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1. Introduction 

The goal of this report is to introduce Problem Solving Environments (PSEs), present 
the main features of PSE Toolkits, and propose a general component-based 
architecture for Grid-based PSE Toolkits. 

Problem Solving Environments (PSE) have been investigated over the past 30 years. 
In the pioneering work “A system for interactive mathematics”, Culler and Fried in 
1963 initiated to investigate automatic software systems for solving mathematical 
problems with computers focusing primarily on applications issues instead of 
programming issues. At that time, and for many years, the term applications indicate 
scientific and engineering applications that are generally solved using mathematical 
solvers or scientific algorithms managing vectors and matrices. More recently, PSE 
for industry, commercial, and business applications are becoming to appear. 

Despite the time passed from that early research work and several research activities 
from then there in not a precise definition of what a PSE is. The following well-known 
definition was given by Gallopoulos, Houstis, and Rice: "A PSE is a computer system 
that provides all the computational features necessary to solve a target class of 
problems. …. PSEs use the language of the target class of problems " [Gall94]. They 
tried to specify the main components of a PSE by defining the following equation: 

PSE = Natural Language + Solvers + Intelligence + Software Bus 

where  

• Natural Language is specific for the application domain and natural for 
domain experts, 

• Solvers are software components that do the computational work and 
represent the basic elements around whose a PSE is built, 

• Intelligence is useful mainly in the following phases: resource location, input 
wizards (with recommender interfaces), scheduling, and analysis of results, 

• Software Bus is the infrastructure that supports the PSE and its use for 
solving scientific problems. 

Other definitions that partially agree and partially disagree with the original definition 
have been given in the latest  five year. 

According to Walker et al., "A PSE is a complete, integrated computing environment 
for composing, compiling, and running applications in a specific area" [Walk00]. 

Schuchardt and his co-authors defined PSEs as "problem-oriented computing 
environments that support the entire assortment of scientific computational problem-
solving activities ranging from problem formulation to algorithm selection to 
simulation execution to solution visualization. PSEs link a heterogeneous mix of 
resources including people, computers, data, and information within a seamless 
environment to solve a problem” [Schu02]. 
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In 2003 Cunha describes a PSE as  "an integrated environment for solving a class of 
related problems in an application domain; easy to use by the end-user; based on 
state-of-the-art algorithms. It must provide support for problem specification, resource 
management, execution services" [Cunh03]. 

As we can see, the listed definitions agree on the basic features of PSEs, but differ in 
the way they envision how PSEs can be composed and used. Moreover, the 
existence of several different definitions demonstrates that the term PSE is perhaps 
too generic and not completely investigated for reaching a full consensus in the 
scientific community. 

The main motivation for developing PSEs is that they provide software tools and 
expert assistance to the computational scientist in a user-friendly environment, 
allowing more rapid prototyping of ideas and higher research productivity. A PSE 
provides users with an interface with high-performance computing resources, 
relieving them from hardware/software details and letting them concentrate on the 
application. Collaboration, visualization, and knowledge are the three main aspects 
distinguishing a PSE from a mere interface. All these three properties must be 
included in a PSE for considering it a high-level environment for solving complex 
problems. 

As specified in the PSE definitions given above, a PSE is typically aimed at a 
particular computing domain. An advancement of the PSE concept is the PSE Toolkit 
concept. A PSE Toolkit  can be defined as "a group of technologies within a software 
architectures that can build multiple PSEs." A PSE Toolkit allows for creation of 
meta-applications from preexisting modules to meet the needs of specific solutions. It 
may support the building of solving environments on different domains  allowing 
designers to develop multidisciplinary PSEs.  

PSEs can benefit from advancements in hardware/software solutions achieved in 
parallel and distributed systems and tools. One of the most interesting model in the 
area of parallel and distributed computing is the Grid concept. Grid computing 
represents an opportunity for PSE designers and users. It can provide a high-
performance infrastructure for running PSEs and, at the same time, a valuable 
source of resources that can be integrated in PSEs and PSE Toolkits. Grids can be 
used for dynamically building geographically distributed collaborative problem solving 
environments and Grid-aware PSEs can search and use dispersed high performance 
computing, networking, and data resources. 

The remainder of the report is organized as follows. In the rest of the section we give 
a review of existing PSEs, PSEs Toolkits, and Grid-based PSE Toolkits. Section 2 
discusses main issues in designing Grid-based PSE Toolkits. Section 3 proposes a 
reference architecture for a PSE Toolkit and describes its basic components and their 
interfaces. Moreover, that section discusses main aspects in designing component-
based PSE Toolkits such as programming models, workflow design, data 
management and information services, resource management and scheduling, and 
steering. Section 4 discusses some open issues like performance models, Grid 
services, ontologies, Agents, Security, Grid Portals, and Application domain  
description. 
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1.1. Problem Solving Environments 

In this section we briefly survey some existing problem solving environments. As said 
before, the design of a PSE must tackle many different issues; the PSEs we mention 
in this section cover a broad range of approaches to architectural design, 
communication paradigm, extensibility w.r.t. other tools, support for parallel 
computation, and so on. At the end of the section, in Table 1,  we summarize the 
main features of the surveyed PSEs. 

MATLAB 

MATLAB [Math03] is a programming language-based PSE for matrix computations; it 
is probably the most widely used PSE for computational science, so that many 
University programs assume its availability to students.  

MATLAB, originally designed as a high-level interface to numerical linear algebra 
computations, is now available on most computing platforms, and includes toolboxes 
for control systems, simulation, databases, finance, fuzzy logic, signal processing, 
optimization, partial differential equations, statistics, symbolic mathematics, etc. Its 
design incorporates tools for interconnection with other systems, e.g. it makes it 
possible to use external Fortran or C modules. The benefits of this extensibility are 
manifold: for instance, there is an enormous amount of Fortran scientific libraries 
available, and it is possible to use mature compiler technology for code optimization 
in order to obtain high performance on the underlying computing platform.  

MATLAB provides interfaces to a number of generic facilities such as Web browsers 
and ActiveX controls; through a two-way interconnection, moreover, MATLAB can be 
used as a computational engine from an external program. More recently, MATLAB 
has also been extended to handle parallel computation through exploitation of its 
programming language’s operator overloading feature. 

PELLPACK 

PELLPACK is an evolution of the ELLPACK PSE [Pell03]. ELLPACK was designed 
to support the solution of second-order elliptic PDEs in two and three dimensions and 
to evaluate software for such computations. It follows a modular programming 
paradigm which is supported by a domain-specific PDE language and a variety of 
elliptic PDE solvers. The PDE language interface allows the user to develop high-
level programs that can be used to solve nonlinear and time-dependent PDEs. 

PELLPACK provides many PDE solvers and facilities for parallel processing, along 
with powerful discretization techniques and an advanced GUI. In PELLPACK, a 
problem is represented by the PDE objects involved: PDE model or equations, 
domain, conditions on the domain boundary, solution methods, and output 
requirements.  

PELLPACK has a software architecture consisting of five main layers. The GUI 
allows to specify the PDE problem and supports the solution process and various 
postprocessing analyses, with the help of a knowledge-based system assisting users; 
a translation layer, for transforming specifications into a high-level PDE-oriented 
language; the compilation layer, where a preprocessor compiles the PELLPACK 
language into a Fortran driver program and then compiles and links it with numerical 
libraries containing the user-specified solver methods; the execution environment, 
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which assists users in running programs, and is responsible for locating and 
allocating hardware and software resources and for managing data movement 
operations; the solver library, provided with suitable interfaces that allow them to be 
composed and to interact with the whole system. 

PELLPACK has been used for solving problems in physics (liquid crystal droplets, 
proton flux propagation), thermal field analysis, fluid dynamics, semiconductors, 
geophysical research, electromagnetic field analysis, thermo-elasticity, structural 
analysis, and other scientific and engineering applications. 

An Internet-based client-server implementation of PELLPACK is WebPDELab. 
WebPDELab adds to PELLPACK further layers, specifically addressing network-
based computing issues. The WebPDELab server is accessed from a Web site, by 
using a Java-enabled browser. Moreover, a PELLPACK GUI is made available 
through a Java-based remote display system using the TCP/IP protocol. A 
WebPDELab manager controls all the user-server interactions. Users may download 
files generated by PELLPACK to their own machines before terminating their 
computing sessions, and they may upload files to WebPDELab at the start of 
subsequent sessions. 

ECCE 

ECCE [Schu02] is part of the Molecular Science Software Suite (MS3) [Mol03] 
developed at the Pacific Northwest National Laboratory. MS3 is an integrated suite 
for chemical applications that makes use of advanced computational chemistry 
techniques on high-performance, parallel computing systems. MS3 consists of three 
components: NWChem providing advanced computational chemistry techniques, 
ParSoft providing efficient and portable libraries and tools that enable NWChem to 
run on a wide variety of parallel computing systems, and ECCE that is a suite of tools 
integrated within a PSE. Such tools are used in many phases: management of 
projects, construction of complex molecules and basis sets, selection of input 
options, distributed execution of computational models, real-time monitoring, and 
post-run analysis.  

The ECCE architecture addresses component-based application development, 
distributed code execution, and data and metadata management. Each ECCE 
component is designed to assist the user with a single aspect of the research 
process. The architecture is rather complex but it provides many benefits, including 
the capability to deploy tools independently while simplifying the development 
process. ECCE uses a publish/subscribe event system to coordinate activities 
between applications. ECCE jobs can be launched to UNIX workstations or any 
cluster or supercomputer running different batch systems. A data management 
component for persistently tracking the data and metadata associated with the 
chemistry research process underlies the ECCE framework. ECCE is deployed at 
multiple sites around the world. Its users have access to a wide variety of computing 
environments ranging from major government-run computing centers with large 
numbers of resources, to individual researchers running primarily on their desktops, 
to commercial companies running entirely behind a firewall. 

CAMEL 

CAMEL [Digr96] is a software environment based on the cellular automata model, 
and designed to support the development of high-performance applications, which 
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has been successfully used for many problems such as the simulation of the lava 
flows of the last Etnean eruption and other fluid flow models, for image processing, 
freeway traffic simulation and combustion process modeling. In CAMEL, cellular 
automata models are defined through a programming tool called CARPET (CellulAR  
Programming EnvironmenT). CARPET uses a high-level sequential language related 
to C with some additional constructs to describe the rules of the transition function of 
a single cell of a cellular automaton. The main features of CARPET are the possibility 
to describe the cell state as a structured variable composed of typed fields 
(substates), and the simple definition of complex neighbourhoods that can also be 
time-dependent. Finally, CAMEL provides a user interface that allows users to steer 
simulations and graphically visualize their output.  

CAMEL exploits the computing power of a highly parallel computer hiding 
architectural issues from users in programming computational science applications. It 
has been implemented on a message-passing MIMD parallel computer, and this 
maked it very scalable w.r.t. the number of processors or the size of automata. The 
architecture comprises three main components: the Master Node, the  Graphic Node, 
and the Parallel Engine. In particular, the Parallel Engine consists of a number of 
identical nodes on which the cellular automaton is executed. The Master Node 
contains a Controller, which coordinates the file system, the UI, and the individual 
processes implementing Macrocells, i.e. clusters of elementary cells that constitute a 
partition of a cellular automaton. Each macrocell executes the state transition 
function defined by a user for all the cells that compose a partition. On the Graphic 
Node, the  Graphical Interface process displays on a screen the state of the 
simulated system, along with information such as the displayed substates, the current 
iteration step, the  visualization step, and the step of saving. Finally, since for a large 
class of cellular automata problems the areas of active cells are restricted to one or 
few domains, CAMEL uses a load balancing strategy that also avoids to compute the 
next  state of cells that belong to an inactive region.  

SCIRun 

SCIRun [Scir03] was initially an architecture designed to solve specific problems in 
computational medicine; afterwards, it was made applicable in other computational 
science and engineering problem domains. To this end, SCIRun has been made 
extensible through bridging constructs; also entire derived systems appeared, such 
as BioPSE and Uintah (described in the following). Three types of bridging are 
provided in SCIRun: (i) assimilation bridging, where existing data or functionality are 
rewritten for the SCIRun system; (ii) library bridging, where calls are made into third-
party libraries; (iii) I/O bridging, where data are exchanged through files, sockets, or 
databases, and external functionality are invoked through system calls. 

The SCIRun architecture is now the basis for a suite of scientific PSEs that allow for 
the interactive construction, debugging, and steering of large-scale scientific 
computations. SCIRun allows the user to interactively control scientific simulations 
while the computation is in progress. This control allows the user, for example, to 
vary boundary conditions, model geometries, and/or various computational 
parameters during simulation. SCIRun uses a data-flow programming model; a 
dataflow network is assembled by connecting together modules, such that each 
module performs a computational or visualization algorithm. A network is constructed 
in a visual programming environment that allows for a convenient and natural 
approach to both application construction and runtime steering.  
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In SCIRun, task parallelism is implemented by simultaneously executing multiple 
modules according to the dataflow graph. Moreover, it allows for the explicit 
parallelization of various modules in a data-parallel (SPMD) fashion. A set of worker 
threads are mapped to various processors and cooperate in accomplishing the 
function of the module. SCIRun uses an object-oriented design, leveraging a 
powerful toolbox of C++ classes that have been tuned for scientific computing and 
operation in a multi-threaded environment. SCIRun uses threads to facilitate parallel 
execution, to allow user interaction while computation is in progress, and to allow the 
system to change variables without interrupting a simulation. A layer provides a 
simple C++ interface to threads and provides abstraction from the standard used to 
implement them. 

 Application domain Main features 

MATLAB Matrix computations 
• Toolboxes for different applications 
• Interfaceable with libraries written in other languages, 

or usable as underlying computational engine 
• Native support for parallel computation 

PELLPACK 
Second-order elliptic  

partial differential equations 

• Facilities for parallel processing 
• Knowledge base for helping users 
• Execution environment managing resource allocation 

and data movement 
• WebPDELab: Internet-based client-server version 

ECCE Computational chemistry 

• Part of the Molecular Science Software Suite (MS3) 
• Component-based application-development 
• Publish/subscribe event system for coordinating 

applications 
• Data/metadata tracking component 

CAMEL Cellular automata 

• Cellular automata modeling based on a high-level 
programming language 

• Complete abstraction from architectural issues 
• Implementation on a message-passing MIMD parallel 

computer 
• High scalability w.r.t. the number of processing units 

and automata states 

SCIRun 
Computational science 

and engineering 

• Extensibility through assimilation (rewriting of 
functionalities), library (direct calls), and I/O (standard 
I/O mechanisms) bridging 

• Object-oriented design 
• Dataflow network of computation/visualization 

modules 
• Inter- and intra-module parallelization 
• BioPSE: bioelectric field-specific extension 
• Uintah: CCA programming model and support for 

shared-memory/message-passing models 

Table 1. Problem-solving environments 
 

Two interesting PSE built atop SCIRun are BioPSE and Uintah. BioPSE is designed 
to support bioelectric field research problems. The BioPSE package consists of 
modules and data structures specifically customized for bioelectric volume conductor 
problems. These pieces include modules for bioelectric field finite-element 
approximation, boundary condition assignment, and inverse source localization. The 
major undertaking of the BioPSE project, however, has been to apply solid software 
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engineering approaches to make the SCIRun code and underlying software 
architecture more robust. Uintah extends the SCIRun architecture by adding a CCA’s 
interchangeable component programming model, and support for running under a 
mixed shared-memory/message-passing model. These additions make Uintah a 
scalable and high-performance system capable of solving large-scale complex 
scientific problems.  

1.2. PSE Toolkits 

The PSE environments discussed in the previous paragraph are all tailored to a 
specific application domain. However, in many cases these tools replicate the same 
functionalities and the same solutions to solve similar problems in different domains. 
Indeed, only limited parts of PSE environments are strictly related to specific domains 
and hence not replicable from one system to another; many other parts and 
components are common and should be reused.  

Several PSE environments were designed with the purpose of providing users a set 
of tools for building multiple PSE systems for a large range of application domains. 
These environments are referred to as “PSE Toolkits”. In designing a PSE Toolkit, 
developers provide the most important components for building up PSEs and a way 
to compose them when a specific PSE must be developed. Therefore, PSE Toolkit 
allows for developing domain-specific PSEs, thus creating meta-applications from 
pre-existing modules on different domains. In the following we introduce some widely 
adopted PSE Tookits. 

NetSolve 

The NetSolve project [Nets03], underway at the University of Tennessee at Knoxville 
and the Oak Ridge National Laboratory, was initially tailored to alleviate domain 
scientists to the tedium of installing and managing the software on heterogeneous 
machines. Today, NetSolve is evolved into a PSE tollkit providing uniform access to a 
wide assortment of software libraries. 

NetSolve is a client/agent/server software in which the client issues requests to 
agents who allocate servers to satisfy those requests; the server(s) then receives 
inputs for the problem, does the computation and returns the output parameters to 
the client. NetSolve allows clients to use limitless software resources and to gain 
access to remote computers with complete opacity. 

The client interface is available in C, Fortran, Matlab. Interfaces allow the user to 
control execution of remote procedures, and provide two basic functions to launch 
synchronous (blocking) or asynchronous (non-blocking) requests. 

The NetSolve agent keeps track of what resources are available and on which 
servers they are located. A database maps software resources to hardware 
components, thus providing a complete picture of the NetSolve system. To maintain 
the database, each server registers to an agent, and sends to that agent a “problem 
description” for each problem it can solve. The NetSolve acts as a resource broker: it 
uses both static and dynamic information (speed and number of processors, solution 
algorithms, server loads, network delays, input data sizes etc.) to decide which server 
component should be used to serve a request. 
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Three major features are mandatory for NetSolve servers: uniform access to 
software, configurability, and managing of software installation on heterogeneous 
computers. 

Applications that have taken advantage of the NetSolve paradigm range from 
mathematical solvers to microbiology, image visualization, socio-economical 
applications etc. 

PSEWare 

The PSEWare project [Psew03], funded by the U.S. National Science Foundation, 
involves the California Institute of Technology, the Indiana University, The Los 
Alamos National Laboratory, the Drexel University, and the University of California at 
Irvine. The project is focused on symbolic specifications of applications, methods of 
reuse of object structures for user interfaces and parallel execution, component 
technologies for PSEs, and collaboration technologies for problem solving. 

The view of PSEWare is that scientists and engineers should be able to specify a 
problem symbolically with the notation that they use in communication with each 
other. PSEs should help them to refine their symbolic specification to efficient parallel 
object-oriented programs. Object-oriented interfaces facilitate the reuse of 
components for large classes of scientific applications, and the collaboration among a 
distributed group of users working at the same application. 

PSEWare research is focused on methods and tools to develop PSEs as opposed to 
PSEs for a specific application. Generic PSEWare components and tools give non 
experts in computer science the ability to rapidly and easily construct their own PSEs.  

