
Modelling the Future

with Event Choice DATALOG

Antonella Guzzo1 and Domenico Saccà1,2

1 DEIS Dept, University of Calabria, 87036 Rende, Italy
{guzzo,sacca}@deis.unical.it

2 ICAR-CNR, 87036 Rende, Italy sacca@isi.cs.cnr.it

Abstract. This paper presents a rule-based declarative database lan-
guage which extends stratified DATALOG to express events and nondeter-
ministic state transitions, by using various types of choice to model un-
certainty in dynamic rules. The proposed language, called Event Choice
DATALOG (DATALOGev! for short), is particularly suitable to formulate queries
on the evolution of a knowledge base on the basis of a given sequence
of events that are envisioned to occur in the future. The semantics of
a DATALOGev! program is given by means of rule rewriting which trans-
forms it into a DATALOG program with choice and a particular form of
XY-stratification, called XYZ-stratification, that uses a pair of temporal
arguments to handle evolution.

1 Introduction

DATALOG is a rule-based declarative database language that is amenable to very
efficient implementation as demonstrated by a number of prototypes of deductive
database systems [10, 11, 20, 28]. Many proposals have been issued to extend
DATALOG in order to support nonmonotonic queries, mainly by means of various
forms of negation in the bodies of the rules. The first solution was stratified

negation [4, 9, 33], which has a simple, intuitive semantics leading to efficient
implementation. Unfortunately, this type of negation has a reduced expressive
power for it can only express a proper subset of fixpoint queries.

The next step toward greater expressive power was to remove the condition
that there is no recursion through negation. In this framework, a dramatic leap
in expressive power is provided by the concept of stable model [13] but this
gain is not without complications. Indeed the usage of unrestricted negation in
programs is often neither simple nor intuitive, and, for example, might lead to
writing programs that have no total stable models.

As argued in [18], advances in model-theoretic semantics for nonmonotonic
DATALOG should be achieved without surrendering the naturalness and efficiency
of stratified negation. A solution is a language where the usage of stable model
semantics is disciplined to refrain from abstruse forms of unstratified negation
which may lead to undefinedness or unnecessary computational complexity. The
core of a desirable database language should be stratified DATALOG, that is ex-
tended with only predefined types of non-stratified negation, hardwired into
ad-hoc constructs.

A first construct for capturing a controlled form of unstratified negation
was the choice, whose semantics was defined in terms of stable models in [30]
by exploiting the nondeterminism implicit in the notion of such models. The
combination of choice with extrema aggregates is investigated in [19] and many
other facets of logic programming with choice are detailed in [15]. Recently, the
problem of extending choice DATALOG to capture various complexity classes of
database boolean queries and to express search and optimization queries has
been addressed respectively in [18] and in [17].

Another interesting direction in extending the expressive power of DATALOG
by a disciplined usage of unstratified negation is represented by XY-stratification
which was first introduced in [37] and has later been used to model updated and
active rules [35, 36]. The recursive predicates of an XY-stratified program have
a temporal argument which is used to enforce local stratification, a weak form
of stratification introduced in [27].

In this paper we present a new language, called Event Choice DATALOG

(DATALOGev! for short), which combines the capability of choice to express non-
determinism with the power of XY-stratification to model evolution — actually
we introduce an extension of XY-stratification, called XYZ-stratification, which
uses a second temporal argument to keep track of sub-units of time for a finer
control of the evolution. Indeed, when an event occurs in a DATALOGev! program, a
number of actions may be triggered which are almost instantaneous and must be
completed before the occurrence of the next event — the second time argument
is used to keep track of the execution of such actions between events.

DATALOGev! is particularly suitable to express events and dynamic rules for
modelling the evolution of a initial knowledge base, expressed with the declara-
tive style of stratified DATALOG, and to make queries on possible future states of
the knowledge base as results of events that are envisioned to happen.

Many other languages for modelling events and transactions exist, e.g., trans-
action logic [5, 6], event calculus [23, 22], dynamic logic programming [2], LUPS
[3], LOCO with events [29]. The novelty of our proposal is the attempt to model
the evolution of knowledge states, triggered by events, using nondeterministic
transition rules, convinced as we are that a deterministic approach is not appro-
priate in modelling the future. Probably it is better to draw various alternative
trajectories rather than insisting in enforcing one, which often remains arbitrary,
no matter the quantity of optimization is spent to justify it.

DATALOGev! supports reasoning about events and actions as it happens for
logic-based languages for planning (see [14, 31] for surveys on this topic which
has recently received a renewed great deal of interest). Indeed our language has
partly been influenced by recent declarative planning languages such as K [12]
and C action language [16]. We however stress that, at least at this stage, our lan-
guage does not support planning, i.e., finding a sequence of actions which lead
from an initial state to some success state satisfying a given goal. DATALOGev!

rather enables a different form of reasoning on events, prediction, for which the
sequence of future events is given together with the goal: since the same event
may actually occur in different forms because of the nondeterministic nature of

transition rules, the problem consists in verifying whether there exists a par-
ticular happening which eventually satisfies the given goal and in returning a
possible future state satisfying the goal.

The paper is organized as follows. In Section 2 we present our extensions of
choice and of XY-stratification and in Section 3 we illustrate the syntax and the
semantics of DATALOGev!, which is given by rewriting the rules to eventually pro-
duce an XYZ-stratified program with choice. In Section 4 we introduce queries,
discuss their complexity and include meaningful examples. Finally we draw the
conclusion and discuss further lines of research in Section 5.

