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Abstract. Several recent works have addressed the problem of (re)discovering an
unknown workflow model of a given process, by looking at the logs of a number of its
executions. Most of these approaches assume a graphical representations of the model,
namely the control flow graph, which provides an intuitive description of the underlying
process, often enriched with some kind of local constraints over the activities, such as
synchronization or parallel executions.
The research in languages for workflow specification has, instead, pointed out that
local constraints are not enough expressive for modelling real scenarios, since they
often need global constraints, i.e., complex properties, which cannot be captured by
a graph, and which are eventually expressed using other formalisms, e.g., some form
of logics to specify elaborated execution constraints, in current workflow management
systems.
In this paper we propose a general framework for the process mining problem which
encompasses the assumption of workflow schema with local constraints only, for it
being applicable to more expressive specification languages, independently of the par-
ticular syntax adopted. In fact, we provide an effective technique for process mining
based on the rather unexplored concept of clustering workflow executions, in which
clusters of executions sharing the same structure and the same unexpected behavior
(w.r.t. the local properties) are seen as a witness of the existence of global constraints.
An interesting framework for assessing the similarity between the original model and
the discovered one is proposed, as well as some experimental results evidencing the
validity of our approach.
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1 Introduction and Overview of the Proposal

Even though workflow management systems (WfMS) are more and more utilized in
enterprises, their actual impact in automatizing complex process is still limited by the
difficulties encountered in the designing phase. In fact, processes have complex and
often unexpected dynamics, whose modelling requires expensive and long analysis
which may eventually result unviable under an economic viewpoint.

Recent research faced this problem, by exploiting some strategies, called process
mining techniques, for using the information collected during the enactment of a
process not yet supported by a WfMS, such as the transaction logs of ERP systems
like SAP, in order to derive a model explaining the events recorded. Then, the output
of these techniques, i.e., the “mined” synthetic model, can be profitably used to
(re)design a detailed workflow schema, capable of supporting automatic enactments
of the process.

As for a typical applicative scenario, we shall consider throughout the paper the
automatization of the (OrderManagement) process of handling customers’ orders
within a business company, consisting of the following activities: (a) receiving an
order, (b) authenticating the client, (c) checking in stock the availability of the
required product, (d) verifying the availability of external supplies, (f) registering
a client in the company database, (i) evaluating the trustworthiness of the client,
(g) evaluating the plan of the production, (h) rejecting an order, (l) accepting an
order, (n) preparing the bill, (m) applying discount for regular customers, and (o)
contacting the mail department in order to speed up the shipment of the goods.

In this scenario, the workflow designer might only have a look at some execution
traces, such as the ones shown in Table 1, and then she cloud use some of the
approaches for process mining proposed in the literature (see, e.g., [1, 21, 5, 18]), that
aim at reconstructing the structure of the process, by exploiting graphical models
based on the notion of control flow graph.1 This is an intuitive way of specifying
a process through a directed graph, where nodes correspond to the activities in
the process and edges represent the potential flow of work, i.e., the relationships of
precedence among the activities.

However, despite its intuitiveness, the control flow completely lacks in the abil-
ity of formalizing complex global constraints on the executions, which often occurs
while modelling real scenarios, for it being able to prescribe only local constraints in
terms of relationships of precedence. For instance, in the OrderManagement process,
examples of global constraints could be both the fact that the task o, in which the
mail department is contacted in order to speed up the shipment of the goods, can
be performed only when it was not necessary to check the availability of external
suppliers (d), and the fact that a fidelity discount (m) can be applied only when the
customer did not registered in the same execution (task f).
1 As done in the literature, we abstract from the heterogeneity of the logs in actual systems, by

considering each event as an identifier corresponding to a known and precise task.
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s1 : acdbfgih s5 : abicglmn s9 : abficgln s13 : abcidglmn

s2 : abficdgh s6 : acbiglon s10 : acgbfilon s14 : acdbiglmn

s3 : acgbfih s7 : acbgilomn s11 : abcfdigln s15 : abcdgilmn

s4 : abcgiln s8 : abcfgilon s12 : acdbfigln s16 : acbidgln

Table 1. Sample log traces from the processOrderManagement

Research in modelling languages already evidenced the importance of these prop-
erties, that cannot be captured by a graph, and that, in the current workflow man-
agement systems, are typically expressed using other formalisms, such as some form
of logics.

