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Abstract. XML suffers from the major limitation of high redundancy. Even if
compression can be beneficial for XML data, however, once compressed, the
data can be seldom browsed and queried in an efficient way. To address this
problem, we propose XQueC, an [XQue]ry processor and [C]ompressor, which
covers a large set of XQuery queries in the compressed domain. We shred com-
pressed XML into suitable data structures, aiming at both reducing memory
usage at query time and querying data while compressed. XQueC is the first
system to take advantage of a query workload to choose the compression algo-
rithms, and to group the compressed data granules according to their common
properties. By means of experiments, we show that good trade-offs between
compression ratio and query capability can be achieved in several real cases,
as those covered by an XML benchmark. On average, XQueC improves over
previous XML query-aware compression systems, still being reasonably closer
to general-purpose query-unaware XML compressors. Finally, QETs for a wide
variety of queries show that XQueC can reach speed comparable to XQuery
engines on uncompressed data.

1 Introduction

XML documents have an inherent textual nature due to repeated tags and to PCDATA
content. Therefore, they lend themselves naturally to compression. Once the com-
pressed documents are produced, however, one would like to still query them under
a compressed form as much as possible (reminiscent of “lazy decompression” in re-
lational databases [1], [2]). The advantages of processing queries in the compressed
domain are several: first, in a traditional query setting, access to small chunks of data
may lead to less disk I/Os and reduce the query processing time; second, the memory
and computation efforts in processing compressed data can be dramatically lower than
those for uncompressed ones, thus even low-battery mobile devices can afford them;
third, the possibility of obtaining compressed query results allows to spare network
bandwidth when sending these results to a remote location, in the spirit of [3].



Previous systems have been proposed recently, i.e. XGrind [4] and XPRESS [5],
allowing the evaluation of simple path expressions in the compressed domain. How-
ever, these systems are based on a naive top-down query evaluation mechanism, which
is not enough to execute queries efficiently. Most of all, they are not able to execute
a large set of common XML queries (such as joins, inequality predicates, aggregates,
nested queries etc.), without spending prohibitive times in decompressing intermedi-
ate results.

In this paper, we address the problem of compressing XML data in such a way
as to allow efficient XQuery evaluation in the compressed domain. We can assert that
our system, XQueC, is the first XQuery processor on compressed data. It is the first
system to achieve a good trade-off among data compression factors, queryability and
XQuery expressibility. To that purpose, we have carefully chosen a fragmentation and
storage model for the compressed XML documents, providing selective access paths
to the XML data, and thus further reducing the memory needed in order to process a
query. The XQueC system has been demonstrated at VLDB 2003 [6].

The basis of our fragmentation strategy is borrowed from the XMill [7] project.
XMill is a very efficient compressor for XML data, however, it was not designed to
allow querying the documents under their compressed form. XMill made the impor-
tant observation that data nodes (leaves of the XML tree) found on the same path in
an XML document (e.g. /site/people/person/address/city in the XMark [8] documents)
often exhibit similar content. Therefore, it makes sense to group all such values into
a single container and choose the compression strategy once per container. Subse-
quently, XMill treated a container like a single “chunk of data” and compressed it as
such, which disables access to any individual data node, unless the whole container
is decompressed. Separately, XMill compressed and stored the structure tree of the
XML document.

While in XMill a container may contain leaf nodes found under several paths,
leaving to the user or the application the task of defining these containers, in XQueC
the fragmentation is always dictated by the paths, i.e., we use one container per root-
to-leaf path expression. When compressing the values in the container, like XMill, we
take advantage of the commonalities between all container values. But most impor-
tantly, unlike XMill, each container value is individually compressed and individually
accessible, enabling an effective query processing.

We base our work on the principle that XML compression (for saving disk space)
and sophisticated query processing techniques (like complex physical operators, in-
dexes, query optimization etc.) can be used together when properly combined. This
principle has been stated and forcefully validated in the domain of relational query
processing [1], [3]. Thus, it is not less important in the realm of XML.

In our work, we focus on the right compression of the values found in an XML
document, coupled with a compact storage model for all parts of the document. Com-
pressing the structure of an XML document has two facets. First, XML tags and at-
tribute names are extremely repetitive, and practically all systems (indeed, even those
not claiming to do “compression”) encode such tags by means of much more compact
tag numbers. Second, an existing work [9] has addressed the summarization of the
tree structure itself, connecting among them parent and child nodes. While structure
compression is interesting, its advantages are not very visible when considering the
XML document as a whole. Indeed, for a rich corpus of XML datasets, both real and



synthetic, our measures have shown that values make up 70% to 80% of the document
structure. Projects like XGrind [4] and XPRESS [5] have already proposed schemes
for value compression that would enable querying, but they suffer from limited query
evaluation techniques (see also Section 1.2). These systems apply a fixed compres-
sion strategy regardless of the data and query set. In contrast, our system increases
the compression benefits by adapting its compression strategy to the data and query
workload, based on a suitable cost model.

