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Abstract

Computing aggregate queries is a performance bottleneck for many OLAP application as dat-

acubes can be extremely large. As quick answers are often necessary, a promising solution is to

collapse a datacube in a number of blocks, storing aggregate data for each of them, and to inquire

such data rather than the original ones. When the task of reconstructing the answer from aggregate

data is performed, a certain estimation error cannot be avoided. In this paper we propose to store a

64 bit index for each block in order to have a compressed description of data distribution inside the

block so that interpolation can be more accurate. Various types of index are described depending

on data skew, based on a quad-tree scheme and their approximation errors are analyzed. Although

the index is orthogonal to any technique for partitioning a datacube, the index can be also exploited

to devise a new greedy technique, based on classical quad-trees, which evaluates the contribution of

possible indices while deciding which block is to be partitioned at each step. The experimental results

show that the new technique is very effective and gives approximation errors much smaller than other

techniques such as wavelets and multidimensional histograms.

1 Introduction

On-Line Analytical Processing (OLAP) is a querying paradigm which deals with particular data structures
for summary data, called datacubes. A datacube consists of a number of functional attributes (also called
dimensions) and one or more measure attributes — thus a datacube is the result of applying an aggregate
function to an underlying database relation. Typical operations on a datacube are range queries, that are
further aggregations of data over a multi-dimensional range — e.g., given a 2-dimensional datacube C, a
range is a rectangle and a range query returns the sum of the measures of all points inside the rectangle.

Computing aggregate queries is a performance bottleneck for many OLAP applications as a datacube
can be extremely large. As quick answers are often necessary, a promising solution is to collapse a
datacube in a number of blocks (compressed datacube), storing aggregate measure values for each of
them, and to inquire such data rather than the original ones – approximate query answering. The answer
to a query on a given range is computed by summing the values of all blocks included in the range and by
performing suitable estimations of the pertinence values for the blocks which partially overlap the range.
Therefore, a crucial issue for providing good estimations for range queries is to organize the compressed
datacube in such a way that estimation errors inside each block are minimized. Two approaches are
possible:

1. defining the boundaries of blocks in such a way that a straightforward estimation (in particular,
linear interpolation) becomes more effective (e.g., by avoiding that large frequency differences arise
inside a bucket);

2. adding further information such as quantitative data on the measure value distribution inside each
bucket.

The two approaches are in general competing: possible space for quantitative data could be instead
used to obtain finer-grain blocks. Current solutions follow the lines of the ones which have been pro-
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posed for histograms (mono-dimensional datacubes): they privileges the exploitation of techniques for an
optimal partitioning of a datacube into blocks whereas estimation inside a block receives little attention.

Recently, Buccafurri et al. in [4] have shown that providing a support to intra-block interpolation
for histograms has surprising potentialities. In particular, they have proposed to use 32 bits to store the
approximated representations of the partial frequency sums at 7 fixed intervals inside a block, organized
in a 4-level tree (4LT) index. The usage of this index is combined with well-known techniques for
constructing histograms, thus obtaining high improvements in the frequency estimation w.r.t. the original
methods.

In Section 2 of this paper we present an index of 64 bits, called 2/n-LT index, for the 2-dimensional
case with three different formats, based on a quad-tree structure — we stress that the 4-LT index cannot
be immediately extended because of explosion of intervals.

The basic index, called 2/3-LT, divides a block into 4 sub-blocks, which in turn are further divided
into other 4 sub-blocks. The index stores the approximate values for the sums of these sub-blocks using
a sophisticated storage scheme and it is well-suited for distributions with no strong asymmetry among
sub-blocks.

A second type of index, called 2/4LT-index, is oriented to biased distributions for which two of the
four sub-block at the first level of the block concentrate more sum than the other ones.

The third type, called 2/p-index (p stands for peak), is designed for capturing distribution having a
few high peaks inside one of the sub-blocks.

In Section 3 we use the indices into a new method, called 2/n-LT compression, for constructing
optimal compressions of datacubes which makes a trade-off between further dividing a block into other
blocks or just adding an index. As for the indices, also division of blocks is organized as a quad-tree: the
root contains the sum of all values in the datacube; then the datacube is divided into 4 blocks and their
values are stored in 4 children; later on, some child is (i) further divided into 4 blocks and so on, or (ii)
is equipped with an index (the most appropriate among the three types available) or (iii) it is left with
no additional details. A quad-tree structure for representing datacubes was first proposed in [15].

