Hand-OLAP: a System for Delivering
OLAP Services on Handheld Devices*

Alfredo Cuzzocrea, Filippo Furfaro,
DEIS, University of Calabria, 87030 Rende (CS), Italy

{cuzzocrea, furfaro}@si.deis.unical.it

Domenico Sacca
ICAR-CNR & DEIS, University of Calabria, 87030 Rende (CS), Italy

sacca@icar.cnr.it,

Abstract

The main drawbacks of handheld devices (small storage
space, small size of the display screen, discontinuance of
the connection to the WLAN, etc.) are often incompatible
with the need of querying and browsing information ex-
tracted from the enormous amount of data which are ac-
cessible through the network. In this application scenario,
the issues of compression and summarization of data have
a leading role: data in a lossy compressed format can be
transmitted more efficiently than original ones, and can be
effectively stored in the handheld devices (setting the com-
pression ratio accordingly). In this paper we describe a
very effective compression technique for datacubes and the
architecture of a system (based on this compression tech-
nique), called Hand-OLAP, which allows a handheld device
to extract and browse compressed information coming from
an OLAP server distributed on a wired network.

1 Introduction

Due to the growing interest in mobile computing, a great
deal of research is investigating a series of problems which
are crucial for the effectiveness of its applications. Such
problems include the search of the most suitable data model,
the definition of an easy-to-handle protocol of synchroniza-
tion, and in general the analysis of every aspect which
aim to make exchanging and consulting information fea-
sible by means of wireless technology. The main draw-
backs of handheld devices (small storage space, small size
of the display screen, discontinuance of the connection to
the WLAN, etc.) are often incompatible with the need of
extracting information from the enormous amount of data

*Work partly supported by a grant from COMPAQ srl, Italy.

sacca@unical.it

which are accessible through the network. In this applica-
tion scenario, the issues of compression and summarization
of the information have a leading role as the large size of
data sets represents a serious problem in designing efficient
applications for managing and/or transmitting these data. A
possible way to deal with such problems is certainly the ap-
plication of approaches based on the compression of origi-
nal data.

In the database context, a very effective lossy compres-
sion technique is the histograms-based one. Histograms
summarize the contents of a relation R into a number of
buckets. Buckets represent a partition of an attribute of R
containing a number of aggregate values describing the oc-
currence of tuples of R within the corresponding range of
that attribute. It corresponds to a succinct representation of
the relation R. This compact representation of the relation
can be directly used for estimating queries result and thus
for fast (approximated) analysis of R. The issue of well ap-
proximating the original data distribution inside buckets is
hence crucial. This has a direct counterpart on the kind of
information we intend to keep within the bucket. Exploring
approaches based on enriching classical bucket by addition
information, like integrity constraints, small data structures,
etc., is a very interesting research direction. Extending this
approach to multidimensional data is another relevant topic.
For multi-dimensional structures like datacubes this kind of
compression is very useful since such structure are mainly
used for making OLAP analysis. Therefore, besides of the
improvement of performances of such applications thanks
to the reduction of the data size, we can offer a natural sup-
port for them, since the typical goal of OLAP applications
is extracting aggregate succinct even approximated infor-
mation from data.

Hand-OLAP is a distributed Java-based system which al-
lows to query and browse data stored in an OLAP server,
belonging to a wired domain, using a handheld device, be-

longing to a wireless domain. The idea which the system is
based on is the following: rather than querying the original
data (being continuously connected to the WLAN), it may
be more convenient for a mobile user (m-user) to maintain
inside the handheld device a compressed view of the data
he/she wants to deal with, and query them off-line.

Hand-OLAP works as follows (see Figure 1): after the
m-user requests a bi-dimensional view from the available
datacube sources, the requested view is extracted and mate-
rialized on a intermediate agent in the wired network; then
the view is compressed in a lossy format and is transmitted
to the handheld device. At this point, the m-user can query
the compressed view locally (off-line) rather than the orig-
inal datacube, thus obtaining approximate answers. Thus,
Hand-OLAP enables an user of a handheld device to ex-
tract and browse information despite of the small size of
the device display screen and even when he/she is not con-
nected to the WLAN, making him/her free from waiting a
long time to get a precision which is often not necessary.
Indeed, the problem today is the abundance of information
which is being accumulated at a pace that makes it no longer
fit for direct human inspection. For these reasons, data com-
pression is becoming imperative: indeed more and more of-
ten, the time and resources that need to be invested in order
to gain access to information happens to be disproportion-
ate to fruition time and value and defies the very purpose of
accessing it.

et
Data Handheld .—'&
Warehouse Device *
L

el Extraction of a
i :d:menslunalmew

)

Bi-dimensicnal View

Compress;on of the
1.4 s d:rnenslunal View -m.