By doing data fragmentation and compression, XQueC indirectly targets the prob-
lem of main-memory XQuery evaluation, which has recently attracted the attention of
the community [9], [10]. In [10], the authors show that some current XQuery pro-
totypes are in practice limited by their large memory consumption; due to its small
footprint, XQueC scales better (see Section 5). Furthermore, some such in-memory
prototypes exhibit prohibitive query execution times even for simple lookup queries.
[9] focuses on the problem of fitting into memory a narrowed version of the tree of
tags, which is however a small percentage of the overall document, as explained above.

XQueC addresses this problem in a two-fold way. First, in order to diminish its
footprint, it applies powerful compression to the XML documents. The compression
algorithms that we use allow to evaluate most predicates directly on the compressed
values. Thus, decompression is often necessary only at the end of the query evaluation
(see Section 4). Second, the XQueC storage model includes lightweight access support
structures for the data itself, providing thus efficient primitives for query evaluation.

1.1 The XQueC system

The system we propose compresses XML data and queries them as much as possible
under its compressed form, covering all real-life, complex classes of queries.

The XQueC system adheres to the following principles:

1. As in XMill, data is collected into containers, and the document structure stored
separately. In XQueC, there is a container for each different� ����� �� �, where
�� is a distinguished root-to-leaf path expression and type is a distinguished el-
ementary type. The set of containers is then partitioned again to allow for better
sharing of compression structures, as explained in Section 2.2.

2. In contrast with previous compression-aware XML querying systems, whose stor-
age was plainly based on files, XQueC is the first to use a complete and robust stor-
age model for compressed XML data, including a set of access support structures.
Such storage is fundamental to guarantee a fast query evaluation mechanism.

3. XQueC seamlessly extends a simple algebra for evaluating XML queries to in-
clude compression and decompression. This algebra is exploited by a cost-based
optimizer, which may choose query evaluation strategies, that freely mix regular
operator and compression-aware ones.

4. XQueC is the first system to exploit the query workload to (i) partition the con-
tainers into sets according to the source model4 and to (ii) properly assign the
most suitable compression algorithm to each set. We have devised an appropriate
cost model, which helps making the right choices.

4 The source model is the model used for the encoding, for instance the Huffman encoding tree
for Huffman compression [11] and the dictionary for ALM compression [12], outlined later.



5. XQueC is the first compressed XML querying system to use the order-preserving 5

textual compression. Among several alternatives, we have chosen to use the
ALM [12] compression algorithm, which provides good compression ratios and
still allows fast decompression, which is crucial for an algorithm to be used in a
database setting [13]. This feature enables XQueC to evaluate, in the compressed
domain, the class of queries involving inequality comparisons, which are not fea-
tured by the other compression-aware systems.

In the following sections, we will use XMark [8] documents for describing
XQueC. A simplified structural outline of these documents is depicted in Figure 1
(at right). Each document describes an auction site, with people and open auctions
(dashed lines represent IDREFs pointing to IDs and plain lines connect the other XML
items). We describe XQueC following its architecture, depicted in Figure 1 (at left). It
contains the following modules:

1. The loader and compressor converts XML documents in a compressed, yet
queryable format. A cost analysis leverages the variety of compression algorithms
and the query workload predicates to decide the partition of the containers.

2. The compressed repository stores the compressed documents and provides: (i)
compressed data access methods, and (ii) a set of compression-specific utilities
that enable, e.g., the comparison of two compressed values.

3. The query processor evaluates XQuery queries over compressed documents. Its
complete set of physical operators (regular ones and compression-aware ones)
allows for efficient evaluation over the compressed repository.

1.2 Related Work

XML data compression was first addressed by XMill [7], following the principles
outlined in the previous section. After coalescing all values of a given container into
a single data chunk, XMill compresses separately each container with its most suited
algorithm, and then again with gzip to shrink it as much as possible. However, an
XMill-compressed document is opaque to a query processor: thus, one must fully
decompress a whole chunk of data before being able to query it.

The XGrind system [4] aims at query-enabling XML compression. XGrind does
not separate data from structure: an XGrind-compressed XML document is still an
XML document, whose tags have been dictionary-encoded, and whose data nodes
have been compressed using the Huffman [11] algorithm and left at their place in
the document. XGrind’s query processor can be considered an extended SAX parser,
which can handle exact-match and prefix-match queries on compressed values and
partial-match and range queries on decompressed values. However, several operations
are not supported by XGrind, for example, non-equality selections in the compressed
domain. Therefore, XGrind cannot perform any join, aggregation, nested queries, or
construct operations. Such operations occur in many XML query scenarios, as illus-
trated by XML benchmarks (e.g., all but the first two of the 20 queries in XMark [8]).

