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Modeling and Analysis of a Cooperative Control Protocol 
 

 
 

Abstract 
 

This paper proposes COCOP – COoperative COntrol Protocol, which enables a synchronous 
cooperative group to interactively control an on-demand server which multicasts time-dependent 
data streams. Multicast-based streaming on-demand systems such as video on-demand systems, 
web casters, and networks of real/virtual sensors can beneficially exploit COCOP to provide 
cooperative control sessions as a mainstream service. In order to improve efficiency and 
scalability, the protocol relies on a reliable multicast transport layer which can be based either on 
IP-multicast or on Application Layer Multicast. Performance evaluation of COCOP is carried out 
on multicast delivery trees by using a discrete-event simulation framework. 

 
 
 
1. Introduction 
 

Due to advances in communications and computing technology, Internet is now a world-wide platform which 
can be ubiquitously exploited for delivering time dependant-services such as media streaming, web casting, 
measurements, etc [CHW99]. One key enabling technology is multicast [M99] which efficiently concurs to save 
network resources and easily feature multi-party applications. Multicast is exploitable over Internet at network 
level through IP-multicast or at application level through an application level multicast infrastructure [BB03]. 
Both real-time data services and synchronous group coordination services have been demonstrated to greatly 
benefit from multicast [DG99a]. In particular, synchronous group services entail synchronization of content and 
activities in remote workspaces with regard to time and space and notably mutual exclusion in resource access.  

The integration of on-demand multicast data delivery with group-based remote control can enable the 
construction of synchronous cooperative environments in which a group of clients shares the data service 
control.  

Such an integration can be incorporated in peer-to-peer based or grid-based Content Distribution Networks 
(CDNs) [CGK01] as a basic low-level service. Thus, a variety of high-level group services such as cooperative 
playbacks [FGM02], cooperative browsing and collaborative visualization of remote measurements [DG99a] can 
be provided.  

A challenging issue is the development of a real-time distributed control logic of the server entity which 
multicasts data streams. To this end several floor control protocols and architectures have been proposed in the 
last years which facilitate users, organized in even large groups, to coordinate access to shared resources through 
coordination primitives called floors [DG99a]. Since it is needed to request and grant floors in a session-wide 
contention scheme, floor management can very likely introduce overhead diminishing interactivity and 
increasing response time of the server control in highly responsive environments. 

This paper presents a high level cooperative control protocol (COCOP) suitable for timely control of a shared 
server by a cooperative group of clients. It relies on a distributed and implicit coordination policy centred on 
cooperation among clients and final contention resolution at server side. COCOP can be supported by a 
lightweight reliable multicast protocol purposely enhanced to detect events which can affect the logical thread of 
a cooperative control session. Notably, the protocol also embeds a mechanism coping with the problem of 
unfairness among clients. COCOP is validated by means of an event-driven simulation framework ad-hoc 
customized to analyse (i) the high-level protocol performances and (ii) the dynamics of a cooperative control 
session over both basic topologies, namely star and linear chain, and tree topologies. 

The rest of the report is structured as follows. §2 details the proposed high-level cooperative control protocol 
along with a reference application context. §3 describes the simulation scenario for the protocol validation and 
then comments and analyses the simulation results. Finally, conclusions are drawn and directions of future work 
delineated. 
 
 
 
2. The COCOP Protocol 
 

The aim of the COoperative Control Protocol (COCOP) is to enable a synchronous group of clients to 
cooperatively share the control of a server, which typically provides time-dependant services. COCOP complies 



with a multicast client/server model [FGM02], which is an extension of the unicast client/server one. It allows a 
group member to send, on the behalf of the group, a request to the server that, after processing the request, 
replies to all group members. According to the peculiarity of the service offered, group/server interactions can be 
stateful or stateless. We focus on stateful interactions which originate cooperative control sessions. The server 
holds the session state and changes it each time a client request is accepted. Every client request is provisional 
which means that it is the server reply that modifies the group state. In order to increase the flexibility and the 
resilience of the session state management, we adopt a soft-state like paradigm [M99]. 

COCOP relies on the idea of cooperativity-featured competitive access to a shared resource, the server, 
combined with mechanisms aimed at increasing the protocol efficiency and effectiveness.  

The cooperative competitive access is regulated by the following mechanisms: 
1. During session contention periods the server resolves conflicts by accepting the first incoming request and 

discarding the others. Such mechanism drives the session state by dynamically establishing which client 
request is accepted and processed by the server.  

2. After forwarding a request to the server, a client inhibits itself by blocking every successive user request until 
a server reply is received. Such a mechanism limits the network load and avoids meaningless request 
sequences coming from the same client. 