OLAF Server

Compressed Bi-
dimensional View
{Quadtree-Based)

Figure 1. Extracting and compressing data

The paper is organized as follows. In Section 2 we
briefly describe the related work about compression of dat-
acubes in OLAP systems and summarization of information
for mobile computing. In Section 3 we present the compres-
sion technique used for summarizing the selected informa-
tion, which is based on the approach proposed by Bucca-
furri et al. in [3], and describe how compressed information
can be queried. In Section 4 we introduce the architecture
of the system and describe its main components in detail.
In Section 5 we illustrate some functionalities of the client-
side tool which allows to extract and browse the (summa-
rized) OLAP data. Finally, in Section 6 we propose some

extensions to the current architecture of the system.

2 Related work

Recent research is deeply investigating the problem of
providing approximate answers to range queries in OLAP
systems, in order to achieve better performances. Range
queries consist of the application of a given aggregation op-
erator (count, sum, max, average, etc.) over a multidimen-
sional relation. Returning approximate answers is in many
cases a necessary arrangement, since the amount of data is
usually very large, and answering exactly to OLAP queries
is often too complex and prohibitively expensive. This is-
sue becomes critical when the range queries have to be de-
livered on handheld devices which cannot even transmit or
accommodate large datacubes on their small storage space.

Many techniques for providing approximate answering
to range queries are based on a compressed representa-
tion of the datacube in order to reduce the computational
time: the queries are evaluated on such a compressed
representation without accessing to the original datacube.
Several compression models (like statistical [10], wavelet
[11, 12], histograms [8, 9, 4], synopsis [7], and multivariate
polynomials-based [1]), which had been originally defined
and implemented in different contexts, have been used for
compressing datacubes. In particular, the histogram-based
techniques build a compressed datacube by partitioning the
raw datacube into a number of blocks and storing for each
block some aggregate data (i.e. the sum of the elements it
contains). The answer to a query on a given range is com-
puted by summing the values of all blocks which are wholly
included in the range, and by performing suitable estima-
tions of the pertinence values for the blocks which partially
overlap the range. The sum of the elements of a range in-
side a block is estimated assuming that the values inside
the blocks are uniformly distributed (Continuous Values As-
sumption - CVA). Thus, the estimation process is accurate if
the boundaries of the blocks are defined in such a way that
linear interpolation becomes effective (e.g., by avoiding that
large value differences arise inside a block). Indeed, when
the distribution of data inside a datacube is quite skewed,
grouping a lot of cells into a few blocks makes the estima-
tion process based on the CVA rather inaccurate, whatever
is the technique used for partitioning the datacube.

The issue of datacube compression is crucial for hand-
held devices used as interfaces to OLAP systems. Indeed,
in this case, pre-computation of a compressed view of a
datacube is to be performed by a remote agent which fills
the device with the reduced quantity of information that
can be effectively handled on a reduced storage and a small
screen, using a discontinuous and often slow connection to
an OLAP server. Despite its relevance, this issue has not
been so far addressed although data compression for hand-

held devices is being investigated in other contexts: e.g., for
compressing mobile code (Slim Binary Representation)|[6],
based on the adaptive compression of syntax trees, and for
data summarization[5], which is the extraction from a given
text of a summary maintaining an equal informative content.

3 A compressed quad-tree representation of
datacubes

We are given a bi-dimensional datacube D of size N.
We want to construct a compressed representation of D us-
ing a size M < N. We adopt the technique introduced in
[3] and based on a quad-tree partition of D which single-
out a number of blocks and stores the the sums of measure
values only for them. Figure 2 presents an example of com-
pression process. In the upper part, the figure shows a bi-
dimensional datacube whit initial sum of the measure values
over the initial range equal to 256 and its partitioning pro-
cess (the number reported inside the blocks is the sum of
the measure values contained in the corresponding range);
in the lower part, the figure shows the quad-tree which is
obtained applying the partitioning process.