Also, XGrind uses a fixed naive top-down navigation strategy, which is clearly
insufficient to provide for interesting alternative evaluation strategies, as it was done

5 Note that a compression algorithm ���� preserves order if for any ��, ��, �������� �
�������� iff �� � ��.
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Fig. 1. Architecture of the XQueC prototype (left); simplified summary of the XMark XML
documents (right).

in existing works on querying compressed relational data (e.g., [1], [2]). These works
considered evaluating arbitrary SQL queries on compressed data, by comparing (in the
traditional framework of cost-based optimization) many query evaluation alternatives,
including compression / decompression at several possible points.

A third recent work, XPRESS [5] uses a novel reverse arithmetic encoding
method, mapping entire path expressions to intervals. Also, XPRESS uses a simple
mechanism to infer the type (and therefore the compression method suited) of each el-
ementary data item. XPRESS’s compression method, like XGrind’s, is homomorphic,
i.e. it preserves the document structure.

To summarize, while XML compression has received significant attention [4], [5],
[7], querying compressed XML is still in its infancy [4], [5]. Current XML compres-
sion and querying systems do not come anywhere near to efficiently executing com-
plex XQuery queries. Indeed, even the evaluation of XPath queries is slowed down by
the use of the fixed top-down query evaluation strategy.

Moreover, the interest towards compression even in a traditional data warehouse
setting is constantly increasing in commercial systems, such as Oracle [14]. In [14],
it is shown that the occupancy of raw data can be reduced while not impacting query
performance. In principle, we expect that in the future a big share of this data will be
expressed in XML, thus making the problem of compression very appealing.

Finally, for what concerns information retrieval systems, [15] exploits a variant
of Huffman (extended to “bytes” instead of bits) in order to execute phrase matching
entirely in the compressed domain. However, querying the text is obviously only a
subset of the XQuery features. In particular, theta-joins are not feasible with the above
variant of Huffman, whereas they can be executed by means of order-aware ALM.

1.3 Organization

The paper is organized as follows. In Section 2, we motivate the choice of our storage
structures for compressed XML, and present ALM [12] and other compression algo-
rithms, which we use for compressing the containers. Section 3 outlines the cost model
used for partitioning the containers into sets, and for identifying the right compression



to be applied to the values in each container set. Section 4 describes the XQueC query
processor, its set of physical operators, and outlines its optimization algorithm. Sec-
tion 5 shows the performance measures of our system on several data sets and XQuery
queries.

2 Compressing XML documents in a queryable format

In this section, we present the principles behind our approach for storing compressed
XML documents, and the resulting storage model.

2.1 Compression principles

In general, we make the observation that within XML text, strings represent a large
percentage of the document, while numbers are less frequent. Thus, compression of
strings, when effective, can truly reduce the occupancy of XML documents. Never-
theless, not all compression algorithms can seamlessly afford string comparisons in
the compressed domain. In our system, we include both order-preserving and order-
agnostic compression algorithms, and the final choice is entrusted to a suitable cost
model.
Our approach for compressing XML was guided by the following principles:
Order-agnostic compression. As an order-agnostic algorithm, we chose classical
Huffman 6, which is universally known as a simple algorithm which achieves the
best possible redundancy among the resulting codes. The process of encoding and
decoding is also faster than universal compression techniques. Finally, it has a set of
fixed codewords, thus strings compressed with Huffman can be compared in the com-
pressed domain within equality predicates. However, inequality predicates need to be
decompressed. That is why in XQueC we may exploit order-preserving compression
as well as not order-preserving one.
Order-preserving compression. Whereas everybody knows the potentiality of Huff-
man, the choice of an order-preserving algorithm is not immediate. We had initially
three choices for encoding strings in an order-preserving manner: the Arithmetic [16],
Hu-Tucker [17] and ALM [12] algorithms. We knew that dictionary-based encoding
has demonstrated its effectiveness w.r.t. other non-dictionary approaches [18] while
ALM has outperformed Hu-Tucker (as described in [19]). The former being both
dictionary-based and efficient, was a good choice in our system. ALM has been used
in relational databases for blank-padding (i.e. in Oracle) and for indexes compression.
Due to its dictionary-based nature, ALM decompresses faster than Huffman, since it
outputs bigger portions of a string at a time, when decompressing. Moreover, ALM
seamlessly solved the problem of order-preserving dictionary compression, raised by
encodings such as Zilch encoding, string prefix compression and composite key com-
pression by improving each of these. To this purpose, ALM eliminates the prefix prop-
erty exhibited by those former encodings by allowing in the dictionary more than one
symbol for the same prefix.