PSEWare application areas include cosmology modeling, sparse linear system 
analysis, collaboration systems for mixed symbolic-numeric computing, soliton 
exploration. 

VDCE 

The Virtual Distributed Computing Environment [Topc97] is a meta-computing 
environment developed at Syracuse University. VDCE can be used as a problem 
solving environment for large scale network applications, enabling users to focus on 
the solution approach rather than caring about technical details. 

VDCE supports software development in three phases:  

1. application design and development phase; 

2. application configuration and scheduling phase; 

3. application execution and runtime phase.  

In the first phase, a program is defined as a directed graph where nodes denote 
computations and links denote communication and synchronization between nodes. 
The Application Editor module of VDCE is a web-based graphical user interface for 
designing application flow graphs describing parallel and distributed applications.  

In the second phase each task of the application is scheduled to the best available 
resource. This phase is managed by the VDCE Runtime System, in particular 
through the Mapping Module (that individuates the candidate resources), and the 
Estimation Module (that estimates the performance of each candidate resource and 
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identifies the one which gives the best performance in terms of total execution time). 
The scheduling approach uses a combination of performance analysis, measurement 
and benchmarking techniques to estimate the execution time of a task running on 
VDCE hosts under varying load conditions.  

In the application execution/runtime phase, the application is started, run and 
managed on the assigned machines. The VDCE Runtime System of VDCE sets up 
the execution environment for each submitted task, managing the execution to meet 
the requirements of the application. 

The VDCE problem solving environment provides a large set of task libraries to solve 
applications in different domains, such as C3I (command, control and 
communication) applications and matrix algebra applications. 

Ninf 

The Ninf Project [Ninf03] aims at developing Grid technologies which allow users to 
access various resources such as hardware, software and scientific data on the Grid 
with an easy-to-use interface. The Ninf system is a Grid Remote Procedure Call 
(RPC) system which has been developing by the Ninf Project. The Ninf system 
provides RPC facilities designed to provide a programming interface similar to 
conventional function calls and enable the user to build Grid-enabled applications. 

Ninf-G is a reference implementation of a Grid RPC system using the Globus Toolkit. 
Ninf-G provides Grid RPC APIs which are discussed for the standardization at the 
Advanced Programming Models Research Group of the Global Grid Forum. 

 Application domains Main features 

NetSolve 

• mathematical solvers  
• microbiology 
• image visualization 
• socio-economical applications 

• uniform access to software libraries 
• resource broker functionalities 
• client/agent/server paradigm: agents allocate 

server resources requested by clients 
• remote execution control through client interface 

PSEWare 
• cosmology modeling  
• sparse linear system analysis  
• symbolic-numeric computing 
• soliton exploration 

• symbolic specification of applications 
• tools for building efficient parallel object-oriented 

programs 
• reuse of components for large classes of 

scientific applications 

VDCE 
• C3I (command, control  

and communication) 
• matrix algebra applications 

• support for three-phases software development: 
application design, scheduling and execution 

• support for workflow modelling 
• estimation and mapping modules to individuate 

and allocate candidate resources 

Ninf 
• data-intensive applications 
• matrix calculation 
• network simulation 

• based on the Remote Procedure Call paradigm 
• access to hardware and software resources with 

easy-to-easy interfaces 
• Ninf-G is a reference implementation of a Grid 

RPC system using the GlobusToolkit 

Table 2. PSE Toolkits 
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2. Towards a Grid-based PSE Toolkit 

PSEs are typically designed with a specific application domain in mind. This 
approach simplifies the designer task and generally produces an environment that is 
particularly tailored for a particular application class. On the other hand, this 
approach does limit portability of solutions. That is, the resulted PSE cannot be 
generally used in different application domains without  re-designing and re-
implementing most or all the environment. PSE portability, extensibility, and flexibility 
can be provided using the PSE Toolkit model. According to this approach a general 
framework is provided for developing PSEs. 

A PSE Toolkit is a group of technologies within some software architectures that can 
build multiple PSEs. In designing a PSE Toolkit, developers provide the most 
important components for building up PSEs and a way to compose them when a 
specific PSE must be developed. Therefore, a PSE toolkit allows to develop domain-
specific PSEs, thus creating meta-applications from pre-existing modules on different 
domains. According to Walker, the main features of a PSE Toolkit are: 

• Problem-oriented; 

• Integrated view; 

• Graphic (visual); 

• Flexible and open; 

• Collaborative; 

• Distributed; and  

• Persistent. 

 
PSE users, which often expect to be interfaced with a tightly integrated environment, 
must have transparent access to dispersed and de-coupled components and 
resources. Handling with distributed environments is another main issue in PSEs 
design and use. Distributed and parallel computing systems are used for running 
PSEs both to get high performance and using distributed data, machines, or software 
modules. 

Today the Grid is a high-performance distributed infrastructure that combines parallel 
and distributed computing systems. The Grid is a new distributed computing 
infrastructure whose main goal is resource sharing and coordinated problem solving 
in “dynamic, multi-institutional virtual organizations”. 

A Grid definition by Foster clarifies the main goal of the Grid: “By providing scalable, 
secure, high-performance mechanisms for discovering and negotiating access to 
remote resources, the Grid promises to make it possible for scientific collaborations 
to share resources on an unprecedented scale, and for geographically distributed 
groups to work together in ways that were previously impossible”.  

The role of the Grid is fundamental, since it potentially provides an enormous number 
of dispersed hardware and software resources that can be transparently accessed by 
a PSE toolkit. In Grid environments instruments may be connected to the computing, 
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data, and collaboration environments and all of these may be coordinated for 
simultaneous operation. Moreover, vast quantities of data may be received from 
instruments and simulations, and catalogued, archived, and published. 

Through the combination of PSE Toolkit issues and Grid features  exploitation for 
distributed PSE design we obtain the possibility to design Grid-based PSE Toolkits. 
Although some PSE Toolkits that use the Grid have been recently defined,  the 
mechanisms for producing Grid-based PSEs are not yet standardized.  

Objective of this section is to identify a set of guidelines and general requirements 
useful to define a reference architecture for a grid-based PSE toolkit. Along this 
direction we first give a short review of some of the major grid-based PSE toolkits, so 
as to illustrate their main characteristics and the different kind of approaches 
adopted. 

2.1. Grid-based PSE Toolkits 

WebFlow 

The WebFlow toolkit [Akar98] is implemented as an object Web three-tier system. 
Tier 1 is a high-level front end for visual programming, steering, run-time data 
analysis, and visualization, built on top of Web and object oriented commodity 
standards. A distributed object-based, scalable, and reusable Web server and an 
object broker middleware form tier 2. Back-end services compose tier 3. In particular, 
high-performance services are implemented using the Globus toolkit. WebFlow 
provides a job broker to Globus, while Globus takes responsibility of actual resource 
allocation. 

The WebFlow front-end allows to specify user’s task in the form of an Abstract Task 
Descriptor (ATD). The ATD is constructed recursively and may comprise an arbitrary 
number of subtasks. The lowest level, or atomic, task corresponds to the atomic 
operation in the middle tier, such as instantiation of an object, or establishing 
interactions between two objects through event binding. 

When specifying a task, the user does not have to indicate the resources to be used 
to complete the task, but instead may specify requirements that the target resource 
must satisfy in order to be capable of executing the job. The identification and 
allocation of the resources is left to the discretion of the system. Once the resources 
are identified, the abstract task descriptor becomes a concrete job specification. 

A mesh of CORBA-based WebFlow servers (WS) currently gives the WebFlow 
middle tier. One of these servers, the gatekeeper server, facilitates a secure access 
to the system. The middle-tier services provide the means to control the life cycles of 
modules and to establish communication channels between them. Services provided 
by the middle tier include methods for submitting and controlling jobs, methods for file 
manipulation, methods for providing access to databases and mass-storage, as well 
as methods to query the status of the system, the status of the users' applications, 
and their components. 

WebFlow applications range from land management systems to quantum simulations 
and gateway seamless access. 
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GridPort 

GridPort [gPort023] is a collection of services, scripts and tools that allow developers 
to connect Web-based interfaces to the computational grid behind the scenes. The 
scripts and tools provide consistent interfaces between the underlying infrastructure 
and security, and are based on grid technologies such as Globus and standard Web 
technologies such as CGI and Perl. GridPort is an open architecture that is designed 
to be flexible and capable of using other grid services and technologies as these 
become available. In addition, GridPort is intended to provide a framework that other 
application developers and computational scientists can use to write their own web 
pages that access and use GridPort Services.  

GridPort is designed so that multiple application portals share the same installation of 
GridPort, and inherit connectivity to the computational Grid that includes interactive 
services, data, file, and account management, and share a single accounting and 
login environment. 

GridPort is the most well-known toolkit widely used for building Grid portals. The 
representative example is Hot-Page, which provides users with a view of distributed 
computing resources and allows individual machines to be examined about status 
(up or down), load, etc. Besides examining machines, users can access files and 
perform routine computational tasks. Users should use Perl when registering a new 
Grid application. Back-end application programs must be built in Globus API, which 
takes a great deal of efforts for the user. 

XCAT Science Portal 

The XCAT Grid Science Portal [Kris01] is an implementation of the NCSA Grid 
Science Portal concept, that is a problem solving environment that allow scientists 
the ability to program, access and execute distributed applications using grid 
resources which are launched and managed by a conventional Web browser and 
other desktop tools. In such portals, scientific domain knowledge and tools are 
presented to the user in terms of the application science, and not in terms of complex 
distributed computing protocols.  

XCAT-SP is based on the idea of an “active document” which can be thought of as a 
“notebook” containing pages of text and graphics describing the science of a 
particular computational application and pages of parameterized, executable scripts. 
These scripts launch and manage the computation on the grid, and results are 
dynamically added to the document in the form of data or links to output results and 
event traces. XCAT-SP is a tool which allows the user to read, edit, and execute 
these notebook documents. 

The portal is a workstation-based specialized “personal” web server, capable of 
executing the application scripts and launching remote grid applications for the user. 
The portal server can receive event streams published by the application and grid 
resource information published by Network Weather Service (NWS) or sensors. 
Notebooks can be “published” and stored in web based archives for others to retrieve 
and modify. The XCAT Grid Science Portal has been tested with various applications, 
including the distributed simulation of chemical processes in semiconductor 
manufacturing and collaboratory support for X-ray crystallographers. 
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Cactus 

The Cactus Code and Computational Toolkit [Cact03] is the result of a common effort 
(by many computer scientists and physicists) to provide computational physicists with 
a flexible, modular, portable and importantly easy-to-use, programming environment 
for large-scale simulations. One of the design requirements for Cactus was to provide 
application programmers with a high level set of APIs able to hide features such as 
the underlying communication and data layers. These layers are implemented in 
modules (in Cactus terminology thorns), which can be chosen at runtime, using the 
best available technology for a given resource, e.g., MPI, PVM, pThreads, SHMEM, 
OpenMP for communication, or HDF5, IEEE IO, Panda IO for parallel data I/O. 

Much of the Cactus architecture is influenced by the vast computing requirements of 
some of the main applications using the framework, including numerical relativity and 
astrophysics. These applications, which are being developed and run by large 
international collaborations, require Terabyte and Teraflop resources, and will provide 
an ideal test-case for developing Grid computing technologies for simulation 
applications. 

Main features of Cactus are: (i) automatic and configurable compilation system for 
most machine architectures, (ii) core code and toolkits written in ANSI C for 
portability, (iii) parallel I/O capabilities compatible with distributed simulations, (iv) 
parallel checkpointing and recovery of simulations, including distributed simulations, 
(v) steering interface for dynamically changing the values of parameters during a 
simulation, (vi) existing applications already trivially Grid-enabled using the Globus 
MPI implementation MPICH-G2, and, (vii) existing modules to implement remote 
visualization (streaming data with HDF5), remote monitoring and steering of 
simulations (e.g. using a module which provides a simulation with its own web 
server), parallel I/O, etc. 

DataCutter 

DataCutter [Beyn00] is an application framework, developed at University of 
Maryland. It provides support for developing data-intensive applications that make 
use of scientific datasets in remote/archival storage systems across a wide-area 
network. DataCutter uses distributed processes to carry out a rich set of queries and 
application specific data transformations. DataCutter also provides support for sub-
setting very large datasets through multi-dimensional range queries. It uses a multi-
level hierarchical indexing scheme, based on R-tree indexing methods, to ensure 
scalability to very large datasets. 

The programming model implemented in DataCutter is loosely based on the stream-
based programming model. In the filter-stream programming model, part of an 
application is represented by a collection of filters. A filter is a portion of the full 
application that performs some discrete function. Filters can pre-disclose dynamic 
memory and scratch space needs so that the required space can be allocated by the 
underlying runtime system on behalf of the filter. Communication with other filters is 
solely through the use of streams. A stream is a communication abstraction that 
allows fixed sized un-typed data buffers to be transported from one filter to another.  

A runtime system infrastructure, called the DataCutter Filtering Service, provides 
support for the execution of applications that are structured in the filter-stream 
programming model. The lifetime of a filter is defined by the amount of work required 
by the application. Within this lifetime, a filter can process multiple logically distinct 
portions of the total workload. This is referred to as a unit-of-work, and provides an 
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explicit time when adaptation decisions may be made while an application is running. 
A unit-of-work starts with the submission of a work description to a running set of 
filters, and ends when the last filter finishes processing the work. A collection of 
running filters that operate collectively to process a unit-of-work is referred to as a 
filter instance. An application may have multiple concurrent filter instances. 

System Main features 

WebFlow 
• visual programming, steering, run-time data analysis, and visualization  
• implemented as a Web three-tier system  
• based on Globus Toolkit 

GridPort 

 

• is the most well-known toolkit widely used for building Grid portals  
• allow developers to connect Web-based interfaces to the computational 

grid behind the scenes  
• Perl is used to register a new Grid application, while Back-end 

application programs must be built in Globus API 

XCAT Science Portal 

 

• based on the NCSA Grid Science Portal concept 
• an “active document” describes the science of an application along with 

parameterized, executable scripts 

Cactus 

• programming environment for large-scale simulations from numerical 
relativity to astrophysics  

• parallel I/O, checkpointing and recovery, remote monitoring and steering 
• support for MPICH-G2, PVM, pThreads, OpenMP, IEEE IO 

Data Cutter 

• provides support for developing data-intensive applications including 
sub-setting of very large datasets through multi-dimensional range 
queries  

• uses a multi-level hierarchical indexing scheme, based on R-tree 
indexing methods, to ensure scalability 

• implements the stream-based programming model  

Knowledge Grid 

• provides tool and services for Parallel and Distributed Knowledge 
Discovery 

• includes a metadata management for the description of resources 
characteristics, such as data sources, data mining software, results of 
computations, etc. 

• the RAEMS services tries to find a mapping between an execution plan 
and available resources on the grid, satisfying user, data and algorithms 
requirements 

Table 3. Grid-based PSE Toolkits 

Knowledge Grid 

The Knowledge Grid [Cann03b] is a software infrastructure for Parallel and 
Distributed Knowledge Discovery (PDKD). The Knowledge Grid uses basic grid 
services such as communication, authentication, information, and resource 
management to build more specific PDKD tools and services. Knowledge Grid 
services are organized into two layers: core K-grid layer, which is built on top of 
generic grid services, and high level K-grid layer, which is implemented over the core 
layer. The core K-grid layer comprises two basic services: Knowledge Directory 
Service (KDS) and Resources Allocation and Execution Management Service 
(RAEMS). The KDS manages the metadata describing characteristics of relevant 
objects for PDKD applications, such as data sources, data mining software, results of 
computations, data and results manipulation tools, execution plans, etc. The goal of 
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RAEMS services is to find a mapping between an execution plan and available 
resources on the grid, satisfying user, data and algorithms requirements and 
constraints.  

The high level K-grid layer comprises the services used to build and execute PDKD 
computations over the grid. The Data Access Service (DAS) is used for the search, 
selection, extraction, transformation and delivery of data to be mined. The Tools and 
Algorithms Access Service (TAAS) is responsible for the search, selection, 
downloading of data mining tools and algorithms. The Execution Plan Management 
Service (EPMS) is a semi-automatic tool that takes the data and programs selected 
by a user, and generates a set of different possible execution plans. Execution plans 
are stored in the KEPR to allow for the implementation of iterative knowledge 
discovery processes, e.g. periodical analysis of the same data sources. The Results 
Presentation Service (RPS) specifies how to generate, present and visualize the 
PDKD results (rules, associations, models, classification, etc.), and offers methods to 
store in different formats these results in the KBR. 

2.2. Roadmap to Grid-based PSE Toolkits 

Several aspects of Grids may simplify the process of developing and maintaining 
PSEs. Taking into account the main Grid properties and services, a PSE Toolkit 
architecture has to be investigated, by individuating the components required, the 
middleware that integrates them, the techniques that alleviate the user in building 
efficient and effective solutions. 

In designing the architecture of a PSE Toolkit is crucial to determine what 
components of a PSE are common, and what are tied to a specific application 
domain. The common components can be designed and implemented in a PSE 
Toolkit and they can be used when a specific PSE must be developed. Design of 
Application-bound components and their interfaces must be considered in the Toolkit, 
but its implementation will change depending on the PSE in which they will be 
included. Most of the PSE toolkit components are generic. Specific components are: 

• Components  that define goals, resources, actors of the application 
domain; 

• The ontology of the domain components; 

• Domain knowledge; 

• Performance history; 

• The interface between the application domain and the PSE toolkit (see 
Section 4.8). 

Most of the rest of a PSE infrastructure is generic and can be used across multiple 
application domains.  

Some main issues  to deal with in designing a Grid-based PSE Toolkit are as follows: 

• Generic and specific components identification,  

• Understanding and evaluating global properties, 

• Component integration, 

• Handling with distribution of resources and components, 
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• Component middleware, technology, and infrastructures; 

• Adaptivity and heterogeneity, 

• Standardization, 

• Efficiency. 

Grid-based PSEs may change the way high-performance computing resources are 
used to solve problems. Grids will offer a wide-area environment where to search for  
PSE components and where to run PSE applications different of any other 
infrastructure we used before. Together with computing-intensive applications, the 
Grid will allow users to run data-intensive applications that make use of very large 
data repositories and access remote instruments and sensors. Data-intensive 
applications are growing in importance, and introduce interesting new dimensions 
such as irregularity, data representation and storage, distributed data access, and 
heterogeneity, that have not been so critical in scientific and numerical computing. 