The compression process consists of a sequence of steps.
We assume that the datacube contains non negative integers
and that the sum of the measure values contained in the dat-
acube can be stored using 32 bits. At the first step we store
the sum of the elements contained in the whole datacube
and split it into four blocks having the same size. The four
blocks are obtained splitting each dimension of the block
into two equal halves. Next, we take three of such gener-
ated blocks and, for each of them, we store the sum of their
elements (using 32 bits) if the sum is not zero. Otherwise,
if any of these sums is zero, we save 32 bits for each block
containing only null values, and invest the saved space for
splitting additional blocks.

At the following steps we choose the block containing
the least uniform distribution of data, split it into four sub-
blocks with the same size and store the sums corresponding
to three of them. The sum corresponding to the fourth sub-
block can be obtained by subtracting the sums of the other
three (stored) sub-blocks from the value associated to the
parent block. Again, we store only non zero sums and invest
the saved space for splitting more blocks. In the quad-tree of
Figure 2, the nodes with gray color represent stored blocks
with not-zero sum and the nodes with white color represent
not-stored blocks with not-zero sum obtained from the sums
of parent and brother nodes.

The number of splits executed in the compression pro-
cess depends on the amount of storage space which is avail-
able in the handheld device, as will be further explained.

The uniformity of the distribution of elements inside a
block is measured by evaluating its variance. Such a greedy
criterion in choosing the block to be split aims to build a

Partitioning a datacube:

il
14]19 1419 14
72 | 6 61 61 Blo} 4
256 — — 21]18 — 2118 — 21)18
18]16 18]16
50 | 73 50 | 73 50 50
20|19 20] 19

Quad-tree partition: o

Figure 2. Quadtree Compression

partition of the cube whose blocks contain elements with
small differences.

At the end of the described process, we obtain a sum-
marized representation of the datacube, hierarchically orga-
nized according to a quad-tree. Each node of the quad-tree
corresponds to the sum of a block generated during the par-
tition, and the root is associated to the sum of the whole dat-
acube. If the sum of the whole datacube exceeds 232 — 1, 32
bits don’t suffice for storing its value. Thus, we have to split
the datacube and, if necessary, its sub-blocks until each re-
sulting block contains a sum value which can be represented
using 32 bits. In such a case, the compressed representation
of the datacube is a forest of quad-trees. The roots of each
quad-tree are associated to distinct ranges of the raw dat-
acube. Without loss of generality, in the following we will
assume that the compressed representation of the datacube
consists of a unique quad-tree.

The storage space occupied by the compressed represen-
tation of the cube (organized as an unique quad-tree) con-
sists of: (i) the space used for storing the exact values of
the non zero sums, (if) the space used for storing the struc-
ture of the quad-tree partition. Figure 3 shows the arrays
representing, respectively, the sums and the structure of the
quad-tree in Figure 2.

Stored array of sums: Structure of the quad-tree:

D12 D121 D.1.22 D.123

D D1 D11
[2s6 [72 [14 19 6 [1 [3]
D13 D2 D3 D41 D42 D43
[t [et [50 [18] 16 | 20 |

Figure 3. Array representation of a quad-tree

D D1 D11 D12 D121 D122
[T 1] oo [11 [oo [00 |

D.1.23 D.1.24 D.13 D.1.4 D.2 D.3
[00 T 00 [00 [00 [00 [00]

D.4 D.4.1 D.4.2 D43 D.4.4
[11 T oo T o0 [00 [00 |

Assuming that every blocks generated by the partition
process have non zero sums, and denoting the number of
splits as ¢, the number of sum values which must be stored
is 3 -t + 1. Since we use 32 bits for representing each sum,
the representation of every sums occupies 96 - ¢ + 32 bits.

The structure of the quad-tree representing the partition
of the bi-dimensional view can be stored using two bits for
each node of the quad-tree. The value of the first of such
bits indicates whether the corresponding node is a leaf or
not. The other bit indicates whether the associated sum is
zero or not (if the sum is zero, it is not represented in the
array of the sums). Thus, for storing the structure of the
partition we need as many bits as twice the number of nodes
of the quad-tree, thatis: 2- (4 -¢ + 1).

