Structural Document Similarity for Integrated
Crawling and Wrapping*

Sergio Flesca'!, Giuseppe Manco?, Elio Masciari?, Luigi Pontieri?, and Andrea
Pugliese!

! DEIS, University of Calabria
2 ICAR-CNR

Abstract. We propose an architecture which combines crawling and extraction
of relevant information from Web pages available on the Web. In this architec-
ture, a primary role played by a distance-based classification methodology is
devised. Such a methodology is based on an efficient and effective technique for
detecting structural similarities among HTML documents, which significantly
differs from standard methods based on graph-matching algorithms. The tech-
nique is based on the idea of representing the structure of an HTML document
as a time series in which each occurrence of a tag corresponds to a given im-
pulse. By analyzing the frequencies of the corresponding Fourier transform, we
can hence state the degree of similarity between documents. Experiments on
real data show the effectiveness of the proposed technique.

1 Introduction

The huge amount of information available on the Web offers new perspectives for on-
line applications which can be profitably exploited for various purposes. Information
extraction agents can be developed, for investigating and collecting data available from
a (set of) Web site(s), in order to effectively exploit such data for business purposes.
Typical scenarios include, e.g., competitors monitoring, automatic news filtering, prod-
uct finding and price comparing, etc.

In order to make Web information effectively available, it is appropriate to manage
it through an enterprise information system. When it is a priori known which pages
the desired information must be collected from, it is possible to use ad hoc HTML to
XML wrappers [7, 16,10, 15], to extract information from sets of HTML pages having
a similar structure. The extracted information is encoded into XML and then inserted
into the enterprise information system. The use of HTML wrappers allows for making
high-quality semistructured data available for various purposes, with the major advan-
tage of a low human effort necessary to extract the desired information. Provided with
several sets of similarly structured HTML pages, the wrapper designer must generate
an HTML /XML wrapper for each set. Once these wrappers have been generated, they
can continuously extract information from pages, and it is only necessary to monitor
the extraction process in order to handle possible extraction exceptions.

* This work was partially supported by the National Research Council project SP2: “Stru-
menti, ambienti e applicazioni innovative per la societa dell’informazione - Legge 449/97-99”.

A main issue arises when it is not a priori known which pages contain interesting
information to be collected, so it is necessary to crawl the Web, searching for them [14,
13,18]. In this case, pages collected by crawlers are not necessarily similarly structured,
and, as a consequence, they cannot be automatically handled by wrapper programs.
Moreover, currently available tools only permit the extraction of textual information
(such as, e.g., interesting sentences) [3,2,4]. Thus, a company interested in effectively
exploiting this information needs to devise a relevant human effort to restructure the
available data and detect significant information.

In such a context, data mining techniques can be profitably exploited to classify
Web pages made available from a Web crawler. Indeed, the capability of automatically
recognizing whether the contents of a Web source can be suitably processed by an
available wrapper eases the task of extracting relevant information. Moreover, the ca-
pability of automatically detecting and collecting similarly structured pages which do
not fit to any available wrapper model, but which may, in principle, contain significant
information, can help the expert in building ad-hoc wrappers for them.

In this paper we address the problem of integrating and enhancing crawling and
wrapping systems in order to avoid (or reduce) the human effort necessary to deal with
the potentially huge amount of pages found by crawlers. The main contribution of this
work is twofold:

— we propose an architecture for the extraction of information from the Web and
its storage into an enterprise information system, where crawling and wrapping
modules with specifically designed document categorization modules are integrated
to speed up the wrapping task;

— we develop a technique aimed at HTML document categorization, suitable for both
classifying found pages w.r.t. the set of the available wrappers and identifying new
sets of similarly structured pages for which new wrappers can be defined.

Particularly relevant in the context of this paper is the technique we adopt for
measuring the structural similarity between HTML/XML documents. This technique
represents the structure of a document as a time series in which each occurrence of a
tag corresponds to a given impulse. By analyzing the frequencies of the corresponding
Fourier Transform, we can hence state the degree of (structural) similarity between
documents. The efficiency of this approach is compelling when compared to other
approaches defined in the literature [17,8]. Moreover, the technique is particularly at-
tractive also for its effectiveness: e.g., on XML documents [11], the exploitation of some
useful properties of the Fourier transform, such as energy concentration or invariance
under shifts, allows us to separate both documents belonging to different DTDs, and
documents belonging to the same DTDs. As a matter of fact, the exploitation of the
Fourier transform to check similarities among time series is not completely new (see,
e.g., [5]), and was proven successful. The main contribution of our approach is the sys-
tematic development of effective encoding strategies for HTML/XML documents, in a
way that makes the use of the Fourier Transform extremely profitable.

2 Wrapping and crawling the Web through structural
document categorization

The possibility of automatically processing Web pages permits to reduce the costs of
extracting relevant information from them. In the following subsections we first pro-
pose an architecture that permits to integrate crawling systems with wrapping ones in
order to reduce the human efforts necessary to extract semistructured information from
the Web. As this architecture exploits suitable document categorization algorithms to
detect structurally similar pages, and to select (or build) a suitable wrapper program
to process them, we next introduce the problem of structural document categorization.

2.1 An architecture for integrating crawling and wrapping

The proposed architecture, shown in Fig. 1, is devoted to extract interesting information
from the Web and to store it into an enterprise information system. As discussed above,
the aim of this architecture is to provide usable semistructured information.

The module which is responsible for finding interesting information on the Web is
the Web crawler. This module continuously crawls the Web yielding new interesting
pages. Once such pages have been found, the page classifier module classifies them
w.r.t. the available wrapper programs. Wrappers are software modules that convert
data implicitly stored in (a class of) Web documents into semi-structured data. Each
class of similarly structured pages is then forwarded to the chosen wrapper program that
translates the information they contain and store them into the enterprise information
system.