Grid-based PSEs may succeed in meeting  more complex applications requirements both 
in terms of performance and solution complexity. They integrate heterogeneous 
components into an environment providing transparent access to distributed resources, 
collaborative modeling and simulation, Grid portals. 
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3. A Reference Architecture for a PSE Toolkit 

As mentioned in the previous section, PSE portability, extensibility, and flexibility can 
be provided through the use of a PSE Toolkit. The design of a software infrastructure 
easing the building and deployment of powerful PSEs is the main goal of this report. 
To achieve this goal, here we identify the main components of a PSE Toolkit and how 
these components should interact for implementing PSEs in a distributed setting.  

A minimal reference architecture of a PSE Toolkit should include: 

• A graphical user interface; 

• A repository of usable components, the repository can include a set of user-
defined applications; 

• A metadata-based description/information system, possibly based on 
application domain- and software components ontologies; 

• A metadata repository, possibly including an ontology repository; 

• A search/discovery system; 

• An execution/resource manager. 

Figure 1 shows all these components and the interactions among them. In particular, 
the Component Repository represents a library of objects used to build PSE 
applications, the Metadata Repository is a knowledge base describing such library, 
whereas the remaining components are services used to search, design, and 
execute PSE applications. 

Software/Hardware

Execution/Resource
Manager

Search/Discovery 
System

Description
System

(Grid) Middleware

Metadata
Repository

PSE 
Toolkit

Component
Repository

Programming Environment

Graphical User Interface

Composition
Interface

C1
C4

C3
C2

Execution/Steering
Interface

C1
C4

C3
C2

Description
Interface

C1

……

C2

……

Figure 1. A reference architecture of a PSE toolkit 
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Graphical User Interface. The Graphical User Interface allows for: 

• The description of available components, the semi-automatic construction of 
the associated metadata and their publishing. For doing this, the GUI 
interacts with the Description System. These actions can be driven by the 
underlying ontology that helps user in classifying components. 

• The construction of applications and their debugging. For doing this, it goes 
through the following steps: 

1. Interaction with the Search and Discovery System for letting users 
pose queries and collect results about available components 
potentially usable for the PSE composition, or directly browse the 
metadata repository. As before, both querying and browsing can be 
guided by ontology. 

2. Design of an application, through the visual facilities provided. 

3. Interactive validation and debugging of the designed application. 

4. Invocation of the Execution Manager, passing it the global 
executable code.  

• The execution, dynamic steering of applications and result visualization. 
Here, the GUI interacts with the Execution Manager for monitoring the PSE 
execution and showing its results, and for passing it the user commands for 
the PSE application steering.  

• The storing of useful applications and results, annotated with domain 
knowledge. In this way, applications and their associated domain knowledge 
can be shared among PSE users. 

In order to seamlessly integrate facilities of external tools, the Graphical User 
Interface must also allow for the direct use of their native GUIs, in all the phases of 
interaction with users seen above. Indeed, it may be needed to perform particular 
interactions with external tools, provided through their native GUIs only, or whose 
integration in the Toolkit’s GUI would result in unnecessary complexity. 

Component Repository. The repository of usable components holds the basic 
elements/modules that are used to build a PSE. Examples of such components are 
software tools, data files, archives, remote data sources, libraries, etc. The repository 
must be able to integrate a possibly pre-existing one provided by the programming 
environment used to implement the PSE Toolkit, also comprising components 
defined by different languages and/or tools. The structure of this repository depends 
on the class of architecture taken into account. It can be designed as a traditional 
database in case sequential machines are considered, whereas it must be designed 
as a parallel/distributed database if a parallel architecture is used or the PSE Toolkit 
is to be implemented on a computer network or on a Grid. In the Grid case, the 
Component Repository must be able to manage dynamic connection/disconnection 
of Grid resources offering components. In fact, in this case computing nodes and 
network connections must be considered as components that can be used in the 
implementation of a PSE. The component repository can include complete user-
defined applications that, when published in the repository, enhance the PSE 
capability to solve specific problems. 

Metadata Repository. The Metadata Repository stores information about 
components in the Component Repository. Such information comprises components’ 
owners and providers, access modalities, interfaces, performances (offered or 
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required), usage history, availability and cost. For the description of component 
interfaces, the PSE Toolkit provides an IDL every component must comply with in 
order to be usable by the Toolkit. Thus, a component’s provider either makes it 
accessible directly using the IDL (through wrappers), or describes in the associated 
metadata how to translate the invocations written using the Toolkit IDL into actions to 
be taken and/or into invocations written in the component’s native language. Finally, 
also reusable solutions, i.e. modules of applications for solving particular sub-
problems, that are typical for PSEs, may be managed and described as resources. 
The Metadata Repository can be implemented by using a Domain Ontology, i.e. a 
conceptualization, in a standard format, of component’s metadata, component’s 
utilization, and components relationships. Such ontology can be extended to describe 
the user-defined applications. 

Description System. The Description System must be able to offer a clear 
description of each element a PSE can be composed of. In the proposed 
architecture, it is based on the Metadata Repository. An important issue to be 
considered for the Description System is the use of ontologies for enriching the 
semantics of components’ descriptions. This layer extends the metadata facilities and 
may provide the user with a semantic-oriented view of resources. Basic services of 
the Description System are component classification through taxonomies, 
components annotations, for example indicating which problem they are useful for, 
and structured metadata description, for example by using standard, searchable 
data. Whenever new components/applications are added to the Component 
Repository, new knowledge is added to the Metadata Repository through the 
Description System. 

Search/Discovery System. The Search and Discovery System accesses the 
Metadata Repository to search and find all the resources in the environment where 
the Toolkit is run, which are available to a user for composing a PSE. Similarly to the 
Component Repository, while the implementation of this system on a sequential 
machine is straightforward, in a parallel/distributed setting the Search/Discovery 
System should be designed as a distributed service able to search resources on a 
fixed set of machines. Moreover, a dynamically changing heterogeneous collection of 
computers must be searched if a Grid computing environment is considered. Basic 
services of the Search and Discovery System are: ontology-based search of 
components, that allows for searching components on the basis of belonging 
taxonomies as well as specifying constraints on their functions, and the key-based 
search. The former operates on a portion of the knowledge base, as selected through 
the ontology, whereas the latter operates on the entire knowledge base. 

Execution/Resource Manager. The PSE Toolkit Execution/Resource Manager is 
the run-time support of generated PSEs. Its complexity depends on the components 
involved in the PSE composition and in the hardware/software architecture used. In 
particular, if a multiprocessor or a Grid is used, the Execution/Resource Manager is 
composed of several processes/threads that concurrently execute the PSE code and 
coordinate their activities for exploiting hardware resources. In these cases, the 
Execution/Resource Manager must tackle several issues, e.g. the selection of the 
actual component instances to be used at each PSE execution, the suitable 
assignment of processes to heterogeneous computing resources (scheduling), and 
the coordination of their execution, possibly adapting the running applications to run-
time (unpredictable) changes in the underlying hardware/software infrastructure. If a 
Grid computing architecture is considered, the Execution/Resource Manager, 
besides interaction with the software/hardware system, has a tight connection with 
the Grid fabric environment and with Grid middleware. Note that the 
Execution/Resource Manager is also responsible for performing all the actions 
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needed to activate the available components, driven by their metadata. These 
actions may comprise, e.g., compiling a piece of code or a library before using them, 
or launching a program onto a particular virtual machine. The execution manager 
must have tight relationships with the run-time support of the programming languages 
used for coding the components. 

In summary, the main characteristics of the proposed PSE Toolkit architecture are: (i) 
the existence of a knowledge base built around pre-existing components (software 
and data sources); (ii) the PSE application composition conducted through the 
searching and browsing of the knowledge base; and (iii) a distributed and 
coordinated application execution on the selected distributed platform, that can be a 
traditional distributed system or a Grid. Specific information about the technologies 
and techniques used to describe the PSE Toolkit architecture can be found in the 
remainder of this section. 

3.1. Components and Programming Models/Environments 

A variety of programming methodologies and strategies have been proposed and 
developed to address applications development over the grid. Often they were 
derived from  models available in parallel and distributed computing systems, with 
minor changes to make them adhere to the dynamism of grid environments. A 
detailed classification of such techniques has been also discussed by the GGF 
Programming Models working group [Lee01]. 

In the following we briefly describe some models we analyzed to choose the most 
suitable for a grid-based PSE Toolkit. 

Shared space models provide a global shared memory even if the real 
implementation may be distributed. Two interesting implementations extended to grid 
environments, comprise JavaSpaces [Free99] and OpenMP [Ope97]. 

Message passing models on the contrary do not share a common address space.  
The processes send messages using two-sided or one-sided communications in 
order to exchange data. Currently there is an implementation of MPI (Message 
Passing Interface standard) for grid environment that uses the Globus services 
(MPICH-G2) [Fost98]. 

Peer-to-peer computing and in particular the JXTA [jxta03] implementation enables 
the programmer to cope with a model  in which all the processors are considered at 
the same level and there is not a hierarchical organization. 

Object oriented technologies, coupled with remote procedure calls, provide an useful 
model to operate on the grid. Typical examples are Corba and JavaRMI. 

In the component model, applications are assembled, even at run-time, from 
components selected from a component pool. Examples of this model include Corba 
Component Model [Corb03], a model based on distributed software components, 
evolution of Corba technology; JavaBeans Component Architecture [Jb03], 
developed by Sun and based on Java; Common Component Architecture (CCA) 
[Arms99], a project raised by the Department of Energy (DOE) to apply component 
model to high performance computing, XCAT [Xcat02] is an implementation of this 
model with some extensions adopting web services as a basic architecture for grid 
environments. 
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Evaluating these models and implementations in the optic of requirements and 
problems of a PSE framework in grid environments, the component model and in 
particular many ideas derived from CCA seem to be the most appropriate solution. 
There are many aspects that played a role in this evaluation, like code reusability, 
modularity and encapsulation, portability, performance adaptability, interoperability, 
need of hiding differences and providing a unified abstraction able to manage a 
heterogeneous environment.  

The Common Component Architecture 

The main idea in building applications using the component paradigm is the 
assemblage of components. The way two CCA components are assembled is by 
connecting together their “ports”. A component may own two types of ports: provides 
ports and uses ports. Provides ports represent functionalities a component provides 
to other components; uses ports represent functionalities a component may need. 
When a uses port is connected to a provide port, it gain access to the functionality 
exported by the related component. Ports are identified by names and can be 
connected each others only if they are of the same type.  

Unlike some other component models, in the CCA model ports can be added, 
removed, and connected at run-time. This makes CCA a more powerful and flexible 
model, able to be employed in problem-solving environments and to fulfill the more 
general requirement of software adaptability.  Figure 2 shows a sample connection 
between a uses and a provides port. 

For effectively using a component architecture it is important to describe the various 
components that constitute an application along with their interconnections. Recently, 
two different categories of composition have been proposed: composition in time and 
composition in space [Govi03]. 

A uses port
A Provides port 

 

Target 
Component 

 
Source 

Component

Figure 2. Uses and provides ports 

Composition in space. Component instances are created on specified hosts and 
then connected together. It is also possible to create meta-components which are 
themselves created by composing a number of components, which constitute a new 
component. 

Composition in time. While the composition of components in space defines how 
the components are logically connected, workflow systems define ways in which flow 
of control and data can be expressed taking into account the time dimension. These 
two compositions are orthogonal, thus they can coexist. 
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To accomplish the first kind of composition, some APIs can be used directly by the 
user to write simple programs that can use remote component instances. For 
example the Java programming language and the Jython scripting language are used 
in XCAT. Usually a program can invoke the creation service to create components 
and obtain references to running instances. Afterwards, through the connection 
service it is possible to connect the provides and uses ports of these components.  

About the latter kind of composition formalisms derived from workflow technology can 
be employed to describe the time ordering of components execution along with other 
dependencies needed to fulfil a given business process (see Section 3.2). 

Component interoperability 

Components can be implemented in different programming languages, can export 
data in different formats (including components using legacy applications), can have 
or not some characteristics (a steering interface, a performance model, etc..), and 
can present different metadata descriptions. So, interoperability under various 
aspects represents a big problem in designing a component architecture and should 
be analyzed considering the different basic layers. Transport may be supplied by 
HTTP protocol for standard application and by TCP for high performance 
components, i.e. components that need to exchange data in a timely fashion. SOAP 
could be the standard method for messaging among components along with other 
techniques useful in particular cases (for example message passing and file transfer). 
Metadata description could use an extension of WSDL permitting description of 
aspects derived from the high performance nature of some components (like parallel 
and container components, see below, and/or performance models). A more complex 
issue concerns the discovery service: its implementation may be supported by a 
peer-to-peer system or by a hybrid system using also hierarchical parts (see Section 
3.4 for more details). An ad hoc publish-subscribe system could be designed for the 
PSE toolkit so as to provide a reliable mechanism for events notification. It must 
supply reliability even if we have changes in the system (a subscriber changes its 
location or a publisher is restarted) and could be based on XML and SOAP to 
guarantee interoperability or could consider peer-to-peer systems and JXTA protocol 
as an alternative implementation. 

The component integration can be performed by using message passing, remote 
method invocation, web services etc. In any case, the use of XML is recommended to 
define metadata about components, interfaces, and messages. 

In a PSE toolkit some high level components are needed to accomplish the building 
of complex applications. At least three kind of basic components should be supplied 
by the system: 

• Data management components handle data, they comprise components for 
accessing data, creating replica, moving and partitioning data;  

• Computing components elaborate information, they may be sequential, 
parallel and distributed or container (graph composition of homogeneous 
components to be executed using a particular form of parallelism). Naturally, 
parallel and distributed components and container components should have 
metadata describing the particular execution environment; 

• Components provided from the PSE framework for a specific task (for  
instance visualization components, steering components, etc..) or for a 
specific application domain (see Section 4.8). 
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High level visual environments 

In a grid based PSE toolkit it is important to include high level facilities and visual 
instruments able to support end users with different backgrounds and with little or 
none expertise about distributed systems. This kind of tools can offer a set of 
abstractions and functionalities useful to hide grid related issues, letting the user 
concentrate on the problem resolution. Moreover, they can represent an appropriate 
and effective way to propose the component programming model to users and 
developers. 

Some systems offering such characteristics are listed and briefly analyzed below. 
They are surely a reference point to better understand the role they may play in the 
overall system we are proposing here and how it could be possible to exploit these 
enhanced instruments as supporting environments for the component programming 
model.  

GECCO (Graph Enabled Console COmponent) is a graphical tool developed at 
Argonne National Laboratory [Lasz00, Lasz00a]. GECCO is based on the Globus 
CoG Kit [COG03] and provides facilities to specify and monitor the execution of sets 
of tasks with dependencies between them. In particular it allows to specify the jobs 
dependencies graphically, or with the help of an XML-based configuration file, and to 
execute the resulting application. Each job is represented as a node in a graph. A job 
is executed as soon as its predecessors have successfully completed. It is possible 
to set  up the specification of the job while clicking on the node: a specification 
window pops up allowing the user to edit the Resource Specification Language, the 
label, and other parameters. Editing can also be performed at runtime (job 
execution), hence providing for simple computational steering. 

VEGA (Visual Environment for Grid Application) was designed to support the 
planning and execution of data-intensive applications upon grid environments and is 
a component of the Knowledge Grid [Cann03]. VEGA provides a set of high-level 
functionalities ranging from design facilities to consistency checking, execution 
management, credentials management, and projects management. All these features 
have been originally developed to support the design of data analysis and knowledge 
discovery applications, but they are suitable to satisfy the requirements of most 
general purpose applications. Key concepts in the VEGA approach to the design of a 
grid application are the visual language used to describe in a component-like 
manner, and through a graphical representation, the jobs constituting an application, 
and the possibility to group these jobs in workspaces to form specific interdependent 
stages. A consistency checking module parses the model of the computation both 
while the design is in progress and prior to execute it, monitoring and driving user’s 
actions so as to obtain a correct and consistent graphical representation. 

WebFlow [Akar98]. Although from many classified among portal systems WebFlow is 
an interesting system offering a set of useful authoring facilities. WebFlow has a 
three-tier Java-based architecture that could be considered a visual dataflow system. 
The front-end uses applets for authoring, visualization, and control of the 
environment. Application integrators use visual tools to link outputs of the source 
modules with inputs of the destination modules, thereby forming distributed 
computational graphs (or compute-webs) and publishing them as composite 
WebFlow modules. A user activate these compute Webs by clicking suitable 
hyperlinks, or customizing the computation either in terms of available parameters or 
by employing some high-level commodity tools for visual graph authoring. The 
backend of WebFlow is implemented using the Globus Toolkit. WebFlow is based on 
a mesh of Java-enhanced web servers (Apache), running servlets that manage and 
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coordinate distributed computation. Each servlet can communicate with others via 
sockets; the servlets are persistent and application independent. WebFlow has been 
employed into the Gateway Computational Web portal and the Mississippi 
Computational Web Portal. 

3.2. Workflow Management 

A workflow (WF) is defined as a set of activities involving the coordinated execution 
of multiple tasks performed by different processing entities [Rusi94].  

Workflow technology dates back to late 70’s, when it has been adopted in office 
automation and batch processing areas to get the work “well” distributed among 
several persons/systems in accordance with a specified procedure. In recent years, 
workflow technology received much attention due to its aptitude for modeling the 
execution and management of business processes. Also the development of 
information systems towards infrastructures based on multiple stand-alone 
computers linked by networks, poses a problem to allow systems, not necessarily 
designed to work together, to be involved in a common work coherently and in an 
efficient way. Workflow systems are being effectively employed in this field, often as 
a result of a business process reengineering. 

Problem solving applications can be effectively described as workflows that define 
relations and dependencies among application tasks and describe the logic that will 
drive the application execution. While the workflow defines the “schema” of the 
application, a single application to be executed is a “workflow instance”; the term 
“workflow” can refer to both meanings, depending on the context. 

Over time WF gained a broad application in several domains; this brought to the 
need of categorizing WF systems. A brief analysis of WF classification is helpful to 
understand differences between different systems and to show how WF can adapt to 
various contexts. 

Main categories are: 

• collaborative workflow, used in professional and administrative areas, is 
characterized by negotiation about who will do the work, and provides an 
efficient control of the process; 

• production workflow supports high production volumes in the execution of 
fixed or slightly modifiable procedures; provides control of the process and 
improves productivity; 

• horizontal and vertical workflow, it represents a further segmentation about 
the structure of WF. A horizontal WF moves the work through the 
organization, from person to person or among different departments or 
systems (it is often called “routing”); once the work gets to an organization 
area, a vertical WF drives the execution of a number of steps within that 
area. 

 
Workflow Management System 

The execution of the multiple tasks included in a workflow specification, performed by 
different processing entities, may be controlled by a human coordinator or by a 
software system called WorkFlow Management System (WFMS). A workflow 
management system manages the execution of workflow processes by means of a 
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scheduler and task agents.  The scheduler provides the ability to submit tasks for 
execution, track their progress, and enforce policies and consistency constraints 
(inter-task dependencies). A task agent is associated to each task to apply actions 
decided by the scheduler and report state changes. 

