, 20, 26, 27]. A useful property of such a mapping is that if

two points from the unit interval I are close then the corresponding images are close too in the

hypercube D. The reverse statement, however, is not true because two close points in D can

have non-close inverse images in I. This implies that the reduction of dimensionality from d to

one can provoke the loss of the property of nearness. In order to preserve the closeness property,

approaches based on the translation and/or rotation of the hypercube D have been proposed

[19, 26]. Such approaches assure the maintenance of the closeness of two d-dimensional points,

within some factor, when they are transformed into one dimensional points. In particular, in

[19], the number of shifts depends on the dimension d. Given a data set DB and the vector

v(j) = (j/(d+ 1), . . . , j/(d+ 1)) ∈ Rd, each point p ∈ DB can be translated d + 1 times along

the main diagonal obtaining points pj = p+ v(j), for j = 0, . . . , d. The shifted copies of points

thus belong to [0, 2]d and, for each p, d+1 Hilbert values in the interval [0, 2] can be computed.

8



p

q

p

q

p

q

Figure 3: Shifts of a two dimensional data set.

Figure 3 shows the three shifted copies of a two dimensional data set. Note that, in the first

shift, points p and q are not close according to the order induced on the data set by the curve,

while during the second shift they are close according the the same order. In this paper we

make use of this family of shifts to overcome the loss of the nearness property.

3.3 Further definitions and properties

We now give some other definitions that will be used throughout the paper.

Definition 4 An r-region is an open ended hypercube in [0, 2)d with side length r = 21−l

having the form
∏d−1

i=0 [air, (ai + 1)r), where each ai, 0 ≤ i < d, and l are in N. The order of an

r-region of side r is the quantity − log2 r.

Definition 5 Let p and q be two points. We denote by MinReg(p, q) the side of smallest r-

region containing both p and q. We denote by MaxReg(p, q) the side of the greatest r-region

containing p but not q.

The functions MaxReg and MinReg can be calculated in time O(d) by working on the bit string

representation of the values H(p) and H(q).

Definition 6 Let p be a point, and let r be the side of an r-region. Then

MinDist(p, r) =
d
min
i=1
{min{pi mod r, r − (pi mod r)}}

where x mod r = x − bx/rcr, and pi denotes the value of p along the i-th coordinate, is the

perpendicular distance from p to the nearest face of the r-region of side r containing p, i.e. a

lower bound for the distance between p and a point lying out of the above r-region.

9



In the definition of MinDist we assume that the faces of the r-region lying on the surface of the

hypercube [0, 2]d are ignored, i.e. if pi < r (2− r ≤ pi resp.) then only the term r− (pi mod r)

(pi mod r resp.) is taken into account, for each i = 1, . . . , d.

Definition 7 Let p be a point, and let r be the side of an r-region. Then

MaxDist(p, r) =







(
d∑

i=1

(max{pi mod r, r − (pi mod r)})
t

) 1
t

, for 1 ≤ t <∞

d
max
i=1
{max{pi mod r, r − (pi mod r)}} , for t =∞

is the distance from p to the furthest vertex of the r-region of side r containing p, i.e. an upper

bound for the distance between p and a point lying into the above r-region.

Definition 8 Let p be a point in Rd, and let r be a non negative real. Then the d-dimensional

neighborhood of p (under the Lt metric) of radius r, written B(p, r), is the set {q ∈ Rd | dt(p, q) ≤

r}.

Definition 9 Let p, q1, and q2 be three points. Then

BoxRadius(p, q1, q2) = MinDist(p,min{MaxReg(p, q1),MaxReg(p, q2)})

is the radius of the greatest neighborhood of p entirely contained in the greatest r-region con-

taining p but neither q1 nor q2.

Lemma 1 Given a data set DB, a point p of DB, two positive integers a and b, and the set

of points

I = {Hpred(p, a), . . . ,Hpred(p, 1),Hsucc(p, 1), . . . ,Hsucc(p, b)}

let r be BoxRadius(p,Hpred(p, a− 1),Hsucc(p, b+ 1)) and S = I ∩ B(p, r). Then

1. The points in S are the true first |S| nearest-neighbors of p in DB

2. dt(p, nn|S|+1(p)) > r

Proof. First, we note that, for each r-region, the intersection of the Hilbert space-filling curve,

with the r-region results in a connected segment of the curve. Hence, to reach the points

Hpred(p, a − 1) and Hsucc(p, b + 1) from p following the Hilbert curve, we surely walk through

the entire r-region of side rb containing p. As the distance from p to the nearest face of its

rb-region is rn, then B(p, rn) is entirely contained in that region. It follows that the points in S

10



rn

r
b

p

s
1

s
2

s
3

q
1

q
2

q
3

Figure 4: An example of application of Lemma 1.

are all and the only points of DB placed at a distance not greater than rn from p. Obviously,

the (|S|+ 1)-th nearest-neighbor of p has a distance greater than rn from p. ¤

The above Lemma allows us to determine, among the a + b points, nearest neighbors of p

with respect to the Hilbert order (thus they constitute an approximation of the true closest

neighbors), the exact |S| ≤ a + b nearest neighbors of p and to establish a lower bound to the

distance from p to the (|S| + 1)-th nearest neighbor. This result is used in the algorithm to

estimate a lower bound to the weight of any point p. Figure 4 shows an example of application

of Lemma 1, with the rb-region, the distance rb, and B(p, rn), for a = b = 2.

4 Algorithm

In this section we give the description of the HilOut algorithm, which solves the Outlier Detection

Problem. The method consists of two phases, the first does at most d + 1 sorts and scans of

the input data set and guarantees a solution that is an kεd-approximation of Out
n
k , where

εd = O(d
1+ 1

t ), with a low time complexity cost. The second phase does a single scan of the

data set and computes the set Outnk .

At each scan HilOut computes a lower bound and an upper bound to the weight of each

point and it maintains the n greatest lower bound values of weight in a heap. The lowest value

in this heap is a lower bound to the weight of the n-th outlier and it is used to detect those

points that can be considered candidate outliers.

