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Spherical separation and kernel transformations for

classification problems∗

A. Astorino§ M. Gaudioso∗∗

Abstract

We state the problem of the optimal separation, via a sphere, of
two discrete point sets in a finite dimensional Euclidean space. If the
center of the sphere is fixed the problem reduces to an LP problem
solvable in O(p log p) time, where p is the dataset size.

The approach is suitable for use in connection with kernel trans-
formations of the type adopted in the SVM (Support Vector Machine)
approach.

Finally we present the numerical results obtained by running our
method on some standard test problems drawn from the binary clas-
sification literature.

Keywords: Classification, Separability, Kernel Methods, Support Vec-
tor Machine.

1 Introduction

Pattern analysis plays a central role in many modern artificial intelligence
and computer science problems. The task is to detect regularities that char-
acterize the data coming from a particular source, and the final objective
is to design a system capable to make predictions about new data coming
from the same source. Pattern analysis may lead to state a number of dif-
ferent problems such as classification, regression, cluster analysis, feature
extraction, etc..
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dell’Università e della Ricerca Scientifica”, under FIRB project Large Scale Nonlinear
Optimization (RBNE01WBBB).
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In particular in this paper we consider binary classification problems,
where the objective is to construct a criterion for discriminating between
two classes of objects represented by the training set. The problem consists
in finding an appropriate surface in IRn separating two discrete point sets.

Several approaches for binary classification have been proposed. Among
the others we mention the pioneering contributions by Ben Rosen [10] and
Mangasarian [6]. The kernel method approach, leading to the introduction of
the Support Vector Machine (SVM), [12], [13], [4] has been considered a real
breakthrough in this area. The basic ideas of SVMs for binary classification
problems are to map the data into a higher dimensional space (the feature
space) and to separate the two transformed sets by means of one hyperplane.
Such a transformation allows to obtain general nonlinear separation surfaces
in the original input space (see [12], [13] and [4] for an extensive treatment
of the subject).

It is possible, however, to look for nonlinear separation surfaces directly
in the input space, (this is the case of polyhedral separation and ellipsoidal
separation [1], [2]), or even in the feature space, as we do in present paper.

We suppose that two nonempty and disjoint finite sets of points in the
n-dimensional space IRn, say A = {a1, . . . , am} and B = {b1, . . . , bk} are
given, and we refer to IRn as to the input space. We assume also that the
two sets are both non redundant, in the sense that each of them is made up
by distinct points.

Our objective is to find, in the input space or in the feature space, a
minimal volume sphere separating the set A from the set B (i.e. a sphere
enclosing all points of A and no points of B). If the center is fixed, this
objective is pursued by solving a Linear Program (LP). The same algorithm
can be applied in the feature space, acting on the two transformed sets.

Since we are interested in real-world problems, we must be able to handle
very large datasets. Hence, it is not sufficient for an algorithm to work well
on small examples, and we require that its performance should scale to large
datasets. Our Linear Programming model fits with this need, as it is solvable
in O(p log p) time, where p = max{m, k}.

In our opinion spherical separation is a particularly promising approach,
if compared with the linear separation approach. In general, if the center
is not fixed, the two approaches are equally ”parsimonious”, as the number
of parameters to be selected is in both cases equal to (n + 1) (the center
and the radius of the sphere in the former, and the normal and the trans-
lation parameter of the hyperplane in the latter). On the other hand, from
a heuristic point of view, a judicious choice of the center of a possible sep-
arating sphere seems more intuitive than that of the normal to a candidate
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separating hyperplane. Moreover linear separation can be considered a spe-
cial case of spherical separation when the distance of the center of the sphere
from the data set goes to infinity.

We remark finally that kernel transformation can be adopted in a rather
straightforward way in the context of spherical separation.

The paper is organized as follows. In section 2 we discuss the concept of
spherical separation. In section 3 we state the problem, assuming that the
center of the sphere is given. In section 4 we describe a method for solving
the problem. In section 5 we generalize our method by introducing kernel
functions. The results of some numerical experiments are finally described
in section 6.

Throughout the paper we adopt the following notations. We denote by
‖.‖ the Euclidean norm in IRn and by aT b the inner product of the vectors
a and b. The convex hull of a set X will be denoted by conv(X ); the sphere
of center x0 and radius R will be denoted by S(x0, R).