Experiments on range queries over a number of syntectic datacubes, reported in Section 4, show that
the accuracy of the compression method is very high. Indeed performances are much better than recent
estimation methods based on wavelets [16, 23].

In conclusion our work disconfirms the folk credence that is better to use available space for achieving
finer-grain blocks rather than adding quantitative data for improving intra-block interpolation: indeed
the quad-tree compression with no indices has inferior performances. Further work will be devoted to
extend the approach to k-dimensional datacubes.

2 Indexing Datacube Blocks

Throughout the paper we consider given a 2−dimensional datacube D with functional attributes X1 and
X2, also said dimensions, and a measure attribute Y . We assume that the domain of Xi is 1..di, for each
1 ≤ i ≤ 2. A range σi on the attribute Xi is an interval l..u, such that 1 ≤ l ≤ u ≤ di. Boundaries l and
u of ri are denoted by lb(σi) (lower bound) and ub(σi) (upper bound), respectively.

Given a range σi on Xi, we denote by lh(σi) (left half) the range lb(σi)..b(lb(σi) + ub(σi))/2c on Xi,
and by rh(σi) (right half) the range b(lb(σi) + ub(σi))/2c + 1..ub(σi).

A block r (of D) is a pair 〈σ1, σ2〉 where σi is a range on Xi, for each 1 ≤ i ≤ 2. σ1 and σ2 are said
sides of r. A pair 〈v1, v2〉 such that v1 is either lb(σ1) or ub(σ1) and v2 is either lb(σ2) or ub(σ2) is said
a vertex of r. We denote by vrt(r) the set of vertex of r. Informally, a block represents a “rectangular”
region of D. A block r of D containing 0 elements is a null block.

Given a block r we denote by sum(r) (avg(r), resp.) the sum (the average, resp.) of the measure
attribute values (i.e., the elements of the datacube) occurring in the block r.

A simple way for compressing a datacube is dividing it into blocks and substituting each block
with a few summary information (typically the sum of the elements occurring in it). Partition may
be done according to different criteria (consider for instance the case of semantic-driven aggregation);
moreover, the required compression rate may be high. Therefore, in general, we are not guaranteed
that blocks contain data distribution well-approximable by linear interpolation (corresponding to CVA,
Continuous Value Assumption, of histograms). As a consequence, when the compressed datacube is used
for evaluating approximate range queries, the estimation error risks to be intolerable. A way for facing
the above problem is keeping, beside the overall sum of the element occurring in each block, further
information helping us in reconstructing range queries inside the blocks.

Experience acquired in [4, 3] for the mono-dimensional case of histograms inspired us in representing
storing approximated sums of internal sub-blocks of a given block b in an hierarchical fashion, by means
of a tree index whose root correspond to the whole block, the children to its sub-blocks, the node at the
subsequent level to further sub-blocks, and so on. Such a technique aims to produces smaller errors than
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a flat partitioning into a number of sub-blocks. Indeed, in this case, the sum of a single sub-block has to
be represented as a fraction of the entire sum of the block, whereas, using the index-tree approach, the
sum of a sub-block, corresponding to a node of the tree at a certain level, is represented as fraction of
just the sum corresponding to the parent node in the tree, that is, in general, a smaller value. Numeric
approximation errors deriving from the use of a few bits for representing sums, are therefore in general
reduced [4].

We have three index types with different organization of sub-blocks, so that we may select the index
which better approximates data distribution inside a block: (1) 2/3LT-index, which is balanced, and
is suitable for distribution with no strong asymmetry, (2) 2/4LT-index, which is oriented to biased
distribution, such that two of the four quadrants of the block concentrate more variance than the other,
(3) 2/p(eak)LT-index which is designed for capturing distribution having a few high density peaks. The
three types of indices use the same amount of storage space, 32 bits and are next described in details.

2/3LT-index. The block is partitioned into 4 sub-blocks (its quadrants) which in turn are further
divided into other 4 sub-sub-blocks. The aggregation leads to the balanced tree index with 3 levels of
Figure 1 where nodes correspond to sub-blocks of the block Q of the figure.

