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Abstract. A novel methodology for clustering XML documents is discussed. The underlying idea
is grouping documents which exhibit structural similarities. To this purpose, a suitable technique
for identifying meaningful matchings among the nodes of two XML document trees is investigated.
The proposed technique also allows to associate to each set of related documents a single prototype
XML document, i.e. a representative subsuming the most relevant features of the documents in the
set. Suitable techniques for both building and refining cluster-specific representatives are analyzed.
Some initial experimental results show the effectiveness of our approach.

1 Introduction

The increasing relevance of the Web as a mean for sharing information around the world has posed
several new interesting issues to the computer science research community. The traditional approaches
to information handling are ineffective in the new context: they are mainly devoted to the management
of highly structured information, like relational databases, whereas Web data are semistructured and
encoded using different formats (HTML, XML, email messages and so on).

In such context, we address the problem of clustering structurally similar Web documents, and in
particular XML documents. This problem has several interesting applications, related, e.g., to the man-
agement of Web data. For example, the detection of structural similarities among documents can help in
solving the problem of recognizing different sources providing the same kind of information [2], or in the
structural analysis of a Web site. A further interesting application domain is related to query processing
in semistructured data. Grouping semistructured documents according to their structural homogeneity
can help in devising indexing techniques for such documents, thus improving the construction of query
plans.

The problem of measuring the similarity among structured documents has been addressed in the
literature mainly from the point of view of change detection. Indeed, several methods for detecting the
similarity of XML documents [5, 4, 3] have been recently proposed. However, most of these methods are
based on tree/graph-matching algorithms and they are more concerned with the changes occurring within
the contents of the documents rather than their structural similarities. [7] proposes a fast and effective
technique for detecting structural similarities between XML documents by representing the structure of
an XML document as a time series in which each occurrence of a tag corresponds to an impulse. The
degree of similarity between documents is computed by analyzing the frequencies of the corresponding
Fourier transform.



The problem of XML document clustering is tackled in [8] as an equivalent problem of graph parti-
tioning, in which each node represents a document and edges represent links between documents. The
aim is to partition such a graph in order to visualize it on a density map which shows clusters of similar
documents, with a color corresponding to the density of documents in each square (pixel) of the map.
A classic partitional clustering technique is exploited in [6]. Here, a XML document is represented in
a vector-space model by using three different kind of features: textual features (i.e., words), tag-based
features and their combination.

The detection of structural similarities can draw upon tree matching techniques. For instance, in [11]
the identification of matchings between two relational structures is reduced to the equivalent problem of
finding a maximal clique within an association graph. However, it is not clear how such an approach can
be applied to hierarchically organized graphs such as trees, since in these cases maximal cliques do not
preserve the structural ordering.

In this paper we propose a novel methodology for clustering XML documents, focusing on the notion
of XML cluster representative, i.e., a prototype XML document subsuming the most relevant features
of the set of XML documents within the cluster. In particular, we devise a technique to compute a
representative of a set of XML documents, which is capable of capturing all the structural specificities
within the represented documents.

To this purpose, the notion of structural matching between the trees associated to two XML documents
is exploited. Structural matchings allow to both identify the structural similarities between two XML
documents and to build a representative around these similarities. We also investigate the exploitation
of merging and pruning strategies for refining XML document trees into effective cluster representatives.

2 Preliminaries on tree matching

Depending on the specific application domain, the notion of tree matching can be defined in a variety
of ways. Here it is exploited in the context of XML trees, i.e. trees resulting from a hierarchy of XML
tags, to the purpose of highlighting common skeletons. Given two XML documents, a common skeleton
is a substructure belonging to both the XML trees: precisely, it is defined as a collection of tags which all
exhibit the same name, depth level and parent node. Some definitions at the basis of our approach are
provided next.

A tree t is a tuple t = 〈rt, Vt, Et, δt〉 where Vt ⊆ IN is the set of nodes, Et ⊆ Vt×Vt is the set of edges,
rt is the root node of t, and δt : Nt 7→ Σ is a node labelling function where Σ is an alphabet of node
labels. In addition, we denote by deptht(v) the depth of a node v in t.