In this paper, we extend previous approaches to process mining, by proposing an
algorithm which is able to discover not only the control flow of a given process, but
also some interesting global constraints, in order to give to the designer a refined
view of the process. The main contribution are as follows:
• In Section 2, we formalize the process model discovery problem, in a context in

which the target workflow schema may be enriched with some global constraints,
denoted by CG. In order to decouple the approach from the particular syntax
adopted for expressing CG, we exploit the observation that each global constraint
leads to instances with a specific structure (short. pattern); consequently, a wok-
flow schemaWS∨, accounting for global constraints, can be viewed as the union of
several schemas WS1, ...,WSk (without global constraints), each one supporting
the execution of one pattern, only.

• Different patterns of executions (and, hence, WS∨) are identified by means of an
algorithm for clustering workflow traces, presented in Section 3, which is based
on the projection of the traces on a suitable set of properly defined features. The
approach is similar in the spirit to the proposals of clustering sequences using
frequent itemsets, but technically more complex, for it deriving a hierarchical
clustering. The theoretical properties of the algorithm are investigated as well.

• In Section 4, we propose a level-wise algorithm for the identification of the set
of features F for the clustering, and we study the problem of selecting the most
‘representative’ subset of F , by showing its intrinsic difficulty. Therefore, we also
propose a greedy heuristic for quickly computing a set of features approximating
the optimal solution.

• We experiment an implementation of the proposed technique, by showing its scal-
ability. An interesting framework for assessing the similarity between the original
model and the discovered one is proposed in Section 5, thus, providing a quanti-
tative way for testing the validity of the approach.

2 Formal Framework

In this section we formalize the mining problem addressed in the paper, which can be
roughly described as the problem of (re)constructing a workflow model of an unknown
process P , on the basis of log data related to some executions of the process. We first
focus on the definition of workflow schema.
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Fig. 1. Control flow graph for the sample OrderManagement process.

2.1 Workflow Schema

The set of distinct activities involved in a process P and the potential orderings
according to which the activities must be executed are usually modelled by means of
a suitable labelled directed graph. The control flow graph of a process P is a tuple
CF(P ) = 〈A,E, a0, F 〉, where A is a finite set of activities, E ⊆ (A−F )× (A−{a0})
is a relation of precedences among activities, a0 ∈ A is the starting activity, F ⊆ A
is the set of final activities. For instance, Figure 1 shows a possible control flow for
the OrderManagement process presented in the Introduction.

Any connected subgraph I = 〈AI , EI〉 of the control flow graph, such that a0 ∈ AI

and AI ∩ F 6= ∅ is a potential instance of P . In order to model restrictions on
the possible instances, the description of the process is often enriched with some
additional local or global constraints, such as an activity must (or may not) directly
(or indirectly) follow the execution of a number of other activities. Most of the
approaches proposed in the literature, often with different syntaxes, assume that
local constraints be defined by means of three functions A 7→ N: IN, OUTmin, and
OUTmax, each one assigning to a node a natural number as follows. Let InDegree(a)
be |{(b, a) | (b, a) ∈ E}| and OutDegree(a) be |{(a, b) | (a, b) ∈ E}|. Then,
– ∀a ∈ A− {a0}, 0 < IN(a) ≤ InDegree(a);
– ∀a ∈ A− F , 0 < OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a);
– IN(a0) = 0, and ∀a ∈ F , OUTmin(a) = OUTmax(a) = 0.
As for the semantics, an activity a can start as soon as at least IN(a) of its predeces-

sor activities have been completed. Two typical cases are: (i) if IN(a) = InDegree(a)
then a is an and-join activity, for it can be executed only after all its predecessors are
completed, and (ii) if IN(a) = 1 then a is an or-join activity, for it can be executed
as soon as one of its predecessors is completed.