Figure 1: 2/3LT-index

The node at level 1 (i.e., sum of the entire block) is explicitly represented by 32 bits (with no approx-
imation). As for the other levels, the simplest approach would be to store the sums corresponding to the
grey nodes of the index, whereas the other sums can be derived by difference, using the parent node. We
instead use a different storing scheme. At level 2, we keep only approximated sums of regions AQ, BQ

and CQ, as shown in Figure 2.

Figure 2: AQ, BQ, CQ regions inside a block

From the sums of AQ, BQ and CQ, we can derive sums corresponding to all the nodes of the level 2
of the index:

sum(Q1) = sum(CQ)
sum(Q2) = sum(AQ) − sum(CQ)
sum(Q3) = sum(BQ) − sum(CQ)
sum(Q4) = sum(Q) − sum(AQ) − sum(BQ) + sum(CQ)

We adopt the same storage scheme at level 3. Thus, for the sub-block Qi (for 1 ≤ i ≤ 4), we keep
the sums of AQi

, BQi
and CQi

, respectively. An example of index for a block with sum 50 is shown in
Figure 3.

The figure also indicates the number of bits used for each sub-block sum. The overall storage space of
64 bits is used as follows. For the region AQ we use a string of 6 bits, denoted by Lsum(AQ), which repre-
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Figure 3: Building a 2/3LT-index

sents the sum of AQ as a fraction of the sum of Q. More precisely, Lsum(AQ) = round
(

sum(AQ)
sum(Q) · (26 − 1)

)

.

The approximate value sum(AQ) of sum(AQ) can be obtained from Lsum(AQ) as
Lsum(AQ)

26−1 · sum(Q). We
do the same for the region BQ, for the two regions have the same size and we thus expect, in the average,
that they contain sums of the same magnitude. For the region CQ we decrease by 1 the number of
employed bits, and exploit them for representing the sum of CQ as a fraction of the minimum between
the sum of AQ and the sum of BQ — let ABQ be this minimum. The 5-bit string associated to CQ thus

contains Lsum(CQ) = round
(

sum(CQ)
sum(ABQ) · (2

5 − 1)
)

, and consequently the approximate value sum(CQ) of

sum(CQ) can be computed as
Lsum(CQ)

25−1 · sum(ABQ). The reduction of 1 bit (w.r.t. AQ and BQ) for
representing the sum of CQ is justified by the observation that the size of CQ is in the average half of
that of AQ and BQ) and then we expect a sum in CQ that is half of their sums. For the lowest level, we
use 4 bits for AQi

and BQi
, and 3 bits for CQi

(for 1 ≤ i ≤ 4) – see Figure 3.
In sum, the final storage space balance is 6 + 6 + 5 + 4 · (4 + 4 + 3) = 61 bits. Observe that (some of)

the 3 remaining bits to two words will result useful for identifying the type of index being used — this
issue will be detailed later on.

2/4LT-index. This index is unbalanced. In particular, it determines a maximum resolution (addi-
tional 2 levels underneath) for one of the four quadrants of the block, a medium resolution (an additional
level underneath) for a second quadrant whereas ther other two are not further explored. The structure
of the index is reported in Figure 4. The index tries to capture “heterogeneous” data distributions (for
instance, the index in Fig. 4 describes a block where the region Q1 contains a very skewed data dis-
tribution, the region Q2 is less skewed than Q1, whereas the regions Q2 and Q4 contain quite uniform

distributions). Observe that, for a given block, there are 2 ·

(

4
2

)

possible different kinds of 2/4LT-

indices (depending on which pair of quadrants is chosen for assigning resolution 4 and 3, respectively).
Thus we need 4 bits for identifying one 2/4LT-index among all possible ones. The overall storage space
required for a 2/4LT-index is 6 + 6 + 5 + 2 · (4 + 4 + 3) + 4 · (2 + 2 + 1) = 59 bits. Thus, with 4 of the 5
remaining bits we identify the kind of 2/4LT-index. We will see in the following that the remaining bit
is enough for identify 2/4LT-index among the other ones (i.e., 2/3LT-index and 2/pLT-index).