6 Here and in the remainder of the paper, by Huffman we shall mean solely the classical Huff-
man algorithm [11], thus disregarding its variants.
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We now provide a short overview of how the ALM algorithm works. The fun-
damental mechanics behind the algorithm tells to consider the original set of source
substrings, to split it into disjunct partitioning intervals set and to associate an interval
prefix to each partitioning interval. For example, Figure 2 shows the mapping from
the original source (made of the strings there, their, these) into some par-
titioning intervals and associated prefixes, which clearly do not scramble the original
order among the source strings. We have implemented our own version of the algo-
rithm, and we have obtained encouraging results w.r.t. previous compression-aware
XML processors (see Section 5).
Workload-based choices of compression. Among the possible predicates writable
in an XQuery query, we distinguish among the inequality, equality and wildcard. The
ALM algorithm [12] allows inequality and equality predicates in the compressed do-
main, but not wildcards, whereas Huffman [11] supports prefix-wildcards and equality
but not inequality. Thus, the choice of the algorithm can be aided by a proper query
workload, whenever this turns to be available. In case, instead, the workload has not
been provided, XQueC uses ALM for strings and decompresses the compared values
in case of wildcard operations.
Structures for algebraic evaluation. Containers in XQueC closely resemble B+trees
on values. Moreover, a light-weight structure summary allows for accessing the struc-
ture tree and the data containers in the query evaluation process. Data fragmentation
allows for better exploiting all the possible evaluation plans, i.e. bottom-up, top-down,
hybrid or index-based. As shown below, several queries of the XMark benchmark take
advantage of the XQueC appropriate structures and of the consequent flexibility in
parsing and querying these compressed structures.

2.2 Compressed storage structures

The XQueC loader/compressor parses and splits an XML document into the data
structures depicted in Figure 1.
Node name dictionary. We use a dictionary to encode the element and attribute names
present in an XML document. Thus, if there are� � distinct names, we assign to each
of them a bit string of length 	
������. For example, the XMark documents use ��
distinct names, which we encode on � bits.
Structure tree. We assign to each non-value XML node (element or attribute) an
unique integer ID. The structure tree is stored as a sequence of node records, where
each record contains: its own ID, the corresponding tag code; the IDs of its children;
and (redundantly) the ID of its parent. For better query performance, as an access
support structure, we construct and store a B+ search tree on top of the sequence of
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node records. Finally, each node record points to all its attribute and text children in
their respective containers.

Value containers. All data values found under the same root-to-leaf path expres-
sion in the document are stored together into homogeneous containers. A container
is a sequence of container records, each one consisting of a compressed value and
a pointer to parent of this value in the structure tree. Records are not placed in the
document order, but in a lexicographic order, to enable fast binary search. Note that
container generation as done in XQueC is reminiscent of vertical partitioning of rela-
tional databases [20]. This kind of partitioning guarantees random access to the doc-
ument content at different points, i.e. the containers access points. This choice pro-
vides interesting query evaluation strategies and leads to good query performance (see
Section 5). Moreover, containers, even if kept separated, may share the same source
model or, they can be compressed with different algorithms if not involved in the same
queries. This is decided by a cost analysis which exploits the query workload and the
similarities among containers, as described in Section 3.

Structure summary. The loader also constructs, as a redundant access support struc-
ture, a structural summary representing all possible paths in the document. For tree-
structured XML documents, it will always have less nodes than the document (typi-
cally by several orders of magnitude). A structural summary of the auction documents
can be derived from Figure 1, by (�) omitting the dashed edges, which brings it to a
tree form, and (��) storing in each non-leaf node in Figure 3, accessible in this tree by a
path �, the list of nodes reachable in the document instance by the same path. Finally,
the leaf nodes of our structure summary point to the corresponding value containers.
Note that the structure summary is very small, thus it does not affect the compres-
sion rate. Indeed, in our experiments on the corpus of XML documents described in
Section 5, the structure summary amounts to about 19% of the original document size.

Other indexes and statistics. When loading a document, other indexes and/or statis-
tics can be created, either on the value containers, or on the structure tree. Our loader
prototype currently gathers simple fan-out and cardinality statistics (e.g. number of
person elements).

To measure the occupancy of our structures, we have used a set of documents
produced by means of the xmlgen generator of the XMark project and ranged from
115KB to 46MB. They have been reduced by an average factor of 60� after compres-
sion (these figures include all the above access structures).

Our proposed storage structure is the simplest and most compact one that fulfills
the principles listed at the beginning of Section 2; there are many ways to store XML
in general [21]. If we omit our access support structures (backward edges, B+ index,
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and the structure summary), we shrink the database by a factor of 3 to 4, albeit at the
price of deteriorated query performance.

Any storage mechanism for XML can be seamlessly adopted in XQueC, as long
as it allows the presence of containers and the facilities to access container items.

2.3 Memory issues

Data fragmentation in XQueC guarantees a wide variety of query evaluation strategies,
and not solely top-down evaluation as in homomorphic compressors [4], [5]. Instead of
identifying at compile-time the parts of the documents necessary for query evaluation,
as given by an XQuery projection operator [10], in XQueC the path expressions are
hard-coded into the containers and projection is already prepared in advance when
compressing the document, without any additional effort for the loader. Consider as
examples the following query Q14 of XMark:

FOR $i IN document(”auction.xml”)/site//item
WHERE CONTAINS($i/description,”gold”)
RETURN $i/name/text()

This query would require prohibitive parsing times in XGrind and XPRESS, which
basically have to load into main-memory all the document and parse it entirely in order
to find the sought items. For this query, as shown in Figure 4, all the XML stream has
to be parsed to find the elements <item>.