2 Extended Choice and XYZ-Stratification

We assume that the reader is familiar with basic notions of logic programming
and DATALOG [1, 24, 32].

A logic program P is a finite set of rules r of the form H(r) ← B(r), where
H(r) is an atom (head of the rule) and B(r) is a conjunction of literals (body of
the rule). A rule with empty body is called a fact. The ground instantiation of
P is denoted by ground(P); the Herbrand universe and the Herbrand base of P

are denoted by UP and BP , respectively.
Let an interpretation I ⊆ BP be given — with a little abuse of notation

we sometimes see I as a set of facts. Given a predicate symbol r in PD, I(r)
denotes the relation {t : r(t) ∈ I}. Moreover, pos(P, I) denotes the positive logic
program that is obtained from ground(P) by (i) removing all rules r such that
there exists a negative literal ¬A in B(r) and A is in I , and (ii) by removing all
negative literals from the remaining rules. Finally, I is a (total) stable model [13] if
I = T∞

pos(P,I)(∅), that is the least fixpoint of the classical immediate consequence

transformation for the positive program pos(P, I).
Given a logic program P and two predicate symbols p and q, we write p→ q

if there exists a rule where q occurs in the head and there is a predicate in the
body, say s, such that either p = s or p → s. P is stratified if for each p and
q, if q → p holds in it then p does not occur negated in the body of any rule
whose head predicate symbol is q, i.e. there is no recursion through negation.
Stratified programs have a unique stable model which coincides with the stratified

model, obtained by partitioning the program into an ordered number of suitable
subprograms (’strata’) and computing the fixpoints of every stratum in their
order [4].

A DATALOG¬ program is a logic program with negation in the rule bodies but
without functions symbols. Predicate symbols can be either extensional (i.e.,
defined by the facts of a database — EDB predicate symbols) or intensional (i.e.,
defined by the rules of the program — IDB predicate symbols). A DATALOG¬

program P has associated a relational database scheme DBP , which consists of
all EDB predicate symbols of P . Given a database D on DBP , the tuples of D

are seen as facts added to P ; so P on D yields the following logic program PD =
P ∪ {q(t). : q ∈ DBP ∧ t ∈ D(q)}. The class of all DATALOG¬ programs is simply
called DATALOG¬; the subclass of all stratified programs is called DATALOG¬s.

The complexity of computing a stable model of PD is measured according
to the data complexity approach of [8, 34] for which the program is assumed
to be constant while the database is variable. It is well known that computing
a stable model of a DATALOG¬s program P on a database D can be done in
time polynomial on the size of D whereas it requires exponential time (unless
P = NP) in case P is not stratified. Actually, in the latter case, deciding whether
there exists a stable model or not is NP-complete[25].

A disciplined form of unstratified negation is the choice construct, which
is used to enforce functional dependency (FDs) constraints on rules of a logic
program and to introduce a form of nondeterminism. The formal semantics of
the choice can be given in terms of stable model semantics as shown next [30].

Let a choice rule r with a choice construct3 be given:

r : A← B(Z), choice((X), (Y)).

where, B(Z) denotes the conjunction of all the literals in the body of r that are
not choice constructs, Z is the list of all variables occurring in B, and X, Y

denote lists of variables such that X ∩ Y = ∅ and X, Y ⊆ Z — note that X can
be empty and in this case, it is denoted by “()”. The construct choice((X), (Y))
prescribes that the set of all consequences derived from r, say R, must respect the
FD X → Y , thus if two consequences happen to have the same values for X but
different ones for Y then only one consequence, nondeterministically selected,
will be eventually derived.

The formal semantics of choice is given in terms of stable models by replacing
the above choice rule with the following rules:

A← B(Z), chosenr(W).
chosenr(W)← B(Z), ¬diffChoicer(W).
diffChoicer(W)← chosenr(W

′), Y 6= Y ′.

where W = X∪Y , W ′ is the list of variables obtained from W by replacing each
V 6∈ X with a new variable V (e.g. by priming those variables), and Y 6= Y ′ is
true if V 6= V ′, for some variable V ∈ Y and its primed counterpart V ′ ∈ Y ′.

Next we introduce a simple variation of choice, denoted by choiceAny(),
which nondeterministically selects one consequence. Thus this construct is a
shorthand of choice((), (Z)), where Z is the list of all variables occurring in the
rule body, according to the meaning of the FD ∅ → Z.

Two powerful variations of the choice are described in [19]: choiceLeast((X), C)
and choiceMost((X), C), where C is a single variable defined on an ordered do-
main, which select respectively the minimal and the maximal value for C, while
enforcing the FD X → C. A rule with choiceLeast, say

r : a(Y)← B(Z), choiceLeast((X), C).

3 In general a choice rule may contain more than one choice construct in the body but
for this paper one will be enough.

is rewritten as

a′(Y, X, C)← B(Z).
nonMin(X, C)← a′(Y, X, C), a′(Y ′, X, C ′), C ′ < C.

a(Y)← a′(Y, X, C),¬nonMin(X, C).

A straightforward but useful variation of choiceLeast is choiceMin(C) which
selects the consequences with the minimal value for C and is a shorthand of
choiceLeast((W), C), where W is the list of all variables in the body except C.
In a similar way we define choiceMost and choiceMax.

We point out that choiceLeast, choiceMost and their variations are indeed
deterministic.