3. After a server reply, both the server and the clients block themselves for a given amount of time, in order to 
make users aware of the session state change. 

4. When a client senses another client request, it auto-inhibits in order to fairly give priority to the remote client 
so avoiding to forward requests, that would be probably discarded and would only increase the network load. 
COCOP has characteristics similar to the activity sensing floor control protocol (RAS) belonging to the 

Random-access Floor Control (RFC) class [DG99b]. The main differences are that, in COCOP, the floor is the 
server itself and, in RAS, the auto-inhibition is realized by using back-off, i.e., by delaying a request of a random 
amount of time. Moreover, higher level policies such as token-based [DG99b] or voting-based [FN00] can be 
adapted atop of the basic protocol to fulfill specific synchronization requirements. 

In order to enable cooperativity in COCOP, a client request is multicast to the group so that it can be received 
by each client and by the server. To this end, it is assumed the existence of a virtual logical channel connecting 
all the parties (clients and server) which, from a semantic point of view, complies with the idea of multicast 
group [CHW99]. It provides a simple way to send one-to-many messages and allows an efficient realization of 
the logical channel by either IP-multicast [M99] or an Application Level Multicast (ALM) protocol [BB03]. 

COCOP is not intended for the transport of application data but it should be coupled with a data delivery 
protocol tied to a specific service (e.g., file bulk transfer, media streaming). It is worth noting that the proposed 
protocol focuses on the server control and implicit low-level group coordination; challenging issues such as 
group formation, security, and fault-tolerance as highlighted in [FN00, SRC98] are out of the scope of this paper. 
 
2.1. Client and server high-level behaviors  
 

The behaviors of client and server processes are visually defined by the finite state machines (FSMs) 
depicted in Figure 2.1. 

Client Automaton. In the Ready state, the client process (or client) can (i) accept a request (UsrReq) from the 
local user in order to forward the corresponding client request to the multicast group, (ii) sense a client request 
(ClReq) sent from a remote client so performing the cooperative mechanism, (iii) process a server reply 
(Reply). If the guard f is true, a client request forwarding is delayed of the time Tw, dynamically calculated by 
each client. Such a mechanism allows smoothing the unfairness problem as analyzed in §3.2.2. In the 
RequestDone state, the client ignores other ClReq and, once it receives a server Reply, it passes into the 
ProcessDone state and sets the timer Tc, disabling the user to perform new requests. The client gets Ready 
again after receiving the FTimer (timer expiration event). 

Server Automaton. In the Ready state, the server process (or server) is available to receive and process a 
client request (ClReq). After processing the request and sending the reply, the server rests inactive for an amount 
of time TS that depends on the specific application. TS is introduced both to make the clients aware of the session 
state change, and to regulate the session interactivity. In fact, the group has to wait at least TS to be able to get 
another request accepted. In the ProcessDone state, the server refuses all incoming ClReqs. As soon as the 
timer expires, the server gets ready again. Usually, TS is set at session set-up whereas TC is dimensioned upon TS. 

 
 
 



READY 

REQUESTDONE

UsrReq / send(req) 

ClReq 

PROCESSDONE Reply / process(reply);  
  setTimer(FTimer, TC) 

FTimer 

Reply / process(reply);  
   setTimer(FTimer, TC) 

ClReq 

Reply / process(reply);  
  resetTimer(FTimer, TC) 

READY

PROCESSDONE 

ClReq /  process(req); 
 send(reply); 
 setTimer(FTimer, TS) 

ClReq 

FTimer 

(a) (b) 
 

Figure 2.1 (a) the client process automaton; (b) the server process automaton. 
 
 
 
2.2. Reliability requirements 
 

Since a control message (request or reply) require both reliability and fast delivery, COCOP relies on a 
lightweight reliable multicast protocol [FJM97] which only guarantees reliability. It is worth noting that different 
multicast applications require many different levels of reliability and ordering guarantees in the face of transient 
network failures such as dropped packets. In [WMK94] and [CKV01] the main QoS levels provided by multicast 
transport protocols are discussed: unreliable, unordered, source ordered, causal ordered, totally ordered, K 
resilient, majority resilient, totally resilient.  

Although the exploitation of more constraining protocols such as source-ordered, causal-ordered or total-
ordered protocols [WMK94] would avoid exceptional situations by providing a more logical message delivery 
within a control session, such an exploitation would result in an unavoidable performance degradation in terms 
of message delivery rate and hence session interactivity. As an example, consider the sending of a pause 
command which temporarily halts a streaming transmission. The command should reach the server “as fast as 
possible”, in order to provide the issuing client with a reasonable degree of interactivity. 

However, the reliable multicast protocol should be further enhanced at a higher-level in order to detect the 
loss of source-ordering on a per-process (client or server) basis.  