Definition 1 (meaningful matching). Given two XML trees t1 and t2, and v ∈ Vt1 , w ∈ Vt2 , a
meaningful matching (henceforth called m(v, w)) holds if the following conditions inductively hold:

– v = rt1 , w = rt2 and δt1(v) = δt2(w);
– otherwise, δt1(v) = δt2(w), deptht1(v) = deptht2(w) and m(a, b) holds, where (a, v) ∈ Et1 and (b, w) ∈

Et2 .
ut

Notice that, in general, multiple matchings may occur when a node in a tree has a meaningful matching
with more than one node of a different tree. Formally, given two trees t1 e t2, a node v ∈ Vt1 has a multiple
matching if ∃w′, w′′ ∈ Vt2 s. t. both m(v, w′) and m(v, w′′) hold.
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The definition below introduces a criterion exploited to overcome the multiple matching problem. The
idea is avoiding to take into account those meaningful matchings which are not effectively indicative of
strong structural similarities. The relevance of a meaningful matching is evaluated through the weighting
function wm : V × V 7→ IN, for a set V of nodes.

Definition 2 (match weighting function). Given two nodes v ∈ Vt1 e w ∈ Vt2 , the weight associated
with m(v, w) is computed as:

wm(v, w) =
{

0 if δt1(v) 6= δt2(w)
1 + sumv,w otherwise

ut

where sumv,w is recursively defined as the sum of the relevance degrees associated to the best match-
ings between the descendants of v and w. Function wm weights the prominence of a meaningful matching
in such a way that the higher its value, the more relevant the matching itself.

The set of meaningful matchings represent the common paths between two trees. A tree containing
only these common paths is defined as a matching tree, since it resembles the intersection of the original
trees.

Definition 3 (matching tree). A tree t is a matching tree (henceforth called tm) for two trees t1, t2
if ∀v ∈ Vt, ∃!v1 ∈ Vt1 and ∃!v2 ∈ Vt2 s. t. there holds m(v1, v2). A matching tree tm is optimal if its size
is maximal, i.e., if for each matching tree um 6= tm, we have |tm| ≥ |um|. ut

3 Problem Statement

Suitable clustering algorithms for semistructured documents were extensively studied in the current liter-
ature [10]. Hierarchical methods are widely known as providing clusters with a better quality, especially
for text datasets [1, 12]. Fig. 1 shows XRep, an adaptation of an agglomerative hierarchical algorithm to
our problem. Initially each XML tree (derived by parsing the corresponding XML document) is placed
in its own cluster, and a matrix containing the pair-wise tree distance is computed. Next, the algorithm
walks into an iterative step in which the least dissimilar clusters (evaluated on the basis of their cluster
representatives) are merged. As a consequence, the distance matrix is updated to reflect this merge op-
eration. The overall process is stopped when an optimal partition (i.e., a partition whose intra-distance
within clusters is minimized and inter-distance between clusters is maximized) is reached.

We address the problem of clustering XML documents in a parametric way. More precisely, the general
schema of XRep algorithm is parametric w.r.t. the concepts of distance measure and cluster representative.
Viewed in this respect, we need to investigate the conditions for the optimality of a cluster representative,
once a suitable distance measure is given.

Intuitively, a representative of a cluster of XML documents is an XML document which effectively re-
flects all the structural contents within the original cluster. The notion of representative in our application
domain can be formalized as follows:

Definition 4. Given a domain U , equipped with a distance function d : U × U 7→ IR, and a set S =
{t1, . . . , tn} ⊆ U of XML document trees, the representative of S is the tree that minimizes the sum of
the distances:

rep(S) = mint∈U

n∑
i=1

d(ti, t)
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Input: a set D = {d1, . . . , dn} of XML documents;
Output: a cluster partition P = {C1, . . . , Ck} of D.
Method:

parse XML documents in D to derive the set S = {t1, . . . , tn} of XML trees;
let initially P = {{t1}, . . . , {tn}}, and assume the representative ri = ti for each ti;
compute a tree-distance matrix Md, where Md(i, j) = d(ti, tj);
repeat

choose clusters Ci and Cj such that d(Ci, Cj) is minimized;
compute the representative for cluster C = Ci ∪ Cj ;
P := P − {Ci, Cj} ∪ C, update Md;

until P has maximal quality;

Fig. 1. The XRep algorithm for clustering of XML documents

ut

The core of the XRep algorithm is the computation of the XML cluster representative through three
main steps (each of which will be discussed in the next section):

1. Tree matching – This step suitably combines the information related to all meaningful matchings
between the XML trees in order to build an optimal matching tree.