To conclude, assuming that every blocks generated by
the partition process have non zero sums, the storage space
occupied by the compressed representation of the datacube
is96-t+32+2-(4-t+1)=104-t + 34 bits.

The number of splits which can be done during the com-
pression process is determined by the amount of available
storage space. Denoting the available storage space as S,
the number of splits is given by: (S — 34)/104. Indeed, this
value represents the minimum number of splits which can
be performed by the compression process. Generally, since
datacubes are very sparse, a lot of blocks contain only null
elements, and the saved storage space can be invested for
further splits.

Now we explain how to perform a range query on the
compressed datacube.

The query engine navigates the quad-tree searching for:
(i) all maximal blocks which are completely involved in the
query; (ii) all blocks which are partially included in the
range of the query and which are not split (such blocks cor-
respond to leaves of the quad-tree). The former blocks do
not introduce any approximation, since for each of them the
exact value of the sum inside the corresponding range is
stored. The latter ones, on the contrary, introduce approxi-
mation, since we cannot re-construct the exact distribution
of the original data contained in the corresponding ranges.
The answers to the query in Figure 4 is approximate, since
its lower boundaries do not coincide with the boundaries of
any blocks of the compressed representation. The answer to
the query in Figure 4 is the sum of the value associated to
the block D.1 with a “contribute” of the block D.3. Such
a contribute is obtained by performing a linear interpola-
tion, assuming that the elements inside D.3 are uniformly
distributed. For instance, assuming that the query involves
an half of the block D.3, and denoting the sum of D.3 as
S(D.3), the estimated contribute is: S(D.3)/2.

3.1 Adding indices to leaf blocks

A problem with the compression process described in
the previous section is that data distributions inside blocks
are not guaranteed to be uniform enough to be well-
approximable by linear interpolation. As a consequence,
the estimation error risks to be intolerable. A way for fac-
ing the above problem is keeping, beside the overall sum

Range of the Query

N N

72 61 72 61

286 —> (E—

50 73 73

N

x

View

Figure 4. A query with approximate answer

of the element occurring in each block, further information
for improving the accuracy in reconstructing range queries
inside the blocks.

Experience acquired in compression of mono-
dimensional [4, 2] and bi-dimensional cubes [3] suggests
us to associate indices to the blocks corresponding to
the leaves of the quad-tree for describing approximately
their internal distribution of data — the index stores
the approximate representations of the sums of internal
sub-blocks inside the corresponding block. In Figure 5 we
show how an instance of index (2/LT index) is built for
the leaf block D.3 of the compressed datacube shown in
Figure 2. The index is obtained as follows: the terminal
block is partitioned into four sub-blocks and, in turn, each
of the four sub-blocks into other four sub-sub-blocks. The
index stores approximate aggregate data about both the
generated sub-blocks and sub-sub-blocks. Such aggregate
data consist of the sums of the elements contained in the
regions which are colored in grey in Figure 5. The values
of the sums are stored using less than 32 bits, introducing
some approximation. The number of bits used for each
stored value depends on the size of the corresponding
sub-block. That is, referring to Figure 5, we use 6 bits for
both A and B (which have the same size), and 5 bits for C,
whose size is an half of A and B. Analogously, we use 4
bits for D and F (whose size is an half of '), and so on.

We point out that saving one bit for storing the sum of
C w.rt. A can be justified by considering that, on average,
the value of the sum of the elements inside C' is an half
of the sum corresponding to A, since the size of C is an
half of the size of A. Thus, on the average, the accuracy of
representing A using 6 bits is the same as the accuracy of
representing C' using 5 bits.

Denoting the value of the sum of the whole block associ-
ated to the index as S(Block), the approximate representa-
tion of the sum S(A) of the region A in the index of Figure
5 using b bits is given by: Lga) = (S(A)/S(Block)) -
(2° — 1). The approximate value of S(A) which can be
retrieved from Lg4) is given by: S(A) = (Lg(a)/(2" —
1)) - S(Block). Analogously, the approximate representa-
tion of the sum inside the region C' using b bits is given
by: Lgicy = (S(C)/S(A)) - (2° — 1), and consequently

Terminal block o F

5=50

G
5=10 H s=2
abis o 3bits

A 10 20

—lofn |~

6 bits abis ~ 3o

Compressed representation of the block:
A B c D E F G H
[6bits [6bits | Sbits | 4bits | 4bits | 3bits | 4bits | 4bits |
64 bits