To this end, COCOP integrates a high-level mechanism which filters messages violating some source-
ordering and causal-ordering requirements in the hypothesis of no clock synchronization among the parties. 
Particularly, we isolated the following set of requirements whose not fulfilling would cause the violation of the 
logical thread of control activities: 
1) Source-ordering of Requests. The requests issued by each client should arrive at the server according to their 

transmission order.  
2) Source-ordering of Replies. The replies sent by the server should orderly arrive at each client, so respecting 

the logical order of the global state change. 
3) Causal-ordering of Request/Reply pairs. The arrivals of a request/reply pair should never be inverted. 

In order to fulfill such requirements, we have appositely defined the control structure of messages by 
inserting some information which is exploited for building dynamic session state tables maintained by each 
process (see Appendix A). Messages are discarded on the basis of these tables if they violate the above 
requirements, otherwise they are admitted to drive the automata of server and client processes (Fig. 2.1).  
 
2.3. An application context: cooperative playback sessions 
 

Cooperative playback sessions are multicast sessions where an explicit and synchronous group of clients 
cooperatively controls a media server (MS) which is multicastly streaming an archived media file. Basically two 
interaction levels exist within a cooperative playback session: media and control. Media is unidirectionally 
streamed by the MS to all the group members over a multicast channel. Control is applied under the form of 
transmissions of VCR-like commands (e.g., PLAY, PAUSE, SEEK, etc) sent from the clients to the MS. 

Cooperative playback sessions are usually provided by a cooperative playback system (CPS) [FN00, 
SRC98]. A fundamental building block of a CPS is the archive control protocol which is the protocol used to 
contact the media server in order to organize the cooperative group, request and control a selected playback. 
Specifically, the archive control protocol should allow a client to issue control commands by resolving possible 
conflicts with all the other clients of the group.  



In the MASH Rover [SRC98], the SSAC (Soft State Archive Control) protocol is based on a soft state 
approach and on an announce/listen (A/L) underlying transport mechanism [M99]. A/L protocols are robust and 
can be implemented atop of an unreliable transport protocol such as unicast or multicast UDP. No specific 
control policies are introduced, the implicit policy exploited is of type laissez-faire cooperative (e.g., with user-
level feedback). Moreover, control commands can be lost so that the requesting client loses “a priori”  the 
contention against other clients. 

Conversely, in our CPS [FN00], the control protocol, called MACπ (Multicast Archive Control Protocol), is 
realized as a variant of RTSP (Real-Time Streaming Protocol) [CHW99] adapted atop of the lightweight reliable 
multicast protocol (LRMP). Two basic policies regulating conflicts are introduced: (i) a pure FC policy for the 
PAUSE command and (ii) a voting-based policy for the PLAY, SEEK and STOP commands. The former is 
embedded in the MACπ whereas the latter is enforced by using an higher level protocol, called COπ 
(COllaborative protocol) which also enables the multicast exchange of questions and annotations. The usability 
analysis of the system [FN00] highlights that as soon as the request rate increases the group members are 
overwhelmed by too many voting procedures and are affected by consistent refusals of the PAUSE command at 
the server side. So it would be more convenient if the protocol, for some control messages (e.g. PAUSE), relied 
on an implicit coordination mechanism like COCOP. 

The above-mentioned CPSs are strongly IP-multicast enabled so limiting their widespread diffusion to only 
IP-multicast enabled network such as MBone and private LANs. Efficient application level multicast protocols 
within peer-to-peer networks and grid-based infrastructures coupled with lightweight cooperative control 
protocols can boost the exploitation of cooperative playbacks as a mainstream service.  
 
3. Protocol analysis through simulation 
 

In order to analyse the dynamics of a cooperative control session, COCOP is implemented in an object-
oriented simulation framework.  

The aim of the simulations is to analyse and compare the performances of: 
• the basic COCOP protocol (see §3.1), referred as COOP; 
• a protocol obtained from COOP by deleting the transitions labelled by ClReq in the client automaton (Fig. 

2.1(a)). With this modification, a client does not sense requests from remote clients. This protocol, named 
NoCOOP, is analysed to evaluate the effect of client cooperation introduced by COCOP. The coordination 
mechanism of NoCOOP is the same one which is provided by the protocols SSAC and MACπ (see § 2.2); 

• the version of COCOP denoted as FAIRNESS, which was enhanced with a fairness mechanism. The 
fairness mechanism (described in §4.2.1) allows for augmenting the fairness degree of the coordination 
mechanism in cooperative control sessions where client nodes experience different delays from the server 
node. 