2 Separation by a sphere

The spherical separation of a set A from a set B consists in finding a minimal
volume sphere enclosing all points of A and no points of B. We remark that
the role of the two sets A and B is not symmetric, as it may happen that
A is separable from B but the reverse is not true. In fact a necessary (but
not sufficient) condition for the existence of a separating sphere is that the
intersection of conv(A) and B is empty. Since this problem is not always
feasible, we resort to the objective of minimizing a function combining the
original objective of minimizing the volume with an appropriate measure
of the classification error. Such an approach is inspired [11] by the need of
obtaining a sphere enclosing as many as possible points of A and as few as
possible points of B, and also of reducing the effect produced by possible
outliers.

A sphere centered in x0 ∈ IRn with radius R ∈ IR is defined as

S(x0, R)
4
= {x ∈ IRn | (x− x0)T (x− x0) ≤ R2}.

The sets A and B are defined to be not strictly spherically separated by
S(x0, R) if

(ai − x0)T (ai − x0) ≤ R2

for all points ai ∈ A (i = 1, ..., m) and

(bl − x0)T (bl − x0) ≥ R2
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for all points bl ∈ B (l = 1, ..., k).
The two sets A and B are spherically separable if there exists a not

strictly separating sphere. The following property holds.

Proposition 2.1 If the sets A and B are strictly linearly separable then
they are spherically separable.

Proof By hypothesis there exists a separating hyperplane

H = {x ∈ IRn | wT x = γ}

for some w ∈ IRn and γ ∈ IR such that

ai ∈ H− ∀i = 1, ...,m

and
bl ∈ H+ ∀l = 1, ..., k,

with H− = {x ∈ IRn | wT x < γ} and H+ = {x ∈ IRn | wT x > γ}. We
denote by H̄− and H̄+ the closed halfspaces {x ∈ IRn | wT x ≤ γ} and
{x ∈ IRn | wT x ≥ γ}, respectively .

Let x0 be any point in H− and xP its projection onto H (and, also, onto
H̄+).The expression of xP is the following

xP = x0 − wT x0 − γ

‖w‖2
w

and, consequently, the distance d(x0,H) of x0 from H is

d(x0,H) = ‖x0 − xP ‖ =
γ − wT x0

‖w‖ .

We remark that the sphere S(x0, ‖x0 − xP ‖) is contained in H̄−.
From the definition of xP we have :

‖x0 − bl‖ > ‖x0 − xP ‖ ∀l = 1, ..., k.

If, in addition,
‖x0 − ai‖ ≤ ‖x0 − xP ‖ ∀i = 1, ..., m

then S(x0, ‖x0 − xP ‖) separates the set A from B, otherwise the condition

‖x0 − ai‖ > ‖x0 − xP ‖
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holds for at least one point ai ∈ A.
Consider now the half-line

x(α) = x0 + α(x0 − xP ),

for α ≥ 0. The point xP is still the projection of x(α) on H (and, also, onto
H̄+), moreover

d(x(α),H) = ‖x(α)− xP ‖ = (1 + α)‖x0 − xP ‖
and the sphere S(x(α), ‖x(α)−xP ‖) is still contained in H̄−. If, in addition,
the point x(α) satisfies the condition

‖x(α)− ai‖ ≤ ‖x(α)− xP ‖ ∀i = 1, ..., m (1)

then the sphere S(x(α), ‖x(α)− xP ‖) contains all the points of A and sep-
arates the set A from the set B.

On the other hand, from the definition of x(α), it follows that

‖x(α)− ai‖2 = ‖x0 − ai‖2 + α2‖x0 − xP ‖2 + 2α(x0 − ai)T (x0 − xP ) (2)

and
‖x(α)− xP ‖2 = (1 + α)2‖x0 − xP ‖2 =
‖x0 − xP ‖2 + α2‖x0 − xP ‖+ 2α(x0 − xP )T (x0 − xP ).

(3)

Comparing (2) and (3), we observe that (1) is satisfied if

2α[(x0 − xP )T (x0 − xP )− (x0 − ai)T (x0 − xP )] ≥
‖x0 − ai‖2 − ‖x0 − xP ‖2 > 0 ∀i = 1, ..., m.

The r.h.s. of the above formula can be rewritten, by taking into account
the expression of xP , as

2α(x0 − xP )T (ai − xP ) =

2α(wT x0 − γ)
‖w‖2

wT (ai − xP ) =

2α(wT x0 − γ)(wT ai − γ) > 0 ∀i = 1, ...,m.