1 J K L M N [
[3bits | 4bits [4bits | 3bits | 4bits | 4bits | 3bits | 3bits |

Structural information about the index

Figure 5. Building an index

the approximate value of S(C') which can be retrieved from
Ls(cy is givenby: S(C) = (Lg(c)/(2°— 1)) - S(A). Thus,
the approximate representation of the sum inside a range R;
of the indexed block is evaluated on the basis of the approxi-
mate representation of the smallest range R; which belongs
to the same index and incorporates R;. That is, S(A) and
S(B) are evaluated using the sum of the whole block, S(C')
is estimated using S(A), S(D) and S(E) are estimated us-
ing S(C), and so on. Such a computation aims to minimize
the average error (see [4]).

The above described index is based on a balanced quad-
tree partition of a block. Different types of index can be
used, based on different partitions. For instance, we can
build an index based on an unbalanced quad-tree partition.
Such an index is more suitable for a block where the ele-
ments are distributed heterogeneously, i.e. blocks consist-
ing of some regions containing very skewed data distribu-
tions and other regions with rather uniform distributions.
The detailed description of these indices can be found in
[3].

The evaluation of a query inside an index is analogous to
the evaluation process over a compressed datacube. That is,
the query engine navigates the quad-tree equivalent to the
index (which is made of all sub-blocks investigated by the
index) and searches for: (i) all maximal sub-blocks which
are completely involved in the query; (ii) all sub-blocks
which are partially included in the range of the query and
which are not split (such blocks correspond to leaves of the
quad-tree).

Different types of index have been designed with the pur-
pose of suitably approximating different kinds of data distri-

butions. We follow thus the approach of selecting the most
suitable index for a block on the basis of the actual distri-
bution of data inside the block. That is, we measure the
approximation error carried out by the index, and select the
index which provides the best accuracy. For measuring the
approximation error of an index I applied to a given block
q we use the following metrics:

64
eq(I) = (sum(bi) — sumppr(bi))® (1)
i=1
where b; represents the i—th (among 64 ones) sub-block
of ¢ obtained by dividing its sides into 8 equal-size ranges,
and sumj(b;) represents the estimation of the sum of ele-
ments occurring in b; which can be done by using the in-
dex I and the knowledge of sum(q) (the estimation of such
sums can be done as explained above).
For a block g, we choose the index which “generates”
the minimum value of e/'~7".
3.2 A compressed quad-tree representation of
datacubes using indices

Let us non describe the technique introduced in [3] to
combine the usage of indices with the quad-tree based rep-
resentation. We associate indices to the blocks correspond-
ing to the leaves of the quad-tree, except the ones having
zero sum or containing very uniform distributions of data
as for such blocks the use of indices does not improve ac-
curacy .

The storage space occupied by the compressed represen-
tation consists of: (i) the space used for storing the exact
values of the non-zero sums, (ii) the space used for storing
indices, and (iii) the space used for storing the structure of
the quad-tree partition. Assuming that every block gener-
ated by the partition process contains a non zero sum, de-
noting the number of splits as ¢, the number of sum values
which must be stored is 3 - ¢ + 1. Since we use 32 bits for
representing each sum, the representation of every sums oc-
cupies 96 - t 4+ 32 bits. In the worst case (i.e., all leaves
are indexed), the number of indices is equal to the number
of leaves of the quad-tree: 3 - ¢ 4 1 (the number of leaves
is equal to the difference between the number of nodes in
the quad-tree and the number of intermediate nodes, i.e.
(4-t+1) —t). Since we use 64 bits for each index, we
need 192 - t + 64 bits for storing all indices.

The structure of the quad-tree representing the partition
of the bi-dimensional view can be stored using two bits for
each node of the quad-tree. The values of these bits indicate
whether the corresponding node is a leaf or not, whether its
sum is zero and whether it is associated to an index. Thus,
for storing the structure of the partition we need as many
bits as twice the number of nodes of the quad-tree, that is:
2-(4-t+1). To conclude, the storage space occupied by

the compressed representation of the bi-dimensional view is
96-t+32+192-t+644+2-(4-t+1)=296-t+ 98 bits.