Obviously, not all the pages found by the crawler can be properly classified. In the
proposed architecture, information from unclassified pages can be manually extracted,
but such pages can be also used to build new wrappers. To this purpose, this set of
pages is also forwarded to the wrapper designer that processes them using the wrapper
designer suite. During the wrapper design process document categorization techniques
are exploited to automatically identify clusters of similarly structured pages that can
be handled by the same wrapper. The output of this process is a new set of wrapper
definitions that from then on can be used both for classifying new interesting pages
and for automatically extracting information.

Observe that, in the proposed architecture, the processes of crawling, classifying
and wrapping Web pages are kept separate, and no particular assumption is made
about them. Therefore, it is possible to integrate into this architecture any kind of
crawling technique [14, 13, 18] and wrapper generation system [10, 7,16, 15] defined in
the literature.

2.2 Structural Document Categorization

The complexity of wrapper generation systems is strongly related to the structuring
level of the Web pages they deal with. Usually, a wrapper is designed for a specific set
of Web pages exhibiting inherently similar features. Such features typically define the
context in which the relevant information to extract is located. A typical example is

Information
Pages

HT\lLfX_\].L Page set |
A/ \\mp cr
« il
4_ "Twwnn* Page set 2 Page ki
\n rapper Classifier

< w
© Data to be inserted in - N

* the EIS (XML encodedy HT\IL/X\'[L ﬁ T 3 [nterestmg
] -4- | ﬁ Fage

ENTERPRISE
INFORMATION

lnter;ersﬁngr ‘_ w ¢ l] B

Web

¢ “Wrapper \
Wrapper < | Designer |
definitions _Suie

- v

Unclasslfmhlc :

D[—_:I], ﬁﬂlgu
: —

Fig. 1. Architecture of the information extraction system

a set of HTML pages containing details (e.g., price, description, picture, etc.) over a
given set of products which can be purchased on-line. If such pages are referred to the
same product category (or even if they are extracted from the same service provider), it
is likely that the information they provide is structured in a similar way. For example,
each product can be represented as a row in a table, in which the first cell contains
either the product name or the product picture. Thus, in order to design a wrapper for
extracting pricing information from these pages, one has to assume that all the pages
under consideration have a similar structure.

The capability of recognizing structures within Web pages is fundamental in the
context of the architecture depicted in fig. 1. In particular, the page classifier and of
the wrapper design suite are mainly based on the capability of categorizing documents
according to their structure, which can be summarized as follows.

Let w be a wrapper, and 7w = {p1,...,pm} the set of Web pages used to generate
w (the training set for w). For a well-defined wrapper, it is assumed that the structural
similarity between each pair p; and p; is high. The tasks performed by the page classifier
and the wrapper generation suite can be described as follows:

1. Given a set wy,...w, of available wrappers, a new page p is associated with 7,
if (i) the structural similarity between p and each ¢ € 7, is acceptable, i.e., it is
higher than a given threshold, and (7i) no other set 7, exhibits a higher structural
similarity. If no w; exists such that p can be associated with w;, p is labelled as
unclassified.

2. A set U of unclassified pages is worth further consideration if it is possible to define
a partition of U in k clusters, where each cluster C; can be exploited as a training
set for learning a new wrapper we,.

Notice that task 1 can be efficiently accomplished by means of k-Nearest Neighbor
techniques, while task 2 is mainly a clustering problem, for which many similarity-

based approaches can be defined. Nevertheless, a major issue is the definition of the
notion of similarity among Web documents according to the structure they exhibit.

3 Detecting Structural Similarity Among Documents

The concept of structural similarity is difficult to understand by itself. Intuitively, two
documents are said to have a similar structure if they correspond in the type of ele-
ments they contain and in the way these elements are combined in the two documents.
Observe that even if it is easy to detect whether the structure of two documents is
exactly the same, this test is not useful for our aims. Indeed we would like to quantify
the similarity between the structures of two documents emphasizing the differences
that are more relevant in defining a completely different structure. For instance we
would like to consider similar two documents that have the same features but with
different regularities. In this respect, two HTML documents are similar if it is possible
to identify equivalent subparts, even if they appear in the two documents with different
frequencies.

The current literature has devoted much attention to the problem of detecting struc-
tural similarity between complex objects. In particular, several methods for detecting
the similarity of XML documents [9, 17] have been recently proposed. All these meth-
ods are based on the concept of edit distance and use graph-matching algorithms to
calculate a (minimum cost) edit script that contains the updates necessary to transform
a document into another. These techniques are generally computationally expensive,
i.e. at least O(IN?), where N is the number of elements of the two documents.

In this section we propose a different approach, which is essentially based on the
idea of associating each document with a time series representing its structure (docu-
ment encoding). By exploiting such an encoding, we check the structural similarities of
documents by looking at the corresponding time series. As we shall see, this approach
is both efficient and effective.

The approach was initially designed to detect structural similarities between XML
documents [11]. However, when dealing with Web documents, some issues arise which
need to be tackled. In the following subsections, we briefly introduce our technique for
encoding and measuring the similarity of XML documents according to their structure.
Later in this section we will show how the technique can be adapted to deal with HTML
documents. Further details on the encoding techniques for XML and on the similarity
measures for time series associated with the documents can be found in [12].

3.1 Document Encoding

An XML document is structured as a tree of elements, where each element is associ-
ated with a relevant piece of information. To our purposes, the structure of the tree
shall represent the structure of the document, and in this section we define several
ways of associating a time series with such a structure. In principle, we would like to
flatten the tree structure into a time series which summarizes the relevant features
of the original document. Notice that exploiting injective flattenings is not sufficient:
since we are interested in directly comparing two time series, we would like to make

this comparison as effective as possible, giving greater weights to the more relevant
structural characteristics of the documents.