2. Tree merging – The optimal matching tree is successively grown into a merge tree by adding to it the
uncommon substructures within the original trees.

3. Pruning of merge tree – The focus here is pruning merge tree according to a strategy which aims at
removing the least frequent nodes: this allows to obtain a representative as an XML tree.

The notion of proximity, between two patterns drawn from the same feature space, is essential to the
definition of a cluster. We mainly focus on suitably adapting a distance measure originally conceived to
deal with strings, namely Edit distance.

Edit distance between trees computes the minimum-cost sequence of operations required to convert
one given tree to another [13]. We adopt the definition of tree edit distance proposed in [9]. Given two
trees t1 and t2, the edit operations are the insertion of a node w ∈ Vt2 in t1, and the deletion of leaf nodes
from t1.

The idea of exploiting other distances, such as those originally conceived to deal with binary-valued
features, is also appealing. The standard Jaccard similarity [10] is defined as

sJ(x, y) =
a11

a11 + a10 + a01

where a11 is the number of features occurring within both x and y (i.e., number of features that equal
1), a10 (resp. a01) is the number of features occurring only within x (resp. y).

In the context of proximity among XML trees, a number of intuitive way of defining the Jaccard
similarity can be provided. For example, a first measure can be straightforwardly defined when the
feature space represent the set of labels associated with the nodes in a tree. An alternative (and more
refined) definition is given by taking into account the paths in the trees rather than only the node labels.
Precisely,

sJ(ti, tj) =
ϕi · ϕj

ϕi · ϕi + ϕj · ϕj − ϕi · ϕj

where ϕi denotes the path vector of a tree ti, i.e. the generic element ϕi[j] is equal to 1 if there exists
a path from the root of ti to the node vj , 0 otherwise. The dot product between ϕi and ϕj represents
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the number of common paths both in (i.e., it corresponds to the coefficient a11), while the dot product
between ϕi (resp. ϕj) and itself indicates the number of paths in ti (resp. tj).

A definition of Jaccard distance can be derived from 1’s complement of sJ , i.e. dJ = 1− sJ .

4 Cluster Representative

4.1 XML tree matching

We propose a dynamic-programming algorithm for building the optimal matching tree (henceforth called
t∗m) from two XML trees. The idea is to identify meaningful matchings among the nodes of two XML
trees on a per level basis. At each level, all meaningful matchings are detected and weighted by means
of function wm. Weights take into account the relevance of meaningful matchings and, as a consequence,
allow to overcome multiple matchings.

The bottom-up approach to the construction of t∗m consists of the following steps: i) matching matrix
computation, ii) removal of multiple matchings, i) optimal matching tree construction.

Fig. 2. Tree node enumeration.

Matching matrix computation. Given two XML trees t1 = 〈rt1 , Vt1 , Et1 , δt1〉 and t2 = 〈rt2 , Vt2 , Et2 , δt2〉,
all meaningful matchings among nodes at the same level within both trees are captured by a matching
matrix Mm. Mm has |Vt1 | rows and |Vt2 | columns. Fig. 2 shows that nodes in a XML tree are numbered
on a per level basis. This determines the particular block structure of matrix Mm. For each level k, a
sub-matrix Mm(k) collects the meaningful matchings among the sets of |Vt1(k)| and |Vt2(k)| nodes at
level k respectively belonging to t1 and t2.

The computation starts from the last level of the XML trees and iterates until the roots rt1 and rt2 are
reached. At the generic iteration, it verifies if there are nodes at the same level in both t1 and t2, which
exhibit meaningful matchings. In these cases the weight corresponding to each such meaningful matching
becomes the value of the entry associated to the matching nodes. Any pair of nodes with no meaningful
matching is assigned an entry value 0. Once completed, the computation of a matching matrix guarantees
that every meaningful matching has been taken into account (Fig. 3 (a)).
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(a) (b)

Fig. 3. XML tree matching: (a) matching matrix, (b) marked matching matrix and marking vector

Removal of multiple matchings. A multiple matching is denoted by the presence of at least two non-zero
values in some row and/or column of Mm. A node vi ∈ Vt1 corresponds to the i-th row in Mm. In general,
vi can match with a number of nodes belonging to t2. Let Jvi

= {j1, . . . , jh} be the set of column indexes
corresponding to these nodes. Formally, vi exhibits a multiple matching if |Jvi | > 1.