The main purpose of the analysis is to investigate the capability of a generic client to obtain the control of the 
server as well as the server load and the network system load. To this end, the analysis parameters in Table 3.1 
were defined. Note that the first six parameters (in bold style) are independent variables that must be set before 
simulation runs, while the other parameters are calculated at the end of the simulation to analyse protocol 
performances. 

Analysis was carried out first in basic topologies such as star and chain [FMR03], and then in more complex 
and realistic multicast topologies, such as binary and N-ary trees, which are fully representative of multicast 
delivery trees [NB97]. 



Tsession Duration of the session 

N Number of clients 

Λ User request rate 

δ Link delay between two adjacent nodes 

Ts Server timer 

TC Client timer 

NUsrReq Total number of user requests 

NClReq Total number of client requests 

NUsrReqBlk Number of user requests blocked by 
respective clients 

NClReqDis Number of client requests discarded by the 
server 

NClReqAcpt Number of client requests accepted by the 
server 

Pblocking 
UsrReq

UsrReqBlk

N

N Blocking probability: the 
probability that a user request 
is not forwarded by the client 

Pdenial 
ClReq

ClReqDis

N

N
 

Denial probability: the 
probability that a client 
request is discarded by the 
server 

PDS 
Server denial probability: the number of the 
requests discarded by the server out of the 
total number of received requests 

LSer 
session

ClReqAcpt

T

N Server load: the number of 
requests per second that the 
server accepts 

LNet ∑
=

−−
N

i
DSBLKi PPN

1

)2)(1(λ  

Network load: the 
number of messages 
per second that 
circulate in the 
network 

  
Table 3.1. Analysis parameters. 

 
 
3.1. The Discrete-Event Simulator 
 
The discrete-event simulator [FMR03], written in C++, is fully object-oriented and designed upon the following 
kinds of objects: 

1. Server Node, which models the server process, according to the automaton shown in Figure 2.1(a). 
2. Client Node, which models the client process, according to the automaton shown in Figure 2.1(b). 
3. Passive Node, which represents either a router node in a multicast tree (i.e. a node that forwards 

messages according to the multicast logic but does not have a client process attached on it), or a client 
process that does not originate messages because the attached user is a “passive” user, i.e. non interactive. 

4. User Agent, which generates new requests on behalf of the user. The request generation process follows 
a chosen statistical distribution, as discussed below. 

5. Event, which embodies a message exchanged among Client and Server objects. Upon event 
reception, a Node responds according to its automaton. 

6. Event Scheduler/Dispatcher, which manages events, stores them in a queue ordered by message 
delivery times, and dispatches them to destination nodes. 

A simple script language is exploited to define the network configuration. 
In order to feed the simulation of a cooperative control session with users’ requests, the behaviour of group 

members should be carefully modelled. In [PK99], an empirical characterization of user behaviour, observed in 
the context of a Web-based courseware system, is reported. The authors found out that lognormal and gamma 
distributions are a good approximation of the empirical distribution of user requests, though the exponential 
distribution is often used for analytical and simulation studies. In the simulation runs, the request rate of each 
user in the group is therefore modelled as a gamma distribution with a given shape parameter. 
 
 
3.2. Simulation parameters 
 

Prior to simulation runs, the first six parameters listed in Table 3.1 were accurately tuned and varied in order 
to achieve a deep comprehension of the COCOP protocol. 



In particular, the duration of the session (TSession) was set, for each simulation run, to an amount of time that 
allowed for deriving performance values with a pre-determined statistical relevance (i.e. with at least a 0.95 
probability that the statistical error was below 5%). Simulations are carried out on tightly-coupled sessions 
which correspond to static logical topologies. 

Cooperative control sessions are mainly intended for small/medium sized groups of users. In particular, a 
cooperative playback session [FN03] is averagely composed of 2 to 10 members. Accordingly, the number of 
clients N was varied from 2 to 15 in the performed simulations, even though large groups (N>50) were also 
investigated in the case of basic topologies. 

User activity is performed according to a simple statistical model based on the Gamma probability 
distribution function with shape parameter equal to 2. The parameter characterizing the user activity is the Mean 
Request Interarrival Time (1/λ, MRIT), which is the average interarrival time between two successive requests 
issued by the same user. User activity can be further classified in very low (MRIT>=15m), low 
(10m<=MRIT<15m), medium (5m<=MRIT<10m), high (120s<=MRIT<5m) and very high (MRIT<120s). In the 
simulations, the value of MRIT was varied within the range {10 s, 180 s}, to account for analyses of COCOP 
in sessions with very high/high user activity. 