We begin by fixing some notation. Given an XML document d, we denote by tags(d)
the tag set of the document d, i.e. the set of all the tags occurring within d; moreover,
tnames(d) denotes the set of all the distinct tag names appearing in d. Furthermore,
for an element el of d, we denote by ely the starting tag of el and respectively by el
the ending tag of el. Given a tag t with tag name tn the type of ¢ is its tag name
tn if t is a start tag or /én if ¢ is an end tag. The skeleton of d (denoted by sk(d)) is
defined as the sequence of tags appearing within d, the sequence [tg,t1, - - -, ;] such that
t; € sk(d) t; € tags(d) and t; precedes t; within d if and only if ¢ > j. Intuitively, the
skeleton of an XML document represents a description of the sole document structure.
In particular, for a tag t € sk(d), we define nestq(t) as the set of the start tags els in
d occurring before ¢t and for which there is no end tag el. matching el, and appearing
before t. The path name of an element el is defined as the concatenation of the names
of the element that enclose it in d. We also denote by I; the nesting level of the tag t,
ie. Iy = |nesty(t)|. Finally, for a given set D of documents, mazdepth(D) denotes the
maximum nesting level of tags appearing in a document d € D.

We define a document encoding mainly as a combination of a tag encoding func-
tion and a document encoding function. The effectiveness of the document encoding is
strongly influenced by the choices in the functions to adopt. Intuitively, a tag encoding
function provides a numerical encoding of a tag appearing in a skeleton of a document,
by looking at the “internal” properties of the tag. On the other side, a document en-
coding function aims at encoding a sequence of tags, by looking mainly at the features
of the sequence seen as a whole. In a sense, a tag encoding corresponds to the analysis
of the locality of a tag, while the nesting of different tags within the whole document
provides a overall perspective: we look at the document as a globally uniform entity.

Tag Encoding Functions. A tag encoding function is a function that associates a
number with each tag appearing in the document.

Definition 1. Given a set D of XML documents, a function v from tags(D) to IR is
a tag encoding function for D. «y is said to be symmetric iff for each document d € D
and for each element el € d, y(el.) = —7(els). Moreover, it is null if v(el.) = 0. O

We can assign a number n to each tag in several different ways: for instance, by
generating it randomly, or using a hash function. Obviously, a good tag encoding func-
tion should at least ensure to be injective w.r.t. tag names. The encoding functions
presented in the following mainly differ for their capability to contertualize a given
tag, i.e., to capture information about its neighbors.

The simplest tag encoding function we consider is named direct tag encoding (vq)
and is defined below. Given a set D of XML documents, we build a sequence of dis-
tinct tag names [tng,tng, - -, tng] by considering a (randomly chosen) linear order on
tnames(D). Given an element el, the direct encoding simply associates each start tag
els with the position n of the tag name tn of el in the sequence (y4(els) = n). We com-
plete the above definition by distinguishing between two possible encoding strategies
for end tags: symmetric and null.

A simple extension of the above strategy consists in assigning a value to each tag by
relating such value to the subsequent tag in the document. We denote by cpairs(D) the
pairs of types of tags < tn;,tn;+1 > such that there exists a pair of tags < t;,t;11 >,
resp. of type tn;,tn; 1, that appear consecutively in a document d € D. We associate
an integer number Pcip, tn;,,> With each pair of types of tags < tn;,tn;y1 > by
considering a randomly chosen linear order on cpairs(D). Given a pair of tags t;, ;11
(resp. of type tn;,tn;+1) appearing consecutively in a document d, the Pairwise tag
encoding function (v, (t;)) associates with ¢; the number Peyy, 1, >-

The last strategy we propose encodes a tag on the basis of its path name. Con-
sider a set of documents D, and let pnames(D) be the set of path names associated
with the elements appearing in a document d € D. Again, we use a sequence of path
names [pni,pna, - --,pny] obtained by considering a randomly generated linear order
on pnames(D), and we associate each path name pn; with its position ¢ (denoted
as pos(pn;)) in the sequence. Given a start tag els appearing in a document d with
corresponding path name pn, the Nested tag encoding function -y, (t) is defined by as-
sociating els with pos(pn). Again, we distinguish between symmetric and null version
of this encoding.

Document Encoding Functions. A document encoding is a function that associates
the structure of an XML document with a time series, i.e. a sequence of signal samples.
The behavior of the signal corresponds to the structure of the document.

Definition 2. Let D be a set of XML documents. A document encoding is a func-
tion enc that associates each d € D with a sequence of real numbers, i.e. enc(d) =
hOah17"'7hn- O

In the following we concentrate on three different document encoding functions.
Notice that all these functions are defined w.r.t. a tag encoding function that associates
tags to numbers. In particular, we assume a set of XML documents D, a document
d € D with sk(d) = [to,--,t,] and a tag encoding function ~.

A trivial encoding of d (tenc(d)) is a sequence [Sp, S, --,S,], where S; = ~v(¢;).
This encoding simply applies a tag encoding function to each tag appearing in the
skeleton of the document.

A linear encoding of d (lenc(d)) is a sequence [So, S1, -+, Sn], where Sp = 7(to)
and S; = >, -, 7(tx). The main idea underlying this type of encoding is that each
element e of the time series associated with a document d should encode more than the
information corresponding to a single tag t. Indeed, it computes a linear combination
of the codes of the tags that appear before ¢ in the document.

A multilevel encoding of d (mlenc(d)) is a sequence [Sy, Sy, --,Sy], where S; =
v(ti) % pmaxzdepth(p) -, +2 4, enesta(en) V(E) X pmazdepth(D)—L; ;g encoding func-
tion assumes that the contribution of a tag t to the document encoding must depend
on the nesting level of the tag. Intuitively, we encode ¢ according to a basis B which
takes into account both its nesting level and the path from the root to t. We usually
set B = |tnames(D)|+1 to avoid “mixing” the contributions of different nesting levels.