Multiple matchings can be eliminated by simply choosing the best matching for each node vi ∈ Vt1 :
such a matching corresponds to the column index j∗vi

= arg maxj1,...,jh
{Mm(i, j1), . . . ,Mm(i, jh)}. This

technique allows the construction of a marking vector Vm = {j∗v1
, . . . , j∗vn

}, whose generic i-th entry
indicates the best matching node in t2 for vi (both nodes are obviously taken at the same level). Fig. 3
(b) shows that Vm[i] = −1 for all nodes vi ∈ Vt1 with no meaningful matchings.

Optimal matching tree construction. An optimal matching tree is efficiently built from vector Vm: it
suffices that all nodes vi ∈ Vt1 such that Vm[i] = −1 are removed from t1. These nodes exhibit no
meaningful matchings and, as a consequence, are not taken into account.

4.2 Merging of XML trees

This step aims at building an approximation of the actual cluster representative. Starting from t2 and the
above vector Vm, a merge tree t1,2 is suitably formed in order to include nodes which reveal to be either
common or uncommon to both trees t1 and t2: each node is taken into account at most once. The inclusion
of non-matching nodes in t1,2 is described next. Let vi be a node in t1 with no meaningful matchings,
i.e. such that Vm[i] = −1. If the parent node of vi matches with a node wj ∈ Vt2 , i.e. Vm[π(i)] = j, vi

appears in t1,2 as a child of wj .

Merging the documents in a cluster. Both the techniques for building an optimal matching tree and a
merge tree are conceived to work with only two XML documents. We show that this does not determine
a loss of generality, since merge trees are associative and, as a consequence, can be associated even to
clusters consisting of more than two XML documents. Practically, a first merge tree t is constructed
starting from any two XML documents in a given cluster. A new merge tree t′ is successively built from
t and any other XML document in the cluster not yet taken into account. Such a task is reiterated until
all cluster documents are processed. Finally, suitable pruning operations make the resulting merge tree
become an effective cluster representative.

The following two theorems show that the merging process is associative with respect to both the
Jaccard and Edit distances.
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Let t1, t2, and t3 be three XML trees. Their merging permutations provide three different representa-
tives r′, r′′ and r′′′, defined respectively as r′ = merge(t1,merge(t2, t3))), r′′ = merge(t2,merge(t1, t3))),
and r′′′ = merge(t3,merge(t1, t2))).

Theorem 1. dJ(ti, r′) = dJ(ti, r′′) = dJ(ti, r′′′), i = 1, 2, 3.

Proof. Assume tag(t) denotes the set of tags within a generic tree t. The definition of merge tree implies
that tag(merge(t2, t3)) = tag(t2) ∪ tag(t3), tag(merge(t1, t3)) = tag(t1) ∪ tag(t3), tag(merge(t1, t2)) =
tag(t1) ∪ tag(t2). Therefore we have that: tag(r′) = tag(t1) ∪ tag(merge(t2, t3)) = tag(t1) ∪ (tag(t2) ∪
tag(t3)). Since the union operator is associative, we find that tag(r′) = tag(t1) ∪ tag(t2) ∪ tag(t3) =
tag(r′′) = tag(r′′′). This means that a merge tree is associative with respect to Jaccard distance. ut
Theorem 2. dE(ti, r′) = dE(ti, r′′) = dE(ti, r′′′), i = 1, 2, 3.

Proof. Since dE(ti, r′) = |r′| − |ti|, i = 1, 2, 3, we have to show that |r′| = |r′′| = |r′′′| to prove that a
merge tree is associative with respect to Edit distance.

Let t∗m(t1, t2) be an optimal matching tree between trees t1 e t2. Since |merge(t2, t3)| = |t2| + |t3| −
|M∗(t2, t3)|, we find that:

|r′| = merge(t1,merge(t2, t3))
= |t1|+ |merge(t2, t3)| − |t∗m(t2, t3)|
= |t1|+ |t2|+ |t3| − |t∗m(t2, t3)| − |t∗m(t1, t2)| − |t∗m(t1, t3)|+ |t∗m(t∗m(t1, t2), t∗m(t1, t3))|
= |t1|+ |t2|+ |t3| − |t∗m(t2, t3)| − |t∗m(t1, t2)| − |t∗m(t1, t3)|+ |t∗m(t1, t2, t3)|