Once finished, an activity a must activate a subset of its outgoing arcs with car-
dinality between OUTmin(a) and OUTmax(a). If OUTmax(a) = OutDegree(a) then a is a
full fork and if also OUTmin(a) = OUTmax(a) then a is a deterministic fork (also known
as ”and-split”), for it activates all of its successor activities. Finally, if OUTmax(a) = 1
then a is an exclusive fork (also called xor-split in the literature), for it activates
exactly one of its outgoing arcs.

Global constraints are, instead, richer in nature and their representation strongly
depends on the particular application domain of the modelled process. Thus, they
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are often expressed using other complex formalisms, mainly based on a suitable logic
with an associated clear semantics. A simplified yet expressive formalism describes
a global constraint as a pair 〈t, a〉, where t is a list of activities and a is an activity
not in t, prescribing that a cannot (or must) be activated if all activities in t have
been already executed.

Let P be a process. A workflow schema for P , denoted by WS(P ), is a tuple
〈CF(P ), CL(P ), CG(P )〉, where CF(P ) is the control flow graph of P , and CL(P ) and
CG(P ) are sets of local and global constraints, respectively. Given a subgraph I of
CF(P ) and a constraint c in CL(P )∪CG(P ), we write I |= c whenever I satisfies c in
the associated semantics. Moreover, if I |= c for all c in CL(P ) ∪ CG(P ), I is called
an instance of WS(P ), denoted by I |= WS(P ). When the process P is clear from
the context, a workflow schema will be simply denoted by WS = 〈CF , CL, CG〉.

2.2 The Process Model Discovery Problem

Let AP be the set of task identifiers for the process P . We assume the actual workflow
schema WS(P ) for P to be unknown and, we consider the problem of properly
identifying it, in the set of all the possible workflow schemas having AP as set of
nodes. In order to formalize this problem we need some preliminarily definitions and
notations.

A workflow trace s over AP is a string in A∗P , representing a sequence of tasks.
Given a trace s, we denote by s[i] the i-th task in the sequence represented by
s, and by lenght(s) the length of s. The set of all the tasks in s is denoted by
tasks(s) =

⋃
1≤i≤lenght(s) s[i]. Finally, a workflow log for P , denoted by LP , is a bag

of workflow traces over ΣP : LP = [ s | s ∈ A∗P ], and it constitutes the only input
from which inferring the schema WS(P ).

In order to substantiate the problem of mining WS(P ), one must specify which
language is to be adopted for expressing the global constraints in CG — thus the
problem is strongly dependent on syntactical issues. Therefore, in order to devise a
general approach, it is convenient to find an alternative (syntax-independent) way
for evidencing global constraints. The solution adopted in this paper is to replace a
unique target schema WS(P ) with a variety of alternative schemata having no global
constraints but directly modelling the various execution patterns prescribed by global
constraints. The basic idea is to first derive from the trace logs an initial workflow
schema whose global constraints are left unexpressed and, then, to stepwise refine it
into a number of specific schemas, each one modelling a class of traces having the
same characteristics w.r.t. global constraints. For instance, given the global constraint
〈[a, b], c〉 saying that the activity c cannot be executed after the termination of both
a and b, a suitable refinement of the initial schema may consist of two schemata:
the first one in which it is possible to reach both a and b but not c, and the second
one for which c is reachable but either a or b is not. Under this perspective, a set of
constraints results in a set of patterns of executions that are very often discovered
in the log, and, consequently, the workflow schema is seen as the union of several
schemata of simpler workflows with no global constraints.
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Definition 1. Let P be a process. A disjunctive workflow schema for P , denoted
by WS∨(P ), is a a set {WS1, ...,WSm} of workflow schemata for P , with WSj =
〈CF j , Cj

L, ∅〉, for 1 ≤ j ≤ m. An instance of any WSj is also an instance of WS∨,
denoted by I |= WS∨. ut

Given LP , we aim at discovering a disjunctive schema WS∨ as “close” as possible
to the actual unknown schema WS(P ) that had generated the logs. This intuition
can be formalized by accounting for two criteria, namely completeness and soundness,
constraining the discovered workflow to admit exactly the traces of the log. Obviously,
we preliminary need some mechanisms for deciding whether a given trace in LP can
be actually derived from a real instantiation of a workflow WS∨. Ideally, we might
exploit the following definition.