The upper and lower bound of the weight of each point are computed by exploring the

neighborhood of the point according to the Hilbert order. The size of this neighborhood is

initially set to 2k, then it is widened, proportionally to the number of remaining candidate

outliers, to obtain a better estimate of the true k nearest neighbors.

11



At each iteration, as experimental results show, the number of candidate outliers sensibly

diminishes. This allows the algorithm to find the exact solution in few steps, in practice after

d steps with d much less than d+ 1.

Before starting with the description of HilOut, we introduce the concept of point feature.

Definition 10 A point feature f is a 7-tuple

〈id, point, hilbert, level, ubound, lbound, nn〉

where

• id is an unique identifier associated to f

• point is a point in [0, 2)d

• hilbert is the Hilbert value associated to point in the h-th order approximation of the

d-dimensional Hilbert space-filling curve mapping the hypercube [0, 2)d into the integer

set [0, 2hd)

• level is the order of the smallest r-region containing both point and its successor in DB

with respect to the Hilbert order

• ubound and lbound are respectively an upper and a lower bound to the weight of point in

DB

• nn is a set of at most k pairs (id′, dist), where id′ is the identifier associated to another

point feature f ′, and dist is the distance between the point stored in f and the point

stored in f ′

If nn is not empty, we say that f is an extended point feature.

In the following, with the notation f.id, f.point, f.hilbert, f.level, f.ubound, f.lbound and f.nn

we denote respectively the id, point, hilbert, level, ubound, lbound and nn value of the point

feature f .

We recall that with v(j) we denote the d-dimensional point (j/(d+ 1), . . . , j/(d+ 1)).

The algorithm HilOut, reported in Figure 5, receives as input a data set DB of N points

in the hypercube [0, 1]d, the number n of top outliers to find and the number k of neighbors to

consider.

The data structures employed by the algorithm are the two heaps OUT and WLB, the set

TOP , and the list of point features PF :

12



• OUT and WLB are two heaps of n point features. At the end of each iteration, the

features stored in OUT are those with the n greatest values of the field ubound, while the

features stored in WLB are those with the n greatest values of lbound

• TOP is a set of at most 2n point features which is set to the union of the features stored

in OUT and WLB at the end of the previous iteration

• PF is a list of point features. In the following, with the notation PFi we mean the i-th

element of the list PF

First, the algorithm builds the list PF associated to the input data set, i.e. for each point p of

DB a point feature f with its own f.id value, f.point = p, f.ubound =∞, f.level and f.lbound

set to 0, and f.nn = ∅, is inserted in PF , and initializes the set TOP and the global variables

ω∗, N∗, and n∗:

• ω∗ is a lower bound to the weight of the outliernk in DB. This value, initially set to 0, is

then updated in the procedure Scan

• N∗ is the number of point features f of PF such that f.ubound ≥ ω∗. The points whose

point feature satisfies the above relation are called candidate outliers because the upper

bound to their weight is greater than the current lower bound ω∗. This value is updated

in the procedure Hilbert

• n∗ is the number of true outliers in the heap OUT . It is updated in the procedure

TrueOutliers and it is equal to |{f ∈ OUT : f.lbound = f.ubound ∧ f.ubound ≥ ω∗}|

The main cycle, consists of at most d + 1 steps. We explain the single operations performed

during each step of this cycle.

Hilbert. The Hilbert procedure calculates the value H(PFi.point + v(j)) of each point fea-

ture PFi of PF , where j ∈ {0, . . . , d} identifies the current main iteration, places this value in

PFi.hilbert, and sorts the point features in the list PF using as order key the values PFi.hilbert.

Thus it performs the Hilbert mapping of a shifted version of the input data set. It is straight-

forward to note that the shift operation does not alter the mutual distances between the points

in PF . As v(0) is the zero vector, at the first step (j = 0) no shift is performed. Thus

during this step we work on the original data set. After sorting, the procedure Hilbert up-

dates the value of the field level of each point feature. In particular, the value PFi.level is

set to the order of the smallest r-region containing both PFi.point and PFi+1.point, i.e. to

MinReg(PFi.point, PFi+1.point), for each i = 1, . . . , N − 1. For example, consider figure 6

13



Algorithm HilOut (DB, n, k)
begin

Initialize(PF , DB);
(* First Phase *)
TOP := ∅;
N∗ := N ; n∗ := 0; ω∗ := 0;
j := 0;
while (j ≤ d) and (n∗ < n) do begin

Initialize(OUT );
Initialize(WLB);

Hilbert(v(j));

Scan(v(j), kNN∗ );
TrueOutliers(OUT );
TOP := OUT ∪WLB;
j := j + 1;

end;
(* Second Phase *)

if n∗ < n then Scan(v(d), N);
return OUT ;

end.

Figure 5: The algorithm HilOut and the procedure Scan

where seven points in the square [0, 1]2 are consecutively labelled with respect to the Hilbert or-

der. Figure 6 (b) highlights the smallest r-region containing the two points 5 and 6, while Figure

6 (c) that containing the two points 2 and 3. The values of the levels associated with the points

5 and 2 are thus three and one because the order of corresponding r-regions are − log2 2
1−4 = 3

and − log2 2
1−2 = 1 respectively. On the contrary, the smallest r-region containing points 1 and

2 is all the unit square.

Scan. The procedure Scan is reported in Figure 7. This procedure performs a sequential scan

of the list PF by considering only those features that have a weight upper bound not less than

ω∗, the lower bound to the weight of outliernk of DB. These features are those candidate to be

outliers, the others are simply skipped.

If the value PFi.lbound is equal to Fi.ubound, then this is the true weight of PFi.point in

DB. Otherwise PFi.ubound is an upper bound for the value ωk(PFi.point) and it could be

improved. For this purpose the function FastUpperBound calculates a novel upper bound ω to

the weight of PFi.point, given by k×MaxDist(PFi.point, 2
−level0), by examining k points among

its successors and predecessors to find level0, the order of the smallest r-region containing both

PFi.point and other k neighbors. If ω is less than ω
∗, no further elaboration is required, as in

14



64
5

7
1

2

3

(a)

64
5

7
1

2

3

(b)

64
5

7
1

2

3

(c)

Figure 6: The level field semantics

this case the point is not a candidate outlier.