2/pLT-index. This index is designed for capturing the case of a few density peaks concentrated in a
quadrant of the block Q to which the index is applied. In particular, the 2/pLT-index has levels 1 and 2
as the 2/3LT-index. Moreover, the node of the level 2 corresponding to the quadrant with maximum SSE,
say Qi, is associated with 43 bits recording the sum of 5 sub-blocks of the quadrant Qi. Such 5 sub-blocks
are the 5 sub-blocks with highest sum among all sub-blocks obtained from Qi by dividing its sides into
8 equi-size ranges. The 5 sub-blocks are identified by 5 pairs of 3-bit coordinates (each pair, consisting
of 6 bit, identifies one sub-block among the 64 possible ones). Each of the 3 highest sums is represented
by 3 bits, whereas each of the other 2 sums is represented by 2 bits. Therefore, we have 5 · 6 = 30 bits
for representing the coordinates and 3 · 3 + 2 · 2 = 13 bits for the sums. Thus, the overall storage space
spent for the “internal” description of Qi is 43. The overall storage space of the 2/pLT-index is 60 bits,
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Figure 4: A 2/4LT-index

obtained by summing 43 bits to the bits needed for representing the level 2, that are 6 + 6+ 5 = 17. The
remaining 4 bits are used, as we shall see, for identifying the 2/pLT-index among the other kinds, and
for identifying for which quadrant its internal description is provided.

Summary on the representation of the 2/nLT-indices. The 64 bits od the indices are organized
as 2-word frame F — 2/3LT-index requires 61 bits, 2/4LT-index 59 bits and 2/pLT-index requires 62 bits.
The frame has a header consisting of F [1..3] (i.e., the first 3 bits of F ) for the 2/3LT-index, of F [1..5] for
the 2/4LT-index, and of F [1..4] for the 2/pLT-index. This header is exploited for encoding the structure
of the index. In particular, F [1] = 1 identifies the 2/4LT-index, F [1..2] = 〈0, 0〉 identifies the 2/3LT-
index, and F [1..2] = 〈0, 1〉 identifies the 2/pLT-index. For the 2/3LT-index no further information has to
be encoded about the structure of the index, so that the bit F [3] is not used. For the 2/4LT-index, the
remaining 4-bits portion of the header F [2..5] is used for identifying which kind of 2/4LT-index (among
the 12 possible ones) is contained in F (that is, which is the quadrant with resolution 4 and which is
the quadrant with resolution 3). Finally, for the 2/pLT-index, the remaining 2-bits portion of the header
F [2..4] identifies the quadrant to which the 43-bits internal description is associated.

Evaluation of a query by using a 2/nLT-index. Suppose we have a block Q and a range query
sum(r), where r is a range inside Q. Again, suppose a 2/nLT-index T is associated to the block Q. The
problem is how the range query can be estimated by using T . The technique we use is the following.
We divide the block Q into its quadrants and we compute, separately, the portions of the query sum(r)
overlapping the four quadrants. Consider the portion of the query sum(r1) (for the other portions the
techniques is identical), where r1 is obtained as intersection between r and the quadrant Q1 of Q. We
directly estimate sum(r1) in two cases: if either (1) the index T does not provide, for the quadrant Q1,
higher resolution (i.e., T indices Q1 by means of a leaf node), or (2) the portion of the query exactly
coincides with the block indexed by T at that level (i.e., Q1). In case (1) we use the the index for
estimating the value of sum(Q1) and estimate sum(r1) by using linear interpolation. In case (2) the
estimation of sum(Q1) directly provided by the index gives the estimation of sum(r1). If neither (1) nor
(2) occur, we iterate the above process, by dividing Q1 into its quadrants and, consequently the query
sum(r1), and so on.

Selection of the best 2/nLT-index. We select the best 2/nLT-index for a block q on the basis of
the actual distribution of data inside the block, by measuring the approximation error carried out by the
index. As a measure of the approximation error of an 2/nLT-index I we use:

εq(I) =

64
∑

i=1

(sum(bi) − sumnLT (bi))
2 (1)

where bi represents the i−th (among 64 ones) sub-block of q obtained by dividing its sides into 8 equal-
size ranges, and sumI(bi) represents the estimation of the sum of elements occurring in bi which can be
done by using the 2/nLT-index I and the knowledge of sum(q) (recall that the estimation of such sums
can be done as explained above).