Definition 2. Let s be a trace in LP , WS∨ be a disjunctive workflow schema, and
I = 〈AI , EI〉 be an instance of it. Then, s is compliant with WS∨ through I, denoted
by s |=I WS∨, if t is a topological sort of I, i.e., t is an ordering of the activities in
AI such that for each (a, b) ∈ EI , i < j where s[i] = a and s[j] = b. Moreover, s is
simply said to be compliant with WS∨, denoted by s |= WS∨, if there exists I with
s |=I WS∨. 2

The careful reader may check that logs in Table 1 are indeed topological sorts of
suitable instances of the workflow schema in Figure 1.

We are now ready to introduce, for a disjunctive workflow schema and for a trace
log, the notions of soundness (i.e., every instance must be witnessed by some trace
in the log) and of completeness (all traces are compliant with some instance). As the
schema is not given but discovered from the analysis of the trace log, the two notions
are given with a certain amount of uncertainty.

Definition 3. LetWS∨ be a disjunctive workflow model, and LP be a log for process
P . We define:
– soundness(WS∨,LP ) = |{I|I|=WS∨∧6∃s∈LP s.t. s|=IWS∨}|

|{I|I|=WS∨}| , i.e., the percentage of in-
stances having no corresponding traces in the log;

– completeness(WS∨,LP ) = |{s|s∈LP∧s|=WS∨}|
|{s|s∈LP }| , i.e., the percentage of traces that

are compliant with some trace in the log.
Given two real numbers α and σ between 0 and 1 (typically α is small whereas σ

is close to 1) we say that WS∨ is
– α-sound w.r.t. LP , if soundness(WS∨,LP ) ≤ α, i.e. the smaller the sounder;
– σ-complete w.r.t. LP , if completeness(WS∨,LP ) ≥ σ, i.e., the larger the more

complete. 2

We want to discover a disjunctive schema WS∨ for a given process P which is
α-sound and σ-complete, for some given α and σ. However, it is easy to see that a
trivial schema satisfying the above conditions always exists, consisting in the union
of exactly one workflow (without global constraints) modelling each of the instances
in LP . However, such model would be not a syntectic view of the process P , for its
size being |WS∨| = |L|, where |L| = |{s | s ∈ L}|. We therefore introduce a bound
on the number of schemata in WS∨.
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Definition 4. (Exact Process Discovery) Let LP be a workflow log for the pro-
cess P . Given real numbers σ and α, and a natural number m, the Exact Process Dis-
covery problem, denoted by EPD(P ,σ,α, m), consists in finding (if any) a σ-complete
and α-sound disjunctive workflow schema WS∨, such that |WS∨| ≤ m. ut

The Exact Process Discovery problem can be solved in polynomial time only for
the trivial cases of m = 1 or of a large m (unless P = NP).

Theorem 1. Deciding whether EPD(P ,σ,α,m) admits a solution is (i) feasible in
polynomial time in the size of LP , if m ≤ 1 or , m ≥ |L|, and (ii) NP-complete,
otherwise.

We restate the process discovery problem in a way it always admits a solution.

Definition 5. (Minimal Process Discovery) Let LP be a workflow log for the
process P . Given a real number σ and a natural number m, the Minimal Process
Discovery problem, denoted by MPD(P ,σ,m), consists in finding a σ-complete disjunc-
tive workflow schema WS∨, such that |WS∨| ≤ m and soundness() is minimal. ut

The problem is now solvable as one may sacrifice enough portions of soundness to
get a result. But, as it is shown next, the problem is still untractable. W.l.o.g., let
us assume that the values representing soundness are suitably discretized as positive
integers so that we can represent MPD as an NP optimization problem.

Theorem 2. EPD(P ,σ,m) is an NP-complete optimization problem whose set of fea-
sible solution is not empty.

Armed with the above result, we turn to the problem PD(P ,σ,γ,m) of greedily
finding a suitable approximation, that is a σ-complete workflow schema WS∨, with
|WS∨| ≤ m, which is as sound as possible. In the rest, we shall propose an efficient
technique for solving this problem.

3 Clustering Workflow Traces

In order to mine the underlying workflow schema of the process P (problem
PD(P ,σ,γ,m)) we exploit the idea of iteratively and incrementally refining a schema,
by mining some global constraints which are then used for discriminating the possible
executions, starting with a preliminary disjunctive model WS∨, which only accounts
for the dependencies among the activities in P .