As an example consider the toy XML document shown below, and representing
information about books.

<xml>
<book year="1997">
<title> A First Course in Database Systems </title>
<author> Ullman </author>
<author> Widom </author>
<publisher> Prentice-Hall </publisher>
</book>
</xml>

The tag set of the XML document shown above is: {<xml>, <book>, <title>,
</title>, <author>, </author>, <author>, </author>, <publisher>, </publisher>,
</book>, </xml1>}.

For the same document tnames = {xml,book,title,author,publisher}. Observe
that tags with the same name are not considered to be the same object, so that
<author> appears twice in the tag set, whereas the set of tag names does not con-
tain duplicates.

Finally, the skeleton of the document is: <xml1>, <book>, <title>,</title>, <author>,
</author>, <author>, </author>, <publisher>, </publisher>, </book>, </xml>.
Figure 2 shows the output of the three encodings when applied to the toy document
shown above. Finally, in Figure 3 is shown the document encoding obtained using the

<ml> 1
T — < zml “hook]
TATTEE 5.",;!'“;_., 3 <hoakr <ATTRIEEear]
< T ATTRIBZyew> | c/ATTRID@year 3 [TaName [PathMams | Ewc.valw |
FrD = /AT THIByear F] SEAlr Eehl 1
e - <hills 3 T — wmiboak T
»:_l - _,_ T 3 <ATTRIB@year> | xmibook ATTRIEGyea k]
Tauhas: - -
= —_—— 2t hioe= 2wk =title= rel bookdils 4
:filﬁe:r_l E Ak =ik]
'f;,bcm = Cpublishers ipuinbshiees]
e _; <igubkskere <feooak> 10
- <ibonk> <fzmi 11
Direct encoding Paoirwise encoding MNested encoding

Fig. 2. Tag Encodings Example

encoding functions described above.

3.2 Similarity Measures

Faced with the above definitions, we can now detail the similarity measure for XML
documents. Observe that a document encoding function provides us with a particular
view of the structure of a document d, like we are visiting the tree-structure of d (in a
depth-first, left-to-right way) starting from an initial time ¢y. Considering an encoding
function, we also assume that each node (tag) is found after a fixed time interval A.
The total time spent to visit the document is then tg + NA (where N is the size

E e e m > 1)] e m| >) 1 | —
5:'.: m,':;;rfl H N Sy HlRe b T 1 S ﬁ:‘*f—“ i
BN Dée[ATTHIB Fyeun] 3 5 Hy+Ere(= AT TR Eidyeet [St -3:; ﬂi‘_f’?.‘_fé: : -
El Dref< AT TRIByrars] 3 E Syt Deer AT T DO yaar] E] l iml> -
3: Thef<lbne=) =] R FatDre o) 7 1 E mﬁﬁml?@r::{;iosuq il
5 Erepitde] 4 ER e 3 | : L!‘s.’t.':n"ﬁi'f:
3)} e Setlte [ambne] | oo
5 T e 5 o TR e e
S ~ | Lrey<hon
EN Dra=pubahir=] [£ SrtDbe (< aulbior™) B | Dfefermts
By Ltaipubishers |] EN EgrtHeg=taulhor-] El | -
S Drescibookr] o S SgrkLvarpulsiiahess | L] 1
E Dref<fzmb) 1 £ FiptDrercpatblisher |]
£ SutDe<fook>) 1
M B jptieahml=) 1]
Trivial encoding Linear encoding Multilewel encoding

Fig. 3. Document Encodings Example

of tags(d)). During the visit, as we find a start-tag, we produce an impulse, that is
assumed to stand until we reach the corresponding end-tag, and depends on a given
tag encoding e and the overall structure of the document, as it is represented by the
selected document encoding enc. As a result of the above physical simulation, the visit
of the document produces a signal hg(t), that usually changes its intensity, in the time
interval [tg,tg + NA).

Comparing two such signals can be as difficult as comparing the original documents,
since (i) comparing documents having different lengths requires to costly resizing and
alignment operations, and (i) stretching (or narrowing) signals is not a solution, since
these operations heavily affect the document structure.

A traditional approach to the comparisons of two such sequences is known in litera-
ture as Time Warping distance [19], which consists mainly in comparing every possible
stretching and narrowing of the two signals, and choosing the best matching. However,
such an approach is quite expensive (quadratic in complexity) when dealing with high-
dimensional signals. Moreover, the effectiveness of the approach has a serious drawback.
The structural similarity of two documents does not necessarily correspond to a similar
shape of the associated signals. Consider the documents shown in fig. 4

(a) book1 (b) book2 (c) book3

Fig. 4. Example book1, book2 and book3 documents

In the multilevel encoding scheme, these documents are associated with the signals
reported in fig. 5. Observe that all the signals have different shapes. Notwithstanding,

the only difference between bookl and book2 (belonging to the same DTD) stems
in the fact that bookl has two book elements, whereas book2 has three elements.
book3 has the same length as book1, but they have a quite different DTD. However,
a comparison in the time domain (accomplished using the time-warping distance) will
result in a higher similarity between bookl and book3 than between bookl and book2.