Thus the condition (1) is verified whenever

α ≥ ᾱ
4
= max

1≤i≤m

‖x0 − ai‖2 − ‖x0 − xP ‖2

2(wT x0 − γ)(wT ai − γ)
> 0
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3 The problem

We state our problem by assuming that the center x0 of the sphere is given
(any centroid either for the set A or for the set B or even for the set A⋃B
can be selected). Moreover we assume, without loss of generality, that x0

does not coincide with any point either of A or of B .
According to our definitions any sphere S(x0, R) separates A from B

provided
(ai − x0)T (ai − x0) ≤ R2 ∀i = 1, ..., m
(bl − x0)T (bl − x0) ≥ R2 ∀l = 1, ..., k.

Consequently we define the classification error associated to S(x0, R) for any
point ai ∈ A and for any point bl ∈ B, respectively, as:

ξi = max{0, (ai − x0)T (ai − x0)−R2} ∀i = 1, ..., m
µl = max{0, R2 − (bl − x0)T (bl − x0)} ∀l = 1, ..., k.

The problem of minimizing both the volume of the sphere and the clas-
sification error is defined as follows:

min
R,ξ,µ

R2 + C

(
m∑

i=1

ξi +
k∑

l=1

µl

)

s.t R2 − (ai − x0)T (ai − x0) + ξi ≥ 0 ∀i = 1, ..., m
(bl − x0)T (bl − x0)−R2 + µl ≥ 0 ∀l = 1, ..., k
ξi ≥ 0 ∀i = 1, ..., m
µl ≥ 0 ∀l = 1, ..., k

(4)

where the positive constant C states the relative importance of the two
objectives .

The problem above has a MIP (Mixed Integer Programming) counterpart
in case we consider the objective of minimizing the number of misclassified
points instead of that of minimizing the classification error:

min
R,ξ,µ,u,v

R2 + C

(
m∑

i=1

ui +
k∑

l=1

vl

)

s.t R2 − (ai − x0)T (ai − x0) + ξi ≥ 0 ∀i = 1, ...,m
(bl − x0)T (bl − x0)−R2 + µl ≥ 0 ∀l = 1, ..., k
0 ≤ ξi ≤ Mui ∀i = 1, ...,m
0 ≤ µl ≤ Mvl ∀l = 1, ..., k
ui = {0, 1} ∀i = 1, ...,m
vl = {0, 1} ∀l = 1, ..., k
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where M is a sufficiently large positive constant.
By introducing the change of variable

z = R2, z ≥ 0 (5)

and by defining:

ci
4
= (ai − x0)T (ai − x0) ≥ 0 ∀i = 1, ..., m

dl
4
= (bl − x0)T (bl − x0) ≥ 0 ∀l = 1, ..., k

the problem (4) becomes:

fP = min
z,ξ,µ

z + C

(
m∑

i=1

ξi +
k∑

l=1

µl

)

s.t. z − ci + ξi ≥ 0 ∀i = 1, ...,m
dl − z + µl ≥ 0 ∀l = 1, ..., k
z ≥ 0
ξi ≥ 0 ∀i = 1, ...,m
µl ≥ 0 ∀l = 1, ..., k

(6)

that is a Linear Programming problem, whose dual is the following:

fD = max
α,β

m∑

i=1

ciαi −
k∑

l=1

dlβl

s.t.
m∑

i=1

αi −
k∑

l=1

βl ≤ 1

0 ≤ αi ≤ C ∀i = 1, ..., m
0 ≤ βl ≤ C ∀l = 1, ..., k

(7)

We observe that both the primal and the dual problems are feasible and in
particular the solution

αi = 0 ∀i = 1, ..., m
βl = 0 ∀l = 1, ..., k

is dual feasible with objective function value equal to zero. The complemen-
tary slackness conditions for problems (6) and (7) are the following:

〈 z
(∑m

i=1 αi −
∑k

l=1 βl − 1
)

= 0
ξi (C − αi) = 0 ∀i = l, ..., m
µl (C − βl) = 0 ∀l = l, ..., k

〉

〈
αi (z − ci + ξi) = 0 ∀i = l, ...,m
βl (−z + dl + µl) = 0 ∀l = l, ..., k

〉
(8)
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In the sequel we indicate by α and β the vectors whose components are,
respectively, the αi’s, i = 1, . . . , m and the βl’s, l = 1, . . . , k. Moreover we
indicate by ξ and µ the vectors whose components are, respectively, the ξi’s,
i = 1, . . . ,m and the µl’s, l = 1, . . . , k.