The link delay between two adjacent nodes (δ) was set according to the following model: 
 

    )δK,δN(KδKδ mvmvmfi +=  (1) 
0K,K1KK vfvf ≥=+   (2) 

 
where δm is the mean delay and δi is the instantaneous delay for a given message. δi is the sum of a fixed part 
and a variable part. Equation(2) guarantees that the mean of δi is equal to δm. The variable part of δi is 
generated by a normal random variable whose mean and variance are set to Kvδm. The distribution of the normal 
variable is truncated to -Kfδm in order to assure that δi cannot assume negative values. The choice of the normal 
distribution was made according to the considerations presented in [GL96]. The EED model parameters were set 
as follows: δm=0.1s, which accommodates small regional areas, and Kf=0.7, to limit the EED variability. 

Moreover, the average time (∆TElab) spent by the server to process a client request was set to 0.2s, a typical 
value in a single-session VoD system, with a uniform variability of ±0.1s. 

The server timer TS, used to control the server reactivity and the overall system interactivity degree, was set 
to 3.0s; TC, the client timer, was set to the same value, thus avoiding the occurrence of deadlock situations, as 
shown in [FGM02]. The timer values were chosen on the basis of the performance analysis of the ViCROC 
system [FN03]. 
 
4. Simulation Results 
 
In this Section we first report the most relevant results concerning the performances of COCOP with star and 
chain topologies (see also [FMR03]), since these basic topologies can be considered as the building blocks of 
generic multicast trees. 
Then we analyze the behaviour of the COCOP with more complex topologies: binary and n-ary multicast trees, 
with both active and passive nodes.  
 
4.1 Basic Topologies: Star and Chain 
 
Star.  
 
The star topology (Figure 4.1) can be considered as a model of a particular multicast topology having the 
peculiarity that all clients experiment similar average delays to reach the server. A passive node (R) routes client 
requests to the multicast group and to the server. Since all clients are in the same conditions, the performances of 
a generic client are reported. 
 

 
C1

C2

CN

R SClients

Replicator Server

 
 

Figure 4.1. A star topology. 



 
In Figure 4.2, the blocking and denial probabilities of COOP and NoCOOP versus the mean request interarrival 

time for different values of N are shown. This comparison shows that the use of cooperation leads to a light 
increase of the blocking probability, but to a considerable decrease of the denial probability. This is surely a 
beneficial effect, and a confirmation of the validity of the cooperation-based protocol. In fact, it is worth noting 
that a relatively high value of the blocking probability can be accepted by the user, who in a cooperative control 
session is aware that she/he cannot always be able to issue a request due to the need of limiting the system 
dynamics and to the existence of contention periods. The blocking probability can also be interpreted as the 
fraction of time in which the user is unable to submit a request. On the contrary, the denial probability should be 
as low as possible since the server reject of a client request is to be considered a very unpleasant event. 

Looking at Figure 4.2, interesting considerations about the scalability of COCOP can be done. Suppose that 
denial probability is considered acceptable when it is lower than 0,1. It can be noted that acceptable denial 
probabilities are achieved, having a number of clients equal to 2 or 5, for every value of MRIT used in the 
simulation. However, if the number of clients is 10, denial probabilities are not acceptable if the MRIT is lower 
than 20s. Simulations carried out with higher numbers of clients (not reported in Figure 4.2 for sake of 
readability) confirmed this behaviour. Thus COCOP is exploitable by a high number of clients only if the user 
activity is moderate or low (MRIT>5min). However, it is argued that this is not a strong limitation for two 
reasons: (i) applications for which COCOP was thought are tailored to small/medium groups of clients (<15); 
(ii) protocol simulations were carried out using very high/high request rates: in real applications the request rate 
is often far lower w.r.t. the values used in the performed experiments. 

In Figures 4.3 the server load and the network load are portrayed for COOP and NoCOOP. COOP exhibits a 
considerable decrease of the server load, because client cooperation limits the number of client requests, 
especially of requests that would be likely discarded. For what concerns the network load, there are no 
remarkable differences between the two protocols. 

 
 

 
Figure 4.2. Star topology analysis: blocking probability and denial probability of COOP and NOCOOP. 

 

 
Figure 4.3. Star topology analysis: server load and network load of COOP and NOCOOP. 



 
 
Chain.  
 
The chain topology (Figure 4.4) allows for exploring the case in which clients experiment different delays from 
the server, and therefore have different chances to control the server process. A linear chain can be formed either 
as a consequence of a tree degeneration or through a peer-to-peer approach based on an invitation protocol 
[CHW99] by which the client C1, already connected to the server, invites C2, which in turn invites C3 and so 
forth. 
 
 

C1 SC2CN

 
 

Figure 4.4. A chain topology. 
 

 
Figure 4.5 shows blocking and denial probabilities of COOP for chains with 2, 3, 5, 7 and 10 clients. Since 

clients are located at different distances from the server, results are reported w.r.t. the client ID, for a given value 
of the mean request interarrival time (90 s). 