The algorithm ProcessDiscover, shown in Figure 2, computes WS∨ trough a
hierarchical clustering algorithm, starting by mining the control flow CFσ, with
the procedure minePrecedences, exploiting techniques that are at large extent al-
ready presented in the literature (and, briefly, treated in Section 3.1). Each workflow
schema WSj

i , eventually inserted in WS∨, is identified by the number i of refine-
ments needed, and an index j for distinguishing the schemas at the same level of
refinement. Moreover, we denote by L(WSj

i ) the set of traces in the cluster defined
by WSj

i . Notice that preliminarily WS1
0, containing all the logs in LP , is inserted in

WS∨, and in Step 3 we refine the model by mining some local constraints, too – see
Section 3.1.
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Input: Problem PD(P ,σ,m), natural number maxFeatures.
Output: A process model.
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp); //See Section 3.1

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0); //See Section 3.1
3 WS∨ := WS1

0; //Start clustering with the dependency graph only
4 while |WS∨| < m do

5 WSj
i :=leastSound(WS∨);

6 WS∨ := WS∨ − {WSj
i};

7 refineWorkflow(i,j);
8 end while
9 return WS∨;

Procedure refineWorkflow(i: step, j: schema);

1 F :=identifyRelevantFeatures(L(WSj
i ), σ, maxFeatures, CFσ); //See Section 4.1

2 R(WSj
i ) :=project(L(WSj

i ),F); //See Section 4.2
3 k := |F|;
4 if k > 1 then

5 j := max{j | WSj
i+1 ∈ WS∨};

6 〈WSj+1
i+1 , ...,WSj+k

i+1 〉 := k -means(R(WSj
i ));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));

10 mineLocalConstraints(WSh
i+1);

11 end for
12 else //Leave of the tree

13 WS∨ = WS∨ ∪ {WSj
i}; //See Theorem 2.2

14 end if ;

Fig. 2. Algorithm ProcessDiscover

The algorithm is also guided by a greedy heuristic that at each step selects a schema
WSj

i ∈ WS∨, for being refined with the function refineWorkflow, by preferring the
schema which can be most profitably refined. In practice, we refine the workflow
schema which is the least sound among the ones already discovered; however, some
experiments have been also conduced refining the schema WSj

i with the maximum
value of |L(WSj

i )|.
In order to reuse well know clustering methods, and specifically in our imple-

mentation the k-means algorithm, the procedure refineWorkflow translates the logs
L(WSj

i ) to relational data with the procedures identifyRelevantFeatures and
project, which will be discussed in the next section. Then, if more than one feature
is identified, it computes the clusters WSj+1

i+1 , ...,WSj+k
i+1 , where j is the maximum

index of the schemas already inserted in WS∨ at the level i + 1, by applying the k -
means algorithm on the traces in L(WSj

i ), and inserts them in the disjunctive schema
WS∨. Finally, for each schema inserted WS∨ the procedure mineLocalConstraint is
applied, in order to identify local constraints as well.

The algorithm ProcessDiscover converges in at most m steps (see Step 4), and
exploits the following interesting property of the procedure refineWorkflow.

We observe that at each step of workflow refinement the value of soundness de-
creases, thus the algorithm gets closer to the optimal solution.
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Theorem 3. Given a disjunctive schema WS∨, with WSj
i ∈ WS∨, the disjunc-

tive workflow schema WS∨+, obtained by refining WS∨ − {WSj
i} with the procedure

refineWorkflow(i,j), is such that soundness(WS∨+) ≤ soundness(WS∨) .
A main point of the algorithm is fixing the number k of new schemata to be added

at each refinement step. The range of k goes from a minimum of 2, which will require
several steps for the computation, to an unbounded value, which will return the result
in only one step. One could then expect that the latter case is most efficient. This is
not necessarily true: the clustering algorithm could run slower with a larger number
of classes thus loosing the advantage of a smaller number of iterations. In contrast,
there is an important point in favor of a small value for k: the representation of
the various schemata can be optimized by preserving the tree structure and storing
for each node only the differences w.r.t. the schema of the father node. The tree
representation is relevant not only because of the space reduction but also because it
give more insights on the properties of the modelled workflow instances and provides
an intuitive and expressive description of global constraints.