For a block q, we choose the 2/nLT-index with minimum εnLT
q . Indeed, instead of computing εnLT

q

for all the possible indices of q, we consider as candidates only three indices: the 2/3LT-index, the
2/4LT-index which investigates the two quarters of q with largest variance (describing the quarter with
maximum variance using the highest resolution) and the 2/pLT-index which investigates the quarter with
largest variance. We denote such a set of indices associated to the block q by Best(q).

It could be easily shown that choosing the best 2/nLT-index can be done with a number of operations
constant w.r.t. the size of the block if a cumulative version of the block (i.e., an array containing all
possible sums of sub-blocks having a vertex coinciding with a vertex of the block) is available. Also
computing the variances of the quarters of the block can be done in constant time.
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3 Partitioning the Datacube: the Quad-Tree Technique

The index-based technique of the previous section can be composed with any partition technique for
improving estimation inside blocks. But its effectiveness may be dramatically increased if partition
technique is able to carry out blocks with SSE sufficiently low. Anyway, the main drawback limiting
the effectiveness of any approach producing a general partition, is the storage space required for keeping
memory of the partition itself: Advantages deriving from good partitioning risk to be deleted by the
extra storage space required for representing the structure of the compressed datacube.

A way for solving the above problem could be finding some type of partition whose representation
can be done in a compact fashion. A naive solution could be using the simplest partition (that we call
equi-range partition), consisting of dividing each dimension into ranges of equal size (possibly different
among distinct dimensions). In this way, no additional information has to be stored for representing the
partition itself. Unfortunately, studies performed in the mono-dimensional case [4] show that for strongly
skewed data such a naive technique does not give satisfactory results. Indeed, blocks so produced do not
fit at all any requirement about the variance of contained values, since the partition technique is done
“blindly”. Moreover, this partition techniques does not allows us to save the storage space associated to
blocks containing only null values (in fact, we have to spend anyway 32 bits per block). This is a serious
limitation especially in case of datacubes which are typically very sparse structures.

Thus, we have to think to more sophisticated partition techniques, covering the above limitations
but, at the same time, requiring a few storage space (w.r.t the space required for storing non structural
information).

Our approach consists of applying the indexing-based approach used inside blocks, with no approx-
imation (i.e., using 32 bits for each sum) also to the entire datacube, for generating blocks. In other
words, the partition is obtained only by recursively splitting (some) blocks into 4 sub-blocks, but depth
of the application of the splitting process, and, thus, the resolution of the aggregated representation,
depends on the variance of data inside the datacube: high resolution for non uniform regions, low reso-
lution for uniform ones. Observe that the structural information in the compressed datacube is a little
portion: we only have to keep the bit-vector representation associated to the splitting 4−ary tree (called
quad-tree), requiring just one bit per node (we will explain in more detail below in the section). The
second advantage we obtain by following this approach is that null blocks obtained during the splitting
process will not split anymore, since their SSE is null. Thus, for null region, the minimum resolution is
adopted. Moreover, the addition of a minimum storage space (1 bit per node) to structural information
allows also to save 32 bit used for the sum of the blocks in case the block is null. The third advantage of
the quad-tree approach is that we obtain a hierarchical representation of sums at different aggregation
levels, and, thus, we allow to access to low levels of the tree only for the (hopefully little) portion of the
query not evaluable with the higher levels of the tree.

We next describe in details all the above mentioned issue. In particular: (1) in Section 3.1 we define the
quad-tree of a datacube (2) in Section 3.2 we deal with the problem of searching a quad-tree minimizing
the approximation error and (3) in Section 3.3 we refine the technique proposed in the previous section
by including the usage of 2/nLT-indices in the construction of the optimal quad-tree. Concerning the
latter point, we observe that we do not limit to add to each leaf block of the quad-tree representation
a 2/nLT-index, but we propose a step-wise refinement technique allowing us to select blocks where the
application of the 2/nLT-index gives effective benefits, re-investing the saved space for increasing the
resolution of the quad-tree in some region of the datacube forcing further splits.