Proposition 3.1 The following properties hold for z∗, the optimal value of
the variable z at any optimal solution for the problem (6):

i) If C <
1
m

then z∗ = 0;

ii) If C >
1
m

then z∗ > 0.

Proof To prove i) it is sufficient to observe that, in case C <
1
m

, no dual

feasible solution satisfying by equality the constraint
∑m

i=1 αi−
∑k

l=1 βl ≤ 1
exists. The thesis follows by taking into account the complementary slack-
ness condition z

(∑m
i=1 αi −

∑k
l=1 βl − 1

)
= 0.

As for the proof of ii), suppose C >
1
m

and assume by contradiction

that (z∗, ξ∗, µ∗) is an optimal solution for (6) with z∗ = 0. Then it follows
that (ξ∗, µ∗) solves the problem

min
ξ,µ

C

(
m∑

i=1

ξi +
k∑

l=1

µl

)

s.t. −ci + ξi ≥ 0 ∀i = 1, ..., m
dl + µl ≥ 0 ∀l = 1, ..., k
ξi ≥ 0 ∀i = 1, ..., m
µl ≥ 0 ∀l = 1, ..., k.

(9)

Since, by hypothesis, ci > 0 ∀i = 1, ..., m and dl > 0 ∀l = 1, ..., k, it follows
that

ξ∗i = ci ∀i = 1, ..., m
µ∗l = 0 ∀l = 1, ..., k

and

fP = C
m∑

i=1

ci.

Now consider the feasible solution (z̄, ξ̄, µ̄) to (6) obtained by setting:

z̄ = min{ min
1≤i≤m

ci, min
1≤l≤k

dl} > 0
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and by calculating (ξ̄, µ̄) as the optimal solution to:

min
ξ,µ

z̄ + C

(
m∑

i=1

ξi +
k∑

l=1

µl

)

s.t. ξi ≥ ci − z̄ ∀i = 1, ..., m
µl ≥ −dl + z̄ ∀l = 1, ..., k
ξi ≥ 0 ∀i = 1, ..., m
µl ≥ 0 ∀l = 1, ..., k.

(10)

The optimal values ξ̄ and µ̄ are the following:

ξ̄i = ci − z̄ ∀i = 1, ...,m
µ̄l = 0 ∀l = 1, ..., k.

Consequently the value associated to the feasible solution (z̄, ξ̄, µ̄) is

z̄ + C
m∑

i=1

(ci − z̄) = C
m∑

i=1

ci − (m · C − 1) z̄ < C
m∑

i=1

ci = fP

which contradicts the optimality of (z∗, ξ∗, µ∗).

We remark that since we are not interested in finding trivial (zero radius)

spheres, the only interesting choice is to set C >
1
m

. In this case, from
the previous proposition, taking into account complementary slackness, the
constraint

∑m
i=1 αi −

∑k
l=1 βl ≤ 1 is satisfied by equality at the optimum of

the dual problem (7).
Thus we will consider problem (7) in the form

fD = max
α,β

m∑

i=1

ciαi −
k∑

l=1

dlβl

s.t.
m∑

i=1

αi −
k∑

l=1

βl = 1

0 ≤ αi ≤ C ∀i = 1, ..., m
0 ≤ βl ≤ C ∀l = 1, ..., k.

(11)

For sake of completeness we remark that, in case C =
1
m

, the optimal

value z∗ can assume any value in the closed interval [0, min{ min
1≤i≤m

ci, min
1≤l≤k

dl}].
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4 The Algorithm

Problem (11) is a Linear Program characterized by only one equality con-
straint and by the presence of lower and upper bounds on all variables.

It is well known that there exists an optimal solution to (11) with at
most one variable belonging to the interior of the interval [0, C] (we will
refer to such solution as to an optimal basic solution).

We assume, without loss of generality, that the points of the two sets A
and B are numbered so that:

c1 ≥ c2 ≥ · · · ≥ cm > 0

and
0 < d1 ≤ d2 ≤ · · · ≤ dk.

Now we describe an algorithm that finds the optimal solution to the dual
problem (11) for C > 1/m.