 
 
 

 

 
Figure 4.5 Chain topology analysis: blocking and denial probability of Coop. 

 
Figure 4.6 shows the blocking and denial probabilities of COOP and NoCOOP for a chain of 5 clients, with 

given values of the Mean Request Interarrival Time (20s and 120s). It emerges that the major benefit of COOP, 
i.e., the denial probability decrease is even more consistent in a chain configuration than in a star configuration. 

However, Figure 4.6 also shows that fairness among clients is not guaranteed with COOP. In fact, clients 
located in the vicinity of the server (or near clients) have more chances to control the server than far clients, 
located at the chain tail. In long chains, near client requests can preclude far clients to control the server. This 
behaviour is general, even if it is shown for chains with 5 clients. Thus, the FAIRNESS version of COCOP was 
defined by introducing the following fairness mechanism:  

• a client, even if being in the READY state, has to wait an amount of time Tw to forward a user request to the 
multicast group. The value of Tw is different from client to client, and is computed depending on the location of 
the client with respect to the server and the chain tail. In particular, for the client Ci, Tw should be approximately 
equal to the time delay that a message issued by client CN (the farthest client) would take to reach client Ci. In 
order to exploit this approach, each client should know the delay from itself to the farthest client. This 
information can be easily computed at group formation time. Each time a client joins the group, it measures the 
delay to the node which it is connecting to, and propagates this information to the other clients, that can 
recursively calculate their delays to the farthest client. A similar approach is used to periodically update the 
values of Tw. 



 
 

 
 

Figure 4.6. Chain topology analysis: denial probability of COOP and NOCOOP for a chain with 5 clients. 
 
 

Figure 4.7 shows that FAIRNESS is able to assure a much higher degree of fairness with respect to COOP; 
results are shown for chains with different numbers of clients (2, 3, 5, 7, 10) and a Mean Request Interarrival 
Time equal to 90s. For short chains, near clients are still slightly favoured because they “get ready” (i.e. their 
automata get into the Ready state) earlier than far clients after a session state change. This effect is smoothed 
for long chains, in which “middle” clients are favoured because they are statistically able to sense other client 
requests earlier than clients located at the head or at the tail of the chain. 

For what concerns the server and the network load (see Figure 4.8), simulations show that, as in the star 
configuration, COOP, if compared with NoCOOP, lowers the server load, whereas little effect can be appreciated 
on the network load. Furthermore, FAIRNESS causes a slight increment of the server load w.r.t. COOP (but values 
are still lower if compared with NoCOOP), since far client requests are favoured. 
 

 
Figure 4.7. Chain topology analysis: denial probability with the FAIRNESS protocol. 

 



 
Figure 4.8. Chain topology analysis: network load and server load. 

 

4.2 Tree Topologies: Binary Trees and N-ary Trees 
 
Binary Trees.  

The binary tree topology allows the analysis of COCOP in the context of peer-to-peer networks whose nodes 
coincide with client and server processes. Such processes can be organized according to an application-level 
multicast (ALM) protocol based on delivery trees (such as mesh-first and tree-first ALM approaches [BB03]). In 
particular, binary trees are fully representative of multicast data delivery paths, as stated in [NB97]. 

Our analysis has taken into account all balanced and unbalanced binary tree topologies having a tree depth <= 3 
and up to 14 client nodes. We found that several results obtained with balanced trees are similar to those 
obtained with star and chain topologies:  

• the cooperation mechanism leads to a considerable decrease of denial probability 
• client behaviours are similar for clients belonging to the same level, while clients closer to the server 

perform slightly better than farther clients 
• the fairness approach is effective in limiting unfairness 
We will focus our attention to the FAIRNESS protocol variant, possibly in comparison to the other two 

variants. 
When analyzing performances of unbalanced binary trees, we found that the denial probabilities of a client 

depend not only on the client’s distance from the server, but also on the number of clients that belong to the 
same branch of the tree. Observing clients that have similar distances from the server, we saw that clients 
belonging to “heavier” branches (i.e. branches with a higher number of nodes) are favored with respect to clients 
located in lighter “branches”, as an effect of cooperation among clients. This can be seen in Figure 4.9, where an 
unbalanced tree with 5 nodes is considered, and the three protocol variants (COOP, NoCOOP and FAIRNESS) are 
compared. In particular, if we consider nodes belonging to the same level, we observe that nodes populating the 
heavier branch of the tree perform better (e.g., see node 1 vs. node 2, nodes 3-4 vs. node 5). The reason is that 
the cooperation among nodes belonging to heavier branches (e.g., 1, 3, 4) is more effective than the cooperation 
between nodes in lighter branches (2, 5). In other words, the competition appears to be more between the 
opposite branches of a tree than between the nodes belonging to the same branch. Figure 4.9 also shows that 
FAIRNESS smoothes the performance differences among nodes. 