In XQueC, the compressor has already shredded the data and accessibility to these
data from the structure summary allows to save the parsing and loading times. Thus,
in XQueC the structure summary is parsed (not all the structure tree), then the in-
volved containers are directly accessed (or alternatively their selected single items)
and loaded into main-memory. More precisely, as shown in Figure 4, once the struc-
ture summary leads to the containers�, � and �, only these (or part of them) need
to be fetched in memory. Finally, note that in Galax, extended with the projection op-
erator [10], the execution times for queries involving the descendant-or-self axis (such
as XMark Q14) are significantly increased, since additional complex computation is
demanded to the loader for those queries.

3 Compression choices

XQueC exploits the query workload to choose the way containers are compressed. As
already highlighted, the containers are filled up with textual data, which represents a



big share of the whole documents. Thus, achieving a good trade-off between compres-
sion ratio and query execution times, must necessarily imply the capability to make a
good choice for textual container compression.

First, a container may be compressed with any compression algorithm, but ob-
viously one would like to apply a compression algorithm with nice properties. For
instance, the decompression time for a given algorithm strongly influences the times
of queries over data compressed with that algorithm. In addition, the compression ratio
achieved by a given algorithm on a given container influences the overall compression
ratio.

Second, a container can be compressed separately or can share the same source
model with other containers. The latter choice would be very convenient whenever for
example two containers exhibit data similarities, which will improve their common
compression ratio. Moreover, the occupancy of the source model is as relevant in the
choice of the algorithm as the occupancy of containers.

To understand the impact of compression choices, consider two binary-encoded
containers, ��� and ���. ��� contains only strings composed of letters a and b, whereas
��� contains only strings composed of letters c and d. Suppose, as one extreme case,
that two separate source models are built for the two containers; in such a case, con-
tainers are encoded with 1 bit per letter. As the other extreme case, a common source
model is used for both containers, thus requiring 2 bits per letter for the encoding, and
increasing the containers occupancy. This scenario may get even more complicated
when we think of an arbitrary number of encodings assigned to each container. This
smallish example already shows that compressing several containers with the same
source model leads to losses in the compression ratio.

In the sequel, we show how our system addresses these problems, by proposing a
suitable cost model, a greedy algorithm for making the right choice, and some experi-
mental results. The cost model of XQueC is based on the set of non-numerical (textual)
containers, the set of available compression algorithms�, and the query workload� .
As it is typical of optimization problems, we will characterize the search space, define
the cost function, and finally propose a simple search strategy.

3.1 Search space: possible compression configurations

Let � be the set of containers built from a set of documents�. A compression configu-
ration � for� is denoted by a tuple��� �	�� where � is a partition of �’s elements,
and the function �	� � � � � associates a compression algorithm with each set � in
the partition � . The configuration � dictates thus that all values of the containers in �
will be compressed using �	����, and a single common source model. Moreover, let
� be the set of possible partitions of �. The cardinality of � is the Bell number � ���,
which is exponential with ���. For each possible partition � � � � , there are �������

ways of assigning a compression algorithm to each set in � �. Therefore, the size of the

search space is:
�����

��� ���
����, which is exponential in ���.

3.2 Cost function: appreciating the quality of a compression configuration

Intuitively, the cost function for a configuration � reflects the time needed to apply
the necessary data decompressions in order to evaluate the predicates involved in the



queries of� . Reasonably, it also accounts for the compression ratios of the employed
compression algorithms, and it includes the cost of storing the source model structures.
The cost of a configuration � is an integer value computed as a weighted sum of storage
and decompression costs.

Characterization of compression algorithms. Each algorithm � � � is denoted by
a tuple � ��� ���� �� ���� �� ��� ����� ��	� �. The decompression cost �� is an es-
timate of the cost of decompressing a container record by using �, the storage cost
���� � is a function estimating the cost of storing a container record compressed with
�, and the storage cost of the source model structures ���� � is a function estimating
the cost of storing the source model structures for a container record.� is a symmetric
similarity matrix whose generic element � ��� �	 is a real number ranging between 0
and 1, capturing the normalized similarity between a container �� � and a container ��� .
� is built on the basis of data statistics, such as the number of overlapping values, the
character distribution within the container entries, and possibly other type informa-
tion, whenever available (e.g. the XSchema types, using results presented in [22]) 7.
Finally, the algorithmic properties ��, ���� and ��	� are boolean values indicating
whether the algorithm supports in the compressed domain: (i) equality predicates with-
out prefix-matching (��), (ii) inequality predicates without prefix-matching (����) and
(iii) equality predicates with prefix-matching (��	�). For instance, Huffman will have
�� 
 ����, ���� 
 ��	�� and ��	� 
 ����, while ALM will have �� 
 ����,
���� 
 ���� and ��	� 
 ��	��. We denote each parameter of algorithm � with an
array notation, e.g., ����	.