Algorithm 1
(Case C ≤ 1)

Initialization
Set

• r
4
=

⌊
1
C

⌋
(Remark: m ≥ r + 1)

• p̄
4
= min{k, m− r} ≥ 1

• αi = 0 ∀i = 1, ..., m

• βl = 0 ∀l = 1, ..., k

Step 1. Set αi = C ∀i = 1, ..., r

If (cr+1 ≤ d1) Set αr+1 = 1−Cr and STOP [exit (a): the basic vari-
able is αr+1].
(Remark: If C = 1, then αr+1 = 0 and the solution is a degener-
ate basic feasible solution).

Endif

If (cr+i > di ∀i = 1, ..., p̄)

If (p̄ > 1) Set αr+i = C ∀i = 1, ..., (p̄− 1)
Endif

Set
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• αr+p̄ = 1− Cr

• βl = C ∀l = 1, ..., (p̄− 1)

and STOP [exit (b): the basic variable is αr+p̄].

Endif

Step 2. Find p∗, the smallest index i, 2 ≤ i ≤ p̄ such that cr+i ≤ di

(Remark: Step 2 cannot be entered if p̄ = 1. Calculation of the index
p∗ is well posed since the algorithm has not stopped at step 1 ).

If (cr+p∗ ≥ dp∗−1)
Set

• αr+i = C ∀i = 1, ..., (p∗ − 1)
• αr+p∗ = 1− Cr

• βl = C ∀l = 1, ..., (p∗ − 1)

and STOP [exit (c): the basic variable is αr+p∗].

Else Set αr+i = C ∀i = 1, ..., (p∗ − 1)

If (p∗ > 2) Set βl = C ∀l = 1, ..., (p∗ − 2)
Endif

Set βp∗−1 = C(r + 1)− 1 and STOP [exit (d): the basic variable
is βp∗−1].

Endif

(Case C > 1)

Initialization
Set

• p̄
4
= min{k, m} ≥ 1

• αi = 0 ∀i = 1, ..., m

• βl = 0 ∀l = 1, ..., k

Step 1. !!!!!!

If (c1 ≤ d1) Set α1 = 1 and STOP [exit (a): the basic variable is α1].

Endif

If (ci > di ∀i = 1, ..., p̄)

If (p̄ > 1) Set αi = C ∀i = 1, ..., (p̄− 1)
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Endif

Set

• αp̄ = 1
• βl = C ∀l = 1, ..., (p̄− 1)

and STOP [exit (b): the basic variable is αp̄].

Endif

Step 2. Find p∗, the smallest index i, 2 ≤ i ≤ p̄ such that ci ≤ di

(Remark: Step 2 cannot be entered if p̄ = 1. Calculation of the index
p∗ is well posed since the algorithm has not stopped at step 1 ).

If (cp∗ ≥ dp∗−1)
Set

• αi = C ∀i = 1, ..., (p∗ − 1)
• αp∗ = 1
• βl = C ∀l = 1, ..., (p∗ − 1)

and STOP [exit (c): the basic variable is αp∗].

Else Set αi = C ∀i = 1, ..., p∗

If (p∗ > 2) Set βl = C ∀l = 1, ..., (p∗ − 2)
Endif

Set βp∗−1 = C − 1 and STOP [exit (d): the basic variable is
βp∗−1].

Endif

Remark. The solution provided by the algorithm is invariant with
respect to C for all C > 1.

Remark. The preliminary sorting of the ci’s and of the dl’s is required.
It can be executed in O(plogp) time, where p = max(m, k). The algorithm
runs in O(p) time.

Theorem 4.1 The algorithm (1) finds an optimal solution to problem (11).

Proof We assume that ᾱ ≥ 0 and β̄ ≥ 0 are those obtained on exit from
the algorithm.