Fig. 5. Signals of book1, book2 and book3 documents

To avoid these drawbacks, it is convenient to compare the structure of two XML
documents by exploiting the Fourier transforms of the signals associated with them,
since they reveal much about the distribution and meaning of signal frequencies. Indeed,
some useful properties of such transform, namely the concentration of the energy into
few frequency coefficients, its invariance of the amplitude under shifts, and especially
its efficient computation, make it particularly attractive for the problem at hand. In
particular, it is useful to consider a document d as a window on its periodic extension,
i.e. d is d repeated infinitely many times. More formally, given an encoding hq4(t) =
enc(d) of a document d, we can define a function h4(t) as the periodic extension of the
hq(t) function. That is, we consider the time series associated with a document as a
window on the time series iLd(t) associated with the periodic extension of the structure
of the document (a document is repeated infinitely many times). As a consequence, a
comparison between two documents d; and dz can be accomplished by comparing the
frequencies of their periodic extensions hgy, (t) and hg, (t).

Given a document d, we denote as DFT(enc(d)) the Discrete Fourier Transform
of the (normalized) time series resulting from its encoding. The overall computation
of the dissimilarity between documents can be done as follows. Let dy, dy be two
XML documents, and enc be a document encoding, such that hy = enc(dy) and hy =
enc(dz). We define the Discrete Fourier Transform distance of the documents as an
approximation of the squared difference of the magnitudes of the two signals:

1
M2 2

distppr(di,da) = | Y (|[DFT(ha)](k)| - |[DET(ha)] (k)])*
k=1

where DFT is an interpolation of DFT to the frequencies appearing in both d; and dy
(and M is the total number of points appearing in the interpolation).

Notice that, when comparing two documents with length N, our method requires
O(Nlog N), since computing their transforms is O(N log N) that is compelling w.r.t.
other approaches (e.g., graph-based approaches).

3.3 Dealing with Web Documents

Providing a general definition for the structure of Web documents, without referring
to a precise application context, is quite a hard task. Indeed, even if tags are the basis
for detecting the structure of a document, they only express its syntactic structure,
disregarding the semantics of the data presented by the document. Finding heteroge-
neous representations of semantically similar information is a very common situation in
the Web. Different tags and different structurings of them could be used to represent
similar information sources. Worst, similar markup tags could be used to structure
different information sources. Such a problem is even more critical when document are
written in HTML, a language specifically designed to address presentation issues and,
thus, providing little expressiveness from a semantic point of view.

However, to the best of our knowledge, most wrapper languages [10, 16, 15] use only
the syntactic structure of Web pages to define how to extract information, while only
a few ones [7] have semantic facilities(actually very limited). Thus, in the following we
mainly concentrate on syntactic similarity, as defined by the formatting structure of
HTML tags. Despite the limited number of HTML tag names and their lack of explicit
semantics, we believe that such a simple approach can be successful in recognizing
homogeneous groups of data-intensive HTML documents. As a matter of fact, we ex-
perienced that recognizing syntactically homogeneous groups of documents is sufficient
for inducing and selecting the most suitable wrappers for handling them. Indeed, a
wrapper is able to process only pages that exhibit almost the same syntactic structure,
at least in their portion containing relevant data to be extracted. Obviously, the other
portions of the pages, for instance those containing advertisements, can exhibit very
different syntactic structure. We can nevertheless look at the overall syntactic struc-
ture since usually the irrelevant parts of the pages are smaller than the ones containing
relevant data. Furthermore, irrelevant parts are likely to have different structure even
in unrelated pages.

Finally, notice that the technique proposed in the the previous section looks at the
structure of a document as a tree of elements. The tagging structure in well-formed
XML documents naturally induces such a kind of representation; HTML pages on
the Web, instead, are often not well-formed, i.e. the end tag is not always required
to appear. However HTML parsers are able to parse not well-formed documents and
represent them as a tree of elements, following the Document Object Model [1].

4 Experiments

In this section, we present some experiments we conducted to evaluate the effectiveness
of proposed approaches in measuring structural similarity among HTML documents.

The experiments were performed on real HTML documents, gathered from different
sources in the Internet. From now on, we will denote any group of documents coming
from the same source as a class. The documents we used in our tests are about 400 and
belong to 16 classes, which can be grouped into the following 4 high-level categories
(each of them corresponding to a distinct application domain):

— E-commerce, a data set containing 102 HTML documents and consisting of 4
classes, named Fi, F5, F3 and Ey4, corresponding to 4 e-commerce Web sites;

— Museums, a data set of 96 HTML documents, coming from 4 classes, named M,
My, M3 and My, corresponding to the Web sites of 4 museums;

— Newspapers, a data set of 111 HTML documents, consisting of 4 classes, named
Ny, No, N3, Ny, corresponding to the Web sites of 4 newspapers;

— Universities, a data set of 94 HTML documents, consisting of 4 classes, named
Uy, Us, Us, Uy, corresponding to the Web sites of 4 Universities.

The classes we chose are particularly interesting to analyse from an application point
of view. Indeed, they offer the following advantages which allow to better evaluate the
effectiveness of the proposed approach:

— The general structure of each category is likely to be substantially different from
that of different categories. This is mainly due to a different characterization of the
information available in the pages, which consequently triggers different perspec-
tives for information extraction and wrapper geneation (price comparison, topic
detection, evaluation of course offerings, etc.).

— Many classes, significantly different from a structural point of view, can be found
in the same category. This allows to evaluate similarity at different grains of refine-
ment.

The evaluation of the results computed in each test relies on some a priori knowledge
about the used data set. In fact, we remember that the data considered in our tests
belong to a predefined number of classes, i.e., documents’ groups, each of them related
to a given data source. The immediate result of each test is a similarity matrix S
representing the degree of structural similarity for every pair of documents.