The number of splits in the compressed representation is
determined by the amount of available storage space. De-
noting the available storage space as S, the number of splits
is given by: (S — 98)/296. Indeed, this is the minimum
value of ¢ for a given storage space, since generally a lot of
blocks contain zero sums and not every leaves must be as-
sociated to an index. Thus, the saved space can be invested
for further splits.

We point out that, using the same storage space, the num-
ber of splits which can be done by the combined compres-
sion technique is less than the number of splits which can by
done by the compression technique using no indices. Nev-
ertheless, as indices provide details on the data distribution
inside the leaves, these benefits overcome the drawback of
having a smaller number of blocks.

4 Hand-OLAP: a system for delivering
OLAP services on handheld devices

In this section we describe the architecture of the system
Hand-OLAP (see Figure 6) whose goal is to provide com-
pressed (bi-dimensional) views of a datacube coming from
an OLAP server to handheld devices, for enabling m-users
to browse and query (approximately) the desired informa-
tion locally, even when the connection to the WLAN is off.
The system is multi-tier type, and every software layer cor-
responds to a specific application logic.

4+
[]
CUBE2XML
MANAGER |
(. 5
b QUERY REQUEST |
'L MANAGER H MANAGER Q
= i
‘4— !
"_ COMPRESSION
AGENT

L [| |
Data Sources Layer Application Server Layer User's Layer

Figure 6. System overview

The (software) layers of the system are the following: (7)
Data Sources Layer: it is the collection of OLAP servers
from which the desired information can be retrieved, and
of the wrappers which extract meta-information about the
available datacubes as well as the actual data; (ii) Appli-
cation Server Layer: it is the layer which elaborates the
user’s request, interacts with the OLAP servers, computes

the compressed representation of the extracted view and
sends it to the handheld device; (iii) User Layer: it includes
the client-side tool which allows a handheld device to ac-
quire and elaborate the desired information. As shown in
Figure 6, exchanging information between the wired net-
work and the wireless environment is allowed by an access
point. The communication between the handheld devices
and the access point is supported by an ad-hoc transport
binary-based protocol based on the standard IEEE 802.11.

The system works as follows. When the handheld de-
vice is connected to the WLAN, the client side tool al-
lows an m-user to request (or refresh) a collection of XML
meta-data describing the information he can retrieve from
the wired network, i.e. the information stored in the OLAP
server which can be accessed. The XML meta-data are hi-
erarchically organized (according to the usual data model
for OLAP technology) and contain several details about the
structure of the available information, such as the names
of the dimensions and their number, the description of the
measure attribute, etc.

An m-user may define a portion of the available data
containing the information he/she is interested in, and re-
quest it. Such a portion is a bi-dimensional view defined
over the available data. The user can also specify which
OLAP server must be queried for retrieving information.
The m-user’s request is processed by the Application Server
Layer, which extracts the requested information from the
data sources it is connected to. Next, the retrieved infor-
mation are summarized and sent to the m-user. Further
details about how the Application Server Layer works are
given in Section 4.1. The compressed representation of the
requested information is eventually stored in the handheld
device. Therefore, an m-user can browse and query the re-
ceived data off-line, obtaining approximate answers.

We point out that the information is elaborated in the
wired domain and delivered to the wireless domain, accord-
ingly to the common development pattern of the wireless
applications.

The steps of the extraction process are summarized in
Figure 1. The system is currently in development phase.
The server-side and the client-side components are being
developed using Java. In particular, for the server-side com-
ponents we are using the Java2 Enterprise Edition (J2EE)
platform, and for the client-side tool we are using the Java2
Micro Edition (J2ME) platform. The compression libraries
for the Compression Agent have been implemented using
C++, for achieving better performances in the process ex-
ecution. The Compression Agent interacts with the Java
server-side components using Java Native Interface API
(JNI), which supports inter-operability between Java code
and external libraries.