3.1 Dependencies and Local Constraints
We next present some ideas for mining both dependencies and local constraints.

Let LP be a workflow log over the tasks ΣP , A ⊆ ΣP , and s a trace in LP . The
beginning (resp. ending) of A in s, denoted by b(A, s) (resp. e(A.s)), is the index i,
if exists, such that a = s[i], and ∀a′ ∈ A − {a}, a′ = s[j] with j > i (resp. j < i).
Given B ⊆ ΣP , and a threshold σ, we say that A σ-precedes B in LP , denoted by
A →σ B, if |{s ∈ LP | e(A, s) < b(B, s)}|/|LP | ≥ σ.

Exploiting such a notion, we can characterize complex relationships among tasks.
Given two activities a and b, and a threshold σ, we say that:
– a and b are σ-parallel activities in LP , denoted by a‖σb, if there are activities

a = a1, a2, ..., am = b with m > 1 such that {ai} →σ {ai+1} for 1 ≤ i < m, and
{am} →σ {a1}.

– a σ-strictly precedes b in LP , denoted by a ⇒σ b, if a and b are not σ-parallel
activities, and if there are traces s1, ..., sk in LP , with k ≥ σ× |LP |, such that for
each si, b({a}, si) < b({b}, si), and ∀j s.t. b({a}, si) < j < b({b}, si), si[j]‖σb.

Parallel activities and strictly precedences are the basic blocks from which the
control flow is inferred. Indeed, the σ-control flow of P is the graph CFσ(P ) =
〈ΣP , E〉 containing an arc (a, b) in E for each pair of nodes a and b, s.t. either (i)
a ⇒σ b, or (ii) {a} →σ {b} and does not exist a set of tasks {h1, ..hm} with a ⇒σ h1,
hi ⇒σ hi+1 for 1 ≤ i < m, and hm ⇒σ b.

Finally, the set of σ-local constraints, denoted by CLσ, can be mined by exploiting
the control flow:

OUTmin(a) = |succ(a)| −maxS⊆succ(a),{a}6→σS |S|
OUTmax(a) = |succ(a)| −minS⊆succ(a),{a}6→σS |S|
IN(a) = minS⊆prec(a),S→σ{a} |S|

where succ(a) = {b | (a, b) ∈ Eσ} and prec(a) = {b | (b, a) ∈ Eσ}, and A 6→σ B
simply denotes that relation A →σ B does not hold.
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4 Dealing with Relevant Features

The crucial point of the algorithm for clustering workflow traces lies in the formaliza-
tion of the procedures identifyRelevantFeatures and project. Roughly, the former
identifies a set of relevant features F [16, 17, 20], whereas the latter projects the traces
into the vectorial space, whose components are, in fact, these features.

Some works addressing the problem of clustering complex data considered the
most frequent common structures (see e.g. [2–4, 11]), also called frequent patterns,
to be the relevant features for the clustering. Since we are interested in features that
witness some kind of global constraints, we instead exploit the more involved notion
of unexpected (w.r.t. the local properties) frequent rules.

Let L be a set of traces, and CFσ be a mined control flow for threshold σ, then
a sequence [a1...ah] of tasks is σ-frequent in L if |{s ∈ L | a1 = s[i1], ..., ah =
s[ih]∧ i1 < ... < ih}|/|L| ≥ σ. We say that [a1...ah] σ-precedes a in L if both [a1...ah]
and [a1...aha] are σ-frequent in L.

Definition 6 (Discriminant Rules). A discriminant rule (or feature) φ is an ex-
pression of the form [a1...ah] 699K a such that (i) [a1...ah] is σ-frequent in L, (ii)
ah 99Kσ a is in CFσ, and (iii) [a1...ah] do not σ-precedes a in L. Moreover, φ is
minimal if (iv) does not exists b, with [a1...ah] 699Kσ b and b →σ a, and (v) does not
exists j, such that [aj ...ah] 699Kσ a. ut

For instance, in the OrderManagament process, [fil] 699K5/16 m is a minimal dis-
criminant rule, witnessing the global constraint that fidelity discount is not applied
for new clients. Notice that [dgl] 699K5/16 o is a minimal discriminant rule as well.