In a Grid environment, a workflow instance gains access to Grid hardware and 
software resources; Grid specific issues (e.g. resource individuation, security and 
authorization requirements, etc.), have to be tackled prior to executing a workflow 
instance. As a consequence, a WFMS operating in a grid environment must integrate 
and/or implement such functionalities. The process of integrating workflow policies 
and functions with grid resources may bring to a full combination of both 
technologies. For example, the emerging Open Grid Services Architecture (OGSA), 
in which the basic entity is the grid service (see Section 4.2), allows to define and 
publish new grid services as a combination (in a workflow like manner) of simpler 
ones. This concept can be better understood if we think at grid services as a 
particular class of components, like those defined by the Common Component 
Architecture. 

A key aspect in defining a workflow is the specification of each task, comprising the 
description of the characteristics the processing entity must provide in order to 
accomplish the task execution. 

A task in a workflow is a unit of work that can be processed by a processing entity. 
The specification of a task is a description of its structure. A task structure can be 
defined by providing: a set of externally visible execution states, a set of transition 
between these states and the conditions that enable state transitions. 

A WF can be naturally defined by a Directed Acyclic Graph (DAG) of tasks, with a 
single root and one or more terminal nodes. A number of formalisms and systems, 
aimed at providing a more or less powerful and flexible way to specify and describe a 
WF, exists. Indeed, the Workflow Management Coalition [WfMC03], the body in 
charge of the development of international standards for WF interoperability, never 
proposed a precise specification model.  

DAGMan. The Directed Acyclic Graph Manager (DAGMan) is a meta-scheduler for 
the Condor opportunistic grid environment [DAGM03]. DAGMan allows to specify a 
set of task dependencies and to submit multiple jobs to Condor in the proper order. 
The tasks (basically software programs) are nodes in the graph, and the edges 
identify the dependencies. Task dependencies in DAGMan consent to specify a 
priority relation regarding input, output, and execution of programs. A configuration 
file, defined prior to submission, describes the DAG; in addition a Condor submit-
description file for each program in the DAG is used by Condor during the execution. 

GridAnt. GridAnt is a framework for specifying and orchestrating grid tasks with 
complex task dependencies. The implementation of GridAnt is based on the 
commodity tool Apache Ant [Ant03], hence, it provides the ability to use features from 
Ant such as the XML specifications of tasks, the control flow specification through 
conditional, sequential, and parallel constructs, and the availability of a workflow 
processing engine.  

WSFL. The Web Services Flow Language is an XML language for the description of 
web services compositions as part of a business process definition [WSFL03]. WSFL 
considers two types of web services compositions: the first type specifies an 
executable business process known as “flow model”, the second type specifies a 
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business collaboration unit known as “global model”. WSFL provides extensive 
support for the recursive composition of services: in WSFL, each composition of web 
services can itself become a new web service, and can thus be used as a component 
exploitable in new compositions. 

Execution plan. It is a formalism adopted by the Knowledge Grid, a software 
infrastructure for distributed and parallel knowledge discovery on the grid [Cann03]. It 
is constituted by an XML document describing the tasks of a knowledge discovery 
application. The specification comprises a list of tasks and task links, which are 
specified using the XML tags Task and TaskLink, respectively. Task elements specify 
each basic task at a high level, without physical information about resources, which 
can be identified through metadata references. TaskLinks are used for linking various 
tasks to form the overall task flow. 

Workflow Scheduling 

Inter-task dependencies define task coordination requirements, specifying how the 
execution of a task is related to that of others or to external variables. Inter-task 
dependencies may be specified as constraints on the occurrence or the temporal 
ordering of significant events generated by the involved tasks. The terms execution 
dependencies, data dependencies, and temporal dependencies are used in the 
literature to refer to various kind of dependencies. In a WFMS that manages dynamic 
workflows, the specification of dependencies, as well as tasks, can be added at run-
time. 

The workflow scheduler is the component responsible for assigning single tasks to 
different processors and computers, enforcing task-dependencies, and coordinating 
the execution of tasks in the workflow. In [Taha99] a distinction is made among three 
scheduling approaches: centralized (a single scheduler schedules the tasks of all 
concurrent workflows), partially distributed (one scheduler for each workflow), and 
fully distributed (no scheduler is used, but task agents coordinate their execution by 
communicating with each other). 

In a Grid environment, it is natural to map a workflow task to a “Grid job” that can be 
assigned and executed on a specific Grid host. Furthermore, a workflow processing 
entity can be any Grid resource able to perform a workflow task (computers, storage 
systems, sensors etc.). In such a context, a workflow is managed by a Grid meta-
scheduler, which assigns and schedules jobs to different machines, while single 
tasks are managed by job schedulers (e.g. PBS, LSF etc.) located at specific Grid 
hosts. Unfortunately any scheduling and timing decision taken by the meta-scheduler 
might possibly be made ineffective by local scheduling strategies of Grid hosts. The 
issue of interrelating the meta-scheduler and the different host schedulers is 
important and not well investigated till now.  

Grid workflow can be specified at different abstraction levels: in [Deel03], differences 
are highlighted between abstract workflows, which specify resources using logical 
files and logical component names, and concrete workflows, where the user needs to 
specify the exact executables and resources to be used. In [Mast03] a similar 
distinction is made, for data mining applications, between abstract and instantiated 
execution plans. 
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In our opinion, the definition of workflow in the context of generic PSE toolkits 
suggests the addition of a further abstraction level, to help PSE experts defining their 
domain specific applications. Three abstraction levels are therefore individuated: 

1. Domain specific workflow. A domain scientist or engineer should be able to 
define its application using his/her own domain language, without being 
compelled to know the details of the Grid environment: at this level a workflow 
is built upon domain specific components and services well known by the 
domain expert. 

2. Abstract workflow. An abstract workflow looses any explicit reference to the 
PSE domain: a workflow is built upon hardware and software resources 
available on the Grid. This implies that a mapping has to be made between 
domain specific tasks and Grid resources. However, at this level, resources 
are not determined, but are defined by a set of constraints and requirements 
to be satisfied. For example, a host can be denoted by requirements on 
processor speed, amount of RAM memory or disk space, etc; a Grid software 
can be specified by requirements on the input data it processes or on the type 
of platform on which it can be executed. 

3. Concrete workflow. When the workflow is going to be executed, all resource 
constraints have to be evaluated and resolved on a set of available Grid 
resources, in order to choose the more appropriate resources for the current 
status of the Grid environment. Of course, due to the dynamic nature of the 
Grid, an abstract workflow can be “instantiated” into different concrete 
workflows at different times. A concrete workflow should be defined in XML, to 
assure interoperability and human-readability: however, before being 
executed, it should be translated in a specific job definition language (e.g. 
DAGMan or Globus RSL). Depending on the features of the specific grid 
language, a concrete workflow can be directly expressed in such a language, 
or minor modifications have to be made: for example, if the job specification 
language does not provide powerful workflow functionalities, a complex 
concrete workflow should be translated in one or more pieces of that 
language, whose execution needs to be coordinated by the WFMS operating 
on the Grid. 

A workflow can be designed at each of the abstraction levels described above, 
depending on the user knowledge of the Grid environment, on the type of workflow, 
and on the services available on the PSE toolkit. For example, if the workflow 
designer wishes to execute a workflow on predetermined Grid resources, he/she can 
directly build a concrete workflow. On the other hand, if the designer has little 
knowledge of the resources available on the Grid, and/or desires to concentrate on 
the workflow logic, he/she could better design a domain specific workflow, and rely 
on PSE tools to obtain the corresponding abstract and concrete workflows. 

An important issue is how the PSE toolkit can translate a domain specific workflow to 
an abstract workflow, and then to a concrete workflow. An efficient way to perform 
the first kind of translation can exploit the features of ontology systems (see Section 
4.3): a domain specific ontology is aware of the semantics of domain components 
and services, and therefore should be able to map these components and services 
onto Grid resources.  

The second step, i.e. the instantiation of an abstract workflow into a concrete 
workflow, is performed by the Grid meta-scheduler that takes charge of finding the 
Grid resources that better satisfy constraints specified in the abstract workflow. The 
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meta-scheduler may performs a static scheduling if the instantiation can only be 
made before workflow execution, or a dynamic scheduling if it is possible to modify 
the concrete workflow during execution, i.e. at run time. For more details see Section 
3.5. 
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Figure 3. Workflow abstraction levels 

Figure 3 shows an example of workflow building process that permits to obtain a 
concrete workflow starting from a domain specific one. Notice that, along this building 
process, a single domain specific task may be instantiated into one or several 
abstract tasks; furthermore, at the concrete workflow level, data transfer jobs may be 
added by the grid scheduler as a consequence of its mapping process. 

3.3. Data Management 

Scientific problem solving environments seek to integrate the activities necessary to 
accomplish high level domain tasks.  They may include support for managing 
scientific workflow, tracking, transforming and filtering data, automating feature 
extraction, and annotated records management. Pulling these and other capabilities 
together to provide systems that support scientific problem solving requires a flexible 
and dynamic data management architecture. The data architecture serves as the 
underlying glue that ties together long running research processes and widely 
distributed collaborators. Moreover, it is necessary to provide an architecture able in 
storing, indexing, and provide access to flat data, structured and semi-structured 
data, remote resource identifiers with their description, as well as software 
components.  

In the late 1980's and throughout the 1990's, Relational Database Management 
Systems (RDBMS) and Object Oriented Database Management Systems (OODBMS) 
technologies emerged as the leaders for traditional data management solutions.  
These architectures are well suited for organizations that are centrally located and 
which have control over the client platforms and systems.  The data is located in one 
centralized server or several replicated servers and managed by one organisation.  In 
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both models, data respect a uniform structure defined in metadata (structured data) 
and can be accessed by formulating queries using data structures. Data in PSEs can 
be organized in structured format, but to provide access to heterogeneous data and 
information, structuring data is not a sufficient solution. Indeed, data in PSEs are 
shared by many organizations with no central control.  Data can be stored in multiple 
databases, files systems or both.  As we will see later, traditional architecture 
requires agreement and enforcement of ontologies and schemas that are then 
mapped into the underlying technology.  

Even using metadata and ontologies, requires a upper level user to be able in 
managing data and PSE structure changing. I.e., (i) as the scope of a PSE increases, 
the number of parties that must agree upon the ontology become large; (ii) as 
components are incorporated in a PSE, negotiation is required between the 
components developers and the PSE framework designers and data administrators; 
(iii) as best practices evolve or PSEs are extended to support users with different 
goals, the schema and data structures must be changed simultaneously and existing 
data migrated. 

We report on the data management topic in PSE mainly from four levels:  

• Data Sources and Data components repository 

• Data Description: Ontologies and Metadata 

• Data and Component Access Services 

• Information Services  

We claim that each node in a Grid may have a data management architecture as the 
one depicted in Figure 4. 
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Figure 4. Data Management layers in a PSE Grid Node 

 
Data Sources and Software Components Repository 

Each node in the GRID may contain information that can be used while composing 
applications. Data can be static information (structured and semi-structured 
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databases, data files, or URL links to remote data sources) as well as software 
components (classes, linkable objects, byte codes, or remote software components, 
such as web and grid services). 

Data Sources and components are depicted in lower layer of Figure 4.  

To build an application in a PSE it is necessary to know existence of data, their 
localisation, and how to access or use them. It is then necessary a data description 
and data access policy allowing using data and information. Data can be accessed 
through their metadata descriptor or allowing a direct access to data. For instance in 
case of structured data (as in the relational case), application may use a common 
access policy guarantying data consistency. If data are unstructured, or information 
are originated from heterogeneous databases, we may provide a uniform view on the 
data that can be used by the application as they were part of a single uniform 
database.  

Data and components are usually pre-existing to the PSE, so it is not convenient to 
copy them in a real repository: so the data and component repository can be viewed 
as the set of physical location hosting them (e.g. file systems, database partitions, 
external web sites, etc.). Their description can be accomplished by using different 
approaches: 

(i) Data and components may be described by using abstract XML views to describe 
data and software components properties. The view may be a tree structure 
representing data properties and software functionalities. The XML description may 
keep trace of data format, structure, validity.  For each software component adopting 
such XML view may describe how to use software as well as component properties. 

(ii) Adding a virtual view to data may limit performance of the application. Another 
possibility may be to materialize data or components where necessary before running 
application. Data materialization consists in copying data and information adapting 
them to structure imposed by the application. The problem of integrating data in a 
uniform format has also to be faced in case of data wrapping from remote resources. 
(see low part of Figure 4). Our data management module needs to be enriched by a 
data resource location and a data mapping mechanism able in converting data from 
different sources to common structured or unstructured data.   

(iii) Data structure representation and description may be also partially solved using 
self-describing data format (e.g. as in semi-structured data bases) where data arrives 
with their metadata. In the latter case, applications can extract information from data, 
mapping data sources to a common format. Finally for self-describing data, it is 
possible to support data evolution or schema evolution, without changing entirely 
data store. For PSE toolkit it is necessary to study the problem of data evolution both 
in structure and in contents. For this reason it could be better to materialize 
heterogeneous data on the fly when application requires fresh data. Nevertheless, 
data materialization is a well known bottleneck problem by database community.  

As shown in upper part of Figure 4, querying browsing and data description services 
can be applied to data sources to furnish access to data. Moreover, for data sources 
we want to provide a data restructuring to return data in a format or schema required 
by applications. Data description is required also by application looking for software 
components. 
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As shown in Figure 4, we consider both software classes that need to be compiled or 
linked, as well as binary code that can be run on given platforms.  

Components can be stored locally or can be located on remote nodes. A PSE node 
must be able in retrieving and composing software modules to build application. In 
case of remote modules, web protocols (as SOAP or UDDI) may be used to specify 
format of data input and output. Applications can load modules locally from the data 
management services (see upper part of Figure 4) or may ask a node to retrieve data 
applications.  

As in for raw data components, even for software components and modules, it is 
necessary to provide formalism to describe information associated to each module. In 
particular for each component we need to provide: 

• Functionalities 

• Input and output data format 

• Function interfaces (i.e. parameter passing and message information) 

• Module type and platforms (i.e. binary code, byte code, compiling softwares) 

All such functionalities need to be described by metadata and ontology modules. 

Data Description: Metadata and Ontologies 

A PSE toolkit uses resources heterogeneous both in data and software specifications 
(application). To furnish a “solving environment”, a PSE need to be enriched by data 
and software abstract description to permit users to build their applications using a 
knowledge base (KB) that explains how elements of the component repository are 
organized. 

The problem of managing heterogeneous data and components, is well known to 
database community as data integration problem [Lenz02]. Accessing 
heterogeneous resources can be partially solved using metadata, i.e., logical level 
data and application description, that, through an accurate categorization of 
resources, provide useful information about the features of resources and their 
effective use. A metadata level (see Figure 4) may extend the Globus MDS-2 model 
based on the LDAP protocol. Portable and simply accessible abstract description can 
defined using semi-structured formalism. E.g., XML metadata representation is used 
in [Mast03] to represent classes of Data Mining tools, (e.g. data mining software, data 
sources, execution plans etc.), whereas abstract XML view are defined in [Agui02] to 
allow querying large scale heterogeneous XML data. Web accepted language for 
data and service exchanging, i.e., XML, allows  the usage of standard and widely 
adopted query protocols such as XQuery, and standard transformation protocols 
such as XSLT.  

Metadata layer is also in charge of describing locally both data sources and software 
components. Local data sources need metadata about the access method and the 
access policies. On the other hand, remote data sources need further metadata to 
describe if they can be copied on another node, or materialized on the local node, or 
must only be accessed on the remote node. Similarly remote software components 
can be moved (byte code) locally, or can be copied and installed locally or have to be 
invoked on the remote owner node (e.g., through Remote Procedure Call or 
Web/Grid service protocols). If object classes and source code are also considered, 
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further metadata about how to compile and/or link them on the requesting node 
should be provided. 

Ontologies can be used to build different views over the knowledge base. They can 
be used to model, at least, the two main classes of resources: 

• software components and 

• data components 

Ontologies for software components should explain: 

• which problem/task the component is suitable for; 

• how a component can be invoked or linked (for example for an object 
file) 

• what are the main requirements to execute a component. 

• how a data source can be accessed; if it can be copied, or if it is stored 
remotely, but accessed through a local wrapper, etc. 

Ontologies for data sources, should explain how the data is accessed, access 
policies, protection, format, and so on. The role of ontologies in PSE is explained 
later in this document. 

Data and Component Access Services 

Major issues in managing the access to data and components in a Grid-based 
environment are: 

• Virtualization of data and components, i.e. allowing applications (e.g. developed 
using the PSE) to discover, access and update data in a manner independent by the 
data/component format and data/component location (format and location 
transparency).Different techniques play a role in virtualization, e.g. caching, 
replication, schema and format mappings (for data).  

• Management of the way data and components are provided to applications with 
respect to performance levels and agreed global quality of service. 

• Integration of data within the Grid infrastructure, i.e. providing with such data the 
same basic mechanisms of the Grid. For example, it should be possible to provide for 
data the necessary tracing, monitoring, and accounting information. 

The Global Grid Forum Data Area working groups [GGF] are developing a suite of 
standards or adopting preexisting ones from different contexts, for the different aspects of 
data virtualization, management and integration in the Grid, with focus on data 
(databases, files, semistructured data sources, data streams, and so on). Although many 
of those works can be well adapted to the management of software components (i.e. the 
data file considered contain software), few efforts are devoted to specific aspects of 
software component management. 

With respect to data, the following issues are studied and standardized [Mala03]. 

The DAIS-WG (Data Access and Integration Services Working Group) is working around 
a service-based interface for accessing and integrating on the Grid data available in pre-
existing relational and XML databases. The planned services are to be implemented 
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outside of the database system and the access to such data sources happens using some 
constructs of the proposed model: 

• A Data Resource Manager service represents a DBMS or XML management 
system. A user wishing to access to data contained in it has to create an instance of 
such service. 

• A Data Resource service represents a database (i.e. a set of tables in a relational 
database or a collection of XML documents). A user wishing to access to a 
table/document in a database has to create an instance of such service. 

• A Data Access Session service is the relationship between a client and a data 
source. Also in this case a user wishing using with a database has to create an 
instance of such service. 

• A Data Request contains the SQL, XPath or XQuery request to be executed on a 
data resource. This construct specifies a data format that user has to use to send 
request to the data service. 

• A Data Set: represents the output result returned in response to a Data Request. Also 
such construct specifies a format of data, i.e. the results. 