3.1 Quad-Tree Datacube

Given a block r = 〈σ1, σ2〉, a quad-split block of r is any block 〈ρ1, ρ2〉 such that ρi is either lh(σi) or
rh(σi). Observe that, for a given block r of D, there are 4 different quad-split blocks.

Given a block r = 〈σ1, σ2〉 of D, we denote by Q(r) the 4-tuple 〈r1, r2, r3, r4〉 such that r1 =
〈lh(σ1), rh(σ2)〉, r2 = 〈rh(σ1), rh(σ2)〉, r3 = 〈lh(σ1), lh(σ2)〉, and r4 = 〈rh(σ1), lh(σ2)〉. Q(r) is said
the quad-split partition of r. Often, with a little abuse of notation we refer to Q(r) as a set. Informally,
the quad-split partition of r contains the four quadrants of r.

Given a 4−ary tree T , we denote by Nodes(T ) the set of nodes of T , by Root(T ) the singleton
containing the root of T , Leaves(T ) the set of leaf nodes of T . We define Der(T ) as the set of nodes of
T {p ∈ Nodes(T ) | ∃q ∈ Nodes(T )∧p is the right-most child node of q}.

A quad-tree partition QTP (D) of D is a 4−ary tree whose nodes are blocks of D such that Root(QTP (D)) =
〈1..d1, 1..d2〉 and for each q ∈ Nodes (QTP (D)) \Leaves(QTP (D)) it holds that the tuple of children of
q coincides with its quad-split partition Q(q).

Given a quad-tree partition P , we denote by Store(P ) the set Nodes(P ) \ Der(P ).
A quad-tree datacube QTD(D) of D is a pair 〈P, S〉 where P is a quad-tree partition of D and S is

the set of pairs 〈p, sum(p)〉 where p ∈ Store(P ). For a node p ∈ Store(P ), we also denote by S(p) the
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value sum(p).
Note that, for each node q ∈ Der(P ), sum(q) can be derived by using the set S. Indeed, sum(q) =

sum(p) −
∑

s∈Children(p)\{q} S(s), where p is the parent node of q and Children(p) represents the set of

children nodes of p. Moreover, the value sum(p) coincides with S(p) in case p ∈ Store(P ).
Given a quad-tree datacube QTD = 〈P, S〉 of D, P is said the partition-tree of QTD, and we denote

it by Part(QTD); S is said the content set of QTD and we denote it by Cont(QTD). Given a node r of
P , it is said a terminal block if r ∈ Leaves(P ), a non-terminal block otherwise.

Example 1 In Figure 5 a graphical representation of a quad-tree on a datacube is reported. White nodes
are those of the set Der(P ). In the same figure we have also depicted the graphical representation of the
partition into blocks of D induced by P .

Figure 5: A quad-tree based partition of a datacube

The storage space for a quad-tree datacube QTD = 〈P, S〉 is the space occupied by the representations
of P and S. P can be represented by a string of bits: each bit is associated to a node of P and indicates
whether the node is a leaf or not (i.e., whether the block corresponding to the node is split or not).
Indeed, due to how the quad-split partition of non terminal blocks is done, it is not necessary to store
any further information about sides of quad-split blocks. For reasons which will be clear in Section 3.3,
the string describing the structure of the quad-tree is done by assigning 2 bits for each node of P . In
particular, 〈0, 0〉 means leaf node whereas 〈1, 1〉 means split node.

If the number of splits of P is t, then the string Str(QTD) representing P contains 4 · 2 · t + 2 bits.
The storage space for S is the space occupied by the set {si|∃pi ∈ Store(P ) ∧ 〈pi, si〉 ∈ S}. Indeed,

the information contained in S can be efficiently stored by means of an array Agg(QTD) of size at most
3 · t + 1 whose elements are the sums calculated inside each block in Store(P ). The order in which the
sums are stored in such an array expresses their connection to the blocks in Store(P ).