A natural quality measure can be the error rate of a k-Nearest Neighbor classifier.
Indeed, for each document, we can measure whether the dominant class of the k most
similar elements allows to correctly predict the actual class of the document, and con-
sider the total number of documents correctly predicted as a measure for evaluating
the effectivenss of the similarity. This measure can be refined by evaluating the average
number of elements, in a range of k elements, having the same class of the document
under consideration. Practically, we define ¢, as the average percentage of documents
in the k-neighborhood of a generic document which belong to the same class of that

document. Formally:
N .)
1 | Fi () N Cl(i)|
S)=— —
4k (S) N; min(k, |C1(i)))
where N is the total number of documents, Cl(i) represents the class associated with
the i-th document in the collection, and Fy(i), is the set of k documents having the

lowest distances from d;, according to the similarity measure at hand. In principle, a
Nearest Neighbor classifier tends to have a good performance when g is high, and
a poor performance in the opposite case. Furthermore, ¢ provides a measure of the
stability of a Nearest-Neighbor: high values of ¢, make a kNN classifier less sensitive
to increasing values k of neighbors considered.

The sensitivity of the similarity measure can also been measured by considering,
for a given group of documents z, y, z, the probability that and y belong to the same
class, and z belongs to a different class, but z is more similar to x than y is. We denote
this probability by (.5), which is estimated as

1 1 ..
6=y 2 | femr- e <2, 2 SEeb

where dg is defined as follows:

1,iff S(i,5) < S(i, k)
0, otherwise

ds(i, 4, k) = {

4.1 Experimental Results

We examined different combinations of document and tag encoding functions. In the
following, we will refer to any of such combinations as encoding scheme and we will
consider five of them: (i) Trivial, which combines the Trivial document encoding func-
tion with the Direct tag encoding one, (ii) Linear, where the Linear document encoding
function uses the Direct encoding function for tag codes, (iii) Nested, combining the
Trivial document encoding with the Nested tag encoding function, (iv) Multilevel, where
the Multilevel document encoding function is integrated with the Direct tag encoding
function, and (v) Pairwise, combining the Multilevel document encoding function with
the Pairwise tag encoding function.

Tables 1 and 2 summarize the quality values obtained when using the above defined
encoding schemes. To compute ¢, in each test we chose a neighborhood size equal to
the minimum class cardinality w.r.t. the classes considered in the test.

In general, the proposed approach has a good performance, whatever encoding
scheme is chosen among the ones previously described. A closer look inside any test
reveals that all the considered classes are recognized as sufficiently homogeneous from
a structural point of view, i.e. the similarities inside any class are generally higher than
similarities between documents of that class and the ones of the other classes. We show
this with the data set Newspapers, which is composed by 4 disjoint document classes,
namely Ny, No, N3, and N,. Each class corresponds to a news Web site and contains
the documents extracted from that site.

We recall that the direct result of each test is a similarity matrix S. In order to allow
for an immediate feeling of the similarity relation, we visualize the similarity matrix
as an image, using a scale of colors which range from white to black through several
tones of yellow, first, and red, after. The color tone of each pixel in such an image is

l test[document classes“ Trivial[Lmear[Nested[Multilevel[Pairwise

1 | E1, Eq, Es,Es (/0.0114|0.0379(0.0067| 0.0212 | 0.0329
My, My, Ms, My (|0.0442(0.0314| 0 0.1218 | 0.0829
N1, No, N3, Ny |/0.0351]0.0021 0 0.0142 0.0430
U1,Usz,Us, Uy |[0.0796(0.0375(0.0515| 0.0498 | 0.0413
E5, M3, N2, Us {/0.0148|0.0053(0.0002| 0.0167 | 0.0687
FEs, M2, N3,Us [/0.0251]0.0165|0.0552| 0.0436 0.0349
E4, My, Ny, Ur {/0.0002|0.0038(0.0318| 0.0075 | 0.0160
Table 1. Error ¢ for several data sets and methods

~N| OO | W N

l test[document classes“ Trivial[Linear[Nested[Multilevel[Pairwise‘

1| Ei,FE> E3, FEy []0.9768|0.9162]0.9808| 0.9666 | 0.9643
My, My, Ms, My [|0.95010.9518] 1 0.8300 | 0.9211
N1, Nz, N3, Ny ||0.9546]0.9914| 1 0.9643 | 0.9287
U1,Uz,Us,Us |]0.9064]0.9665(0.9144| 0.9106 | 0.9154
E5, M3, N2, Uz {/0.9640(0.9798(0.9988| 0.9786 | 0.8871
FEs, M>, N3,Us |[0.9803]0.9857|0.9529| 0.9265 | 0.9578
7 | E4, My, Ny, Uy 1 0.9924]0.9271| 0.9710 | 0.9595
Table 2. Quality measure g for several data sets and methods

| OY | W DN

proportional to the value stored in the corresponding cell of the matrix (i.e., darker
pixels correspond to higher similarity values). In the case of highly dense subrange
of similarity values, suitable distortions will be applied to the color scale, in order to
emphasize the differences among such values.

The average values of all the intra-class similarities and inter-class similarities in
S can be summarized into a matrix C'S to support a simple quantitative analysis. In
particular, given a set of documents belonging to n prior classes and a similarity matrix
S defined on those documents, an n x n matrix C'S can be produced, where the generic
element C'S(7, j) is computed as follows:

Zz,yEci,w#y S(@y) :

ffi=j
i7) = Cix(ci—1 !
05(27])7 z€C, EC‘S(r,y)

ICL 1|1X |éj I otherwise

For each of the encoding strategies under consideration, we show a graphical represen-
tation of the similarity matrix, the average of all intra-class and inter-class similarities,
and the values obtained for the error £ and the quality measure ¢, (with k = 22).

Trivial. At a first glance of fig. 6.(a), Trivial encoding seems not to be able to suitably
distinguish the prior classes in the data set. In fact, while the classes N1 and N4 are
clearly recognized, the other ones show a quite low internal similarity.