The OREP-WG (OGSA Replication Services Working Group) is exploring data replication 
technologies for the grid. Initially focused on large files, it is also working on replicating 
generic files and databases. The first OREP specification regards a Replica Location 
Service (RLS). The RLS maintains a map of where data and replicas are stored and the 
availability of more copies of a given data can allow both to implement quality of service, 
and different level of access performance. If copies are updated, the problem of 
propagating updates between them has to be faced.  

An important issue of data replication is data movement: how data is moved between Grid 
nodes to implement replicas. The GridFTP-WG working group works on a reliable file 
transfer protocol built on the top of the usual FTP (File Transfer Protocol).Equally 
important is the work undergone by the GFS-WG (Grid File Systems Working Group) that 
is working on the concept of a Grid file system. It is obvious that if work conducted by 
these last groups will drive implementation of native mechanisms for efficient data 
movement, effective storing of files, and transparency with respect to data location, the 
previous services could be more easily implemented and made available. 

Finally, the DFDL-WG (Data Format and Description Language Working Group) is 
working on the management of data streams, i.e. how describe and annotate a set of data 
that constitute a stream. Annotating or labeling data allows adding information to original 
data to better explain the used encoding, the meaning of data, etc. The DFDL (Data 
Format and Description Language) is based on XML. Although DFDL is well suited for 
labeling and describing scientific data it could also be used to describe relational data 
sources (e.g. the layout and content of a database) or a query result set (e.g. described as 
a labeled data stream). 

In summary, in the three layer Data Management presented so far, component repository 
contains the useful data and software eventually physically distributed over the Grid. 
Component ontologies and metadata form a PSE knowledge base whose main services 
are intelligent searching and browsing for data and software. 
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OGSA-DAI 

Open Grid Services Architecture Data Access and Integration (OGSA-DAI) [OGSA-
DAI] is a project aimed at providing a component library for accessing and 
manipulating data in a Grid environment. It is a partnership between NeSC, EPCC, 
IBM UK, IBM US, Oracle and the NE and NW regional e-Science centres. It is funded 
by the DTI e-Science core funding programme.  

The aim of OGSA-DAI is to allow a new standard way to access databases and other 
data-related resources and tools, providing a Grid-enabled middleware 
implementation of interfaces and services to access and control data sources and 
sinks extending those defined in the OGSI specification. The services introduced by 
OGSA-DAI take as input complex XML documents and include:  

• Grid Data Service (GDS), which provides standard mechanism for accessing 
data resources; 

• Grid Data Service Factory (GDSF), which creates a GDS on request; 

• Database Access and Integration Service Group Registry (DAISGR), which 
allows clients to search for GDSFs and GDSs that meet their requirements. 

Currently, data sources/sinks are restricted to be relational and XML database 
management systems (DBMS); other data sources, such as file systems, could be 
accessed through the same interfaces. 

OGSA-DAI main functionalities are: 

• basic services for accessing data sources within the OGSA framework; 

• a higher level of data integration services built on top of the basic services, 
that allow data federation and distributed queries to take place within a 
Virtual Organization (VO); 

• to leverage emerging Grid infrastructure for security, management, 
accounting etc.; 

• to provide a reference implementation of the Global Grid Forum (GGF) 
recommendation for Database Access and Integration Services (DAIS); 

• to standardize data access interfaces based on the requirements from the 
GGF DAIS WG. 

Although data access has been the primary focus for OGSA-DAI, data integration 
has also been considered. Currently, OGSA-DAI  has only attempting to examine 
how to run a query across distributed data resources presented to the user as a 
single data resource. 

3.4. Information Services 

Information services provide information about resources, including people, 
machines, software, data, and services, available in a Grid environment. The design 
of information services is made challenging by the diversity and heterogeneity of 
resources involved, the range of queries required, and the dynamic nature of VO 
membership and resource status. Resources can be basic Grid resources or 
composed resources aggregating a number of basic (or possibly composed) 
resources, domain independent or provided by a particular application domain. 
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The Globus information system, MDS-2 (Monitoring and Discovery System, [Mds03]) 
is based on a directory structure and LDAP data representation and on a hierarchical 
data model where Grid information is stored into entries collected into virtual 
organizations and organizational units. The MDS-2 architecture consists of two basic 
elements [Czaj01]: (i) a distributed set of generic information providers that collect 
information about Grid resources, and structure them according to the LDAP 
standard data model, and (ii) higher-level services (e.g. aggregate directory services) 
that collect, manage and index information. In particular the Grid Resource 
Information Service (GRIS) information provider can answer queries about the 
resources of a particular Grid node, while the Grid Index Information Service (GIIS) 
combines the information provided by a set of GRIS services managed by a virtual 
organization. 

With respect to basic Grid information systems, a PSE toolkit information system 
should be enhanced in order to deal with the heterogeneity and complexity of the 
involved resources. In particular, an accurate metadata management is essential to 
build efficient information services.  

In the remainder of this section, we will first examine basic information services 
needed in PSE: publishing, discovery, browsing, and querying. Then, we will analyze 
the information service architecture, i.e. how a number of information servers can be 
deployed and organized on the Grid, and how such servers can cooperate to provide 
efficient information services. Finally, we will introduce to the management of 
information services with the emerging Open Grid Services Architecture. 

Basic Information Services 

The main information services that should be provided by the Information System of 
a Grid-based PSE Toolkit are the following: 

• Publishing service 

• Browsing service 

• Discovery service 

• Querying service 

All these services use the PSE knowledge base (metadata and ontologies) to 
navigate inside the Grid resources.  

The Information System is fed by the publishing service that is used by software 
developers and host administrators to declare the availability of resources that can 
help to solve PSE problems. Resources are registered on an index information server 
accessible to the clients of the PSE toolkit. Due to the large heterogeneity of involved 
resources, it is essential to operate an accurate categorization of resources. When a 
new resource is published, it should be associated to a sufficient amount of 
metadata, in particular classification metadata, in order to facilitate its individuation. 

Browsing services permits to view the content of information indices and servers, and 
to explore the features of resources. The use of browsing can be limitative because it 
requires a pre-existent knowledge of the servers where needed resources could be 
found. 

The discovery service allows the clients to discover and access resources registered 
on information servers and possibly located in different Grid hosts. After being 
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discovered, resources can be viewed by means of browsing services in order to 
explore their features. 

The query service is a high level service that allows for searching resources having 
particular characteristics: a client can specify resource features by means of powerful 
query expressions, i.e. written in an XML query language. The query service uses 
lower level services (e.g. discovery services) to perform search operations, and 
returns a list of candidate resources that match search criteria. 

PSE information services provide access to both application-independent resources, 
e.g. basic Grid resources such as hosts, networks etc, and to resources belonging to 
particular application domains. For an efficient management of domain specific 
resources, it is essential a tight integration between the information services and the 
ontologies that describe the various application domains. If this integration is well 
organized, domain scientists and engineers should not access resources via generic 
information services, but through specific domain ontology services.  

As an example, a user should be able to request resources specified not only with 
syntactic descriptions, but also through semantic information related to the 
application domain. Such a request is not directly forwarded to an information server, 
but has to be interpreted and translated by ontology services into a query that only 
contains conditions and constraints comprehensible for the information services. 
Analogously, the reply given by the information services should be interpreted and 
translated by the ontology system prior to be delivered to the user. 

Information services should clearly separate the metadata information model and the 
metadata access model, so that redesigning the access model will not affect the 
representation of resource metadata. For example, the information model can be 
XML-based, while the access model can be LDAP if the Globus 2 version is used, or 
based on web services standards (WSDL, UDDI) if an OGSA compliant architecture 
is adopted. 

The Knowledge Directory Service (KDS) [Cann03b] provides a publishing and 
discovering service matching the above discussed requirements in the context of a 
domain-specific (data mining) PSE toolkit, namely the Knowledge Grid. KDS 
includes: a Knowledge Metadata Repository, which stores XML metadata describing 
the resources located in a single node; a metadata editor used to create and modify 
resource metadata; a KDS information provider that reads the metadata information 
stored into the KMR and publishes it in the GRIS server, in a format specified by the 
KDS schema. 

Even if KDS was developed for a domain-specific PSE toolkit, its structure is flexible 
enough to be generalized and reused for multi-purpose PSE toolkits. 

Architectures for Information Servers  

A PSE toolkit designed to be used in different application domains should allow 
clients to request and access a very large number of resources; the organization of 
information servers is crucial for the efficient management of resource discovery. 
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A number of different organizations are used: 

• Hierarchical organization. Information servers are accessed and queried at 
different hierarchical levels. For instance, a low level information server can 
provide detailed information about resources maintained by a single Grid host, 
while high level information servers can collect information about resources 
managed by a number of hosts belonging to the same Virtual Organization. In 
general, a request is made to a low level server (e.g. a Globus GRIS) if the 
location of the needed resources is known, otherwise the request is forwarded to a 
higher level server (e.g. a Globus GIIS) to search a wide set of hosts. This scheme 
requires that a number of information servers register to one or more higher level 
servers, and resource metadata are replicated according to a push mechanisms 
(low level servers send metadata to the servers which they are registered to), or a 
pull mechanism (higher server poll lower level server to obtain metadata). 

• Peer to peer organization. Opposite to the hierarchical model, information 
servers are not organized in a hierarchy, but contact each other according to a 
P2P logic [Iamn02]. Information servers are given equal roles and responsibilities, 
and resources are published on information servers without a predetermined 
strategy. When a client wants to perform a query or a discovery operation, it 
contacts an information server; if this has information about the needed resource, 
it responds to the client, otherwise it forwards the request to a number of peer 
information servers, that can recursively contact other peers. This kind of 
organization can be efficient in a widely distributed and dynamical information 
system, and scales better than the hierarchical organization because there is no 
need of powerful and expensive centralized servers. However it can cause an 
increase of network load and a less predictability of the performance of search 
operations. 

• Hybrid organization. This kind of organization aims to exploit both the 
advantages of hierarchical and P2P models. The concept of superpeer is 
introduced [Yang03]: a superpeer is an information provider that collects 
information concerning the hosts of a Virtual Organization, and represents the 
interface between these hosts and the overall information systems. Superpeers 
exchange information with each other according to the P2P model. When a 
superpeer receives a request, it either responds directly, if the information required 
is possessed by one of the hosts managed by the superpeer, or forwards the 
requests to other superpeers. A super-peer information system has the potential to 
combine the efficiency of a centralized search with the autonomy, load-balancing 
and robustness provided by distributed search. 

Hints to the information model of OGSA  

The foreseen wide adoption of the OGSA [Ogsa03] architecture based on the web 
services technology will have an impact on the architecture of the information system, 
since OGSA allows to expose all services and resources as Grid Services (see 
Section 4.2).  The information model of OGSA is essentially based on two features: 

• Information about Grid Service instances is stored into XML-encoded Service Data 
Elements and can be queried through standard interface methods, such as the 
FindServiceData operation exposed by the GridService portType. 
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• Information is collected and indexed by means of Index Services, which replace 
the MDS-2 GRIS and GIIS services, and can be organized following one the 
approaches described above (hierarchical, P2P, hybrid). Index Services can be 
implemented through the mechanisms provided by the Web Services technology, 
in particular through the UDDI and WSIL standards. UDDI (Universal Description, 
Discovery and Integration Service [UDDI03]) is a specification for a registry that 
can be used by a service provider as a place to publish WSDL (Web Service 
Description Language) documents. WSIL (Web Services Inspection Language 
[WSIL03]) provides a simple way to find WSDL documents, not listed on UDDI 
registries, on a web site. 

3.5. Resource Management and Scheduling 

Resource Management [Nabr03] is fundamental in a distributed computing system 
for managing a pool of available resources such that a system- or job-centric 
performance metric can be optimized. A resource is intended as a (generally 
reusable) entity employable to fulfill a job. Resources comprise processing units, 
storage and other devices, network bandwidth, software, data, etc. They are in 
general very heterogeneous w.r.t. their owner, provider, access policies, performance 
and costs. The resource management system must take into account such 
heterogeneity (and possibly leverage it) to effectively exploit resources at best. 

A resource management system must meet several requirements in order to be 
usable in a PSE toolkit, among which: adaptability to different heterogeneous 
environments; scalability; interoperability among systems with different administrative 
policies (while preserving autonomy); fault tolerance; support for high-level 
languages; support of Quality-of-Service; reservation guarantee; monitoring and 
storing of dynamic information; reliability. 

The Global Grid Forum [GGF] is currently working on the definition of a resource 
management architecture that may be used as the basis for a Grid implementation of 
the PSE Toolkit. The architecture is service-based, and foresees a set of services 
each of which may have a different internal organization (centralized, decentralized, 
hierarchical, peer-to-peer, etc.): 

• Data Management Service,  maintaining information about the existence and 
location of data; may include a Replica Management Service granting access 
to a replica catalog; 

• Network Management Service, collecting information about network 
resources and corresponding reservations; 

• Extended Information Service, extending current information services 
including dynamic information about data, network and hosts; 

• Job Supervisor Service monitoring the job schedule before and during its 
execution; 

• Accounting and Billing Service, associating resource reservations and usage 
with costs; 

• Scheduling Service. 

The scheduling service provides one of the most important features of resource 
management systems, i.e. the capability of “suitably” assigning jobs to resources. In 
general, a scheduler is a software component which, on the basis of knowledge or 
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prediction about computational and I/O costs, tries to improve some performance 
described through an objective function. Depending on the particular function 
adopted, three main categories of schedulers can be identified. Job-oriented 
schedulers (also known as high-throughput) try to enhance the overall performance 
of the system. Resource-oriented schedulers consider e.g. some fairness criteria in 
resource utilization. Application-oriented schedulers optimize the performances of 
individual applications. 
 
The process of scheduling consists of the following basic steps: 

1. Examining the structure of jobs/applications to be scheduled; 

2. gathering information about available resources; 

3. preselecting resources usable to execute jobs (also known as location or 
selection); 

4. determining schedules, i.e. and assignment of jobs to computing resources 
along with timing constraints (mapping, allocation, placement), possibly also 
on the basis of the results coming from the replica manager querying; 

5. distributing computation and data; 

6. ordering the execution of jobs; 

7. supervising the execution and possibly adapting the schedules to new 
significant occurred events. 

In order to effectively perform such steps, the scheduler makes use of: 

• A programming model provided to the user for building and describing 
applications. A program may be expressed in dataflow or workflow style, 
thus mainly using structures as job dependency graphs, or using 
formalisms specifically targeted to particular computing environments. 

• A resource model describing characteristics, performance, availability and 
cost of resources. Schema- or object-oriented data models may be used 
for this purpose. Important requirements of resource models are the 
timeframe-specificity of predictions, the use of dynamically-updated 
information, and the capability to adapt to changes. For resources whose 
state is not completely known, a predictive estimation may be employed, 
e.g. based on heuristics, pricing models or probabilistic analysis. 

• An application- and/or system-performance metric, for measuring the 
performances the scheduler must improve. A typical application metric is 
the completion time; the most commonly-used system performance 
metrics are overall throughput and resource utilization. 

• A scheduling policy, for driving scheduling actions both w.r.t. their timing 
(compile-time, run-time, or dynamic with rescheduling), and w.r.t. the used 
techniques (optimal or sub-optimal, deterministic or non-deterministic, 
etc.). Exact optimal techniques, such as integer-linear or constraint 
programming, are rarely usable because of the tremendous size of the 
search space to be dealt with. Several suitable heuristics are employable, 
either general-purpose, e.g. based on random/round-robin, basic local 
search, graph decompositions, genetic algorithms or simulated annealing, 
or specific, e.g. based on the concepts of priority list and critical path. 
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In the literature are reported three main architectural models for schedulers in 
distributed environments. Essentially, each of this model proposes a different way to 
organize the modules that take decisions, deal with faults, and provide co-allocation. 

Centralized model. There is one scheduler that is responsible for the system-wide 
decision making. Advantages include easy management, simple deployment and the 
ability to co-allocate resources. The disadvantages of this model are the lack of 
scalability and fault-tolerance, and the difficulty in accommodating multiple policies. 

Hierarchical model. There is a number of schedulers, organized in a hierarchy, 
where higher level ones manage larger sets of resources and lower level ones 
manage smaller sets. This model addresses both scalability and fault-tolerance 
issues. It also retains some of the advantages of the centralized scheme such as co-
allocation. One of the key issues with the hierarchical scheme is that it does not 
provide site autonomy and multi-policy scheduling. This means that the various 
resources that participate in the system are not able to preserve control over their 
usage.  

Decentralized model. The decentralized model naturally addresses several 
important issues like fault-tolerance, scalability, site-autonomy, and multi-policy 
scheduling. However, it introduces several problems like management, usage 
tracking, and co-allocation. Moreover, it is necessary for the schedulers to coordinate 
with each other via some form of resource discovery or resource trading protocols. 
Depending on the overhead introduced by these protocols the scalability of the 
overall system might be reduced.  

It should be noted here that schedulers must often make decisions with an objective 
different from those of other components (i.e. other schedulers) of a resource 
managements system. For instance, pushing the performances of single applications 
may worsen those of other ones and of the overall system (and vice versa); or, some 
fairness criteria could be established by some components that interfere with 
application- or job-oriented schedulers; finally, schedulers operating at different levels 
(local, application or system) could miss to adequately take into account the 
presence of one other. In the classical scenario of parallel processing, schedulers at 
all levels make assumptions about the underlying system that are not applicable to 
the context of distributed/Grid PSE implementations. For instance, they assume to be 
in control of an entire resource pool, typically invariant and composed of resources 
having very similar performances. Furthermore, they often disregard the impact other 
applications running on the system have on the performances of the controlled 
resources. None of these assumptions is realistic in a Grid context, so for an 
environment implemented on top of a Grid architecture, the scheduler must take into 
account the inherent greater heterogeneity. 

An application-oriented scheduling model 

In the following we propose a model for application-oriented scheduling in distributed 
heterogeneous environments. The model addresses most of the features a scheduler 
for a PSE Toolkit must offer in order to increase the performances of generated PSE  
applications. 

In the proposed model, a host is described through a set of attribute/value pairs 
describing the host's location, processor (model, clock, free percentage, count), 
operating system (name, release, job manager), memory (total RAM, free RAM, total 
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disk, free disk), etc. A dataset has instead a description providing information about 
the modalities for accessing it (location, size and so on), its logical and/or physical 
structure, etc. Moreover, a dataset is associated with the host at which it resides. The 
description of software regards the kind of data sources the software works on, the 
relationships between input and output, etc. A software is associated with the host 
offering it. 

The job is the basic building block of applications. It is composed by a software 
component, a set of input datasets, the parameters to be used and the host at which 
it has to be executed (except for the case of data movement jobs, where the host is 
the one towards which a dataset or a software is moved). At any given time, a job is 
in one of the following states: abstract if some of its characteristics are not yet 
specified, ready if it is completely “ground” and thus ready to run (typically this 
happens after the job has been scheduled), active if it is running, ghost if its 
execution has been completed. 