A DATALOG¬ program P with the above choice constructs is called an extended

choice program. We say that P is stratified modulo choice if, by considering choice
atoms as extensional atoms, the program results stratified. We denote with sv(P)
(standard version of P) the program obtained by rewriting the choice constructs
as above. Given a database D, if P is stratified modulo choice and there is
no recursion through the predicates choiceLeast, choiceMost, choiceMin and
choiceMax, then the stable models of sv(P)D are in general multiple but the
existence of at least one as well as its computation in polynomial time is guar-
anteed.

Another approach in disciplining unstratified negation is to add a distin-
guished temporal argument to recursive predicate symbols and to allow only
two types of recursive rules:

1. X-rule when the temporal argument of the head predicate is the same vari-
able as in all temporal arguments of the recursive literals in the body which
only occur positive;

2. Y-rule when the head temporal argument is T +1 and all temporal arguments
of the literals in the body are equal to T , where T is a variable — in this
case negation is allowed.

This extension, introduced in [37], is called XY-Stratification and has been
used to model updated and active rules [35, 36]. XY-stratified programs are in-
deed locally stratified [27] and, therefore, there exists a unique stable model
although it can be infinite because of the temporal argument. Nevertheless, for
practical applications it is possible to include restrictions into a XY-stratified
program in order to guarantee both the finiteness of the stable model and its
computation in polynomial time.

We now propose a simple extension of XY-stratification that will turn to be
useful for implementing the language we shall present in the next section. We
add a second temporal argument which keeps track of sub-units of time, thus the
temporal dimension is handled by a pair of temporal arguments (T1, T2) whose
ordering is lexicographic — thus (T1, T2) ≤ (T ′

1, T
′

2) if (i) T1 < T ′

1 or (ii) T1 = T ′

1

and T2 ≤ T ′

2.
A program is XYZ-stratified4 if there exists three types of recursive rules:

4 The “Z” cames from both the presence of a third rule and the initial of Carlo, the
father of XY-stratification.

1. X-rule if all temporal argument pairs in the rule is the same pair of variables;
2. Y-rule when the head temporal argument pair is (T1, T2+1) and all temporal

argument pairs of the literals in the body are equal to (T1, T2);
3. Z-rule when the head temporal argument pair is (T1 + 1, 0) and every tem-

poral argument pair of the literals in the body is equal to (T1, T), where T

is any variable or constant.

It is easy to see that also XYZ-stratified are locally stratified and have a
unique stable model. Also in this case this model can be infinite and its fixpoint
computation could even be transfinite.

In the next section we shall present a language whose semantics is based
on XYZ-stratification and on extended choices for which both existence and
finiteness of stable models is guaranteed and one of them can be computed in
polynomial time. We note that the combination of XY-stratification and choice
has been first used in [7] to model various planning problems.

3 DATALOG
ev!: Event Choice DATALOG

In this section we present Event Choice DATALOG, called DATALOGev!. In addition
to classical EDB and IDB DATALOG predicate symbols, the language includes:

– dynamic (DDB) predicate symbols which are used for facts to be asserted
upon the occurrences of events;

– event predicate symbols having an additional argument which provides the
time dimension — an event predicate atom has the format p(X)@(T), where
X is a list of arguments and T is the time argument stating that the event
p(X)@(T) occurs at the time T with the properties described in X .

A DATALOGev! program comprises: (i) the static knowledge that is a DATALOG¬s

program with IDB predicate symbols in the rule heads and DB (i.e., EDB,
IDB and DDB) predicates symbols in the bodies, and (ii) a number of event

definitions. An event definition consists of the event declaration within brackets
and of one or more transition rules. It has the following format:

[e(X)@(T)] t1 · · · tk

where e(X)@(T) is the event which enables the transition rules ti (1 ≤ i ≤ k,
k > 0) as soon as it occurs. A transition rule is of the form:

E1& · · ·&En& A1& · · ·&Am ← B ⊗ C1 ⊗ · · · ⊗ Cs.

where

1. Ei (1 ≤ i ≤ n, n ≥ 0) is an event atom that is triggered if the body of
the transition rule is true; Ei has the format g(X)++, where g is an event
symbol — informally, the event g(X) will occur at the time T + δ where
δ is a sub-unit of time that is used to enable micro transitions for a finer

tuning of the program evolution5; we stress that sub-units of time cannot be
directly handled but only incremented using the above syntax;

2. Ai (1 ≤ i ≤ m, m > 0) is a DDB atom that is made true when the rule body
is satisfied — we require that at least one DDB atom must be present in the
transition rule head;

3. B is a conjunction of DB literals (negation is allowed in the body of the
transition rule);

4. Ci (1 ≤ i ≤ s, s ≥ 0) is an extended choice atom (i.e., choice, choiceAny,
choiceLeast, choiceMin, choiceMost, choiceMax); the choices are performed
in the order they appears in the rule (i.e., as it often happens during an evo-
lution, ordering is indeed relevant).

To simplify the notation, we use some syntactic sugar for writing negative
literals in the rule bodies: ¬a(X), stands for ¬a′(Y), where a′ is defined by the
new rule:

a′(Y)← a(X).

where Y is the list of all non-anonymous variables occurring in X .

Example 1. Subgraphs. We are given two EDB predicate symbols arc and
node, defined by a number of suitable facts, which encode an undirected graph,
say G, with weights on the arcs. There are two event predicate symbols: startSub
and contSub, which allow to construct subgraphs of G which are indeed rooted
trees. Each subgraph is numbered, say with an integer k; this number, the root
node, say r, and each subgraph arc, say (i, j), are stored in DDB atoms as
subGraph(k), root(k, r) and subArc(k, i, j), respectively.