We prove the property for the case C ≤ 1, as the treatment for the case
C > 1 is analogous.
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It is immediate to verify that, corresponding to all possible exits, the
constraint

m∑

i=1

ᾱi −
k∑

l=1

β̄l = 1 (12)

is satisfied by construction.
We denote by ᾱh (exit (a), (b), (c)), or β̄s (exit (d)), the unique ba-

sic variable (possibly degenerate) for the appropriate index h or s and we
construct a primal solution as follows:

If the basic variable is ᾱh then set ξ̄h = 0, z̄ = ch and

ξ̄i =

{
0 if ᾱi = 0
ci − z̄ if ᾱi = C

for i = 1, ..., m; i 6= h. (13)

µ̄l =

{
0 if β̄l = 0
z̄ − dl if β̄l = C

for l = 1, ..., k. (14)

If the basic variable is β̄s then set µ̄s = 0, z̄ = ds and

ξ̄i =

{
0 if ᾱi = 0
ci − z̄ if ᾱi = C

for i = 1, ...,m. (15)

µ̄l =

{
0 if β̄l = 0
z̄ − dl if β̄l = C

for l = 1, ..., k; l 6= s (16)

It easy to verify that the complementary slackness conditions (8) are
satisfied as consequence of (12) and of the variable setting (13), (14),(15)
and (16) .

To prove the feasibility we need to show first that (z̄, ξ̄, µ̄) are nonneg-
ative. We consider separately the two cases where the basic variable is ᾱh

(exits (a),(b),(c)) or β̄s (exit (d)) for some appropriate value of the index h
or s respectively.

Consider the case ᾱh is the basic variable. We have z̄ = ch > 0 and
ξ̄i is equal either to zero or to ci − z̄, the latter case occurring only in
correspondence to an index i < h for which it is, by hypothesis, ci ≥ ch = z̄.
On the other hand the nonnegativity of µ̄ follows by observing that whenever
it is µ̄l = z̄ − dl we have µ̄l = z̄ − dl = ch − dl ≥ 0
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Consider now the case β̄s is the basic variable. We have z̄ = ds > 0
and µ̄l is equal either to zero or to z̄ − dl, the latter case occurring only in
correspondence to an index l < s for which it is by hypothesis dl ≤ ds = z̄.
On the other hand the nonnegativity of ξ̄ follows by observing that whenever
it is ξ̄i = ci − z̄ = ci − ds the condition ci − ds ≥ 0 holds.

Finally, noting that satisfaction of the constraints z̄ − ci + ξ̄i ≥ 0 ∀i =
1, ...,m and dl − z̄ + µ̄l ≥ 0 ∀l = 1, ..., k is ensured by the variable settings
and by the initial sorting of the ci’s and of the dl’s, the thesis follows as the
solutions (z̄, ξ̄, µ̄) and (ᾱ, β̄) are primal and dual feasible respectively and
satisfy the complementary slackness conditions.

Once the the optimal solutions (z̄, ξ̄, µ̄) and (ᾱ, β̄) for (6) and (11) re-
spectively have been calculated, recalling the substitution (5), R2 = z, the
sphere S(x0,

√
z̄) can be utilized for classification purposes, in the sense that

any new sample point x ∈ IRn is classified according to the following rule:

x is a point of the type A if (x− x0)T (x− x0) < z̄
x is a point of the type B if (x− x0)T (x− x0) > z̄.

The point x0 remains unclassified whenever it is (x− x0)T (x− x0) = z̄.

5 Using the kernels

Kernel transformation of the type adopted in SVM can be easily embedded
into the spherical separation approach. Our kernel-based approach consists
in:

1. mapping the data into a higher dimensional space (the feature space);

2. separating the two transformed sets by means of one sphere.

We consider an embedding map

φ : x ∈ X ⊆ IRn → φ(x) ∈ F ⊆ IRN ,

and a kernel function K that for all x, y ∈ X satisfies

K(x, y) = φ(x)T φ(y).

We remark that, by using a kernel function K, the inner products in the
feature space can be computed without explicitly computing the map φ.
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The effect of φ is to recode our sets A and B as

Â = {φ(a1), ..., φ(am)} and B̂ = {φ(b1), ..., φ(bk)}.

Now we proceed looking for a sphere in IRN , centered in φ(x0) ∈ IRN , where
x0 ∈ IRn is given, with radius R̂ ∈ IR, with the objective of minimizing both
the volume and the classification error. We obtain the following problem

f̂P = min
ẑ,ξ̂,µ̂

ẑ + C

(
m∑

i=1

ξ̂i +
k∑

l=1

µ̂l

)

s.t. ẑ − ĉi + ξ̂i ≥ 0 ∀i = 1, ...,m

d̂l − ẑ + µ̂l ≥ 0 ∀l = 1, ..., k
ẑ ≥ 0
ξ̂i ≥ 0 ∀i = 1, ...,m
µ̂l ≥ 0 ∀l = 1, ..., k