Storage costs. The containers and source model storage costs are simply computed

as
�

	��

�
�	���������	�	 	���	 ���

�
where �� 
 �� for the case of container storage

and �� 
 �� for source model storage8. Obviously, �� and �� need not to be evaluated
on the overall � but solely on �	, that is the projection of F over the containers of the
partition �.

Decompression cost. In order to evaluate the decompression cost associated with a
given compression configuration �, we define three square matrices, �, � and�, hav-
ing size ���� � �� 
 ���� � ��. These matrices reflect the comparisons (equality, in-
equality and prefix-matching equality comparisons, respectively) made in � among
container values or between container values and constants. More formally, the generic
element ��
� , with � �
 ��� � � and � �
 ���� �, is the number of equality predicates
in � between ��� and ��� not involving prefix-matching, whereas with � 
 ��� � �
or � 
 ��� � �, it is the number of equality predicates in � between �� � and a con-
stant (if � 
 ��� � �), or between ��� and a constant (if � 
 ��� � �), not involving
prefix-matching. Matrices � and� have the same structure but refer to inequality and
prefix-matching comparisons, respectively. Obviously,�, � and� are symmetric.

Considering the generic element of the three matrices, say� ��� �	, the associated
decompression cost is obviously zero if ��� and ��� share the same source model and
the algorithm they are compressed with supports the corresponding predicate in the
compressed domain. A decompression cost occurs in three cases: (i) �� � and ��� are

7 We do not delve here into the details of � as study of similarity among data is outside the
scope of this paper.

8 We are not considering here the containers that are not involved in any query in � . Those
do not incur a cost so they can be disregarded in the cost model.



compressed using different algorithms; (ii) �� � and ��� are compressed using the same
algorithm but different source models; (iii) �� � and ��� share the same source model
but the algorithm does not support the needed comparison (equality in the case of �,
inequality for � and prefix-matching for �) in the compressed domain. For instance,
for a generic element � ��� �	, in the case of � �
 �, � �
 ����� and � �
 �����, the cost
would be:

– zero, if ��� � �� ��� � �� �	���������	 
 ����;
– ����� 	 �	���

�����	 � ���� � 	 �	���
������	, if ��� � ��� ��� � ���� �� �
 ��� (cases (i)

and (ii));
– ������� ���� �� 	 �	�������	, if ��� � �� ��� � �� �	���������	 
 ��	�� (case (iii)).

The decompression cost is calculated by summing up the costs associated with
each element of the matrices �, � , and �. However, note that (i) for the cases of �
and �, we consider �	�������	 and �	�������	�	, respectively, and that (ii) the term
referring to the cardinality of the containers to be decompressed is adjusted in the
cases of self-comparisons (i.e. � 
 �) and comparisons with constants (� 
 ���� � or
� 
 ���� �).

3.3 Devising a suitable search strategy

XQueC currently uses a greedy strategy for moving into the search space. The search
starts with an initial configuration �� 
� ��� �	�� �, where �� is a partition of
� having sets of exactly one container, and �	�� blindly assigns to each set a generic
compression algorithm (e.g. bzip) and a separate source model. Next, � � is gradually
improved by a sequence of configuration moves.

Let ���� be the set of value comparison predicates appearing in� . A move from
�� 
� ��� �	�� � to ���� 
� ����� �	���� � is done by first randomly extracting
a predicate ���� from ����. Let ��� and ��� be the containers involved in ���� (for
instance ���� makes an equality comparison, such as �� � 
 ��� , or an inequality
one, such as ��� � ���). Let �� and ��� the sets in �� to which ��� and ��� belong,
respectively. If �� 
 ���, we build a new configuration � � where �	�������� is such that
the evaluation of ���� is enabled on compressed values, and �	���� has the greatest
number of algorithmic properties holding ����. Then, we evaluate the costs of � � and
��, and let ���� be the one with the minimum cost. In the case of � � �
 ���, we build
two new configurations �� and ���. �� is obtained by dropping ��� and ��� from �� and
���, respectively, and adding the set ����� ��� to ����. ��� is obtained by replacing ��

and ��� with their union. For both �� and ���, �	���� associates to the new sets in ����
an algorithm enabling the evaluation of ���� in the compressed domain and having
the greatest number of algorithmic properties holding ����. Finally, we evaluate the
costs of ��, �� and ���, and let ���� be the one with the minimum cost.