The static knowledge defines a number of properties for the subgraphs which
will be constructed by means of ad-hoc events:

– given a subgraph SG numbered with L, reached(L, X, C) states that there is
a path from the root of SG to the node X in G consisting only of arcs in SG

and the total sum of their weights is C; for every reached node X , leaf(L, X)
is true if no arc in SG exits from it:

reached(L, X, 0)← root(L, X).
reached(L, X, C)← reached(L, Y, C′), subArc(L, Y, X), arc(Y, X, C′′), C = C′ + C′′.

leaf(L, X) ← reached(L, X,),¬subArc(L, X,).

– if some node in G is not reached from the root of SG then noAllReached(L)
is true; if some reached node X has two incoming (resp., outgoing) arcs in
SG then twoIn(L) (resp., twoOut(L)) is true:

noAllReached(L)← subGraph(L), node(X),¬reached(L, X,).
twoIn(L) ← subArc(L, Y, X), subArc(L, Y′, X), Y 6= Y′.

twoOut(L) ← subArc(L, X, Y), subArc(L, X, Y′), Y 6= Y′.

5 Note that, in contrast with the C++ jargon, g(X)++ triggered at the time T is not
equal to g(X)@(T + 1)

– SG is declared a spanning tree (i.e., spanTree(L) is true) if all nodes in G

are reached from its root and no two of its arcs enter into the same node; in
addition, if no two of its arcs exit from the same node, then SG is declared
a Hamiltonian path (i.e., hPath(L) is true); furthermore, if the Hamiltonian
path can be extended to form a circuit in the graph G, hCircuit(L, C) is
true and C is the sum of all weights in the circuit:

spanTree(L) ← subGraph(L),¬noAllReached(L),¬twoIn(L).
hPath(L) ← spanTree(L),¬twoOut(L).
hCircuit(L, C)← hPath(L), root(L, X), leaf(L, Y), reached(L, Y,C′),

arc(Y, X, C′′), C = C′ + C′′.

– a subgraph S′

G is declared distinct from SG if there exists at least one arc
which is not shared by them:

distinct(L, L′)← subArc(L, X, Y),¬subArc(L′, X, Y).
distinct(L, L′)← subArc(L′, X, Y),¬subArc(L, X, Y).

The dynamic part of the program consists of two events:

– the first event startSub begins the construction of a subgraph numbered by
L and of type K, provided that no other subgraph with the same number
has been already constructed; any node in the graph is chosen as root and
the event contSub is triggered in order to select the arcs to be included in
the subgraph:

[startSub(L, K)@(T)]
contSub(L, K)++&
subGraph(L) & root(L, X)← ¬subGraph(L), node(X) ⊗ choiceAny().

– the event contSub continues the construction of the subgraph according to
the properties associated to the type K:
1. K = st: then the subgraph will be constructed with arcs which are not

included into previous subgraphs and will be a spanning tree if the graph
remains connected also without such arcs;

2. K = mst: then, if the graph is connected, the subgraph will be a min-
imum spanning tree — arcs included into previous subgraphs can be
reused in this case;

3. K = hp: then the subgraph will be a path, hopefully Hamiltonian —
also in this case there is no restriction on which arcs can be used;

[contSub(L, K)@(T)]
contSub(L, K)++& subArc(L, X, Y)← K = st, reached(L, X,),

arc(X, Y,), ¬subArc(, X, Y),
¬reached(L, Y,) ⊗ choice((Y), (X)).

contSub(L, K)++& subArc(L, X, Y)← K = mst, reached(L, X,),
arc(X, Y, C), ¬reached(L, Y,)
⊗ choiceMin(C) ⊗ choiceAny().

contSub(L, K)++& subArc(L, X, Y)← K = hp, reached(L, X,), arc(X, Y,),
¬reached(L, Y,), ¬subArc(L, X,)
⊗ choiceAny().

ut

Given a DATALOGev! program P and a database D, the standard version

sv(PD) of PD is the choice XYZ-stratified program obtained from PD by ap-
plying the following rewriting:

1. Replace each rule in the static definition (including EDB facts), say

p(X)← q1(Y1), . . . , qn(Yn).

where n ≥ 0, with the rule

p′(X, T, T1)← q′1(Y1, T, T1), . . . , q′n(Yn, T, T1), time(T, T1).

where time is an ad-hoc predicate symbol which keeps track of all the times
when events occur, so that the static rule may continue to hold in the actual
future — observe that the second argument of time corresponds to the sub-
unit of time;

2. for each DDB predicate symbol p, say with arity n, add the following rules:

p′(X, T, T1 + 1)← p(X, T, T1), time(T, T1+ 1).
p′(X, T + 1, 0)← p(X, T, T1), time(T ′, 0), T ′ > T.

where X is a list of n distinct variables, thus dynamic atoms that are asserted
at a certain time will hold in the future by inertia — note that, to avoid
infinite models, we only consider times of the future that will actually occur;

3. add the fact time(0, 0). in order to enable the initial state of the program;
4. for each event definition, say with declaration [e(Z)@(T)], and for each tran-

sition rule, say:

g1(X1)++& · · ·& gk(Xk)++&
p1(W1) & · · · & pn(Wn) ← B(Y) ⊗ C1 ⊗ · · · ⊗ Cm.

where Y is the list of all variables occurring in the conjunction B, we proceed
as follows:
(a) we rewrite B(Y) as B′(Y, T, T1) by adding the pair of time arguments

to each literal in B;
(b) for each i, 1 ≤ i ≤ m, we replace Ci with C ′

i in the following way: if Ci

equals choice((U), (V)), choiceLeast((U), V) or choiceMost((U), V), we
simply replace (U) with (U, T, T1); furthermore, choiceAny() is rewritten
as choice((T, T1), (Y)); finally choiceMin(V) and choiceMax(V), are
rewritten respectively as choiceLeast((Y ′, T, T1), V) and choiceMost((Y ′,