Finally, an application is a directed acyclic graph (DAG) of jobs, or any equivalent 
representation of a workflow instance. In the application specification, many data 
movement jobs can be left implicit, that is it is allowed to define jobs indicating their 
components as defined above, and disregarding the fact that software and/or 
datasets could require to be moved from different hosts. The data movement 
operations needed to execute the application are eventually generated accordingly 
by the scheduler. 

Software, data, hosts and jobs are said to be abstract if they have only some 
constraints specified; an application is abstract if it contains at least one abstract 
resource (see Section 3.2). 

The scheduler's input consists of (i) the sets of available datasets, software and 
hosts; (ii) the set of jobs to be executed, partially ordered for expressing precedence 
relationships among jobs; (iii) an execution time estimation function associating each 
quadruple <dset, sw, host, start-time> with the time needed to execute the software 
sw on the host host with the input dataset dset starting at time start-time; (iv) a 
communication time estimation function associating each quadruple <host-s, host-e, 
dset-size, start-time> with the time needed to transfer a dataset of size dset-size from 
host host-s to host host-e, starting at time start-time; (v) an output size estimation 
function associating each pair <dset, sw> with the size of the output produced by 
software sw when executed on input dataset dset. 

The scheduler yields as output (i) a set of non-abstract datasets, one for each 
dataset in the input set, possibly along with some dataset copies to be used for 
improving performances, as reported by the replica manager; (ii) a set of non-
abstract software codes, obtained as above; (iii) a set of non-abstract hosts, one for 
each host in the input set; (iv) a set of non-abstract jobs, one for each job in the input 
set, possibly adding the needed data movement jobs; (v) a timing function, 
associating each job with the time at which it must be started during the application 
execution. 

The scheduler’s output must meet several strict requirements. First, resource 
constraints must be satisfied, i.e. each job has to be really executable (considering 
the characteristics of software, data and host composing it). Precedence constraints 
must be satisfied as well, i.e. if a job ji precedes another job jk w.r.t. the partial order 
given in input, then jk’s starting time has to be chosen after ji’s completion (and after 
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other possible data movement operations). Finally, the overall completion time must 
be as low as possible. 

In the proposed model, no assumption is made on the particular scheduling policy 
adopted. It should be noted, however, that a good solution is that of providing an 
open interface for the scheduling policy, so as to have “pluggable” timing and 
techniques. In the case of a Grid-based implementation, to better take into account 
the dynamic nature of the environment, it could be useful to evaluate the instantiation 
of abstract resources not only before the application execution, but also during the 
execution itself (thus adopting a dynamic with rescheduling approach). In fact, during 
the execution, some resources may become available or unavailable on an 
unpredictable basis, as e.g. new potentially-candidate resources could be freed from 
concurrent applications, or previously-chosen resources could fail. A possible 
solution to this problem could be that of associating a list of matching concrete 
resources with every abstract one. In this way, should a resource become 
unavailable during the execution, it could be immediately replaced without re-invoking 
the scheduler. Furthermore, a number of resource checkpoints could be inserted 
within an application and, when a resource checkpoint is reached, the scheduler is 
invoked in order to re-schedule the application from the checkpoint on. 

Finally, we believe that two possible useful extension of the proposed model are (i) 
the adoption of resource cost functions, in order to have, given a maximum 
completion time, a set of resource reservations to be made for minimizing the cost of 
an application execution, and (ii) the use of job checkpoints, that is the possibility to 
suspend jobs and re-schedule their execution, if possible without restarting them, for 
improving performances or in case of failures. 

3.6. Steering 

Computational steering is an emergent technology that provides a mechanism for 
the integration of simulation, data analysis, visualization and post-processing. It can 
be defined as the interactive control over a computational process during the 
execution. Application for which steering is useful are typically long-running, complex 
simulation, modeling or control programs executing in parallel or distributed 
environment. Three types of computational steering exist: exploratory, algorithmic 
and performance steering.  

Exploratory steering allows users to examine the state of a simulation as it 
proceeds through the interactive visualization of intermediate results and to guide the 
computation by the modification of input parameters. In this case, the decisional 
process is carried out by human users who interpret the data visualized and then 
issue, by a GUI, steering commands. 

The algorithm steering approach automates the steering loop replacing the human 
with a decisional algorithm written in a steering language. 

Performance steering allows users to change applications to improve application 
performance.  Manual load  balancing or re-schedule of the processes of the 
application are examples of interactive performance steering. In general, 
performance steering is performed by algorithms. According to this approach, for 
example the input parameters of the load balancing algorithm can be modified during 
the runtime of the simulation.  
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In a  PSE toolkit,  computational steering can be provided for within the composition 
interface (see Section 3) by inserting a loop that contains either a user interface 
component  (UIC) or a programmable component (PC) into the task graph. 

The UIC allows to implement the exploratory steering.  By UIC a user can switch a 
steerable component between the paused and non-paused states, change 
parameters, resolution or representation on the fly and enables the visualization of 
intermediate results as soon as they are available.  

The PC handles in an automatic way the steering of the application. A user defines a 
program that contains significant events using the variables and  the parameters that 
is interesting  to control  and allows  to take actions when an event is detected.  

Performance steering includes the runtime adjustment of performance–relevant 
parameters to improve application performance. The PC can also be used to define 
algorithms that decide what steering actions to exercise based on both inputs from 
the monitoring system and, possibly, inputs from other external sources.  

Steering and PSE 

We plan to insert all these types of steering in the PSE toolkit. Basic components of 
the PSE framework can have or not the propriety to be steerable described in its 
metadata. 

When is present a steerable component a user by UIC can receive data from other 
components (steerable or not), can place sensors and actuators in their source code 
specifying the program variables that sensors should monitor and the control points 
that can be modified by actuators. Usually interaction with a running application can 
occur by changing the input to one or more components by the user interface 
component. 

An algorithmic steering component can be introduced in the architecture of PSE. 
Using PC we can write, with an appropriate language (what-if conditions, ….), an 
algorithm driving the computation towards interesting scenarios. The algorithm is 
used to change adaptation of program components or the decomposition geometry or 
even to replace some components in order to improve performance or avoid faults.  

However, to tackle the Grid dynamicity, it could be useful to re-schedule workflow 
instances (i.e. to switch one or more concrete resources during the execution), or 
even to change the workflow schema, in order to force instances to follow a different 
application logic. 

The computational steering  can be used to define steerable algorithms that decide 
how to re-schedule workflow instances or generate new allocation schema by events 
defined using data coming  from the monitoring system and the internal variables or 
parameters. 
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4. Open Issues  

4.1. Performance Models 

Performance models are needed to predict and evaluate the performances of single 
tasks, of the entire applications and of the overall system. They are useful in different 
contexts: 

1. for the selection and scheduling of appropriate software and hardware 
resources; 

2. for the evaluation of application performances prior to their execution; 

3. during application execution, e.g. to facilitate the application steering. to 
increase performance by dynamically load balancing the system and 
furthermore for fault detection and diagnosis;  

4. after application execution: performances can be evaluated, visualized and 
used to refine the performance model. 

In Figure 5, some architectural modules for performance modeling are shown. With 
respect to the general PSE Toolkit architecture presented in Section 3, in Figure 5 we 
detail some components of the Resource/Execution Manager and a Performance 
Models Repository which is part of the Metadata Repository. 
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Figure 5. A performance modeling architecture 
 

The performance modeler is the main and more complex component of the 
performance model architecture. It builds performance models of overall applications 
using information provided by the repository, containing performance models 
concerning  software and hardware components. Software Component PM are 
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typically provided by the software engineer building the specific component. Note 
some components can lack performance models or can have an incomplete one; in 
such a case the Estimator module (described below) must provide a fairly accurate 
SPM. Resource PM are supplied by the forecaster module of the Information 
Services. This module should minimize the intrusiveness, consider dynamic changes 
over time (load, priority, availability, etc..) and be scalable. In [Bala00] some grid 
monitoring tools are compared and NWS [Wols99] seems to satisfy these 
requirements. 

On-line and post-processing analyzer pursue a twofold aim: enhancing the 
performance of the application during the execution, and later analyzing  the 
accuracy of the model and the performance obtained in order to improve future 
executions. Interactive steering can be useful in changing adaptation of program 
components or the decomposition geometry or even in replacing some components 
(see Section 3.6 for more details). Post-processing analysis verifies the validity of the 
application performance model, not only evaluating the error between the correct 
behavior and the obtained one, but also permitting corrections by apposite algorithms 
or by the user itself. 

The track recorder stores a history of the Application/System performance models 
into the repository in order to reuse them in analogous or similar applications. 
Furthermore, information about the failure of some components or entire applications 
in particular circumstances can avoid these problems in the future or modify the 
degree of reliability of the software/hardware component. 

The estimator module tries to obtain un alternative performance model when a 
component has none or an incomplete one. The difficult task is succeeding in 
forecasting without using many resources and not wasting too much time. The design 
of this module is still in study; we think to carry out using techniques as the 
multivariate one, where easy and cheap measures permit to obtain more complex 
ones. 

Hardware component performance models describe the performances of available 
hardware components such as processing cycles, storage and network links. 
Performances are evaluated dynamically and are timeframe-specific; predictive 
estimation about future performances are provided as well. 

Software component performance models describe the performances of available 
software components. Here the word performances refers to the performances 
required to execute the components, e.g. with the number of CPU cycles needed to 
run a certain algorithm as a function of the input size, or the particular hardware 
characteristics the software is tailored to. 

Application/System performance models describe the performances that in 
general are to be improved by using performance models. A typical application 
performance model is related to the application completion time, while the most 
commonly-used system performance models are concerned with overall throughput 
and resource utilization. The choice of a suitable performance model to be adopted 
here depends obviously on the particular application and on the software/hardware 
infrastructure available. Application performance models should be designed to be 
easily composable, i.e. it should be easy to build the performance model of an 
application composed of sub-applications with a known performance model, as it is 
usual in PSE environments to build applications through the composition of pre-
existing solution methods. 
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It should be noted that useful information can be extracted by properly combining the 
performance models described above. For instance, by combining resource and 
component performance models, two estimation functions can be built: (i) an 
execution time estimation function, evaluating the time needed to execute a given 
software on a given host with a given input dataset; (ii) a communication time 
estimation function evaluating the time needed to transfer a dataset of a given size 
from an host to another. These functions, as described in Section 3.5, can provide 
valuable information to the scheduling component of the Toolkit resource 
management system. 

4.2. Grid Services 

Many Grid-based middleware and applications, such as Grid portals, search engines, 
data Grids, and authorization services, have been developed to provide services on 
the Grid infrastructure. However, till today all the services provided are separate and 
not interoperable. 

On the basis of the integration and interoperability requirements of the increasing 
number of applications, Grid technologies are evolving towards an open Grid 
architecture, called the Open Grid Services Architecture (OGSA) [Ogsa03], in which 
a Grid provides an extensible set of services that virtual organizations can aggregate 
in various ways. 

OGSA defines a uniform exposed-service semantics, the so-called Grid service, 
based on concepts and technologies from both the Grid computing and Web services 
communities. Web services define a technique for describing software components to 
be accessed, methods for accessing these components, and discovery methods that 
enable the identification of relevant service providers. Web services are in principle 
independent from programming languages and system software; standards are being 
defined within the World Wide Web Consortium (W3C) [W3C] and other standards 
bodies. The OGSA model adopts three Web services standards: the Simple Object 
Access Protocol (SOAP) [SOAP03], the Web Services Description Language 
(WSDL) [WSDL03], and the Web Services Inspection Language (WS-Inspection) 
[WSIL03]. 

Web services and OGSA aim at interoperability between loosely coupled services 
independent of implementation, location, or platform. OGSA defines standard 
mechanisms for creating, naming, and discovering persistent and transient Grid 
service instances, provides location transparency and multiple protocol bindings for 
service instances, and supports integration with underlying native platform facilities. 
The OGSA effort aims to define a common resource model that is an abstract 
representation of both real resources, such as processors, processes, disks, file 
systems, and logical resources. It provides some common operations and supports 
multiple underlying resource models representing resources as service instances. 

Differently from Web services, that address discovery and invocation of persistent 
services, the OGSA model also support transient services instances, created and 
destroyed dynamically. Thus a Grid service is a, potentially transient, Web service 
based on Grid protocols expressed using WSDL.  

In OGSA all services adhere to specified Grid service interfaces and behaviors 
defined in terms of WSDL interfaces and conventions and mechanisms required for 
creating and composing sophisticated distributed systems. Service bindings can 
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support reliable invocation, authentication, authorization, and delegation. To this end, 
OGSA defines a Grid service as a Web service that follows specific conventions on 
the use for Grid computing and provides a set of well-defined WSDL interfaces.  

Grid services implement one or more interfaces, corresponding to WSDL portTypes. 
Only one interface is mandatory (GridService) and deals with querying information 
sources about service instances (through the FindServiceData operation) and 
managing their termination (setTerminationTime and Destroy operations). Other 
(optional) interfaces are: 

• Factory, dealing with the creation of service instances; 

• HandleResolver, returning Grid Service References, containing protocol- or 
instance-specific information about services, associated with Grid Service 
Handles, i.e. unique URL associated with services for their entire lifecycle; 

• Registration, for soft-state (un-)registration of Grid service handles; 

• NotificationSource for the subscription to notifications of service-related 
events, based on message type and interest statement; 

• NotificationSink for the asynchronous delivery of notifications. 

As the OGSA model is under development, standard interfaces for authorization, 
policy management, concurrency control, and the monitoring and management of 
potentially large sets of Grid service instances will be defined in the near future.  

The OGSA model has been adopted by the Globus project for the designing of the 
GT3 (Globus Toolkit 3) environment [Ogsa03]. Technically, OGSA enables the 
refactoring of Globus protocols (GRAM, MDS, GridFTP) through the Grid Services 
technology, while preserving all GT features. 

Figure 6 shows the GT-OGSA architecture. Grid Services can be defined at three 
different abstraction levels, and consequently belong to three layers: the System-
Level Services layer, the Base Service layer and the User-Defined Services layer.  

System Level Services are general-purpose services that facilitate the use of other 
Grid Services in production environments. The GT3 distribution currently includes an 
Administration Service, a Logging Service and a Management Service.  

Base Services include Grid Services that implement basic functionalities of the 
Globus Toolkit formerly implemented with other technologies. They include:  

• Resource Management Grid Services, which are used for job submission and 
management and correspond to the GT2 (Globus Toolkit 2) GRAM 
architecture; 

• Information Services. In particular, the Index Service is used as a caching 
aggregator service that caches service data form other grid services, and as a 
host for service providers. The Index Service replaces the GRIS and GIIS 
information providers of GT2. 

• Reliable File Transfer (RFT), which exposes GridFTP control channel 
functionalities. Note that, while RFT is a Grid Service, the GridFTP client and 
server are still GT2 compliant. 
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User Defined Services can be defined and published by end users using GT3 
development tools. Very interesting is the opportunity of defining a Grid Service that 
is a specialization or a composition of existing Grid Services, thus enabling the reuse 
of the newly defined Grid Service. 

 

 
Figure 6. A picture of the Globus Toolkit OGSA architecture 

Of course, a large number and variety of User-Defined Grid Services can be defined 
by PSE and application domain experts in order to facilitate PSE users in building 
specific solutions. Therefore it is imperative to provide an efficient information system 
that assists users in the task of discovering the User-Defined Grid Services that 
better can satisfy their requirements. To this end, two issues have to be tackled: 

1. information providers (Index Services in OGSA) should be efficiently 
interrelated and organized in a hierarchical, peer-to-peer, or hybrid structure; 

2. an efficient metadata model should provide a useful representation of 
heterogeneous Grid Services. In [Mast03] a metadata model is defined to 
classify resources utilized in the context of a PSE toolkit focused on data 
mining applications. This model can be generalized to classify Grid Services 
that interface different kinds of resources, in particular hardware resources, 
software, data sources, workflows. 

The PSE Toolkit architecture proposed in Section 3 can be designed to comply with 
the OGSA model, in terms of both internal and external interfaces. More specifically: 

• The Metadata Repository could be wrapped and made accessible through 
OGSA database services, allowing for querying and browsing data. 

• In the Component Repository, data could be made accessible through OGSA 
database services as well, while software components should provide OGSA 
interfaces, possibly wrapping their native ones. Furthermore, as it is natural in 
OGSA, processing cycles and network bandwidth could be reserved and used 
as services. 

• The features provided by the Description System, the Search/Discovery 
System and the Execution/Resource Manager are directly exposable as Grid 
Services. 

• Finally, a service could be provided for accepting user requests about more 
complex tasks, such as the composition of applications and their steering. This 
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“User Service” should also be made extensible through an open interface to let 
users specify and automate their usage patterns or repetitive actions, such as 
the automatic refresh of metadata about provided components, or the 
extraction of new potentially useful information from the Metadata Repository. 

As a final remark, the adoption of the Grid Services technology has an important 
impact on all the topics and issues involved in the designing of a PSE toolkit. In 
particular, Grid Portals are a privileged interface to Grid Services, since portlets can 
be associated to single or collective Grid Services: see Section 4.7 for more details. 

4.3. Ontologies 

“An ontology is an explicit specification of a conceptualization” [Grub93]. Specification 
refers to an explicit representation by some syntactic means. Ontologies try to 
capture the semantics of domain expertise by deploying knowledge representation 
primitives, enabling a machine to understand the relationships between concepts in a 
domain. Additional knowledge can be captured by logical axioms or rules which 
derive new facts from the existing ones. An inference engine then can draw 
conclusions based on the rules or axioms to create new knowledge and eventually to 
solve problems. 

In other words, Ontology is a shared understanding of some domains of interest, 
which is often conceived as a set of classes (concepts), relations, functions, axioms 
and instances. Concepts in the ontology are usually organised in taxonomies. 

Knowledge Management in a PSE  

Problem Solving Environments (PSEs) are becoming more and more complex and 
knowledge intensive. To produce satisfactory results, a PSE should be designed 
using the best domain practice and following decisions made by skilled engineers in 
practical situations. A knowledge based approach could be used to acquire this 
knowledge from existing sources and model it in a readable way. 

Ontologies can be used for the knowledge management in a Grid-based PSE 
environment allowing the building of semantically enriched knowledge bases. These 
knowledge bases can be regarded as the basic resources for the various knowledge 
services available and integrated into a PSE to assist users to exploit resources for 
the design and execution of applications.  