Example. To give a flavor of the savings gained with partitioning the set of con-
tainers, consider an initial configuration, which has five containers on an XMark doc-
ument, all of them sized about 6MB, which we initially (naively) choose to compress
with ALM only; let us call this configuration NaiveConf. The workload is made of
XQuery queries with inequality predicates over the path expressions leading to the
above containers. The first three containers are filled with Shakespeare’s sentences,
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Fig. 5. Query execution plan for XMark’s Q9.

the fourth is filled with person names and the fifth with dates. Using the above work-
load, we obtain the best partitioning, which has three partitions, one with the first
three containers and a distinct partition for the fourth and fifth, let us call it GoodConf.
The compression factor shifts from 56.14� for the NaiveConf to 67.14�, 71.75� and
65.15� respectively for the three partitions of GoodConf. While in such a case the
source models sizes do not vary significantly, the decompression cost in Good Conf is
clearly advantageous w.r.t. NaiveConf, leading to gain 21.42� for shakespearian text,
28.57� for person names and to loose only � for dates. �

Note that, for each predicate in ����, the strategy explores a fixed subset of pos-
sible configuration moves, so its complexity is linear in ������. Of course, due to this
partial exploration, the search yields a locally optimal solution. Moreover, containers
not involved in are not considered by the cost model, and a reasonable choice could
be to compress them using order-unaware algorithms offering good compression ra-
tios, e.g. bzip2 [23]. Finally, note also that the choice of a suitable compression
configuration is orthogonal with respect to the choosing of an optimal XML storage
model [22]; we can combine both for an automatic storage-and-compression design.

4 Evaluating XML queries over compressed data

The XQueC query processor consists of a query parser, an optimizer, and a query
evaluation engine. The set of physical operators used by the query evaluation engine
can be divided in three classes:

– data access operators, retrieving information from the compressed storage struc-
tures;



– regular data combination operators (joins, outer joins, selections etc.);
– compression and decompression operators.

Among our data access operators, there are ContScan and ContAccess, which al-
low, respectively, to scan all (elementID, compressed value) pairs from a container,
and to access only some of them, according to an interval search criteria. Struc-
tureSummaryAccess provide direct access to the identifiers of all elements reachable
through a given path. Parent and Child allow to fetch the parent, respectively, the
children (all children, or just those with a specific tag) for a given set of elements. Fi-
nally, TextContent pairs element IDs with all their immediate text children, retrieved
from their respective containers. TextContent is implemented as a hash join pairing the
element IDs with the content obtained from a ContScan.

Due to the storage model chosen in XQueC (Section 2.2), the StructureSummary-
Access operator provides the identifiers of the required elements in the correct doc-
ument order. Furthermore, the Parent and Child operator preserve the order of the
elements with respect to which they are applied. Also, if the Child operator returns
more than one child for a given node, these children are returned in correct order. The
order-preserving behavior allow us to perform many path computations through com-
paratively inexpensive 1-pass merge joins; furthermore, many simple queries can be
answered without requiring a sort to re-constitute document order.

While these operators respect document order, ContScan and ContAccess respect
data order, provides fast access to elements (and values) according to a given value
search criteria. Also, as soon as predicates on container values are given in the query,
it is often profitable to start query evaluation by scanning (and perhaps merge-joining)
a few containers.

As an example of QEP, consider query Q9 from XMark:
FOR $p IN document(”auction.xml”)/site/people/person
LET $a :=

FOR $t IN document(”auction.xml”)/site/
closed auctions/closed auction

LET $n :=
FOR $t2 IN document(”auction.xml”)/site/

regions/europe/item
WHERE $t/itemref/@item = $t2/@id
RETURN $t2

WHERE $p/@id = $t/buyer/@person
RETURN �item $n/name/text() �/item

RETURN �person name=$p/name/text() $a �/person

Figure 5 shows a possible XQueC execution plan for Q9 (this is indeed the plan
used in the experiments). Based on this example, we make several remarks. First,
note that we only decompress the necessary pieces of information (person name and
item name), only at the very end of the query execution (the decompress operators
shown in bold fonts). All the way down in the QEP, we were able to compute the
three-ways join between persons, buyers, and items, using directly the compressed at-
tributes person/@id, buyer/@person, and item ref/@item. Second, due to the order of
data obtained from ContainerScans, we are able to make extensive use of MergeJoins,
without the need for sorting. Third, this plan mixes Parent and Child operators, alter-
nating judiciously between top-down and bottom-up strategy, in order to minimize the
number of tuples manipulated at any particular moment. This feature is made possible
by the usage of a full set of algebraic evaluation choices, which XQueC has, but is not
available to the XGrind or XPress query processors.



Document Size(MB) Containers Distinct tags Tree nodes
Shakespeare 15.0 39 22 65621

Baseball 16.8 41 46 27181
Washington-course 12.1 12 18 99729

XMark11 11.3 432 77 76726

Table 1. Data Sets used in the experiments (XMark11 is used in QETs measures.)

Finally, note that for instance in query Q9 also an XMLSerialize operator is em-
ployed in order to correctly construct the new XML which the query outputs. To this
purpose, we recall that XML construction plays a minor role within the XML algebraic
evaluation, and, being not crucial, it can be disregarded in the whole query execution
time [24]. This has been confirmed by our experiments.

5 Implementation and experimental evaluation

XQueC is being implemented entirely in Java, using as back-end an embedded
database, Berkeley DB [25]. We have performed some interesting comparative mea-
sures, that show that XQueC is a competitor of both query-aware compressors, and of
early XQuery prototypes.