As the same result can be obtained for both r′′ and r′′′, it holds that |r′| = |r′′| = |r′′′|. ut

Updating the frequencies of the nodes in a merge tree. The process of merging any two XML trees t1
and t2 requires the frequencies of the nodes in the resulting merge tree to be updated. To this purpose,
the frequency of a node within an original XML document, such as either t1 or t2, is assumed to be 1.
A node z belonging to a merge tree has a frequency freq(z) = freq(v) + freq(w), if z corresponds to a
meaningful matching between nodes v ∈ Vt1 and w ∈ Vt2 . Otherwise it holds that freq(z) = 0.

It is worth noticing that a frequency value is associated to the path from the root to the specific
node under investigation. In fact, by the definition of meaningful matching, two nodes match if the paths
leading from the node themselves to their respective roots are identical. This means that any node in
a merge tree cannot have a frequency value greater than that of its parent node. Node frequencies are
exploited to suitably prune a merge tree.

4.3 Representative computation

Pruning is at the basis of the refining process which turns a merge tree into an effective cluster represen-
tative. Precisely, leaf nodes are inspected for removal from the merge tree one at a time.

Any performed cut minimizes the distance between the refined merge tree and the original document
trees in the cluster. The removal of a leaf node from the refined merge tree is reiterated until its distance
from the original cluster trees cannot be further decreased. Fig. 4 shows that the pruning technique for
building a cluster representative is parametric w.r.t. the notion of distance.

Note that at each iteration the vector of leaf nodes is sorted in increasing order w.r.t. node frequencies.
It turns out that such a sorting is essential for an efficient pruning. Intuitively, removal of a node with
associated a frequency below n/2, where n is the number of documents in a given cluster, leads to a
better distance between the representative and more than a half of documents in the cluster.
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Input: a cluster C = {t1, . . . , tn} of XML trees, a tree t = 〈rt, Vt, Et, 〉 associated with C;
Output: a tree r = 〈rr, Vr, Er, 〉, with rr = rt, Vr ⊆ N , Er ⊆ E.
Method:

let initially r := t be the representative of cluster C;

compute d0 :=
∑n

i=1
d(ti, r);

let L ⊆ Nr be the set of leaf nodes in r;
repeat

for each leaf node vl ∈ L
compute r(l) = remove leaf(r, vl);

l∗ = arg minvl
[
∑n

i=1
d(ti, r(l))];

if (d∗ < d0)
Vr := Vr − {n∗

l };
until d∗ > d0;
return r;

Function remove leaf (r = 〈rt, Vt, Et〉, vl) : t′;
Nt′ := Vt − {vl};
Et′ := Vt − {elj} where elj is the edge (vl, vj) ∈ Et;
return t′ = 〈rt, Vt′ , Et′ 〉;

Fig. 4. Pruning of merge tree for representative computation

5 Evaluation

5.1 Complexity of the approach

The computational cost for the process of building a merge tree (which also involves the previous con-
struction of an optimal matching tree) from two XML document trees, t1 and t2, is O(hl3), where h
represents the number of levels within t1 and l indicates the maximum number of nodes at any level.

The removal of multiple matchings consists in finding a maximum value in each diagonal block within
the matching matrix. Specifically, the cost of eliminating multiple matchings is O(rc) for any sub-matrix
Mm(k) with dimensions |r|× |c|, where r and c represent sets of nodes at level k respectively within trees
t1 and t2.

Finally, the cost of the whole phase necessary for pruning a merge tree t is O(|Vt| · |L|). In details,
O(|L|) is the cost for each iteration and |Vt| is the maximum number of iterations. It is worth noticing
that such a phase directly follows that of building a merge tree. Moreover, its overall computational cost
can be reduced by adopting suitable optimizations which, in turn, strictly depend on the specific notion
of distance exploited.