A Grid-based PSE is composed of a set of PSE specific components such as 
software libraries, repositories, and all the resources associated to a Grid 
environment. Moreover a PSE could be tailored towards a specific domain thus we 
have to manage domain specific knowledge too. In summary, in a Grid-based PSE 
we have to model knowledge about: 

• PSE specific application domain 

• PSE components  

• Grid resources and services 

To reduce the complexity of resource modeling and to leverage existing ontologies, a 
suite of ontologies could be built (or reused) for the management of the 
heterogeneous knowledge in a Grid-based PSE, providing a full range of descriptions 
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for the full range of users and domains expertise. In this direction, it is possible to 
identify the following ontologies. 

Domain, application and task ontologies. A first set of ontologies should model the 
basic features of the specific application domain as well as the components of the 
PSE allowing the development of systems that perform the functions of a domain 
expert. These functions refer to what things are in the domain and when and how 
these things are related (domain ontology). Moreover the descriptions of relevant 
tasks of the domain (e.g. retrieval and analysis) should also be modelled. To this aim 
a mixture of all the different aspects of the domain should be modelled: general PSE 
knowledge, domain specific knowledge, domain specific tasks and applications. The 
domain ontology should be used to model all the resources of the PSE as software, 
data and host Since a PSE toolkit is used for different application domains, the 
domain ontology can be composed of two parts, a specific domain part and a core 
part. The domain specific part is an explicit description of domain specific terms, 
characteristics and components, whereas the core part models knowledge common 
to different application domains and provides domain independent primitives to build 
domain specific ontology.  

The core part should describe the common basic structure of PSE components 
characterizing their input/output interfaces and their semantics in the following terms: 
(1) the task performed by the component; (2) the problem it solves, if the component 
is a complete application; (3) specification of who may use the component; (4) how 
information is passed from the component to another one; (5) a set of constraints 
associated to the component such as on what platforms it is licensed to run, whether 
it requires generic software to be linked later in order to run, the kind of input it 
requires; (6) information on a component’s purpose, the algorithm it uses, and other 
pertinent explanatory data optionally associated with a component; (7) how a piece of 
executable may be associated with a component: e.g. the component may be 
available only as an executable specific to a certain type of hardware, or the 
component may be available as source code and in this case the PSE must arrange 
for it to be compiled for a target architecture; (8) the server implementation to which 
the component is linked to be executed [Walk00]. A task ontology is an ontology 
specifying a problem solving process in terms of concepts and relations appearing in 
a task of interest. The advantage of task ontology is that it specifies not only skeleton 
of the problem solving process but also context where domain concepts are used. An 
application ontology describes and classifies applications represented as workflows 
and contains information about application’s results and comments about user 
experience. Application ontologies describe concepts depending of both a particular 
domain and a task and are usually a specialization of them. An application is the 
composition of more tasks. 

Grid resource ontology. The ontology for Grid resources can be useful for the 
resources matchmaking [Paol02, Tang03] and scheduling. At any given time the 
ontology should maintain an accurate picture of the capabilities, loads and 
accessibility of the hardware resources available and the network connecting them. 
This ontology should provide an abstract model for describing resources (e.g., 
computer system, operating system), their properties (e.g., the total physical memory 
of operating systems) and their relationships (e.g., a particular operating system must 
run on a particular computer system). The ontology should provide resource 
information including configuration details about resources such as CPU speed, disk 
and memory space, number of nodes in a parallel computer, or the number and type 
of network interfaces available; instantaneous performance information, such as 
point-to-point network latency, available network bandwidth, and CPU load.  
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Ontology-based Operations 

Once the semantic knowledge bases have been built, there are several ways in 
which a PSE can take advantage of ontologies reasoning (inference): 

• Formulation of the problem to be solved in terms of modeled tasks, 
components or pre-existing applications; 

• Semantic search along the ontology for the location and access of 
components needed to solve a problem. 

• Scheduling of Grid jobs, e.g. software components, on the basis of modeled 
scheduling policies. 

• Request/resource matchmaking. Ontologies describing resources 
characteristics and job requests can be used to perform semantic resource 
selections. Before a resource can be allocated to satisfy a request (e.g. find a 
node where to run a software component), the system has to match request 
requirements with available resources characteristics. 

 

Problem formulation 

Ontologies can help users in problem formulation, offering a view of the best domain 
practices to solve  problems in that domain. In this way the accumulated knowledge 
can be accessed by new PSE users. 

Semantic Search 

Semantic search discovers semantically equivalent or related resources [Cann03a]. 
This approach differs from traditional crawler based search mechanisms because it 
relies on resources expressed as a combination of entities and relationships 
connecting them. Semantically equivalent terms convey similar meanings in terms of 
semantics although being syntactically unequal. A user through an ontology-based 
search engine can query very detailed information about resources annotated in the 
ontology. The result set of the query is very accurate, because the semantic content 
of the terms searched is clearly indicated by concepts from the underlying ontology. 
An ontology-based search engine will support several kinds of simple inference that 
can serve to broaden queries including equivalence, inversion, generalization, and 
specialization. Equivalence relations are used to restate queries that differ only in 
form, whereas generalization and specialization relations are utilized  to find matches 
or more general or more specific classes and relations (e.g., in DAML+OIL [DAML03, 
DAML03a] subPropertyOf and subClassOf relations). If the result set of a query is 
empty, the user can at least find objects that partially satisfy the query: some classes 
can be replaced by their superclasses or subclasses. Both narrowing and broadening 
the scope of the query are possible due to the ontological nature of the domain 
description. 

Moreover an ontology-based tool can also help the user in the query formulation. 
Users encounter difficulties when having to provide terms that best describe their 
information need (vocabulary problem). In ontologies the classes that describe the 
domain of interest are explicitly shown, making the vocabulary choice much easier.  
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Matchmaking 

The request/resource matching problem involves assigning resources to jobs in order 
to satisfy jobs requirements and resources policies [Tang03]. Ontologies can be 
created to explicitly describe resources and job requests allowing to perform 
semantic matching using terms defined in those ontologies. Resource descriptions 
(e.g. the Grid resource ontology described above), resource advertisements and job 
requests should be expressed as concepts of ontologies while matchmaking rules 
should be added to the ontology to define when a resource matches a job description 
(i.e. a request). Thus, to realize ontology-based request/resource matchmaking, an 
ontology describing requests, properties of the request (such as the request’s owner), 
characteristics of the request (e.g., the type of the job requested) and the resource 
requirements (e.g., number of CPUs, minimum physical memory dimension) should 
be provided (Request ontology). Moreover an ontology capturing the resource 
authorization and usage policies (e.g., a set of accounts that are authorized to 
access a specified computer system) is also needed. 

Scheduling 

The scheduler has to determine the right scheduling policy for a given job as well as 
on which resources to run the components of the job. An ontology describing 
scheduling policies and specific terminologies could be used to choose the best 
policy for a given application class (for example data- vs CPU-intensive applications), 
whereas an ontology-based matchmaker could solve the job/resource mapping 
problem. Ontology of the Grid Scheduling domain, such that addressed by the Grid 
Scheduling Ontology Working Group [GSO-WG03], should support the scheduling of 
Grid resources done by local and distributed instances of software subsystems like 
schedulers and brokers. The ontology will allow classification of schedulers, 
reasoning about schedulers or mapping semantics of different scheduling systems. 
The ontology will be based on the Grid Scheduling Dictionary developed by the Grid 
Scheduling Dictionary Working Group [SD-WG03]. 

Ontology-driven User Interfaces 

An ontology-driven PSE uses ontologies to offer to users a sort of expert assistance: 
to guide users in the task composition process, to help users to search and use 
components, to match user requirements to component types. This expert assistance 
could be made available through a graphical interface through which ontology 
authors can create, import and edit ontologies, and at the same time end users can 
describe domain and problem solving knowledge based on those ontologies. The 
interface should support the exposure of the ontological model and the query 
formulation. During the query formulation process the model may be browsed to find 
what can sensibly be said of a concept of interest. 

The PSE should allow end users: (i) to describe their own problem solving processes 
in terms of human friendly primitives; (2) to observe the task execution process and 
debug their own description. In terms of ontology, the environment will be able to 
capture the end users’ conceptual model of problem solving on the level of 
abstraction and provide them with useful programming guidance.  

In the formulation of the problem, the work of an end-user is to specify his/her own 
problem knowledge. An ontology-based broker could mediate between end-users 
and the PSE [Benj98]. Basically it has to provide support in building or reusing a 
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domain ontology and in relating this ontology to an ontology that describe generic 
classes of application problems. This application ontology has to be linked with 
problem-solving method-specific ontologies (Task ontologies) that allow the selection 
of a solution method. The broker uses three different ontologies: domain ontologies, 
applicaton ontologies, and task ontologies. These ontologies provide the contents of 
the communication processes between users and the broker. First, end users could 
fill in some fields in the visual workplace for a problem specification. Then, to lighten 
their initial load, the broker should retrieve a set of similar task cases from the PSE 
library based on the specification and show them to end users. End users can refer to 
or reuse them to describe their own problem solving knowledge. During the 
composition of a task description, an end-user inputs the domain process using the 
domain ontology terminologies then selects the appropriate terms from the 
vocabulary (description of generic processes) shown in the task ontology browser 
and composes the generic process sentences.  

A typical communication among end users and a PSE by means of user interfaces 
driven by a broker is characterized by the following communication flows: 

• Sending a request from the user to the broker. Terms of the domain and 
application ontologies are the content of the message. The user interface 
uses a domain ontology to guide the interaction process with the user and it 
sends selected expressions to the broker. 

• Sending a negotiation from the broker to the user interface. The broker 
might need further clarification from the user before it can finish the selection 
process of problem-solving method. This clarification may ask more precise 
definitions of terms and their relationships necessary to derive an element of 
the application/task ontology from an element of the domain ontology. 

• Sending a query from the broker to a component interface. After having 
translated the domain-specific terminology into a problem-specific 
terminology the broker has to derive an expression in a problem-solving 
method-specific ontology. Then, this expression is passed as a query to the 
component interface. 

• Sending a response from a component interface to the broker. The 
response of a component interface may have two forms: providing a simple 
yes that the required service can be provided or the wish to introduce further 
assumptions on the problem that make it tractable and/or the introduction of 
requirements on domain knowledge that has to be provided by the user. 

 

Ontology Languages and Tools 

At this stage major efforts regard the development of languages and technologies for 
the standard and agreed modeling and implementation of metadata and ontologies.  

Currently the most common used ontology languages are the following: 

• DAML+OIL [DAML03a] is an ontology language designed for the Web built 
upon XML (eXtensible Markup Language) and RDF (Resource Description 
Framework) [XML, RDF]. DAML+OIL is modeled through an object-oriented 
approach, and the structure of the domain is described in terms of classes 
and properties. The axioms supported by DAML+OIL allow to assert 
subsumption or equivalence with respect to classes or properties, the 
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disjointness of classes, the equivalence or non-equivalence of individuals, 
and various properties of properties. Classes can be combined using 
conjunction, disjunction and negation. Within properties both universal and 
existential quantification are allowed, as well as more exact cardinality 
constraints. Range and domain restrictions are allowed in the definition of 
properties, which themselves can be arranged in hierarchies.  

• The Web Ontology Language (OWL) [OWL03] is a semantic markup 
language for publishing and sharing ontologies on the World Wide Web. 
OWL is developed as a vocabulary extension of RDF and is derived from the 
DAML+OIL Web Ontology Language. OWL adds more vocabulary for 
describing properties and classes, among others: cardinality (e.g. "exactly 
one"), equality, richer typing of properties, characteristics of properties (e.g. 
symmetry), and enumerated classes.  

Some examples of tools and techniques for ontology manipulation and navigation are 
the following: 

• Ontology editing tools that allow users to define and edit ontologies (e.g. 
DUET, OilEd, OntoEdit). OilEd [Bech01] is a simple graphical tool that 
supports the construction of OIL/DAML+OIL/OWL-based ontologies. Basic 
OilEd functionalities allow the definition and description of classes, 
properties, individuals and axioms through graphical means. OilEd uses 
FaCT reasoner which allows the user to produce classification hierarchies 
and check classes for inconsistency. 

• Ontology manipulation tools that allow navigating, querying and manipulating 
ontologies.  Jena is an open source Java framework for building Semantic 
Web applications. It provides a programmatic environment for RDF, RDF 
Schema and OWL, including a rule-based inference engine [Jena03]. The 
DAML API is a collection of Java interfaces and utility classes that 
implements an interface for using and managing DAML ontologies 
[DAML03A]. 

• Ontology-based annotation tools, for annotating web resources according to 
an ontology. For example, the UML Based Ontology Toolset (UBOT) 
[UBOT03] supports translation from UML class diagrams to DAML 
ontologies. 

• Ontology learning tools, for learning ontologies from natural language 
documents (e.g. Corporum, Text-To-Onto); CORPORUM is a document and 
information management system [Corp00]. The CORPORUM system is 
founded on CognIT's Mímír technology developed in Norwegian research 
labs. This technology focuses on meaningful content rather than odd data or 
standardized document parameters. The Text-To-Onto system provides an 
integrated environment for the task of learning ontologies learning from text 
[Text03]. 

To address the ontology browsing and querying in [Cann03a] we have designed 
DAMON-MAP, a tool that allows the manipulation of DAML+OIL encoded ontologies, 
in particular DAMON (Data Mining Ontology), an ontology for the Data Mining 
domain. The manipulation of an ontology can be realized both by a user that 
accesses DAMON-MAP through a graphical user interface, and by a Java-based 
component through DAMON APIs [DAML03a]. The API implementation is realized for 
accessing and querying the ontology: the API will provide a set of object-oriented 
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abstractions of ontology elements such as Concept, Relation, Properties, and 
Instance objects providing query facilities. 

4.4. Agents 

Generally, a PSE contains: 

• application development tools that enable an end user to construct new 
applications, or integrate libraries from existing applications and  

• development tools that enable the execution of the application on a set of 
resources. 

This means that a PSE must include resource management tools in addition to 
application construction tool, albeit in an integrated way. Moreover, a Grid-based 
PSE must consider the ever-changing nature of their resource base and so the 
resource management must become more flexible and responsive to changing 
resource availability and resource demands.  

Areas as resource discovery, resource monitoring and software propagation are 
some of the basic functions that require decentralized, scalable, dynamic and fault 
tolerant solutions for a efficient resource management on a infrastructure for grid 
computing.  

Component based implementation technologies provide a useful way of achieving 
this objective, and have been the focus of research in PSE infrastructure.  However, 
today’s software systems are becoming more net-centric, distributed, and 
heterogeneous and require a more sophisticated paradigm to handle with dynamicity, 
adaptivity and fault tolerance.   

A solution to design these new services can be the extension of the component 
model to mobile agents that provide interesting features to describe these services. 
For example, in MyGrid project, a bioinformatics grid, the experiments are expressed 
as a workflow script by the scientist. Services can be viewed as being provided by 
agents and workflow can be seen as an agent interaction script. Agents are able to 
complex interactions that include negotiation and collaboration, which allow agents to 
adapt their behavior to the environment.  

Mobile agents are flexible, autonomous components that are able to cope with 
dynamism and openness typical of the grid. 

A mobile agent has the unique property that during its lifetime it can be halted, its 
state and code moved to another computer on the same network, and then continue 
executing from where it stopped executing on the previous computer.  

A mobile agent is autonomous because it may decide itself where it will go, what it 
will do there, and how long it will exist for. However, its environment or other mobile 
agents may also influence it.  

Mobile agents are asynchronous. Therefore when a mobile agent is dispatched 
there is no need to wait for it to return. Indeed the original node does not even to 
remain connected to the network while the mobile agents are out. The mobile agents 
can wait until original node is back on the network before attempting to return to it. 

Information is being disseminated at every node that the mobile agent visits. Ever 
node benefits from accepting a visiting mobile agent, because the mobile agent will 
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have either new or more recent information about resources. Also, every agent 
benefits from visiting a node because it will learn of either new or updated resources. 
If the mobile agents do not contain any new information they may be destroyed. 

Mobile agents may easily be cloned and dispatched in different directions. This 
allows them to function in parallel. Although this causes more mobile agents to be 
active on the network, it does ensure that the network resource discovery is 
completed sooner, and therefore the mobile agents spend less time on the network. 

A mobile agent based solution is very fault tolerant. Even if some of the mobile 
agents are destroyed, all surviving ones will have a positive impact.  

There are two possible way to design mobile agents for complex problem solving  

• to create a few highly advanced (intelligent) agents or 

• try to divide and distribute the problem solving task between a number of less 
complex agents.  

First approach requires the construction of complex agents that are based on 
knowledge models and reasoning technique that belong to the field of Artificial 
Intelligence. 

The latter strategy consists in the use of a high number of (unintelligent) simple 
agents managed collectively to perform a number of complex task. This kind of 
collective intelligence is termed swarm intelligence. 

Swarm Intelligence (SI) is the property of a system whereby the collective behaviours 
of (unsophisticated) mobile agents interacting locally with their environment cause 
coherent functional global patterns to emerge. SI provides a basis with which it is 
possible to explore collective (or distributed) problem solving without centralized 
control or the provision of a global model.  

An ant colony is such an example where a high number of less intelligent creatures 
manage collectively to perform a number of complex tasks. 

Swarming agents are mobile agents that exhibit a collective intelligent behavior that 
may be used to define new decentralized, adaptive, self-organizing and fault tolerant 
algorithms for resource management on a Computational Grid. A swarming agent is 
an entity capable of sensing its environment and undertaking simple processing of 
environmental observations in order to perform an action chosen from those available 
to it. These actions may include modification of the environment in which the agent 
operates.  

Intelligent behavior frequently arises through indirect communication between the 
agents using the principle of stigmergy, where something is deposited in the 
environment that makes no direct contribution to the task being undertaken but is 
used to influence the subsequent behavior that is task related. Stigmergy is for 
example used in ants colonies, termites, etc. This mechanism is a powerful principle 
of cooperation. It is based on the use of the environment as a medium of inscription 
of past behavior effects, to influence the future ones. 

Swarming agents draw inspiration from biological processes and develop techniques 
and tools for building robust, self-organizing and self-repairing algorithm  as 
ensembles of autonomous agents that mimic the behavior of social insects. What 
renders this approach particularly attractive from a computational grid perspective is 
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that global properties like adaptation, self-organization and robustness are achieved 
without explicitly programming them into the individual artificial agents.  

Swarming agents can be used for  

• search resources over a grid. In this case the agents can use a foraging 
behavior. Foraging search is an attempt to emulate animals that solve the above 
problem in hunting for food, water, mates and other resources.   

• resource discovery, to maintain an up-to-date picture of the resources available 
to the PSE and to seek out new resources. Discovery is a special case of search 
it differs from the generic search function because the resources of interest are 
specified very broadly and the search of locations of interest proceeds  locally. 