In the following, we want to illustrate both XQueC good compression ratios and
query execution times. To this purpose, we have done two kinds of experiments:

Compression Factors. We have performed experiments on both synthetic data
(XMark documents) and on real-life data sets (in particular, we considered the
ones chosen in [5] for the purpose of cross-comparison with it).

Query Execution Times. We show how our system performs on some XML bench-
mark queries [8] and cross-compare them with the query execution times of op-
timized Galax [10], an open-source XQuery prototype.

All the experiments have been executed on a DELL Latitude C820 laptop equipped
with a 2,20GHz CPU and 512MB RAM.

Compression Factors. We have compared the obtained compression factors (de-
fined as � � ���!
��), where �� and 
� are the sizes of the compressed and origi-
nal documents, respectively) with the corresponding factors of XMill, XGrind and
XPRESS. Figure 6 (left) shows the average compression factor obtained for a cor-
pus of documents composed of Shakespeare.xml, Washington-Course.xml and Base-
ball.xml, whose main characteristics are shown in Table 1. Note that, on average,
XQueC closely tracks XPRESS. It is interesting to notice that some limitations affect
some of the XML compressors that we tested - for example, the documents decom-
pressed by XPRESS have lost all their white spaces. Thus, the XQueC compression
factor could be further improved if blanks were not considered.

Moreover, we have also tested the compression factors on different-sized XMark
synthetic data sets (we considered documents ranging from 1MB to 25MB), generated
by means of xmlgen [8]. As Figure 6 (right) shows, we have obtained again good
compression factors w.r.t XPRESS and XMill.
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Fig. 6. Average CF for Shakespeare, WashingtonCourse and Baseball data sets (left); and for
XMark synthetic data sets (right).

Note also that XGrind does not appear in these experiments. Indeed, due to repet-
itive crashes, we were not able to upload in the XGrind system (the version available
through the site http://sourceforge.net) any XMark document except for one sized
100KB, whose compression factor however is very low and not representative of the
system (precisely equal to 17.36�).

Query Execution Times. We have tested our system against the optimized version
of Galax by running XMark queries and other queries. Due to space limits, we select
here a set of significant XMark queries. Indeed, XMark queries left out stress language
features, on which compression will likely have no significant impact whatsoever, e.g.,
support for functions, deep nesting etc. The reasons why we chose Galax is that it is
open-source and has an optimizer. Note that the XQueC optimizer is not finalized
yet (and was indeed not used in these measures), thus our results are only due to the
compression ratio, data structures, and efficient execution engine.

Figure 7 shows the executions of XQueC queries on the document XMark11, sized
11.3MB. For the sake of better readability, in Figure 7, we have omitted Q9, and Q8.
These queries measured in our system 2.133 sec. and 2.142 sec. respectively, whereas
in Galax Q9 could not be measured on our machine 9 and Q8 took 126.33 sec. Note
also that on Q2, Q3, Q16, the QET is a little worse than the Galax one, because in the
current implementation we use simple unique IDs, given that our data model imposes
a large number of parent-child joins. However, even with this limitation, we are still
reasonably close to Galax, and we expect much better once XQueC will migrate to
3-valued IDs, as already started in the spirit of [26], [27], [28]. Most importantly, note
that the previous XQueC QETs are to be intended as the times taken to both execute
the queries in the compressed and decompress the obtained results. Thus, those mea-
sures show that there is no performance penalty in XQueC w.r.t. Galax due to com-
pression. Thus, with comparable times w.r.t. an XQuery engine over uncompressed
data, XQueC exhibits the advantage of compression.

As a general remark, note that our system is implemented in Java and can be made
faster by using a native code compiler, which also we plan to plug in the immediate
future.

9 The same query has been tested on a more powerful machine in the paper [10] and results in
a rather lengthy computation.
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Finally, it is worth noting that comparison of XQueC with XGrind and XPress
query times could not be done due to the fact that fully working versions of the latters
are not publicly available. Nevertheless, that comparison would have been less mean-
ingful, since those systems cover a limited fragment of XPath, and not full XQuery, as
discussed in Section 1.2.

6 Conclusions and future work

We have presented XQueC, a compression-aware XQuery processor. We have shown
that our system exhibits a good trade-off between compression factors over different
XML data sets and query evaluation times on XMark queries. XQueC works on com-
pressed XML documents, which can be a huge advantage when query results must be
shipped around a network.

In the very near future, our system will be improved in several ways: by moving
to three-valued IDs for XML elements, in the spirit of [26], [27], [28] and by in-
corporating further storage techniques that lead to additionally reduce the occupancy
of structures. The implementation of an XQuery [29] optimizer for querying XML
compressed data is ongoing. Moreover, we are testing the suitability of our system
w.r.t. the full-text queries [30], which are being defined for the XQuery language at
W3C. Another important extension we have devised is needed for uploading in our
system larger documents than currently (e.g. SwissProt, measuring about 500MB). To
this purpose, we plan to access the containers during the parsing phase directly on
secondary storage rather than in memory.
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