T, T1), V), where Y ′ = Y − {V };
(c) we add the following m + 1 rules:

b0(Y, T, T1)← B′(Y, T, T1), e(Z, T, T1).
bi(Y, T, T1)← bi−1(Y, T, T1), C ′

i . (1 ≤ i ≤ m)

which enforce ordering of the m choices by means of the a suitable strat-
ification;

(d) we include the following n rules:

p′i(Wi, T, T1 + 1)← bm(Y, T, T1). (1 ≤ i ≤ n)

for registering the consequences of the dynamic rule at one sub-unit
of time after the occurrence of the event — thus there is a ”small”
delay from the occurrence of the event e to the derivation of possible
consequences;

(e) we use the following n rules to keep track of all times when the conse-
quences of the event have been occurred — note that a time of happening
an event is registered only if at least one consequence has been derived:

time(T, T1 + 1)← p′i(Wi, T, T1 + 1),¬p′i(Wi, T, T1) (1 ≤ i ≤ n)

(f) the triggers will be possibly activated using the following rules:

gi(Xi, T, T1 + 1)← bm(Y, T, T1), time(T, T1 + 1) (1 ≤ i ≤ k)

— note that a trigger cannot run forever because of the constraint that
it can be activated only if at least a consequence of the dynamic rule has
been derived.

An (evolution) E on a DATALOGev! program P is a list of ground events,
ordered by the temporal argument, i.e., E is a sequence of events that are envi-
sioned to happen. Let sv(E) denote the set of facts e(x, t, 0)., one for each event
e(x)@(t) in E.

Example 2. Subgraph evolution. A possible evolution for the program in Ex-
ample 1 is:

[startSub(1, hp)@(0), startSub(2, st)@(1), startSub(3, mst)@(2),
startSub(4, hp)@(2)]

The construction of a path will be initiated at the time 0 and will be com-
pleted before the construction of a spanning tree at the time 1 — observe that
the spanning tree will not use the arcs of the path. At the time 2, after complet-
ing the spanning tree (or subtree if the is no way to cover the graph using the
available arcs), two subgraphs are constructed in parallel: a minimal spanning
tree of the graph and another path which is not necessarily different from the
first one as, in this case, we may reuse the arcs included in previous subgraphs.
We pinpoint that most likely the two paths will not be Hamiltonian although
we aim at getting such a property. ut

Theorem 1. Let P be a DATALOGev! program and E an evolution for it. Then

for each database D on DBP , sv(PD) ∪ sv(E) admits at least one stable model,

every stable model is finite and computing a stable model of sv(PD) can be done

in time polynomial on the size of D. ut

Let us now introduce some notation that will used in the next section, where
we shall show how to query a DATALOGev! program by predicting its possible
evolutions on the basis of a list of envisioned future events. Given a stable model
M of sv(PD)∪ sv(E), for each time t, maxsubT (M, t) is a partial function which
returns the maximal value t′ such that time(t, t′) is in M . Moreover, given a time
t, Mt denotes the subset of M whose atoms have temporal arguments (t1, t2)
for which (t1, t2) < (t + 1, 0).

4 DATALOG
ev!Queries

A query on a DATALOGev! program P is of the form 〈E, G, R〉 where

– E is an evolution — say that tEmax is the last time of the events in E;

– G (goal) is a list of query conditions of the form [g1@(t1), . . . , gn@(tn)] (n ≥
0), where 0 ≤ t1 < t2 < . . . < tn ≤ tEmax; each gi can be:

• ∃(A), where A is a conjunction of ground DB literals;

• ∀(A), where A is a (possibly negated) conjunction of ground DB literals;
• opt(X : A), where opt = min or max, X is a variable and A is a con-

junction of EDB, IDB and DDB literals containing no variables except
X ;

– R (result) is a list [r1(X1)@(t1), . . . , rm(Xm)@(tm)], m > 0 and t1 ≤ . . . ≤
tm ≤ tEmax, where ri is any IDB or DDB predicate symbol, say with arity ki,
and Xm is a list of ki terms.

Given a query Q = 〈H, G, R〉 on a DATALOGev! program P and a database D

on DBP , a stable model M of sv(PD) ∪ sv(E) is Q-filtered if for each gi@(ti) in
the goal G:

1. if gi = ∃(A), then A′(ti, maxsubT (M, ti)) must be true in M , where A′ is
obtained from the conjunction A by adding the temporal ground arguments
(ti, maxsubT (M, ti)) to each literal in it;

2. if gi = ∀(A), then A′(ti, maxsubT (N, ti)) must be true in all stable models
N of sv(PD) ∪ sv(E) such that Mti

= Nti
— informally, A must be true at

the time (ti, maxsubT (ti)) for all possible choices which can be made after
the time (ti−1 +1, 0) or the time (0,0) if i = 1, even though only one of such
choices will be retained;

3. if gi = min(X : A), then (i) A′(ti, maxsubT (M, ti)) is true in M for some
value of X and (ii) for each stable model N of sv(PD) ∪ sv(E) for which
Mti

= Nti
and A′(ti, maxsubT (N, ti)) is true in N for some value of X ,

minX(M) ≤ minX(N), where minX(M) is the minimal value which makes
true A′ in M and minX(N) is defined accordingly — informally, all choices
from (ti−1 +1, 0) on will be tried in order to select the ones which minimizes
X at the time (ti, maxsubT (ti));

4. the case gi = max(X : A) is defined as in the previous point by replacing
minX with maxX .