Otherwise the procedure InnerScan returns a new lower bound newlb and a new upper

bound newub for the weight of PFi.point (see the description of InnerScan below for details

regarding the calculation of these bounds).

If newlb is greater than PFi.lbound then a better lower bound for the weight of PFi.point is

available, and the field lbound, is updated. Same considerations hold for the value PFi.ubound.

Next, the heaps OUT andWLB process PFi. That is, if PFi.ubound is greater than the smallest

upper (lower resp.) bound f.ubound (f.lbound resp.) stored in OUT (WLB resp.), than the

point feature f stored in OUT (WLB resp.) is replaced with PFi. Finally, the lower bound ω
∗

to the weight of the n-th outlier is updated if a greater lower bound has been computed.

InnerScan. This procedure takes into account the set of points

PFa.point, . . . , PFi−1.point, PFi+1.point, . . . , Fb.point

i.e. the points whose Hilbert value lies in a one dimensional neighborhood of the integer value

PFi.hilbert. The maximum size allowed for the above neighborhood is stored in the input

parameter maxcount. In particular, if PFi belongs to TOP , i.e. the point is a candidate to be

one of the n top outliers we are searching for, then the size b− a of the above neighborhood is

at most N , the size of the entire data set, otherwise this size is at most 2k0.

We note that the parameter k0, that is the number of neighbors to consider on the above

interval, of the procedure Scan is set to kN/N ∗, i.e. it is inversely proportional to the numberN ∗

of candidate outliers at the beginning of the current main iteration. This allows the algorithm

to analyze further the remaining candidate outliers, maintaining at the same time the number

of distance computations performed in each iteration constant.

15



procedure Scan(v, k0);
begin

for i := 1 to N do if (PFi.ubound ≥ ω∗) then begin
if (PFi.lbound < PFi.ubound) then begin

ω := FastUpperBound(i);
if (ω < ω∗) then Fi.ubound := ω else begin

maxcount := min(2k0, N);
if (PFi ∈ TOP ) then maxcount := N ;
InnerScan(i, maxcount, v, PFi.nn, newlb, newub);
if (newlb > PFi.lbound) then

PFi.lbound := newlb;
if (newub < PFi.ubound) then

PFi.ubound := newub;
end;

end;
Update(OUT , PFi);
Update(WLB, PFi);
ω∗ := max(ω∗,Min(WLB));

end;
end; { Scan }

Figure 7: The algorithm HilOut and the procedure Scan

This procedure manages the set NN of at most k pairs (id, dist), where id is the identifier

of a point feature f and dist is the distance between the current point PFi.point and the point

f.point.

The variable levela (levelb respectively), initialized to the order h of the approximation of

the space filling curve, represents the minimum among PFa−1.level, . . ., PFi−1.level (Fi.level,

. . ., Fb.level resp.) while level represents the maximum between levela and levelb. Thus level+1

is the order of the greatest entirely explored r-region (having side r = 2−(level+1)) containing

PFi.point.

The values a and b are initially set to i. Then, at each iteration of InnerScan, the former

is decreased or the latter is increased, until a stop condition occurs or their difference exceeds

the maximum size allowed. In particular, during each iteration, if PFa−1.level is greater than

PFb.level then a is decreased, else b is increased. This enforces the algorithm to entirely explore

the current r-region, having order level, before starting the exploration of the surrounding

r-region, having order level − 1.

The distances between the point PFi.point and the points of the above defined set are stored

in NN by the procedure Insert . In particular Insert(NN, id, dist) works as follows: provided

that the pair (id, dist) is not already present in NN , if NN contains less then k elements then

16



procedure InnerScan(i, maxcount, v; var NN , newlb, newub);
begin

p := PFi.point; Initialize(NN); a := i; b := i;
levela := h; levelb := h; level := h; count := 0; stop := false;
while (count < maxcount) and (not stop) do begin

count := count+ 1;
if (PFa−1.level > PFb.level) then begin

a := a− 1; levela := min(levela, PFa.level); c := a;
end else begin

levelb := min(levelb, PFb.level); b := b+ 1; c := b;
end;
Insert(NN , PFc.id, dt(p, PFc.point));
if (Size(NN) = k) then begin

if (Sum(NN) < ω∗) then stop := true
else if (max(levela, levelb) < level) then begin

level := max(levela, levelb); δ := MinDist(p, 2−(level+1));
if (δ ≥ Max (NN)) then stop := true;

end;
end;

end;
r := BoxRadius(p+ v, PFa−1.point+ v, PFb+1.point+ v);
newlb := SumLt(NN , r);
newub := Sum(NN);

end; { InnerScan }

Figure 8: The procedure InnerScan

17



the pair (id, dist) is inserted in NN , otherwise if dist is less than the smallest distance stored

in a pair of NN then this pair is replaced with the pair (id, dist).

The procedure InnerScan stops in two cases. The first case occurs when the value Sum(NN)

is less than ω∗, where Sum(NN) denotes the sum of the distances stored in each pair of NN ,

i.e. when the upper bound to the weight of PFi.point just determined is less than the lower

bound to the weight of the outliernk of DB. This means that PFi.point is not an outlier. The

second case occurs when the value of level decreases and the distance between PFi.point and

the nearest face of its 2−(level+1)-region exceeds the value Max (NN), i.e. the distance between

PFi.point and its k-th nearest neighbor in DB. This means that we already explored the

r-region containing both PFi.point and its k nearest neighbors.

At the end of the procedure InnerScan, the function BoxRadius calculates the radius r of

the greatest entirely explored neighborhood of PFi.point. This value can be obtained by using

lemma 1, more simply by exploiting the values levela, levelb, PFa−1.level and PFb.level, i.e.

as

2−max(min(levela,PFa−1.level),min(levelb,PFb.level))

Finally, newlb is set to the sum of the distances stored in NN that are less or equal than r

while newub is set to the sum of all the distances stored in NN .

The main cycle of the algorithm HilOut stops when n∗ = n, i.e. when the heap OUT is equal

to the set of top n outliers, or after d + 1 iterations. At the end of the first phase, the heap

OUT contains a kεd-approximation of Out
n
k . Finally, if n

∗ < n, that is if the number of true

outliers found by the algorithm is not n, then a final scan computes the exact solution. During

this final scan the maximum size of the one dimensional neighborhood to consider for each

remained candidate outlier is N , that is the entire data set. This terminates the description of

the algorithm.