Figure 7 shows the system architecture from a soft-
ware components point of view. In particular, the architec-

Winaz DLI_ Callection for
Suppet l Tt

Comprazsian

— q;. ¥ e

Compression .
Gt Modis OLAR Do
X Logical Ireurfacs

[
Haive Code
Inmraczion
based on JNI
i i

£

& - —l & |/
L %;!—r | e | - Lo N ;
@ i |] - | N selmddaa | D Handheld Clern
: - Conmection |, Obem oy B (Gompaq P93
et ; : e | oo | a0 <

£
Microsaft 5L i ;] N

Server 2000 whh EU . P Manager

Pndlysis Services |

{OLAP Server) 4 % T .,

Senalizstion
M sger
M Tt plon il
based i ADOND e
Ubraries

nager
mud Py

‘—J"[I“—jc ot

MetaDats | Sunmarized
e | i meln;Mamgw

Javarbased Servaraids Components Pool Javarbased Clent-side Como onerns Fool

Figure 7. Hand-OLAP software architecture

ture shown is the first prototype of Hand-OLAP we have
developed: it uses Microsoft Analysis Services as OLAP
server over a Microsoft SQL Server 2000 DBMS server
and Compaq iPAQ as mobile client. We have developed
a set of Win32 libraries based on the Microsoft ADOMD
API, the Microsoft API for multidimensional data manage-
ment, and a XML-based protocol which performs both the
OLAP server meta-data extraction (about the server, data
sources, catalogs, datacubes, dimensions, measures, etc.)
and the interaction between OLAP server (COM-compliant)
and Application server (J2EE-compliant). As shown in
Figure 7, the server-side and the client-side components
are completely Java-based. For example, the Summarized
Data Querying Manager implements an ad-hoc algorithm
for browsing and querying summarized OLAP data accord-
ing to the data model described in Section 3.2.

4.1 The Application Server Layer

The Application Server Layer is the software layer where
the Java server-side application logic resides. This layer
implements the main functionalities of the system: re-
quest management, datacube/XML wrapping, data query-
ing/viewing, compression. This logic is based on a pool of
lightweight server-side software components, as shown in
Figure 7.

The Application Server Layer consists of three compo-
nents which cooperate to fulfil the m-user request (see Fig-
ure 6): (i) Request Manager: it is the component which
receives the request of the m-user, and translates it either
into a request to the Cube2XML Wrapper for retrieving
meta-information about the content of the datacubes, or
into a request to the View Manager for retrieving a com-
pressed representation of the view defined by the user; (i7)
Cube2XML Wrapper: it is the component that extracts
meta-information about the OLAP server it is connected
to, and returns them in an XML format; (iii) View Man-
ager: it is the component that extracts from the selected dat-

acube the bi-dimensional view defined by the m-user, uses
the Compression Agent for summarizing it, and returns its
compressed representation; (iv) Compression Agent: it is
the component that receive a bi-dimensional view from the
View Manager, and return its compressed representation.
The View Manager sends the extracted bi-dimensional view
to the Compression Agent together with the value of the de-
sired compression ratio. Such a value depends on both the
amount of storage space of the handheld device and the size
of the view (see Section 3).

In the future developments of the system, the above de-
scribed components (in particular the View Manager) will
also deal with the problem of infegrating data coming from
heterogeneous OLAP servers, obtaining an unique datacube
after logically integrating a set of datacubes.

4.2 The User Layer

The User Layer consists of a client-side tool which sup-
plies an m-user with instruments for: (i) scanning the wired
network and selecting an OLAP server to extract informa-
tion from; (ii) asking for XML meta-data about the informa-
tion contained in the accessible data sources, and browsing
them; (iii) defining a bi-dimensional view over the selected
datacube, containing interesting information; (iv) down-
loading the compressed representation of the selected view,
after negotiating the compression ratio; (v) refreshing an al-
ready downloaded compressed view; (vi) executing range-
sum queries on the compressed representation, without ac-
cessing to the original data.

5 Hand-OLAP in action

The main purpose of the system Hand-OLAP is to allow
a handheld device to request a bulk of information com-
ing from an OLAP server distributed on a wired network,
and store the received (compressed) data locally, in order
to query the received information off-line. The request of
an user consists of a bi-dimensional window defining the
range of data which has to be extracted. The request is-
sued on a handheld device is processed by an Application
server which queries the OLAP server. After receiving all
the replies, it creates a view containing the range of data
which the user needs, compresses it and sends it to the user.
Thus, the reply to an user is a compressed representation of
the range of data he requested. After receiving it, the user
can store it locally and query it off-line, obtaining approx-
imate answers. The approximation is a necessary arrange-
ment, due to the small storage space and the small size of the
display screen in handheld devices. Moreover, an user with
a handheld device is typically more interested in querying
and browsing approximate data without being connected to

any WLAN, rather than obtaining exact answers after being
connected to the OLAP server for a long time.