Given a query Q = 〈E, G, R〉 on a DATALOGev! program P , where R =
[r1@(t1), . . . , rm@(tm)], and a database D on DBP , an (nondeterministic) an-

swer of Q on D, denoted by Q(D), is either:

1. the list of relations [r(X1)1, . . . , r(Xi)m] such that ri = {xi|r′i(xi, ti, maxsubT

(M, ti)) ∈M and xi unifies with Xi}, where r′ is the temporal version of the
predicate symbol r and M is a Q-filtered stable model of sv(PD) ∪ sv(E),

2. or (ii) the empty list if there is no Q-filtered stable model.

We are now ready to present the results about the complexity of DATALOGev!

queries. The reader can refer to [21, 26] for excellent sources of information on
basic concepts of complexity. We point out that a query Q is a multivalued
function whose domain is the family of all possible databases. Given a database
D, the complexity of computing an answer of Q(D) is measured with respect to
the size of D.

Theorem 2. Let Q = 〈E, G, R〉 be a query on a DATALOGev! program P . Then

for each database D on DBP ,

1. computing an answer of Q(D) is in FPNP , i.e., it is computable in poly-

nomial time on the size of D by a deterministic Turing machine that can

query an oracle in NP a polynomial number of times;

2. if G is the empty list, then computing an answer of Q(D) is in FP, i.e., it

can be done in polynomial time on the size of D. ut

Example 3. Subgraph Queries. Consider the program in Example 1. The
query 〈 [startSub(1, st)@(0)], [], [subArc(1, X, Y)@(0)] 〉 on a connected graph
asks to return a spanning tree. Obviously a solution is found in time polynomial
on the size of the graph.

Another polynomial query is 〈 [startSub(1, mst)@(0), startSub(2, st)@(1)],
[], subArc(1, X, Y)@(0), subArc(2, X, Y)@(1)] 〉 which asks to return first a mini-
mum spanning tree and then, if the remaining arcs keep the graph connected,
a spanning tree. By replacing the goal [] with [∃¬noAllReached(2)@(1)], the
query will ask to select the minimum spanning tree which does not disconnect
the graph, if one exists — note that the computation may now have an expo-
nential cost.

Next we present a rather elaborated query which cannot be answered in
polynomial time unless P = NP . We want to find an optimal travelling salesman
path (TSP), provided that there is no other TSP with the same cost (i.e., there
exactly one optimal TSP). The query

〈 [startHP(1)@(0), startHP(2)@(1)], [min(CT : hCircuit(1, CT))@(0),
∀¬(hCircuit(2, CT)∧ hCircuit(1, CT)∧ distinct(1, 2))@(1)],

[subArc(1, X, Y, C)@(0)] 〉

returns the optimal TSP provided that it is unique. ut

The next example shows that DATALOGev! queries can be effectively used to
implements greedy algorithms. To simplify the writing we shall use stratified ag-
gregates whose semantics can be easily included into our formal ground. We also
introduce an additional construct for disciplining unstratified negation, denoted
by select((X), (D)), where D is a conjunction of literals, which selects for each
group of consequences with the same values for X , those which satisfy D if any
or, otherwise, all of them6. Given a rule with select, say:

r : a(Y)← B(Z), select((X), (D)).

we perform the following rewriting:

satD(X)← B(Z), D.

a(Y)← B(Z), D.

a(Y)← B(Z), ¬satD(X).

We point out that the construct select((X), (D)) into a transition rule must
first be rewritten as select((X, T, T1), (D)).

A simple variation of select is possibly(D) which is a shorthand of select((Y),
(D)), where Y is the list of all variables in the body. In the case of a transition
rule possibly(F) is rewritten as select((Y, T, T1), (D)).

Obviously both select and possibly perform deterministic selections.

Example 4. Team building.

We are given projects, employees and skills represented by the following EDB
facts:

project(P#, Budget, Duration, NofSkills, TeamSize).
employee(E#, Skill#, Salary, Sex).
skill(Skill#, Description).

For a given project, we want to set up a team of employees such that:

1. all skills, except at most two, be present in the group — this property is
modelled by the following static rule:

skilled(P)← project(P, , , Nskill,), nSkills(P, N), N≥ Nskill− 2.

where nSkills is an IDB predicate symbol which counts the number of skills
present in the project team;

2. the sum of the salaries of the employees working in the same team may not
exceed the budget and must be minimum — this condition is expressed by
the static rule:

budgeted(P, TSal)← project(P, Budget, , ,), TSal =
sum{Sal : employee(E, , Sal,) ∧ inTeam(P, E)},
TSal ≤ Budget.

where inTeam is a DDB predicate symbol which stores the employees en-
rolled in a project;

6 Note that “all” is not a typo here - if the condition D is not satisfied we want to
accept all consequences rather than reject them

3. at least the 50% of the employees in the group be women — the correspond-
ing static rule is:

pairOpportunity(P)← project(P, , , , Nteam), N =
count{E : inTeam(P, E)∧ employee(E, , , female)},
N ≥ Nteam ∗ 0, 5.

The static knowledge is completed by:

1. the rule for counting the number of skills available in a project team:

nSkills(P, N)← project(P, , , ,), N =
count{Skill : employee(E, Skill, ,) ∧ inTeam(P, E)}.