To conclude, we distinguish between two versions of the above described algorithm:

• nn-HilOut: this version ofHilOut uses extended point features, i.e. the nearest neighbors

of each point, determined in the procedure InnerScan, are stored in its associated point

feature and then reused in the following iterations.

• no-HilOut: this version uses point features with the field nn always set to ∅, i.e. the

nearest point determined during each iteration are discarded after their calculation.

The former version of the algorithm has extra memory requirements over the latter version, but

in general we expect that nn-HilOut presents an improved pruning ability.

18



Next we state the complexity of the algorithm.

4.1 Complexity analysis

To state the complexity of the HilOut algorithm, we first consider the procedures Scan and

InnerScan. The function FastUpperBound requires O(k + d) time, i.e. O(k) time to find the

smallest r-region, having order level, including both the point PFi.point and k others points of

DB, and O(d) time to calculate MaxDist(PFi.point, 2
−level).

Each iteration of InnerScan runs in time O(d+ log k).

Indeed the distance between two points can be computed in time O(d), while the set NN

can be updated in time O(log k), provided that it is stored in a suitable data structure.

Furthermore, the stop condition can be verified in time O(d), corresponding to the cost of

the function MinDist (the actual value of both Sum(NN) and Max (NN) can be maintained,

with no additional insertion cost, in the data structure associated to NN).

We note that there are at most 2n point features for which this cycle is executed at most N

times, and at most N − n features for which the same cycle is executed at most 2k times.

The functions BoxRadius and SumLt at the end of InnerScan, which require time O(d) and

O(k) respectively, and the procedures Update at the end of Scan, which require O(log n) time,

are executed at most N times.

Summarizing, the temporal cost of Scan is

O






N(k + d)
︸ ︷︷ ︸

+ N(d+ k + log n)
︸ ︷︷ ︸

+ N(n+ k)(d+ log k)
︸ ︷︷ ︸

FastUpperBound BoxRadius + SumLt +Update cycle of InnerScan






i.e. O(N(n + k)(d + log k)). The procedure Hilbert runs in time O(dN logN), hence the time

complexity of the first phase of the algorithm is dN(d logN + (n+ k)(d+ log k)).

Without loss of generality, if we assume that O(n) = O(k), k ≥ logN and d ≥ log k, then the

cost of the first phase of the algorithm can be simplified in O(d2Nk) or equivalently in O(d2Nn).

Considered that the naive nested-loop algorithm has time complexity O(N(log n+N(d+log k))),

the algorithm is particularly suitable in all the applications in which the number of points N

overcomes the product dk or dn. As an example, if we search for the top 100 outliers with

respect to k = 100 in a one hundred dimensional data set containing one million of points, we

expect to obtain the approximate solution with time savings of at least two order of magnitude

with respect to the naive approach.

Finally, let N∗ be the number of candidate outliers at the end of the first phase. Then the

time complexity of the second phase is N ∗(log n+N(d+log k)). We expect that N ∗ ¿ N at the

19



end of the first phase. When this condition occurs, the second phase of the algorithm reduces

to a single scan of the data set.

As regard the space complexity analysis, assuming that h is a constant and that the space

required to stored a floating point number is constant, then the nn-HilOut algorithm requires

O(N(d + k logN)) space, while the no-HilOut algorithm requires O(dN) space, and we note

that the size of the input data set is O(dN).

4.2 Approximation error

Now we show that the solution provided by the first phase of the HilOut algorithm is within

kd1+ 1
t -approximation of the set Outnk . The following lemma is from [8].

Lemma 2 Suppose d is even. Then, for any point p ∈ Rd and r = 2−l (l ∈ N), there exists

j ∈ {0, . . . , d} such that p+ v(j) is
(

1
2d+2

)

-central in its r-region.

The lemma states that if we shift a point p of Rd at most d + 1 times in a particular manner,

i.e. if we consider the set of points p+ v(0), . . . , p+ v(d), than, in at least one of these shifts, this

point must become sufficiently central in an r-region, for each admissible value of r.

We denote by εd the value 2d
1
t (2d+ 1).

Lemma 3 Let f be a point feature of PF such that f ∗.ubound ≥ ω∗, where f∗ denotes the

value of f at the end of the algorithm. Then f ∗.ubound ≤ kεdωk(f.point).

Proof. Let δk be dt(f.point, nnk(f.point)). From Lemma 2 it follows that there exists an r-

region of side r
4d+4 ≤ δk <

r
2d+2 (this inequality defines an unique r-region) and an integer j ∈

{0, . . . , d} such that f.point(j) = f.point+ v(j) is 1
2d+2 -central in the r-region. This implies that

the distance δ from f.point(j) and each point belonging to its r-region is at most d
1
t

(

r − r
2d+2

)

i.e. d
1
t

2d+1
2d+2r. We note that f.point

(j) and its true first k nearest neighbors in the shifted version

of DB, nn1(f.point
(j)), . . . , nnk(f.point

(j)), belong to the r-region.

As f∗.ubound ≥ ω∗ then this condition is satisfied during the overall execution of the algo-

rithm, thus the point feature f is always processed by the procedure Scan. Consider the j-th

main iteration of the algorithm. Let i be the position occupied by the point feature f in the

list PF during this iteration.

If PFi.lbound equals PFi.ubound, than this value is certainly equal to ωk(PFi.point). Other-

wise, we show that PFi.ubound is less or equal then kδ when the point feature PFi is considered.

20



Assume that PFi.ubound is set to FastUpperBound(i). Let level be the order of the smallest

region containing both PFi.point and at least other k points of DB, clearly 2
−level ≤ r. Thus,

MaxDist(PFi.point, 2
−level) ≤ δ implies that PFi.ubound ≤ kδ.

Now assume that PFi.ubound is updated after the procedure InnerScan with the value

newub. By absurd, suppose that the conditionNN.ubound ≤ kδ is not satisfied. Then, the set of

the first k nearest point of PFi.point among PFa.point, . . . , PFi−1.point, PFi+1.point, . . . , PFb.point

must contain a point lying out of the r-region above defined. But this implies that this r-region

contains less that k + 1 points, a contradiction.