The compression technique is very fast (i.e., the com-
pressed representation can be computed efficiently) and
very effective: the application server replies rapidly to the
m-user’s request, and the m-user is allowed to re-construct
the original information with smaller approximation than
other compression techniques.

The m-user can extract information from the requested
compressed view using two alternatives: (i) either he/she
can navigate the structure of the view by selecting a block
(corresponding to a node of the quad-tree) and zooming in
and out to traverse the quad-tree; or (ii) he/she can just sub-
mit a specific range query and receive the estimated answer.

6 Future works

Possible future extensions of Hand-OLAP are: (i) the
implementation of a component of the Application Server
which acts as a mediator for integrating data extracted
from heterogenous datacubes at the Data Sources Layer;
(if) adding amenities for browsing meta-data using a com-
pressed global view of the datacubes of interest; (iii) making
the compression process adaptive, that is, using the degree
of user interest to portions of data as an alternative (or ad-
ditional) criterium for splitting a block; (iv) moving from
the fixed number of 4 partitions for a block, as required by
quad-trees, to a variable number as dictated by a semantic
division of each dimension range, e.g., by extending pagi-
nated structures like R-trees which determine the maximum
number of partitions on the basis of the available page size;
(v) extending the system to deal with datacubes with more
than two- dimensions.

The last issue is rather complex because of the limited
perceptual bandwidth of the m-user, in addition to the tra-
ditional refractoriness of human beings to deals with hyper-
spaces. The approach that we intend to work on is to in-
vestigate representation models and interaction tools which
help the m-user to construct bi-dimensional view from high-
dimension datacubes.

References

[1] R. Agrawal, A. Gupta, S. Sarawagi, Modeling Multi-
dimensional Databases, Proceedings of the IEEE In-

ternational Conference on Data Engineering, Birm-
ingham, UK, April 1997

[2] F. Buccafurri, F. Furfaro, G. Lax, D. Sacca, Binary-
Tree Histograms with Tree Indices, Proceedings of
the International Conference on Database and Expert
Systems Applications, LNCS 2453, Springer, Septem-
ber 2002.

[3] F. Buccafurri, F. Furfaro, D. Sacca, C. Sirangelo, A
Quad-Tree Based Multiresolution Approach for Com-
pressing Datacubes, ICAR-CNR TR, December 2002.

[4] E. Buccafurri, L. Pontieri, D. Rosaci, D. Sacca, Im-
proving Range Query Estimation on Histograms, Pro-
ceedings of the IEEE International Conference On
Data Engineering, San Jose, CA, USA, February 2002

[5] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, See-
ing the Whole in Parts: text Summarization for Web
Browsing on Handled Devices, Proceedings of the In-
ternational World Wide Web Conference, Hong Kong,
May 2001

[6] M. Franz, T. Kistler, Slim Binaries, Communications
of the ACM, 40:12, pp. 87-94, December 1997

[7] P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal,
Y. Matias, S. Muthukrishnan, S. Ramaswamy, T.
Suel, AQUA: System and Techniques for Approxi-
mate Query Answering, Bell Labs TR, February 1998

[8] V. Poosala, Y. E. Ioannidis, Selectivity Estimation
Without the Attribute Value Independence Assump-
tion, Proceedings of the International Conference on
Very Large Databases, Athens, Greece, August 1997

[9] V. Poosala, V. Ganti, Fast Approximate Answers to
Aggregate Queries on a Datacube, Proceedings of
the IEEE International Conference on Scientific and
Statistical Databases Management, Cleveland, OH,
USA, July 1999

[10] J. Shanmugasundaram, U. Fayyad, P.S. Bradley, Com-
pressed Datacubes for OLAP Aggregate Query Ap-
proximation on Continuos Dimensions, Proceedings
of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 1999

[11] J. S. Vitter, M. Wang, B. Iyer, Datacube Approxi-
mation and Histograms via Wavelets, Proceedings of
the ACM SIGIR-SIGMIS International Conference on
Information and Knowledge Management, Bethesda,
MD, USA, November 1998

[12] J. S. Vitter, M. Wang, Approximate Computation of
Multidimensional Aggregates of Sparse Data using
Wavelets, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Philadel-
phia, PA, USA, June 1999