• resource monitoring: resources used by the PSE should be monitored, e.g. for 
rescheduling purposes. Monitoring can be carried out through the production of 
local indices, obtained from local measurements without recourse to a centralized 
mechanism. 

• software propagation: having the source code available, agents should compile 
and install a software component on remote PSE hosts. 

 

4.5. Security 

Security issues should be managed at two different levels: 

1. Grid Security Services, i.e. at infrastructure level. The Globus GSI [GGSI03] 
allows to perform common tasks in a secure environment. The security 
infrastructure is used to specify what resources are shared, and what users 
can access them. Data are transferred in a secure environment and a proxy 
mechanism is used to assure the Single Sign On feature. 

2. More sophisticated security issues are to be tackled at a higher level. The PSE 
toolkit should allow the definition and management of classes of users (“roles”) 
that are given different tasks and authorizations. Classes of users that can be 
specified here are: application domain managers, solution designers, 
supervisors, end users etc. 

Security is an important issue that has to be considered in any distributed 
environments, i.e. any time users share data and applications (or services) in a 
common environment we may define security policies to allow access and using 
resources. In a distributed Grid-based Problem Solving Environment, even 
documents describing data and services location needs to be protected by unsafe 
accesses. Main security topics may be identified with (but not limited to) protecting: 
data, software components, and resource locations from malicious access and use. 
Thus, managing policy has to be defined to guarantee security policy in a distributed 
(Grid based) PSE for: 

1. resources location and definition; 

2. access and authentication policy for data (read, write and update); 

3. use and execution of remote applications (job applications); 

4. secure message and I/O passing. 
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The first point is associated to adding protection to resource location and rights 
definition (i.e., what are the resources and which users may access to them). 
Applications asking access to data may embed user signature to identify the access 
and prevent unauthorized access. Communication access may be protected using 
secure access procedures (see [Milo99]) Safety access must be considered as an 
application layer in any node interface. 

Applications in a Grid based PSE, may run on a server node of the Grid returning 
data results to the client node. Security policy must be identified on a server side to 
identify the client and to authenticate it hosting and running the applications. Output 
results need to be packed with client identification and returned to it. Identifying client 
or users with their rights to access to data or software resources, needs to be faced 
in a Grid environments where authentication involves many nodes that can be at the 
same time client and servers. (see [Lasz01] ). Authentication processes are 
necessary to control access to nodes.  Grid security infrastructure (GSI) policy 
authentication is used in [Lasz01], where Accessing a node in a Grid, needs 
authentication process.  Authentication is the process to verify the identity of an 
entity. It is a challenging task to use standard algorithms for security goals in Grid-
based Problem Solving Environments, where users and resources are potentially 
large and dynamic.  

Security coupling may be defined while any node asks for accessing to data or 
software resources, using authentication and authorization policies. A node asks for a 
service identifying itself, and the answering node identifies it and authorizes access 
or job execution following security roles. In our environment it is necessary a 
standard protocol to identify nodes and client (identification) and to define 
authorization policy. Currently Globus GSI [GGSI] uses the Secure Sockets Layer 
(SSL) for its mutual authentication protocol. SSL is also known by a new, IETF 
standard name: Transport Layer Security, or TLS. Indeed, even authorization in using 
resources may be defined in levels. 

In security policy suggested by Globus, authorization to use a particular Grid 
resource can be controlled via a grid-map file and appropriately specified group 
permissions controlled by the local system administrators.  

Finally, we may take account of main guideline of GGF activities in Security area. 
The security working group is considering Web services experiences for managing 
security policy (see www.ggf.org, security working group). Key features for securing 
data and component  accessing has to include [Mala03] : 

Establishing the identity (e.g., the person) that is accessing data and resources in 
order to enforce access policies based on that identity. 

Ensuring data isolation, e.g. ensure that an application is able to access data 
associated with another application executing within the same environment.  

Enforcing data privacy such that only users who have rights to view their own data 
or particular data (e.g., medical records) can view such data. 

4.6. Roles 

Users in a Grid Based PSE should have roles related to their tasks and positions 
within the grid. These roles can give information on allowed resources, available 
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information and possible ability of readjusting assumptions of the problem-solving 
environment. 

As in Database community, roles depend on kind of users in PSE. In a distributed 
environment, sharing data and software resources has to be managed by a set of 
rules that classify users by their capabilities and rights on resources (e.g., read, write, 
update, generate resource databases, and so on). (group of) Users  may have 
different roles and different access level facilities to the system functionality. 
According to [Lasz01], users (and group of users) in a PSE can be classified as: 

• Novice science or problem solving environment users; 

• Expert science or problem solving environment users; 

• Developers of application. 

Following such distinction, first class refers to novice users able to use available 
solutions in PSE without knowing the strategies adopted. Expert science are users 
who know a specific domain and use furnished solutions, eventually extending the 
PSE resources, e.g., adding data components, software or experimental results. 
They can also provide data classifications  or information to ontologies. Developers 
users provide components used by other users. 

Roles must have a hierarchical organizations reflecting kind of users. The decision 
power associated with the roles is derived from these positions. This determines the 
ability of setting and adjusting goals and associated targets. 

4.7. Grid Portals 

A Grid portal is a web portal specifically designed to provide a single and ubiquitous 
point of access to a large number of Grid resources and services. A Grid portal hides 
the details of the Grid environment and offers a uniform and graphical interface as 
well as high-level functionalities, thus helping the domain expert in concentrating 
about the nature of the problem and not about the technical issues involved.  

A well designed Grid portal should meet the following requirements [Lasz01], 
[Thom01]: 

• Universal access: portals should be accessed anywhere and by any kind of 
web browsers, without the need of requiring downloads, plug-ins or helper 
applications. 

• Problem-oriented. A Grid portal should provide functionalities that help users 
in building solutions to domain specific problems. 

• Use of common Grid technologies and standards to minimize the resource 
administration burden. 

• Support of a flexible and scalable infrastructure to facilitate the updating of 
Grid resources and services as well as the adding/removing of Grid users. 

• Security. A Grid portal should guarantee a strong authentication mechanism 
to prevent unauthorized access to the Grid. 

• Client applications and portals services should be able to run on separate 
webservers, enabling scientists to build their own application portals and use 
existing portals for common infrastructure services. 
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Services provided by Grid Portals 

A Grid portal designed for a particular scientific domain, or as the portal of a multi-
purpose PSE toolkit, should provide access to generic PSE services (in this sense it 
can be seen as a horizontal portal), and to domain specific services (in this sense it is 
a vertical portal for that domain). Services can be roughly categorized in four classes 
[Lasz01]: 

1. Common Web portal service. These services include filterable e-mail, 
collaborative services, personalized information services, advanced search 
engines etc. 

2. Grid-oriented services. These include all kinds of services provided by the 
Grid infrastructure, either client-server services or Grid Services defined within 
the OGSA architecture. As we will see later, Grid Services are particularly 
easy to integrate in the Grid Portal architecture.  

3. Multi-purpose GUI components. These services are defined to be used in 
generic PSE toolkits, not tailored to a specific application domain: they include 
resource metadata editors and browsers, job and workflow editors and 
browsers, monitoring tools etc. 

4. Application-specific GUI components, designed for specific application 
domains. Examples are a stock market monitor, a visual tool for designing 
data mining applications, a specialized search engine for climate data etc. 

In particular, main Grid-oriented services provided by a Grid Portal are the following: 

• Security services (e.g. Globus GSI services) provide user’s authentication 
and authorization with the system. 

• Job submission and monitoring. The portal provides job submission and 
monitoring services. To execute a job through a Grid Portal, the following 
steps are required: (1) the user authenticates with the system, (2) the user’s 
environment is established, (3) the user proxy is verified or recreated, (4) the 
job command is parsed, (5) the command is issued to the remote host (6) job 
state is monitored during the execution, and (7) results are parsed, 
formatted, and returned to the web browser on the user’s workstation. 

• Remote File Management. Portal users must be able to move files between 
local and remote Grid hosts. They must also be able to manipulate remote 
files transparently. Grid Portal supports file transfer, third-party file transfer, 
parallel file transfer and file browsing capabilities. 

• Context Management. The context of a Grid portal user consists of remote 
files, on-line data sources, directory services and applications, and remotely 
running jobs and workflows distributed over the entire set of Grid resources. 
In order to manage the user’s context the portal has to store information 
about recent Grid objects created or destroyed by the user while interacting 
with the Grid. 

• Information services. Grid Portal provides access to the Grid information 
services (e.g. the Globus Monitoring and Discovery service), that allow users 
to publish and retrieve static and dynamic information about Grid resources. 

A general architecture of a Grid Portal could be the three tier one shown in Figure 7 
[Gann03] 
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Figure 7. The three-tier architecture of a Grid portal 

The first tier includes the end-user’s workstation running a web browser. The middle 
tier (Portal Server) is a secure web application server responsible for handling HTTP 
requests coming from the client browser. The Portal Server mediates between client 
requests and Grid services and invokes Grid services on user’s behalf. The third tier 
is the computational Grid that provides Grid services and Grid computational 
resources. 

Grid Portal designing and modeling 

Given the large number and variety of services offered by a Grid Portal, it is 
convenient to exploit a designing methodology based on autonomous and reusable 
components. This can be accomplished with portlets [Gann03]. A portlet is a portal 
server component that provides a basic functionality rendered in a user configurable 
window within a portal pane (a portal pane is a view of the portal provided to a user 
or a set of users). 

Each portlet can be associated to a Grid Service, with the following benefits: 

• it is very easy to add new services; 
• different research groups can contribute portlets which can be plugged into a 

portal; 
• each user or group can select and configure the portlets he/she wishes to use; 

Of course not every Grid Service should be associated to a portlet: many services 
are designed to be invoked only by other services. So, a portlet can act as an agent 
that manages a set of services on behalf of the user. Currently, many research 
groups use the portlet model for their portal servers: examples are the Indiana, 
Argonne, Michigan, NCSA and Texas+GridSphere portal groups. 

The MVC (Model View Controller) model is currently used by all main portal groups to 
coordinate the execution of portlets, and hence of portal services. This MVC model is 
an efficient way to separate graphical issues from the application logic and control. 

• The View of an application defines the corresponding user interface  
• The Model defines the business logic of an application 
• The Controller is the entity that sequences view-model interactions 
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If using the portlet model, this means:  

• use a markup/template language to describe the details of how information is 
presented to the users 

• use a set of back-end classes to define the way the portlet does its 
computations 

• let the control of the two be handled by a third party like application or by a 
specialized “action” class. 

 
Grid Portal technology 

In the last years a number of frameworks and toolkits have been developed to assist 
users in modeling and developing Grid Portals: 

• the Apache Jakarta Jetspeed [Jets03] engine is based on the Java portlet model. 
Jetspeed is an Open Source implementation of an Enterprise Information Portal, 
using Java and XML. The data presented via Jetspeed is independent of content 
type: for example XML or RSS data can be integrated with Jetspeed. The actual 
presentation of the data is handled via XSL and delivered to the user.  

• the Commodity Grid (CoG) [Lasz00] toolkits provide a set of programmatically 
accessible Grid services. The CoG toolkit defines and implements a set of general 
components mapping Grid functionalities onto different application development 
frameworks (Java, C, CORBA). 

• the Grid Portal Development Kit (GPDK) [Gpdk03] provides high-level services, 
based on the Java CoG toolkit, to build Grid Portals. In particular the kit offers 
reusable components for accessing Grid services exposed by the Globus 
middleware. 

• the Grid Portal Toolkit (GridPort) [Thom01] is a collection of technologies designed 
to aid in the development of Grid Portals. GridPort is based on PKI and Globus 
technologies to provide secure, interactive Grid services. The web pages and data 
are built from server-side Perl modules or libraries, and simple HTML/JavaScript 
on the client side. 

Ubiquitous access to the Grid: MyProxy 

As stated above, Grid Portals are used as a ubiquitous way to access Grid Services. 
To perform “grid operations”, the user has to delegate the Grid Portal to use his/her 
credentials. In other words, to access the Grid, the portal must use a proxy certificate 
signed by the user. This can be accomplished with the MyProxy technology 
[Novo01], currently exploited by major projects focused on Grid Portals. 

MyProxy provides a repository of online credentials, designed to overcome the 
incompatibility of Web and Grid security infrastructures, thus enabling Grid Portals to 
use Grid protected resources in a secure and scalable manner, also ensuring the 
Single-Sign-On property. 

The use of MyProxy can be summarized as follows: 

1. The user, logged on a Grid host, creates a proxy certificate, sends it to a 
secure MyProxy repository, and associates the proxy with a password. The 
user also specifies the amount of time that the proxy will be valid. 
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2. Later, the user, this time logged on another generic host, gives the portal 
server the password, thus allowing it to contact the proxy server and load the 
proxy certificate. 

3. The portal server will hold the proxy in the user’s session state for the amount 
of time specified at step 1. Within this period, the portal will be able to access 
the grid services on behalf of the user. 

4.8. Application Domain Description 

A PSE toolkit should be used for different application domains. Therefore it is 
necessary to distinguish what components are common and what are specific of an 
application domain.  

Domain specific components help domain scientist or engineer in building the 
abstract workflow of their application (see Section 3.2 for more details). The choice of 
a particular domain hides the view of all components and shows only the components 
concerning that specified sphere of influence. For example, a geologist could have 
access to specialized software as GIS tools, to hardware resources as specialized 
printers and to limited access resources as computer maps. Note that these 
components can be in two different types: specialized for a particular type of task or 
general components for effective use concerning that a specified domain (can hide 
some general characteristic or acquire others). 

Furthermore workflow templates are available for more common operations and they 
can also be added by the domain engineer, when needed. Obviously the latter 
operation can be executed in  an abstract way without knowledge of the low level 
component design and of the dynamic characteristics of the grid environment. 
Graphical user interfaces can facilitate this task.  

Crucial issues concerning specific components are: 

• An ontology of goals, actors, resources specific of an application domain 
(see Section 4.3); 

• The interface between the application domain and the PSE toolkit. 

The last point is probably the more complex. There are two points of view: 

1. from the point of view of the application domain, what are the services asked 
to the PSE toolkit  (i.e. two fundamental services could be a graphical user 
interface or a user friendly domain-specific language.) 

2. from the point of view of the PSE toolkit, what are the characteristics of the 
application domain that allow the effective use of the PSE toolkit? Can the 
toolkit be used only for scientific domains, i.e. for domain that have formal and 
well known characteristics? 

Domain and task ontologies 

A domain ontology describes a specification of basic categories as these are 
instantiated through the concrete concepts and relations arising within a specific 
application domain. Due to this, ways must be found to take into consideration 
different experts views on the domain concepts and relations, as well different goals. 
These concepts are used for all tasks that occur within that domain. Task Ontologies 
describe the reasoning concepts and their relationships occurring within a certain 
domain and for a specific task. Task ontologies link the reasoning process to domain 
factual knowledge [Grub93] Using domain ontologies together with task ontologies it 
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is necessary for the identification of mapping rules between the domain (including 
primitives) and its related tasks.  

Domain specific languages and Graphical User Interfaces 

The interface among the application domain and the PSE could be performed by 
means of a graphical user interface or a user friendly domain-specific language. 

A possible scenario could be the following. A domain scientist could describe the 
domain-specific knowledge using the DSL or the GUI; both of them should be based 
on ontologies as those described in the previous paragraph. 

Domain-specific languages (DSLs) [Deur00] are oriented towards a particular 
application domain. By making the notations and concepts of an application domain 
available to the programmer, DSLs allow application programs to be expressed more 
concisely and directly than in general purpose languages. Details of the underlying 
implementation platform are captured by knowledge built into the DSL compiler and 
associated ontologies.  

The use of a DSL has many advantages. Since the language is close to the notation 
commonly used by domain-experts, it has a very high level of expression in the 
domain for which it was designed. Furthermore, the DSL compiler does not have to 
handle arbitrary programs, but can generate specialized code that is optimized 
toward domain-specific situations. Adopting a DSL approach for a PSE framework 
involves both risks and opportunities. The benefits of DSLs include that solutions may 
be expressed in the idiom and at the level of abstraction of the problem domain and 
consequently, domain experts themselves can understand, validate, modify, and 
often even develop DSL programs. 

On the contrary, the use of a DSL involves the costs of designing, implementing and 
maintaining a DSL and the difficulty of balancing between domain-specificity and 
general-purpose programming language constructs. 

Scenario of an application domain: Clustering of Human Proteins  

A biologist can exploit the PSE application domain specific characteristics to develop 
its application. The description of the application domain can guide the user in the 
definition and composition of the application. The scientist can select its application 
domain (bioinformatics) by means of the GUI and he can see the data and the 
hardware and software resources related to its domain. In particular considering the 
bioinformatics domain it is possible to identify the following resources: 

•  biological data sources such as protein databases (e.g., SwissProt, PDB) 

•   software components such as bioinformatics tools and software for retrieving 
and managing biological data (Entrez, SRS) 

•  bioinformatics process/task (sequence alignment, protein structure prediction, 
similarity search) 

•  hardware components specific for bioinformatics applications such as the 
mass spectrometers 

Moreover the biologist can use all the other resources related to PSE and the GUI 
will visualise suggestions if any general resources can be useful for the domain, i.e. a 
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storage device adapt to contain the database or a high performance computer for the 
processing of database.  

A bioinformatics domain ontology will guide the user in the application definition 
describing the semantics of data sources,  software components available and 
bioinformatics tasks and how they can be composed together.  

For example a common bioinformatics applications is the clustering of proteins. 
Protein function predictions uses database searches to find proteins similar to a new 
protein, thus inferring the protein function. This method is generalized by protein 
clustering or classification, where databases of proteins are organized into groups or 
families in a manner that attempt to capture protein similarity. In Figure 8 is shown 
the workflow describing the clustering application. The domain specific PSE 
components used in the application are: 

• EMBOSS  suite (seqret) 

• BLAST tool (blastall) 

• TribleMCL tool 

• SwissProt database 

As it should be noted in Figure 8, first all the human proteins sequences are 
extracted from the Swiss-Prot database using the seqret program of the EMBOSS 
suite (seqret is a program for extracting sequences from databases). TribeMCL 
uses an all against all BLAST comparison (evaluates the similarity among proteins) 
as input to the clustering process, thus once the protein sequences have been 
extracted from the database a BLAST computation has to be performed.  To speed 
up the similarity search activity the seqret output has been partitioned in three 
smaller files; in this way three BLAST computations can be run in parallel. The 
obtained raw NCBI BLAST outputs are converted in the format required to create the 
Markov Matrix used in the clustering phase and the parsing will be executed using 
tribe-parse program. Finally the clustering operation will be executed using mcl and 
the results will be displayed. 
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Figure 8. Workflow of a bioinformatics application:  
clustering of human proteins sequences 
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