Finally, as the value of f.ubound cannot increase in the following iterations, then f ∗.ubound ≤

kδ ≤ kd
1
t

2d+1
2d+2r ≤ kd

1
t

2d+1
2d+2(4d + 4)δk ≤ kεdδk. Since ωk(f.point) ≥ δk, finally f∗.ubound ≤

kεdωk(f.point). ¤

Theorem 1 Let OUT ∗ denote the value of the heap OUT at the end of the first phase of the

algorithm and let Out∗ be the set {f.point | f ∈ OUT ∗}. Then Out∗ is a kεd-approximation of

Outnk .

Proof. Let Out∗ be {a1, . . . , an}, let fi be the point feature associated to ai, and let f
∗
i the

value of this point feature at the end of the first phase, for i = 1, . . . , n. Without loss of

generality, assume that f ∗i .ubound ≥ f∗i+1.ubound, for i = 1, . . . , n−1. As fi.ubound is an upper

bound to the weight of ai, it must be the case that f
∗
i .ubound ≥ ωk(outlier

i
k), for i = 1, . . . , n.

It follows from Lemma 3 that kεdωk(ai) ≥ f∗i .ubound ≥ ωk(outlier
i
k), for i = 1, . . . , n. Let

π be a permutation of {1, . . . , n} such that ωk(aπ(1)) ≥ . . . ≥ ωk(aπ(n)). Now we show that

kεdωk(aπ(i)) ≥ ωk(outlier
i
k), for i = 1, . . . , n. For each i = 1, . . . , n we have two possibilities: (a)

if π(i) < i then kεdωk(aπ(i)) ≥ kεdωk(outlier
π(i)
k ) ≥ ωk(outlier

i
k); (b) if π(i) ≥ i then there exists

j ∈ {1, . . . , i} such that ωk(aπ(i)) ≥ ωk(aj), hence kεdωk(aπ(i)) ≥ kεdωk(aj) ≥ ωk(outlier
j
k) ≥

ωk(outlier
i
k). Thus Out

∗ is a kεd-approximation of Out
n
k .

¤

4.3 Disk-based Algorithm

We described the algorithm HilOut assuming that it works with main memory resident data

sets. Now we show how the in-memory algorithm can be adapted to manage efficiently disk-

resident data sets. Basically, the disk-based implementation of HilOut has the same structure

of its memory-based counterpart.

The main difference is that the list PF is disk-resident, stored in a file of point features. In

particular, the disk-based algorithm manages two files of point features, called Fin and Fout,

21



and has an additional input parameter BUF , that is the size (in bytes) of the main memory

buffer.

First, the procedure Initialize creates the file Fin with the appropriate values, and with the

field f.hilbert of each record f set to H(f.point).

The procedure Hilbert is substituted by the procedure Sort, performing an external sort of

the file Fin and producing the file Fout ordered with respect to the field hilbert. We used the

polyphase merge sort with replacement selection to establish initial runs [17] to perform the

external sort. This procedure requires the number FIL of auxiliary files allowed and the size

BUF of the main memory buffer. After the sort, Fin is set to the empty file.

The procedure Scan (and hence InnerScan) performs a sequential scan of the file Fout working

on a circular buffer of sizeBUF containing a contiguous portion of the file. We have the following

differences with the in-memory implementation:

• After a record is updated (i.e. at the end of each iteration of Scan), it is appended to

the file Fin with the field f.hilbert set to H(f.point+ v(j+1)), where j denotes the current

main iteration of the algorithm

• The maximum value allowed for the parameter k0 is limited by the number of records

(point features) fitting in the buffer of size BUF

• The records of the set TOP are maintained in main memory during the entire execution

of Scan, compared with the entire data set, and flushed at the end of the overall scan in

the appropriate position of the file Fin

As for the second phase of the algorithm, this is substituted by a semi-naive nested-loop al-

gorithm. In practice, the records associated with the remaining candidate outliers are stored

in the main memory buffer and compared with the entire data set until their upper bound is

greater than ω∗. The heaps OUT andWLB are updated at the end of the scan. If the remained

candidate outliers do not fit into the buffer, then multiple scans of the feature file are needed.

When the nn-HilOut version of the algorithm is considered, to save space and speed up the

external sort step, the additional boolean field extended is added to every record. This field

specifies the size of the record. Indeed, f.extended set to 0 means that the record f does not

contain the field nn, while f.extended set to 1 means that the field nn is present in f . Thus we

have records of variable length. Only records associated with candidate outliers have their field

extended set to 1. This field is managed as follows:

• When a record f is appended to the file Fin at the end of each iteration of Scan, the field

nn is added provided that f.ubound ≥ ω∗

22



• The procedure Sort must support records of variable length. Moreover, it is modified so

that when it builds the file Fout by sorting the file Fin, it discharges the fields nn of the

records f having f.ubound < ω∗ (we note that this condition could not be satisfied when

the record f is appended to Fin, as ω
∗ can decrease in the following iterations of Scan)

We will see in the experimental results section, that when the disk-based implementation of the

HilOut algorithm is considered, the extra time needed to no-HilOut to prune points from the

data set, is partially balanced by the lower time required to perform the external sort of the

feature file w.r.t. the nn-HilOut.

5 Experimental Results

In this section we present a throughout scaling analysis of the HilOut algorithm on large high-

dimensional data sets, both real, up to about 275, 000 points in the 60-dimensional space, an

synthetic, up to 500, 000 points in the 128-dimensional space.

We implemented the algorithm using the C programming language on a Pentium III 800MHz

based machine having 512Mb of main memory12. We used a 32 bit floating-point type to

represent the coordinates of the points and the distances.

Real data sets. We tested the HilOut algorithm on the following real data sets: Landsat

(d = 60, N = 275, 465), ColorHistogram (d = 32, N = 68, 040), CoocTexture (d = 16, N =

68, 040), and ColorMoments (d = 9, N = 68, 040). These data sets represent collections of

real images. The points of ColorHistogram, CoocTexture and ColorMoments are image features

extracted from a Corel image collection3, while the points of Landsat are normalized feature

vectors associated to tiles of a collection of large aerial photos4.