2. a rule for checking whether the project is staffed or not:

staffed(P)← project(P, , , , Nteam), Nteam = count{E : inTeam(P, E)}}.

3. a rule stating that an employee E, enrolled at the time TP in a project with
duration D, is still engaged with that project at the time T if T ≤ TP + D:

engaged(E, T)← inTeam(P, E), projectStart(P, TP), project(P, , D, ,),
T ≤ TP + D.

The dynamic definition is:

[startProject(P)@(T)]
staffing(P)++ & projectStart(P, T)← ¬projectStart(P,).

[staffing(P)@(T)]
staffing(P)++ & inTeam(P, E) ← employee(E, , ,),¬engaged(E, TP),

projectStart(P, TP),¬staffed(P),
⊗ choiceAny().

The trigger staffing includes any employee into the project team provided
that it is not already engaged with another project and the team is not yet fully
staffed. The query

〈 [startProject(p1)@(1), startProject(p2)@(4)],
[min(TSal : skilled(p1)∧ bugdeted(p1, TSal)∧ pairOpportunity(p1))@(1),
min(TSal : skilled(p2)∧ bugdeted(p2, TSal)∧ pairOpportunity(p2))@(4)]

[inTeam(p1, E)@(1), inTeam(p2,E)@(4)] 〉

returns the team compositions for the project p1 and p2 which satisfy the above
conditions on budget, skills and pair opportunity and minimize the total costs
of team member salaries as well.

As computing an answer could be expensive or even unfeasible, it may be con-
venient to release some constraints using a greedy approach. A possible solution
is shown next.

First of all we add a static rule checking whether the skill of the employee E

is already present in the team project:

existsSameSkill(P, E)← employee(E, Skill, ,), inTeam(P, E1),
employee(E1, Skill, ,).

We replace the definition of the event staffing with:

[staffing(P)@(T)]
staffing(P)++ &
inTeam(P, E) ← employee(E, , Sal, Sex),¬staffed(P),

projectStart(P, TP),¬engaged(E, TP)
⊗ possibly(¬skilled(P)∧ ¬existsSameSkill(P, E))
⊗ possibly(Sex = female∧ ¬pairOpportunity(P))
⊗ choiceMin(Sal)⊗ choiceAny().

The order of selection constructs correspond to the relevance we assign to
the various properties: first the availability of skills, then the pair opportunity
and finally a minimal cost. The query

〈 [startProject(p1)@(1), startProject(p2)@(4)], [],
[inTeam(p1, E)@(1), inTeam(p2, E)@(4)] 〉

returns an approximate solution of the optimal staffing problem. ut

5 Conclusion

In this paper we have presented an extension of DATALOG with events and choice,
called DATALOGev!, which is particularly suitable to express queries on the evo-
lution of a knowledge base on the basis of a given sequence of events that are
envisioned to occur in the future. The language allows to model a number of
alternative potential evolutions of a program by means of dynamic rules which
assert both dynamic facts and actions (i.e., triggered events), using the capability
of choice to express nondeterminism. We stress that DATALOGev! does not support
planning (i.e., finding a sequence of actions which lead from an initial state to
some success state satisfying a given goal) but a different form of reasoning on
events, that we call prediction: given a sequence of events and a goal, since an
event may actually happen in different forms because of the nondeterministic
nature of dynamic rules, the problem consists in verifying whether there exists
an evolution which eventually satisfies the given goal and in returning one of the
future states satisfying the goal.

The semantics of DATALOGev! is given by means of rewriting rules which pro-
duce a DATALOG program with choice and a new form of stratification, called
XYZ-stratification, which add to classical XY-stratification a second temporal
argument to keep track of sub-units of time for a finer control of the evolution.

We conclude by mentioning some lines of further research:

1. allowing negation in the head of dynamic rules to enlarge the expressive
power of DATALOGev! even though termination will not anymore guaranteed;

2. introducing disjunction in the head of dynamics rules, in particular for trig-
gers — this extension will enable DATALOGev! to deal with planning as well;

3. including new forms of choice which make alternative selections using data
mining techniques applied to previous histories — thus the past will be used
to model the future;

4. specializing the language to support workflows.

References

1. Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases. Addison-Wesley.
1994.

2. Alferes, J.J., Leite, J.A., Pereira, L.M., and Przymusinski T., Dynamic Logic pro-
gramming. In A. Cohn and L. Schubert, Eds, KR’98. Morgan Kaufmann, 1998.

3. Alferes, J.J., Pereira, L.M., Przymusinska, H., and Przymusinski, T.C., LUPS A
language for updating logic programs. Artificial Intelligence, Vol.138, n1-2), pp.
87–116, 2002.

4. Apt, K., Blair, H., and Walker, A., Towards a theory of declarative knowledge.
Foundations of Deductive Databases and Logic Programming, J. Minker (ed.), Mor-
gan Kauffman, Los Altos, USA, 1988, 89-142.

5. Bonner, A.J.,and Kifer, M., An overview of transaction logic, Theoretical Computer
Science, Vol.113, n2, pp. 205–265, 1994.

6. Bonner, A.J., and Kifer, M., Results on Reasoning about Updates in Transaction
Logic, Lecture Notes in Computer Science, Vol. 1472, 1998

7. Brogi, A., Subrahmanian, V. S., and Zaniolo, C., Modeling Sequential and Parallel
Plans. Journal of Artificial Intelligence and Mathematics, Vol.19, n3, April 1997.

8. Chandra, A., and Harel, D., Structure and Complexity of Relational Queries. In
Journal of Computer and System Science, Vol. 25, n1, pp. 99–128, 1982.