4.1 Computing Relevant Features and Complexity Results

The identification of discriminant rules can be carried out by means of the level-wise
algorithm shown in Figure 3. At each step k of the computation, we store in Lk

all the σ-frequent sequences whose size is k. Specifically, in the Steps 5–9, the set
of potential sequences M to be included in Lk+1 are obtained by combining those
in Lk with the relationships of precedences in L2 — notice that Step 7 prevents
the computation of not minimal unexpected rules. Then, only σ-frequent pattern in
M are included in Lk+1 (Step 11), while all the others will determine unexpected
rules (Step 12). The process is repeated till no other frequent traces are found. The
correctness of the algorithm is provided by the following theorem.

Theorem 4. In the algorithm of Figure 3, before its termination (Step 16):
1. the set R contains exactly all the σ-frequent sequences of tasks, and
2. the set F contains exactly all the minimal discriminant rules.

Notice that the algorithm IdentifyRelevantFeatures does not directly output F , but
call the procedure mostDiscriminantFeatures, whose aim is to find a proper subset
of F which better discriminates the traces in the log.

This intuition can be formalized as follows. Let φ be a discriminant rule of the
form [ai, ..., aj ] 699Kσ b, then the witness of φ in L, denoted by w(φ,L), is the set of
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Input: A set of logs L, a treshold σ, the maximum number of features maxFeatures, the graph CFσ.
Output: A set of minimal unexpected rules.
Method: Perform the following steps:

1 L2 := {[ab] | a →σ b};
2 k := 1, R := L2, F := ∅;
3 repeat
4 M := ∅; k := k + 1;
5 forall [ai...aj ] ∈ Lk do
6 forall [ajb] ∈ L2 do
7 if [ai+1...aj ] 699Kσ b is not in F then
8 M := M ∪ [ai...ajb];
9 end for
10 forall p ∈ M of the form [ai...ajb] do
11 if p is σ-frequent in L then Lk+1 := {p};
12 else F := F ∪ {[ai...aj ] 699Kσ b}; //See Theorem 3.2
13 end for
14 R := R ∪ Lk+1; //See Theorem 3.1
15 until Lk+1 = ∅;
16 return mostDiscriminant(F);

Procedure mostDiscriminantFeatures(F : set of unexpected rules): set of unexpected rules;
1 S′ := L; F ′ := ∅;
2 do
3 let φ = argmaxφ′∈F |w(φ′, S′)|;
4 F ′ := F ′ ∪ {φ};
5 S′ := S′ − w(φ, S′);
6 while (|S′|/|LP | > σ) and (F ′ < maxFeatures);
7 return F ′;

Fig. 3. Algorithm IdentifyRelevantFeatures

logs in which the pattern [ai, ..., aj ] occurs. Moreover, given a set of rules R, then the
witness of R in L is

⋃
φ∈R w(φ,L). For a fixed k, R is the most discriminant k-set of

features, if |R| = k and there exists no R′ with |w(R′,L)| > |w(R,L)|, and |R′| = k.
Notice that the most discriminant k-set of features can be computed in polynomial
time by considering all the possible combinations of features of R, with k element.
The minimum k, for which the most discriminant k-set of features, say S, covers
all the logs, i.e., w(S,L) = L, is the called dimension of L, whereas S is the most
discriminant set of features.

Theorem 5. Let L be a set of traces, n be the size of L (i.e., the sum of the sizes of
all traces in L), and F be a set of features. Then, computing any most discriminant
set of features is NP hard.

Due to the intrinsic difficulty of the problem, we turned to the computation of a
suitable approximation. In fact, the procedure mostDiscriminantFeatures, actually
implemented in the algorithm for identifying relevant features, computes a set F ′ of
discriminant rules, guided by the heuristics of greedily selecting a feature φ cover-
ing the maximum number of traces, among the ones (S′) not covered by previous
selections.
Projecting Traces. The set of relevant features F , can be used for representing
each trace s by a point in the vectorial space R|F|, denoted by −→s . Actually, the
procedure project maps traces in R|F|, where k-means algorithm can operate. Due
to its simplicity and to lack of space, we omit details on this procedure.