We searched for the top n ∈ {1, 10, 100, 500} outliers for k ∈ {10, 100, 500} under the L2

metric (t = 2). We used the 2nd order approximation of the d-dimensional Hilbert curve to

map the hypercube [0, 2)d onto the set of integers [0, 22d).

It is worth to note that, in all the experiments considered, the algorithm HilOut terminates

reporting the exact solution after executing a number of iterations much less than d+1. Thus,

we experimentally found that in practice the algorithm behaves as an exact algorithm without

1The operating system of the computer is Microsoft Windows XP Professional
2We used Microsoft Visual C++ as developing environment
3See http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeature.html for more information
4See http://vision.ece.ucsb.edu/datasets/index.html for a detailed description

23



the need of the second phase.

To give an idea of the time savings obtainable with our algorithm with respect to the

nested-loop algorithm, we note that, for example, the latter method required, working in main

memory, about 46 hours to compute the top n = 100 outliers for k = 100 of the Landsat data

set, while the disk-based no-HilOut algorithm required less than 1300 seconds to perform the

same computation.

Figures 9 and 10 show the result of the above described experiments when we used the

disk-based implementation of HilOut. Solid lines are relative to the nn-HilOut version of the

algorithm, while dashed lines to the no-HilOut version. We set the buffer size BUF to 64MB

in all the experiments.

Figures 9 (a) and (d), and 10 (a) and (d), show the execution times obtained varying the

number k of neighbors to consider from 10 to 500, while Figures 9 (b) and (e), and 10 (b) and

(e), show the execution times obtained varying the number n of top outliers to consider from 1

to 500. These curves show that the no-HilOut version performs better than the nn-HilOut on

these data sets.

Figures 9 (c) and (f), and 10 (c) and (f), report, in logarithmic scale, the number of can-

didate outliers at the beginning of each iteration of the algorithm, when n = 100 and for

k ∈ {10, 100, 500}. These curves show that, at each iteration, the algorithm is able to discharge

from the set of the candidate outliers a considerable fraction of the whole data set, and that the

pruning ability increases with k. Moreover, the same curves show that the algorithm terminates

performing less than d+ 1 iterations.

In general, we expect that the extra time required by nn-HilOut to manage the extended

feature file will be repayed by an improved pruning ability of the algorithm, i.e. we expect that

nn-HilOut performs a smaller number of iterations than the no-HilOut version. In almost the

experiments considered the previous statement is true. Nevertheless, the no-HilOut algorithm

scales better than nn-HilOut algorithm in these experiments, because the number of iterations

performed by the two versions of HilOut are nearly identical. Thus, when dealing with real data

sets, the no-HilOut version appears to be superior to the nn-HilOut.

Synthetic data sets. To test the algorithm on synthetic data, we used two families of

synthetic data sets called Gaussian and Clusters.

A data set of theGaussian family is composed by points generated from a normal distribution

having standard deviation 1 and scaled to fit into the unit hypercube.

A data set of the Clusters family is composed by 10 hyper-spherical clusters, formed by the

24



same number of points generated from a normal distribution with standard deviation 1, having

diameter 0.05 and equally spaced along the main diagonal of the unit hypercube. Each cluster

is surrounded by 10 equally spaced outliers lying on a circumference of radius 0.1 and center in

the cluster center.

The data sets of the same family differs only for their size N and for their dimensionality

d. A Gaussian data set represents a single cluster while a Clusters data set is composed by a

collection of well-separated clusters. Figures 11 (a) and (b) show the two dimensional Gaussian

and Clusters data sets together with their top 100 outliers for k = 100, with N = 10, 000 points.

We studied the behavior of the algorithm when the dimensionality d and the size N of

the data set, the number n of top outliers we are searching for, and the number k of nearest

neighbors to consider are varied. In particular, we considered d ∈ {16, 32, 64, 128}, N ∈ {50 ·

103, 100 · 103, 200 · 103, 500 · 103}, n ∈ {1, 10, 100, 1000}, k ∈ {10, 100, 1000} and the metrics L2

(t = 2). We also studied how the number of candidate outliers decreases during the execution

of the algorithm. We set h = 2 in the experiments performed on the Gaussian data sets and

h = 4 in the experiments performed on the Clusters data sets.

Analogously to what happened for the real data sets, also in the case of the synthetic data

sets in all the experiments considered the algorithm terminated with the exact solution after

executing a number of iterations much less than d+ 1.

Figures 12 and 13 show the result of the above described experiments when we used the

disk-based implementation of HilOut. Solid lines are relative to the nn-HilOut version of the

algorithm, while dashed lines to the no-HilOut version. We set the buffer size BUF to 64MB

in all the experiments.

Figures 12 (a) and 13 (a) show, in logarithmic scale, the execution times obtained varying

the size N of the data set from 50 · 103 to 500 · 103 for various values of d, and for n, k = 100.

Figures 12 (d) and 13 (d) show, in logarithmic scale, the execution times obtained varying the

dimensionality d of the data sets from d = 16 to d = 128 for various values of N , and for

n, k = 100. The nn-HilOut algorithm scales well in all cases, while the performance of the

no-HilOut algorithm only deteriorates on the Gaussian data set for d = 128 and N = 500, 000.

This is due to the fact that the Gaussian data set becomes more and more “sparse” as the

dimensionality increases (indeed the volume occupied by the points increases exponentially),

thus, in the mentioned case, nn-HilOut takes a great advantage by storing the nearest points

met during its execution.

Hence, from these experiments, when we deal with synthetic data sets, the nn-HilOut version

25



appears to be superior to the no-HilOut.

Figures 12 (b) and 13 (b) report, in logarithmic scale, the execution times obtained varying

the number n of top outliers to find from n = 1 to N = 1, 000, for various values of d, for

N = 100, 000, and for k = 100. Figures 12 (e) and 13 (e) report, in logarithmic scale, the

execution times obtained varying the number k of nearest neighbors from k = 10 to k = 1, 000,

for various values of d, for N = 100, 000, and for n = 100.