However, the quantitative results shown in fig. 6 reveal that the Trivial approach
performs surprisingly well. Indeed, for all classes the intra-class similarity values are

LM | No | Ns | Na |

N, [0.0608[0.0039]0.0068]0.0094

NN [0.0039[0.0053|0.0045]0.0039

N3[0.0068[0.0045(0.0095]0.0065

N4 [[0.0094[0.0039[0.0065]0.1536
®)

€ 0.0351
qk 0.9546
(c)

(a)

Fig. 6. Similarity Matrix (a), Average Similarities (b) and Quality Measures (c) for Trivial
Encoding Scheme

sufficiently higher than the inter-class ones, thus allowing for separating all classes
from each other. In particular, adopting an iterative approach, we can first extract
classes N1 and N4, which exhibit the highest intra-class similarity. After the removal
of these classes, the average similarities lower of about an order of magnitude, allowing

the separation of the class N3 . Finally, the second class, with the lowest intra-class
similarity, can be identified.

([& [[N [5]

N11{/0.0650(0.0047|0.0064|0.0056

N2{|0.0047|0.0076|0.0044|0.0042

N3/[0.0064|0.0044]0.0108]0.0051

N4|[0.0056]0.0042]0.0051|0.1779
(b)

measure| value

5 0.0021

@]0.9914
(c)

(a)

Fig. 7. Similarity Matrix (a), Average Similarities (b) and Quality Measures (c) for Linear
Encoding Scheme

Linear. The results shown in the right side of fig. 7 demonstrate a slight improvement
in recognizing the prior classes which Linear scheme gains with respect to the Trivial
one. As in the previous case, the last class has the highest homogeneity , while the
second exhibits the minimum average intra-class similarity. The good performance of
Linear encoding is supported by the graphical representation of the similarity matrix
in fig. 7.(a), where blocks corresponding to the intra-class similarities can be clearly
individuated.

N1 N> N3 Ny

N1{|0.0935|0.0023|0.0025|0.0060
N>{|0.0023|0.0055|0.0027|0.0025
= N3{|0.0025|0.0027|0.0057|0.0030
N4||0.0060|0.0025|0.0030(0.1518

(b)
measure|value
€ 0
k 1
(c)

(a)

Fig. 8. Similarity Matrix (a), Average Similarities (b) and Quality Measures (c) for Nested
Encoding Scheme

Nested. Both the optimal values for the overall similarity measures, shown in fig. 8.(c),
and the similarity matrix, depicted in fig. 8.(a), prove the ability of Nested scheme
to adequately evaluate structural similarity over the considered data set. Also in this
case, the classes N1 and Ny can be neatly recognized, while the other ones show lower
similarity in their inside, as fig. 8.(c) confirms. It is worth noticing that this scheme
emphasizes such a general trend, but it is also able to reduce the inter-class similarities
relatively to the intra-class one, thus allowing for better distinguishing the given classes.

Multilevel. The results produced by the Multilevel scheme substantially differ from
those presented so far, mainly because all the average similarities in fig. 9.(b) are
rather close to the maximum value of similarity allowed.

These results can be explained by taking into account the nature of the names and
positions of tags inside HTML documents, as well as the strategy of the Multilevel
document encoding function, which associates each tag with a linear combination of
the codes related to all the tags enclosing it. In particular, the weight associated with
each tag in such a combination is a power function, where the basis is the number of
distinct tag codes globally generated by the tag encoding function and the exponent

LM [N [N [Ny

V1[[0.9993]0.9930]0.9932]0.9508

N,][0.9930[0.9969]0.9932]0.9940

N;/[0.9932]0.9932]0.9990]0.9921

N4[0.9808|0.9940]0.9921[0.9993
)

measure| value

€ 0.0142

qr |0.9643
(c)

(a)

Fig. 9. Similarity Matrix (a), Average Similarities (b) and Quality Measures (c) for Multi-
level Encoding Scheme

depends on the nesting level of the tag in an inverse manner. This eventually causes
higher weights to be associated with external tags. On the other side, external tags
tend to be quite the same in all HTML documents: typically, tags such as html, head
and body are used. Therefore, when Multilevel scheme is applied to HTML documents
the obtained time series tends to have roughly similar shapes, thus motivating the high
values of similarity detected among every couple of documents.

The above described phenomenon can also explains that high-precision digits can be
used to actually evaluate the similarity among documents. Indeed, the quality measures
shown in fig. 9.(c) prove that the performances of Multilevel scheme are good enough:
in the same figure we can observe that the intra-class similarities are yet higher than
the inter-classes ones and allows for separating the classes, as confirmed by the image
in fig. 9.(a).

Pairwise. The similarity matrix in fig. 10.(a) looks rather similar to the one produced
by the Multilevel encoding scheme. Furthermore, high similarities among a most of the
documents can still be noticed, even when they belong to different classes. This behavior
is essentially due to the Multilevel document encoding, where each tag occurrence is
associated with a linear combination of the codes assigned by a given tag encoding
function to the tags enclosing that occurrence. Further, since the Pairwise tag encoding
strategy considers all the distinct pairs of consecutive tags, it is likely to produce a high
number tag codes, so emphasizing the differences in the weights that tags at different
levels are assigned to. Combining the Multilevel document encoding and the Pairwise
tag encoding functions, hence, makes the similarity between two generic documents
essentially depend on how they appear in most external elements, which we have noticed
to be nearly invariant over HTML documents.

However, even in this case the results are globally satisfactory since all the classes
can be distinguished from each others, in spite of the high inter-classes similarities and

N1{/1.0000{0.9997(0.9998]0.9997

N2(|0.9997]0.9998|0.9996|0.9997

N3{0.9998|0.9996|0.9999|0.9995

N4(/0.9997]0.9995(0.9996|0.9999
(v)

measure| value

€ 0.0430

qr]0.9287
(c)

(a)

Fig. 10. Similarity Matrix (a), Average Similarities (b) and Quality Measures (c) for Pairwise
Encoding Scheme

the quite low homogeneity of the class No, which yet exhibits the minimum average
intra-class similarity.