9. Chandra, A., and Harel, D., Horn Clauses Queries and Generalizations. In Journal
of Logic Programming, Vol. 25, n1, pp. 1–15, 1985.

10. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S.A., and Zaniolo, C., The
LDL System Prototype. In IEEE TKDE, Vol. 2, n1, pp. 76–90, 1990.

11. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F., The KR system dlv:
Progress report, comparison and benchmarks.In Proc. Sixth Int. Conf. on Priciples
of Knowledge Representation and Reasoning (KR98),A.G.Cohn, L.Schubert, and
S.Shapiro, Eds, Morgan Kaufmann Publishers, 406-417.

12. Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A., A Logic Program-
ming Approach to Knowledge-State Planning: Semantics and Complexity. ACM
Transaction on Computational Logic, 2002, to appear.

13. Gelfond, M., and Lifschitz, V., The Stable Model Semantics for Logic Program-
ming. Proc. 5th Int. Conf. on Logic Programming, pp.1070-1080, 1988.

14. Gelfond, M., and Lifschitz, V., Action languages. Electronic Transactions on Ar-
tificial intelligence, Vol. 2, n 3-4, pp.193-210, 1998.

15. Giannotti, F., Pedreschi, D., and Zaniolo, C., Semantics and Expressive Power of
Non-Deterministic Constructs in Deductive Databases. Journal of Computer and
System Sciences, 62, 1, pp. 15–42, 2001.

16. Giunchiglia, E., and Lifschitz, V., An Action Language Based on Causal Explana-
tion: Preliminary Report. In Proc. of the Fifteenth Nat. Conf. on Artificial Intel-
ligence (AAAI’98), pp. 623–630, 1998.

17. Greco, S., and Saccà, Search and Optimization Algorithm in Datalog. In Computa-
tional Logic: From Logic Programming into the Future, Kakas A., Sadri F. (edrs),
Springer Verlag, 2002.

18. Greco, S., Saccà, D., and Zaniolo, C., Extending Stratified Datalog to Capture
Complexity Classes Ranging from P to QH. In Acta Informatica, Vol. 37 N10, pp
699-725, July 2001.

19. Greco, S., and Zaniolo, C., Greedy Algorithms in Datalog. in Proc. Int. Joint Conf.
and Symp. on Logic Programming, 1998, pp. 294–309.

20. Ilkka Niemelä, Logic Programming with Stable Model Semantics as Constraint Pro-
gramming Paradigm. Journal of Artificial Intelligence and Mathematics, Vol.25,
N3-4, 1999.

21. Johnson, D. S., A Catalog of Complexity Classes. In Handbook of Theoretical Com-
puter Science, Vol. 1, J. van Leewen (ed.), North-Holland, 1990.

22. Kowalski, R.A., Database updates in event calculus. Journal of Logic Programming,
Vol.12, pp.121-146, January 1992.

23. Kowalski, R., A., and Sergot, M.J., A Logic-Based Calculus of Events, New Gen-
eration Computing, Vol 4, pp. 267, 1986.

24. Lloyd, J., Foundations of Logic Programming. Springer-Verlag, 1987.
25. Marek, W., Truszczynski, M., Autoepistemic Logic. Journal of the ACM, Vol. 38,

No. 3, pp. 588–619, 1991.
26. Papadimitriou, C. H., Computational Complexity. Addison-Wesley, Reading, MA,

USA, 1994.
27. Przymusinski T.C., On the Declarative and procedural Semantics of Stratified De-

ductive Databases, in Foundations of Deductive Databases and Logic Programming,
(J.W. Minker, ed.), pp. 193-216, Morgan Kaufman, USA, 1988.

28. Ramakrisnhan, R., Srivastava, D., and Sudanshan, S., CORAL — Control, Rela-
tions and Logic. In Proc. of 18th Conf. on Very Large Data Bases, pp. 238-250,
1992.

29. Saccà, D., Verdonk, B., and Vermeir, D., Evolution of Knowledge Bases. In Proc.
EDBT, 1992, pp. 230-244.

30. Saccà, D., and Zaniolo, C., Stable Models and Non-Determinism in Logic Programs
with Negation. In Proc. ACM Symp. on Principles of Database Systems, 1990, pp.
205-218.

31. Turner, H., A logic of universal causation, Artificial Intelligence, Vol.113, n1-2,
pp.87–123, 1999.

32. Ullman, J. K., Principles of Data and Knowledge-Base Systems, Vol.1-2. Computer
Science Press, New York, 1988.

33. Van Gelder, A., Negation as failure using tight derivations for general logic pro-
grams. Journal of Logic Programming, Vol. 6, n. 1, pp. 109–133, 1989.

34. Vardi, M., The Complexity of Relational Query Languages. In Proceedings of the
14th ACM Symposium on Theory of Computing, pp. 137–146, 1982.

35. Zaniolo, C., Transaction-Conscious Stable Model Semantics for Active Database
Rules. In Proc. Int. Conf. on Deductive Object-Oriented Databases, 1995.

36. Zaniolo, C., Active Database Rules with Transaction-Conscious Stable Model Se-
mantics. In Proc. of the Conf. on Deductive Object-Oriented Databases, pp.55–72,
LNCS 1013, Singapore, December 1995.

37. Zaniolo, C., Arni, N., and Ong, K., Negation and Aggregates in Recursive Rules:
the LDL++ Approach, Proc. 3rd Int. Conf. on Deductive and Object-Oriented
Databases, 1993.