Finally, we studied how the number of candidate outliers decreases during the algorithm.

Figure 12 (c) and 13 (c) report the number of candidate outliers at the beginning of each

iteration of nn-HilOut for various values of the dimensionality d, for N = 500, 000, and for

n, k = 100. We note that, in the considered cases, if we fix the size of the data set and increase

its dimensionality, then the ratio d/(d + 1), where d is the number of iterations needed by the

algorithm to find the solution, sensibly decreases, thus showing the very good behavior of the

method for high dimensional data sets.

Figure 12 (f) and 13 (f) report the number of candidate outliers at the beginning of each

iteration of nn-HilOut for various values of the data set size N , for d = 128, and for n, k = 100.

These curves show that, at each iteration, the algorithm is able to discharge from the set of the

candidate outliers a considerable fraction of the whole data set. Moreover, the same curves show

that the algorithm terminates, in all the cases considered, performing much more less than the

129 iterations required, after 10 iterations for the Gaussian data set and only 4 for the Cluster

data set.

6 Conclusions

We presented a new definition of distance-based outlier and an algorithm, calledHilOut, designed

to efficiently detect the top n outliers of a large and high-dimensional data set. The algorithm

consists of two phases. The first phase provides an approximate solution with temporal cost

O(d2Nk) and spatial cost O(Nd). The second phase calculates the exact solution with a final

scan. We presented both an in-memory and disk-based implementation of the HilOut algorithm

to deal with data sets that cannot fit into main memory. Experimental results on real and

synthetic data sets up to 500, 000 points in the 128-dimensional space showed that the algorithm

always stops, reporting the exact solution, during the first phase, and that it scales well with

respect to both the dimensionality and the size of the data set.

26



References

[1] C. C. Aggarwal and P.S. Yu. Outlier detection for high dimensional data. In Proc. ACM

Int. Conference on Managment of Data (SIGMOD’01), 2001.

[2] S. Aluru and F. E. Sevilgen. Parallel domain decomposition and load balancing using

space-filling curves. In Proceedings of the Int. Conf. on High Performace Computing, pages

230–235, 1997.

[3] A. Arning, C. Aggarwal, and P. Raghavan. A linear method for deviation detection in

large databases. In Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD’96),

pages 164–169, 1996.

[4] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neighbor”

meaningful? In Proceedings of the Internatinal Conference on Database Theory, pages

217–235, 1999.

[6] M. M. Breunig, H. Kriegel, R.T. Ng, and J. Sander. Lof: Identifying density-based local

outliers. In Proc. ACM Int. Conf. on Managment of Data (SIGMOD’00), 2000.

[7] C. E. Brodley and M. Friedl. Identifying and eliminating mislabeled training instances. In

Proc. National American Conf. on Artificial Intelligence (AAAI/IAAI 96), pages 799–805,

1996.

[8] T. Chan. Approximate nearest neighbor queries revisited. In Proc. 13th Annual ACM

Symp. on Computational Geometry, pages 352–358, 1997.

[9] Yu D., Sheikholeslami S., and A. Zhang. Findout: Finding outliers in very large datasets.

In Tech. Report, 99-03, Univ. of New York, Buffalo, pages 1–19, 1999.

[10] C. Faloutsos. Multiattribute hashing using gray codes. In Proceedings ACM Int. Conference

on Managment of Data (SIGMOD’86), pages 227–238, 1986.

[11] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proc. ACM Int.

Conf. on Principles of Database Systems (PODS’89), pages 247–252, 1989.

[12] J. Han and M. Kamber. Data Mining, Concepts and Technique. Morgan Kaufmann, San

Francisco, 2001.

[13] H.V. Jagadish. Linear clustering of objects with multiple atributes. In Proc. ACM Int.

Conf. on Managment of Data (SIGMOD’90), pages 332–342, 1990.

27



[14] H.V. Jagadish. Linear clustering of objects with multiple atributes. In Proc. ACM Int.

Conf. on Managment of Data (SIGMOD’90), pages 332–342, 1990.

[15] E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In

Proc. Int. Conf. on Very Large Databases (VLDB98), pages 392–403, 1998.

[16] E. Knorr, R. Ng, and V. Tucakov. Distance-based outlier: algorithms and applications.

VLDB Journal, 8(3-4):237–253, 2000.

[17] D. E. Knuth. The Art of Computer Programming, Vol.3 — Sorting and Searching. Addison-

Wesley (Reading MA), 1973.

[18] W. Lee, S.J. Stolfo, and K.W. Mok. Mining audit data to build intrusion detection models.

In Proc. Int. Conf on Knowledge Discovery and Data Mining (KDD-98), pages 66–72, 1998.

[19] M. Lopez and S. Liao. Finding k-closest-pairs efficiently for high dimensional data. In

Proc. 12th Canadian Conf. on Computational Geometry (CCCG), pages 197–204, 2000.

[20] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H.Saltz. Analysis of the clustering properties

of hilbert space-filling curve. IEEE Trans. on Knowledge and Data Engineering (IEEE-

TKDE), 13(1):124–141, Jan./Feb. 2001.

[21] F. Preparata and I. Shamos. Computational geometry —An introduction—. Texts and

Monographs in Computer Science. Springer-Verlag, New York, 2nd edition, 1985.

[22] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from

large data sets. In Proc. ACM Int. Conf. on Managment of Data (SIGMOD’00), pages

427–438, 2000.

[23] S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas. Discovery of fraud rules for

telecommunications-challenges and solutions. In Proc. Int. Conf on Knowledge Discovery

and Data Mining (KDD-99), pages 409–413, 1999.

[24] Hans Sagan. Space Filling Curves. Springer-Verlag, 1994.

[25] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of olap data

cubes. In Proc. Sixth Int. Conf on Extending Database Thecnology (EDBT), Valencia,

Spain, March 1998.

[26] J. Shepherd, X. Zhu, and N. Megiddo. A fast indexing method for multidimensional

nearest neighbor search. In Proc. SPIE Conf. on Storage and Retrieval for image and

video databases VII, pages 350–355, 1999.

28



[27] Roman G. Strongin and Yaroslav D. Sergeyev. Global Optimization with Non-Convex

Costraints. Kluwer Academic, 2000.