4.2 Remarks

In general, the proposed encoding schemes provide good performances, even in consid-
eration that HTML tag names belong to a rather little set of predefined terms, and do
not have a semantics meaning.

The dissimilar behaviors of the encoding schemes mainly depends on the different
ways they deal with the context of a tag when encoding the skeleton of a document
into a time series. As a matter of fact, very good results are obtained by Nested and,
surprisingly enough, by the rather simple schemes Trivial and Linear. In particular,
Nested tends to perform best when applied to classes from the same category. On the
contrary, the encoding schemes based on Multilevel document encoding function (i.e.
Multilevel and Pairwise) do not exhibit as brilliant results as they do over pure XML
documents [12]. In a few cases (see test 2 for Multilevel and test 5 for Pairwise, in
tables 1 and 2) they perform yet worse than other encoding techniques. This behavior
essentially comes from the fact that the multilevel document encoding function, used
in both these two schemes, mainly focuses on structural differences localized at most
external levels, which tend to be rather similar in HTML documents. In order to remedy,
we could straightforwardly improve these approaches by decreasing their dependence
on the first levels of the document structure. However, due to space limitations and
considering the overall satisfactoriness of the results achieved even by these encoding
schemes, we will omit further investigations on this issue.

5 Conclusions

In this paper we proposed an architecture for integrating crawling and wrapping of Web
pages, by exploiting structural document categorization. Document categorization is
possible thanks to a notion of structural similarity developed and analyzed throughout
the paper. The technique, originally developed for XML documents, was successfully
adapted to HTML documents, allowing for a “syntactic” structural similarity analysis.
Indeed, in specific application domains, the technique has been proved effective in
collecting homogeneous structures for wrapper induction.

It is worth mentioning alternative approaches, such as, e.g., Cosine or Jaccard sim-
ilarity, or Edit distance [17]. In general, Cosine and Jaccard similarity fail in capturing
structural information in HTML docs. Indeed, they only could allow to compare fre-
quencies of tags: as already mentioned, in HTML documents tag names and frequencies
are likely to be quite invariant. Approaches based on Edit distance have the main draw-
back of high complexity (quadratic w.r.t. the size of a document). Moreover, as already
mentioned in section 3.2, we believe that the effectiveness of the approach is sensitive to
the frequency of similar structures in different documents. We still plan a more detailed
experimental comparison on HTML documents in a future extension of the paper. Nev-
erthless, early comparisons over XML documents [12] confirm our hypothesis and show
that our technique outperforms, e.g., the approach proposed in [17].

Notice that the proposed technique can be further strengthened by enriching the
characterization of the document structure with semantic information. For example,
a viable solution can be the “annotation” of HTML tags with further data extracted
from the context in which the tag appear. Contextualizing a tag can greatly improve
the similarity analysis of documents. In particular, text analysis techniques [6] can
be easily adapted to add further specificity to an element, according to the textual
information appearing between its start and end tag. Some preliminary experiments
are very encouraging: we plan to devote further attention to this issue in the future
developments of the technique.

References
Document object model. hitp://www.w3.org/DOM/.

Mercator web crawler. http://research.compag.com/SRC/mercator/.
Spiderline crawler. http://www.spiderline.com/about/spider/.

G o=

R. Agrawal, C. Faloutsos, and A. Swami. Efficient Similarity Search in Sequence

Databases. In Procs. 4th Int’l Conf. of Foundations of Data Organization (FODO’93),

1993.

6. R. Baeza-Yates and B. Ribeiro Neto. Modern Information Retrieval. Addison Wesley-
ACM Press, 1999.

7. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction with
Lixto. In Procs. 27th VLDB Conf. (VLDB’01), pages 119-128, 2001.

8. E. Bertino, G. Guerrini, and M. Mesiti. Matching an XML Document against a Set of
DTDs. In Procs. ISMIS 2002, pages 412-422, 2002.

9. G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes in XML Document. In 18th

Int.l Conf. on Data Engineering (ICDE 2002), 2002.

Websphinx:a personal, customizable web crawler. hittp://www2.cs.cmu.edu/ rem/websphinz/.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

. V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards AUtomatic Data Ex-
traction from Large Web Sites. In Procs. of the 27th VLDB Conf. (VLDB’01), pages
109-118, 2001.

S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Detecting Structural
Similarities between XML Documents. In Procs. 5th International Workshop on the Web
and Databases (WebDB 2002), 2002.

S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Fast Detection of XML
Structural Similarity. Technical report, ICAR-CNR, 2003.

Cho Junghooa, Hector Garcia-Molinaa, and Lawrence Pagea. Efficient crawling through
URL ordering . Computer Networks and ISDN Systems, 30(1-7):161-172, 1998.

Thomas Kistler and Hannes Marais. WebL - A Programming Language for the Web.
Computer Networks and ISDN Systems, 30(1-7):259-270, 1998.

N. Kusmerick. Wrapper Induction: Efficiency and expressiveness. Artificial Intellegence
Journal, 118(1-2):15-68, 2000.

I. Muslea, S. Minton, and C. Knoblock. Hierarchical Wrapper Induction for Semistruc-
tured Information Sources. Autonomous Agents and Multi-Agent Systems, 4:93-114, 2001.
A. Nierman and H.V. Jagadish. Evaluating Structural Similarity in XML Documents. In
Procs. 5th International Workshop on the Web and Databases (WebDB 2002), 2002.

S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In Procs. 27th Int’l Conf.
on Very Large Databases, 2001.

B. Yi, H.V Jagadish, and C. Faloutsos. Efficient Retrieval of Similar Time Sequences
Under Time Warping. In 14th Int.l Conf. on Data Engineering (ICDE98), pages 201-208,
1998.