An unbalancing of trees is also experimented when, in a topologically balanced structure, one or more nodes 
are passive. For example, starting form a balanced tree with 6 clients, if one of the nodes is switched from the 
active to the passive modality, the tree becomes unbalanced. Figure 4.10 shows the effect of this variation: a 
comparison is made between denial probabilities obtained when node 1 (grey in Figure 4.10) is active and when 
it is passive. Since, in the unbalanced tree, the number of active nodes is reduced, all nodes experiment lower 
denial probabilities with respect to the balanced tree. However, this effect is negligible for nodes belonging to 
the same branch as the passive node (nodes 3 and 4), while it is more relevant on the nodes of the opposite 
branch. Therefore, if one node becomes passive (either because the corresponding client process disconnects or 
the user does not originate any request), performances of neighbour nodes are slightly affected, while far nodes 
are remarkably favoured. This can be considered as a further proof of benefits deriving from the collaboration 
among active nodes belonging to the same tree branch. 



The performance comparison shown in Figure 4.10 is remarkable also because it represents a first step into 
the analysis of the dynamic behaviour of the system: in fact client 1 may switch form the active to the passive 
modality during a single multicast session, either because it disconnects from the multicast application (but 
continues to forward messages according to the multicast logic), or because the attached user, during a 
significant amount of time, does not generate requests. 
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Figure 4.9. Binary tree topology analysis: Pdenial for a unbalanced binary tree with N=5. 
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Figure 4.10. Binary tree topology analysis, Pdenial: comparison between a balanced binary tree with 

N=6 and a similar tree where one node is passive. 
 

Several simulations have been performed to investigate the effect of the presence of passive nodes between 
the server and the clients. In Figure 4.11, a tree with 5 active nodes is filled with a number of np passive nodes 
interposed between the server and nodes 3 and 4: if np is equal to 0, nodes 3 and 4 are directly connected to the 
server. Note that increasing the parameter np is equivalent to increasing the link delay between the server and 
nodes 3 and 4. From the performance graph comes out that a higher value of np causes higher denial 
probabilities for nodes 3 and 4, while a little positive effect is noted on nodes 2, 5 and 6, belonging to the 
opposite branch. Therefore, we can conclude that the right branch nodes are favored if the number of nodes in 
the left branch is reduced, but they are only slightly affected if that number is kept invariant and the left branch 
nodes are pushed away from the server. 
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Figure 4.11. A binary tree with a sub-chain composed of np passive nodes.  
Denial probabilities versus np. 

 
N-ary Trees.  

After examining performance of binary trees, in this section we conclude with the analysis of general n-ary trees, 
with both active and passive nodes. In particular, the impact of passive nodes on client performances, along with 
the effect of increasing the number of active nodes, was further investigated by attaching a variable number of 
active nodes to a fixed chain of passive nodes. As shown in Figure 4.12, we connected nl siblings nodes to a 
chain of three passive nodes. Performances obtained with nl = 2, 4, 6, and 8 are compared. In Figure 4.12, we 
only show the performances of two sibling nodes (i.e. nodes 3 and 4), since other sibling nodes are topologically 
identical and consequently their performances are similar. Again, increasing of the number of active nodes on 
one branch causes significant performance variations (i.e. increasing of denial probabilities) only on the opposite 
branch. 
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Figure 4.12. A binary tree with a sub-chain composed of np passive nodes.  
Denial probabilities versus np. 

 
Finally, in Figure 4.13 a more complex n-ary tree topology, featuring 12 active nodes distributed over 5 

depth levels, is shown; performances of the three protocol variants are compared. Once again, the benefits 
resulting from the cooperation mechanism are evident since, with NoCOOP, denial probabilities are always the 
highest. Also interesting is the comparison between COOP and FAIRNESS. With FAIRNESS, performance values 
of different nodes are all included in a small range, opposite to what happens with COOP: with COOP, for 
example, node 2 experiments denial probabilities that are significantly lower with respect to other nodes. 
Furthermore, Figure 4.13 shows that the use of FAIRNESS can sometimes invert performance differences among 
nodes. As an example, consider node 6 and 7: with COOP, node 6 experiments lower denial probabilities since it 
belongs to a more “populated” branch; however, with FAIRNESS, this advantage is inverted because node 6 must 
wait a considerable time (equals to the delay from node 6 to node 10, 11 or 12) before sending its requests, while 
node 7 has no nodes below itself, so it can send its requests immediately. Moreover, the blocking probability of 



the client nodes in the case of COOP, NOCOOP, and FAIRNESS, is stable and no remarkable differences can be 
appreciated. 
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Figure 4.13. Comparison of COOP, NoCOOP and FAIRNESS for an n-ary tree with 12 nodes and 5 levels. 