(17)

where
ẑ = R̂2

ξ̂i is the classification error for the point φ(ai) ∈ Â
µ̂l is the classification error for the point φ(bl) ∈ B̂

and

ĉi = (φ(ai)− φ(x0))T (φ(ai)− φ(x0)) =
= K(ai, ai) + K(x0, x0)− 2K(ai, x0) ≥ 0 ∀i = 1, ..., m

d̂l = (φ(bl)− φ(x0))T (φ(bl)− φ(x0)) =
= K(bl, bl) + K(x0, x0)− 2K(bl, x0) ≥ 0 ∀l = 1, ..., k

The problem (17) is a Linear Program of the same type as problem (6). As
in section 3 its dual is stated in the form :

f̂D = max
α̂,β̂

m∑

i=1

ĉiα̂i −
k∑

l=1

d̂lβ̂l

s.t.
m∑

i=1

α̂i −
k∑

l=1

β̂l = 1

0 ≤ α̂i ≤ C ∀i = 1, ..., m

0 ≤ β̂l ≤ C ∀l = 1, ..., k.

(18)

and can be solved by the algorithm (1).
Once the optimal solutions (α̂∗, β̂∗) and (ẑ∗, ξ̂∗, µ̂∗) for (18) and (17),

respectively, have been calculated, recalling the substitution R̂2 = ẑ, the
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sphere S(φ(x0),
√

ẑ∗) can be used for classification purposes, in the sense
that a new sample point x ∈ IRn will be classified as follows:

x is a point of the type A if
(φ(x)− φ(x0))T (φ(x)− φ(x0)) =
= K(x, x) + K(x0, x0)− 2K(x, x0) < ẑ∗

x is a point of the type B if
(φ(x)− φ(x0))T (φ(x)− φ(x0)) =
= K(x, x) + K(x0, x0)− 2K(x, x0) > ẑ∗.

We observe that if x0 ∈ IRn is the barycenter of the set A (or of the set
A ∪ B), then φ(x0) is not necessarily the barycenter of the set Â (or of the
set Â ∪ B̂).

Let Q = {x1, ..., xq} be a finite point set in the input space and Q̂ =
{φ(x1), ..., φ(xq)} the transformed set in the feature space. The barycenter
of the sets Q̂ is the vector

φQ̂ =
1
q

q∑

i=1

φ(xi).

As for all points in the feature space an explicit vector representation of
this point is not available. However, despite of this apparent inaccessibility
of the point φQ̂, we can compute its norm, and the distance of the image
of any point x in the input space from it, by using only evaluations of the
kernel on the inputs:

φT
Q̂
φQ̂ =

1
q2

q∑

i,j=1

K(xi, xj)

(φ(x)− φQ̂)T (φ(x)− φQ̂) = K(x, x) +
1
q2

q∑

i,j=1

K(xi, xj)− 2
q

q∑

i=1

K(x, xi).

Now we remark that if x0 is not given and we look for a sphere in the
feature space centered in the barycenter of the set Â (or of the set Â ∪ B̂),



Spherical sep. and kernel transformations for classification problems 17

again we can use the algorithm (1) for solving the problem (18) with

ĉi = (φ(ai)− φÂ)T (φ(ai)− φÂ) =

= K(ai, ai) +
1

m2

m∑

j,s=1

K(aj , as)− 2
m

m∑

j=1

K(ai, aj) ≥ 0 ∀i = 1, ...,m

d̂l = (φ(bl)− φÂ)T (φ(bl)− φÂ) =

= K(bl, bl) +
1

m2

m∑

j,s=1

K(aj , as)− 2
m

m∑

j=1

K(bl, aj) ≥ 0 ∀l = 1, ..., k

Once the optimal solutions (α̂∗, β̂∗) and (ẑ∗, ξ̂∗, µ̂∗) for (18) and (17),
respectively, have been calculated, the sphere S(φÂ,

√
ẑ∗) can be used for

classification purposes, in the sense that any new sample point x ∈ IRn will
be classified as follows:

x is a point of the type A if
(φ(x)− φÂ)T (φ(x)− φÂ) =

= K(x, x) +
1

m2

m∑

i,j=1

K(ai, aj)− 2
m

m∑

i=1

K(x, ai) < ẑ∗

x is a point of the type B if
(φ(x)− φÂ)T (φ(x)− φÂ) =

= K(x, x) +
1

m2

m∑

i,j=1

K(ai, aj)− 2
m

m∑

i=1

K(x, ai) > ẑ∗.