[28] Z.R. Struzik and A. Siebes. Outliers detection and localisation with wavelet based multi-

fractal formalism. In Tech. Report, CWI,Amsterdam, INS-R0008, 2000.

[29] K. Yamanishi and J. Takeuchi. Discovering outlier filtering rules from unlabeled data. In

Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 389–394,

2001.

[30] K. Yamanishi, J. Takeuchi, G.Williams, and P. Milne. On-line unsupervised learning out-

lier detection using finite mixtures with discounting learning algorithms. In Proc. ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 250–254, 2000.

[31] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for

very large databases. In Proceedings of the ACM SIGMOD Int. Conf. on Managment of

Data, pages 103–114, 1996.

29



0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900
ColorMoments data set (N=68,040; d=9; t=2; BUF=64Mb)

Number of neighbors [k]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

n=1  
n=10 
n=100
n=500

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200
CoocTexture data set (N=68,040; d=16; t=2; h=2; BUF=64Mb)

Number of neighbors [k]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

n=1  
n=10 
n=100
n=500

(a) (d)

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900
ColorMoments data set (N=68,040; d=9; t=2; BUF=64Mb)

Number of top outliers [n]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

k=10 
k=100
k=500

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200
CoocTexture data set (N=68,040; d=16; t=2; h=2; BUF=64Mb)

Number of top outliers [n]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

k=10 
k=100
k=500

(b) (e)

0 1 2 3 4 5 6 7 8 9
102

103

104

105
ColorMoments data set (N=68,040; d=9; n=100; t=2; h=2; BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

k=10 
k=100
k=500

0 1 2 3 4 5 6 7 8 9 10
102

103

104

105
CoocTexture data set (N=68,040; d=16; n=100; t=2; h=2; BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

k=10 
k=100
k=500

(c) (f)

Figure 9: Experimental results - Part 1

30



0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400
ColorHistogram data set (N=68,040; d=32; t=2; h=2; BUF=64Mb)

Number of neighbors [k]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

n=1  
n=10 
n=100
n=500

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Landsat data set (N=275,465; d=60; t=2; h=2; BUF=64Mb)

Number of neighbors [k]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

n=10 
n=100
n=200
n=500

(a) (d)

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400
ColorHistogram data set (N=68,040; d=32; t=2; h=2; BUF=64Mb)

Number of top outliers [n]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

k=10 
k=100
k=500

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Landsat data set (N=275,465; d=60; t=2; BUF=64Mb)

Number of top outliers [n]

E
xe

cu
tio

n 
tim

e 
[s

ec
]

k=10 
k=100
k=500

(b) (e)

0 2 4 6 8 10 12 14
102

103

104

105

Iteration number

C
an

di
da

te
 o

ut
lie

rs

ColorHistogram data set (N=68,040; d=32; n=100; t=2; h=2; BUF=64Mb)

k=10 
k=100
k=500

0 2 4 6 8 10 12 14 16
102

103

104

105

106
Landsat data set (N=275,465; d=60; n=100; t=2; h=2; BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

k=10 
k=100
k=500

(c) (f)

Figure 10: Experimental results - Part 2

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GAUSSIAN dataset (N=10000, d=2, n=100, k=100, t=2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CLUSTERS dataset (N=10000, d=2, n=100, k=100, t=2)

(a) (b)

Figure 11: Synthetic data sets

32



15.5 16 16.5 17 17.5 18 18.5 19
7

8

9

10

11

12

13

14

15

16

Data set size [log
2
(N)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

Gaussian data set (n=100, k=100, t=2, h=2, BUF=64Mb)

d=16 
d=32 
d=64 
d=128

4 4.5 5 5.5 6 6.5 7
7

8

9

10

11

12

13

14

15

16

Data set dimensionality [log
2
(d)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

Gaussian data set (n=100, k=100, t=2, h=2, BUF=64Mb)

N=50k 
N=100k
N=200k
N=500k

(a) (d)

0 1 2 3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

14

15

Number of top outliers [log
2
(d)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

Gaussian data set (N=100,000; k=100; t=2; h=2; BUF=64Mb)

d=16 
d=32 
d=64 
d=128

3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

14

Number of nearest neighbors [log
2
(k)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]
Gaussian data set (N=100,000; k=100; t=2; h=2; BUF=64Mb)

d=16 
d=32 
d=64 
d=128

(b) (e)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105 Gaussian data set (N=500,000; n=100; k=100; t=2; h=2; BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

d=128
d=64 
d=32 
d=16 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105 Gaussian data set (d=128, n=100, k=100, t=2, h=2, BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

N=500k
N=200k
N=100k
N=50k 

(c) (f)

Figure 12: Experimental results: Gaussian data set

33



15.5 16 16.5 17 17.5 18 18.5 19
7

8

9

10

11

12

13

14

Data set size [log
2
(N)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

clusters data set (n=100, k=100, t=2, h=2, BUF=64Mb)

d=16 
d=32 
d=64 
d=128

4 4.5 5 5.5 6 6.5 7
7

8

9

10

11

12

13

14

Data set dimensionality [log
2
(d)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

clusters data set (n=100, k=100, t=2, h=4, BUF=64Mb)

N=50k 
N=100k
N=200k
N=500k

(a) (d)

0 1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

Number of top outliers [log
2
(n)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]

Clusters data set (N=100,000; k=100; t=2; h=4; BUF=64Mb)

d=16 
d=32 
d=64 
d=128

3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

Number of nearest neighbors [log
2
(k)]

E
xe

cu
tio

n 
tim

e 
[lo

g 2(s
ec

)]
Clusters data set (N=100,000; k=100; t=2; h=4; BUF=64Mb)

d=16 
d=32 
d=64 
d=128

(b) (e)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105 Clusters data set (N=500,000; n=100; k=100; t=2; h=4; BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

d=128
d=64 
d=32 
d=16 

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105 Clusters data set (d=128, n=100, k=100, t=2, h=4, BUF=64Mb)

Iteration number

C
an

di
da

te
 o

ut
lie

rs

N=500k
N=200k
N=100k
N=50k 

(c) (f)

Figure 13: Experimental results: Clusters data set

34