5.2 Experimental results

In this section we describe two different kinds of experiments carried out to measure the effectiveness of
our approach to clustering XML documents. Tests were performed on synthetic data. Precisely, all XML
documents were created by an automatic generator, which extracts multiple documents in conformity
with a user-specified DTD [7]. The phase of document generation relies on various statistic models,
which together describe the differences within a class of XML documents from a same DTD. Specifically,
what makes documents of a same class differ from one another is the presence of operators ∗, ?, |,+ in
the element definitions of the original DTD. The idea behind the above generator is associating each
occurrence of these non-deterministic operators with a specific parameter modelling a random generation
process. In particular, operator ∗ is associated with a stochastic variable representing the length of a
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Fig. 5. DTDs used to generate test documents

sequence. Both operators ? and | correspond to a Bernoulli trial with a fixed success probability. In
all experiments, Bernoulli variables were randomly chosen from a uniform distribution, whereas any
stochastic variable were modelled by a log-normal function whose mean and standard deviation were
randomly extracted from a log-normal function distribution with expected values equal to 10 and 2,
respectively.

Two different kinds of experiments were performed. Though conceived to address different facets of
the effectiveness of the proposed technique, both the experimental settings compare our approach with
a traditional agglomerative hierarchical algorithm, namely UPGMA (Unweighted Pair-Group Method
using averages). UPGMA computes the similarity between an element and a cluster as the arithmetic
average of the similarities between the element and all the objects in the cluster. If the element under
investigation is also a cluster, the similarity is taken as the average similarity of all the pairs of objects
within the two clusters. The resulting hierarchies are evaluated at each level.

The first set of experiments was carried out to measure the accuracy of our approach in identifying
homogeneous groups of XML documents on the basis of their structural similarities. To this purpose, we
exploited a synthetic dataset consisting of 60 XML documents, automatically built from 5 distinct DTDs:
Fig. 5 shows the exploited document classes respectively labelled DTD1,. . . ,DTD5. These document
classes are such that any pair of DTDs exhibits, at the same time, considerable differences and similarities.
For instance, DTD1 and DTD2, are characterized by a very similar structure, though having no tag in
common.

The second set of experiments was performed on a dataset built around 7 different DTDs. Precisely, 5
DTDs were borrowed from the previous series of tests, while two entirely new document classes, namely
DTD6 and DTD7, were added. Fig. 5 shows both these documents classes. The peculiarity of both DTD6
and DTD7 consists in having a structure which is very similar to that of DTD5. 100 XML documents
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documents classes distance algorithm clusters precision recall F-measure

300 5 Edit UPGMA 5 0.6 0.9 0.72

300 5 Edit XRep 5 0.785 0.93 0.85

700 7 Edit UPGMA 11 0.43 0.785 0.63

700 7 Edit XRep 11 0.53 0.83 0.71

Table 1. Quality results

were automatically generated for each of the above DTDs. The purpose of this series of tests was to
evaluate the accuracy with which our approach distinguishes among different degrees of similarity due to
a number of similar document classes.

The results obtained were evaluated by measuring the standard precision and recall measures. These
were combined to provide values of the standard F-measure [1]. As we can see in Table 1, our approach
works better than classical UPGMA algorithm. In particular, we can observe how XRep exhibits better
values of recall, whereas it outperforms UPGMA from the precision viewpoint. In other terms, XRep
guarantees a significant gain in accuracy w.r.t. the classical UPGMA hierarchical algorithm. However,
the main advantage of XRep is more intuitive cluster description, based on our notion of representative.

6 Conclusion and further work

We presented a novel methodology for clustering XML documents, focusing on a notion of XML cluster
representative which is capable of capturing all the structural specificities within a collection of XML
documents. By exploiting the tree nature of XML documents, we provided suitable criteria of structural
tree-matching and merging. In particular, we proposed a dynamic-programming algorithm for building
an optimal matching tree from two XML trees by means of the detection of meaningful node-matchings.
We also studied properties of trees on associativity to extend merging strategies to sets of XML trees.

Our technique, based on an agglomerative hierarchical clustering algorithm, was tested in some initial
experiments showing a high degree of effectiveness. However, more experiments performed on massive
datasets need to be evaluated.

Notwithstanding, several issues have still to be addressed. For instance, in order to guarantee more
flexibility and efficiency to our approach, we have to study other clustering schemas such as partitional
ones. Furthermore, the task of pruning merge trees can be optimized according to the specific notion of
distance exploited.

Also, the notion of representative can be relaxed to involve a more flexible structure. Indeed, a single
representative can be too limited to include all the relevant features of a group of documents. To this
purpose, strategies based on frequent pattern discovery seem to be more suitable. In details, the notion of
representative can be enhanced to include a forest of (not necessarily connected) frequent substructures.
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