10
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Fig. 4. Fixed Schema. Left: Soundness w.r.t. number of levels. Right: Scaling w.r.t. number of traces.

5 Experiments

In this section we study the behavior of the ProcessDiscover algorithm – which
has been fully implemented in JAVA – for evaluating both its effectiveness and its
scalability, with the help of a number of tests performed on synthetic data. The
generation of such data can be tuned according to: (i) the size of WS, (ii) the size of
LP , (iii) the number of global constraints in CG, and (iv) the probability p of choosing
any successor edge, in the case of nondeterministic fork activities. The ideas adopted
in generating synthetic data are essentially inspired by [3], and the generator we
exploited is an extension of the one described in [10]
Test Procedure. In order to asses the effectiveness of the technique, we adopted
the following test procedure. Let WS(I) be a workflow schema for the input process
I, and LI a log produced with the generator. The quality of any workflow WS∨(O),
extracted by providing the mining algorithm with LI , is evaluated w.r.t. the original
one WS(I), essentially by comparing two random samples of the traces they re-
spectively admit. This allow us to compute an estimate of the actual soundness and
completeness. Moreover, in order to avoid statistical fluctuations in our results, we
generate a number of different training logs, and hence, whenever relevant, we report
for each measure its mean value together with the associated standard deviation.

In the test described here, we focus on the influence of two major parameters of
the method: (i) the branching factor k and (ii) the maximum number (maxLevels)
of levels in the resulting disjunctive scheme. Notice that the case k = 1 coincides
with traditional algorithms which do not account for global constraints. All the tests
have been conduced on a 1600MHz/256MB Pentium IV machine running Windows
XP Professional.
Results. In a first set of experiments we considered a fixed workflow schema (of our
running examaple), and some randomly generated instances. Figure 4 (on the left)
reports the mean value and the standard deviation of the soundness of the mined
model, for increasing values of |LI | by varying the factor k. Notice that for k = 1,
the algorithm degenerates in computing a unique schema, and in fact, the soundness
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Fig. 5. Variable Workflow Schema. Left: Soundness w.r.t. k. Right: Scalability w.r.t. k.

is not affected by the parameter maxLevel — this is the case of any algorithm
accounting of local constraints only. Instead, for k > 1, we can even rediscover exactly
the underlying schema, after a number of iterations. These experiments have been
conduced on an input log of 1000 instances. Then, on the right, the figure reports
the scaling of the approach at the varying of the number of logs in LI .

In a second set of experiments we also consider variable schemas. In Figure 5 we
report the results for four different workflow schemas. Observe (on the left) that
for a fixed value of k, the soundness of the mined schema tends to be low at the
increasing of the complexity of the schemas, consisting of many nodes and possibly
many constraints. This witness the fact that on real processes, traditional approaches
(with k = 1) performs poorly, and that for having an effective reconstruction of the
process it is necessary not only to fix k > 1, but also to deal with several levels
of refinements. Obviously, for complex schemas, the algorithm takes more time, as
shown in the same figure on the right.

6 Conclusions

In this paper, we have continued on the way of the investigation of data mining tech-
niques for process mining, by providing a method for discovering global constraints,
in terms of the patterns of executions they impose. This is achieved through a hier-
archical clustering of the logs, in which each trace is seen as a point of a properly
identified space of features. The precise complexity of the task of constructing this
space is provided, as well as a practical efficient algorithm for its solution.

We conclude by mentioning that a problem that we did not address in this paper
for space reasons is how to handle the presence of noise on the logs, due to erroneous
insertions or non-insertions of activities or bad reporting of order time sequence.
A promising solution is to introduce a weak notion of compliance based on the
edit distance of two strings [15]. In particular, Given γ, 0 ≤ γ ≤ 1, a trace s is
γ-compliant with a disjunctive workflow schema WS∨, denoted by s |=γ WS∨, if
mins′|=WS∨

EditDistance(s,s′)
length(s) ≤ γ. Such a definition allows us to extend all the results

of this paper to the case of logs with noise.
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