6 Numerical experiments

We have implemented the algorithm described in section 4 using Matlab 5.3
running on a Pentium IV 2.2 GHz Notebook. We have run it on several test
problems available in the literature.

We have considered the following datasets:

• Six publicly available datasets from the UCI Machine Learning Reposi-
tory [8], in particular, the Wisconsin Breast Cancer Prognosis (WBCP-
old, WBCP-new), the Cleveland Heart Disease (Heart), Ionosphere
(Ionosphere), Mushroom (Mushroom), Tic-Tac-Toe Endgame (Tic-
Tac-Toe).

• The Galaxy Dim dataset (Galaxy Dim) used in galaxy discrimination
with neural networks from [9].
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In our implementation we have used the following kernel functions:

• linear: K(x, y) = xT y;

• polynomial: K(x, y) = (xT y + 1)p1 ;

• radial basis function (RBF): K(x, y) = exp(−‖x− y‖2)/2p2
1;

• exponential radial basis function (ERBF): K(x, y) = exp(−‖x−y‖)/2p2
1;

• sigmoidal: K(x, y) = tanh(p1x
T y + p2)

with parameters p1 and p2.
We have run our algorithm for several values of the kernel parameters

and of the positive weighting constant. The point x0 has been selected as
the barycenter of the set A and, whenever nonlinear kernel functions are
adopted, the point φ(x0) has been selected as the barycenter of the set Â.

Furthermore, all features of the experiments, except those of the Cleve-
land Heart Disease dataset have been normalized to the range [-1; +1]. The
results obtained by our method are reported in Table (1). For all datasets we
report as benchmark, under the denomination “Other methods”, the best
result drawn from [5, 7], where extensive comparisons of several methods are
presented. Only in the case of the dataset WBCP - old, an earlier version of
the dataset WBCP no longer available at the UCI Machine Learning Repos-
itory, we compare our results with those obtained by our implementation of
the RLP method [3] as reported in [1].

We have adopted the tenfold cross-validation protocol, which consists in
splitting the dataset of interest into ten equally sized pieces. Nine of them
are in turn used as training set and the remaining one as testing set. By
correctness we intend the total percentage of well classified points (of both
A and B) when the algorithm stops.

For Mushroom a subset of the entire dataset is used. In particular, the
final dataset, that we have considered, contains 22 features with 200 points
in set A and 300 points in set B.
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Table 1: Comparison of Training and Testing Correctness on standard datasets

Average Average
Dataset
(m, k, n)

Method Training Set Testing Set

Correctness Correctness

RLP [3] 70.57 57.76
WBCP - old
(46, 148, 32)

Spherical Sep.
(Linear k.)

66.32 66.47

Spherical Sep.
(RBF k. - p1 = 1)

74.58 73.18

Other methods [5, 7] 70.80 68.50
WBCP - new
(41, 69, 32)

Spherical Sep.
(Linear k.)

66.26 67.20

Spherical Sep.
(RBF k. - p1 = 1)

65.25 69.09

Other methods [5, 7] 87.70 86.50
Hearth

(83, 214, 13)
Spherical Sep.

(Linear k.)
75.08 74.50

Spherical Sep.
(Polynomial k. - p1 = 8)

83.39 82.12

Spherical Sep.
(Sigmoidal k. - p1 = 10, p2 = 0.1)

86.61 86.47

Other methods [5, 7] 97.00 95.80
Ionosphere

(126, 225, 34)
Spherical Sep.

(Linear k.)
71.45 71.00

Spherical Sep.
(RBF k. - p1 = 0.69)

92.85 88.05

Other methods [5, 7] 90.91 88.20
Mushroom

(3916, 4208, 22)
Spherical Sep.

(Linear k.)
75.55 70.75

Spherical Sep.
(Polynomial k. - p1 = 30)

88.18 85.00

Spherical Sep.
(ERBF k. - p1 = 0.2)

89.60 87.60

Other methods [5, 7] 95.00 95.00
Galaxy Dim

(2082, 2110, 14)
Spherical Sep.

(Linear k.)
86.16 84.16

Spherical Sep.
(Polynomial k. - p1 = 3)

87.19 85.64

Spherical Sep.
(RBF k. - p1 = 0.1)

88.75 87.19
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