 
 
5. Conclusions 
 

Integrating data multicasting on-demand with efficient group-based control protocols can feature new kinds 
of media services which future Content Distribution Networks as well as spontaneous media peer-to-peer 
networks can incorporate and provide. This paper has presented the modelling and the analysis of an application-
level control protocol, COCOP, which is suited for the cooperative control of a server providing real-time, 
multicast services. Novelty rests in the integration of a competitive access mechanism with a cooperation-based 
policy, which basically avoids the adoption of higher-level policies (e.g. token-based) so increasing client/server 
interactivity. Protocol validation is performed on several basic and general topologies (star, chain, binary tree, n-
ary tree) by using an event-driven simulation framework. Simulations show that the cooperative approach 
improves performances by guaranteeing that a client has a higher probability to control the server. Moreover, 
unfairness among clients is mitigated by enabling a fairness mechanism. 
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Appendix A 
 
In the following we give a high-level definition of the request and reply messages and their exploitation for 
formalizing the set of rules which meets the requirements 1-3 described in §2.2. 
• [ ] KK C

i
C
i REQ;TRq = : the i-th request sent by the k-th client. It contains a timestamp Ti set to the request 

transmission time and a request content REQ including the request payload and related data. The requests are 
partially ordered whereas the total ordering is on a per-client basis: 

ji
C
j

C
i

C
j

C
i TTRqRq   Rq,Rq KKKK <⇔∀ f , where “f ” means “temporally precedes”. 

• [ ]REP;T;C;TRp
kCKii = : the i-th reply sent by the server. It contains a timestamp Ti set to the reply 

transmission time, the identifier CK of the client issued the related request, the timestamp TCk of this request, 
and the reply content REP possibly containing reply data. The session time is kept by the server so that the 
reply timestamp embodies the instant in which a session state change occurred. Server replies are totally 
ordered: jijiji TTRpRp   Rp,Rp <⇔∀ f  

• SST(IDC, TREQ, NREQ): the session state table managed by the server. For each session client it 
contains the identifier of the client IDC, the timestamp TREQ of the last request accepted by the server, and the 
number of requests NREQ accepted. 

• CST(ID, T): a session state table managed by the client. It contains for each client and for the server the 
identifier ID and the timestamp T (also called TLRR) of the last reply received if ID identifies the server, or the 
timestamp T (also called TACP) of the last request issued by the client ID and accepted by the server, if ID 
identifies a client. 

• Requirements 1 (Source-ordering of Requests): given an incoming request msg KC
iRq , if Ti>TREQ it is 

passed to the server state machine (ssm) for processing and the timestamp TREQ related to the client CK in the 
table SST is updated to Ti; otherwise it is discarded. 

• Requirement 2 (Source-ordering of Replies): given an incoming reply msg jRp  if Ti>TLRR the TLRR is 

updated to Ti, the timestamp TACP of the client Ck in the table CST is update to TCk, and finally the message is 
passed to the client state machine (csm) for processing; otherwise it is discarded. 

• Requirement 3 (Causal ordering of Request/Reply pairs): given an incoming remote request msg KC
iRq  if 

Ti>TACP  the request is passed to csm; otherwise it is discarded.  
 
The filters associated to the server and the clients defined by means of this set of rules are presented using a 
script language in Figures A.1-2. In particular the rule applied by the server filter for each incoming request (msg 



KC
iRq ) meets the requirement 1, whereas the rules applied by the client for each incoming remote request (msg 
KC

iRq ) and reply (msg jRp ) meet the requirements 2-3: 
 

void serverFilter(Message msg){ 
 if (timestamp(msg) > SST[identifier(msg)].getTimestamp()){ 
  SST[identifier(msg)].setTimestamp(timestamp(msg)); 
  ssm.handler(msg); 
 } 
 else discard(msg); 
} 

 
Figure A.1. Script of the Server Filter. 

 
void clientFilter(Message msg){ 
 if (identifier(msg)==ID_SERVER) { 
  if (timestamp(msg) > CST[ID_SERVER].getTimestamp()){ 
   SST[ID_SERVER]=timestamp(msg); 
   SST[clientIdentifier(msg)].setTimestamp(clientTimestamp(msg)); 
   csm.handler(msg); 
  }else discard(msg); 
 }else {  
   if (timestamp(msg) > CST[identifier(msg)].getTimestamp())  
    csm.handler(msg);  
   else discard(msg);} 
} 

 
Figure A.2. Script of the Client  Filter. 