Example 2 Figure 6 reports the string representing the stored sums and the string describing the struc-
ture of the quad-tree of Example 1

Figure 6: The bit string encoding the structure of a quad-tree

Thus, the overall storage space upper bound for a quad-tree datacube of D with t splits is

size(QTD) = 8 · t + 2 + (3 · t + 1) · W (2)
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where W is the number of bits which are used for storing a sum. As it can be easy realized, suitably
limiting the number t of splits, a quad-tree QTD(D) of D may be dramatically more efficient in terms
of storage space than the original datacube D. Often, throughout the paper, we refer to QTD(D) also
as the compressed representation of the datacube D. The crucial issue is how to build QTD(D) in order
to maintain satisfactory accuracy in (range) query estimation. This is the matter of the next section.

Concerning the estimation of a query sum(r), where r is a block of D, we just observe that it can be
done exactly as the estimation of a query inside a block by using a 2/nLT-index as described in Section
2 (the only difference here is that sums contained in the nodes of the tree are not approximated).

3.2 Constructing an Optimal Quad-Tree Datacube

Suppose the storage space for the quad-tree datacube of D is given, say K. K limits the maximum
number t of splits of the datacube, which can be easily derived using results of Section 3.1.

The value of t defines the set of all quad-tree datacubes of D with the same number of splits. Among
this set we could choose the best partitioned datacube w.r.t. some metrics. The metrics certainly has
to be related to the approximation error, but a number of possible ways for measuring the error of a
compressed representation of a datacube can be adopted. Following a well-accepted approach in literature,
we measure the “goodness” of the compressed representation of a datacube by using its SSE.

Formally, given a quad-tree datacube QTD(D) of D of p terminal blocks q1, q2, ..., qp,

SSE(QTD(D)) =

p
∑

i=1

SSE(qi) (3)

and given a terminal block qi, such that 1 ≤ i ≤ p,

SSE(qi) =
∑

j∈qi

(D[j] − avg(qi))
2. (4)

where by
∑

j∈qi
we denote that the summation is extended to all the elements of the original datacube

D belonging to the block qi.
Clearly, the lower is SSE(QTD(D)) the better is the representation QTD(D), in terms of accuracy.
In order to reach the goal of minimizing the SSE, in favor of simplicity and speed, we chose to use

a greedy approach, accepting the possibility of obtaining a sub-optimal solution. A number of possible
greedy criteria may be considered, such as choosing the block with maximum SSE, or the block whose
split produces the maximum global SSE reduction, or the block with maximum sum, and so on. Thus,
the general algorithm for constructing the (greedy) quad-tree datacube with t splits on the datacube D,
could be parametric on the adopted greedy criterion G. However, after having compared by experiments
all the above mentioned greedy criterion, we have chosen to use the greedy criterion of the maximum
SSE. The algorithm is designed in such a way that sparsity of the original datacube is taken into account:
every time a new split is produced, 4 new born nodes are added. However, it may happen that some of
such nodes corresponds to a null block of the datacube, so we could save the 32 bits used for representing
the sum of its elements. Anyway, recall that only 3 of the 4 nodes have to be represented, since the sum
of the remaining node can be derived by difference, by using the parent node. Thus, the two bits (per
node) describing the structure of the quad-tree datacube (see Section 3.1) can be used for encoding the
different types of nodes. In particular: (1) 〈0, 0〉 means non null terminal node, (2) 〈0, 1〉 means null
terminal node, (3) 〈1, 1〉 means split node (i.e., non terminal node). Observe that it remains one available
configuration (i.e., 〈1, 0〉) which will be used in Section 3.3. Clearly, in case (1), the sum of the block is
not kept, saving thus 32 bit.

The resulting algorithm is the following:

Greedy Algorithm

Let K be (initially) the total storage space (in bits) of the compressed datacube.

begin

Q := 〈 P0, {〈〈1..d1, 1..d2〉, sum(〈1..d1, 1..d2〉)〉} 〉

K := K − 32 − 2;

// 32 bits are spent for representing the sum of the entire datacube;

// 2 bits are spent for recording the structure of the root of the quad-tree datacube;

t := 0;

// t counts the number of splits;

while (K > 0)

Select a node in Leaves(Part(Q)), say it p, such that SSE(p) = maxq∈Leaves(Part(Q)){SSE(q)};
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Let Q+(p) be the set of non null children nodes belonging to the quad-split partition of

p different from the right-most node.

K := K − |Q+(p)| · 32 − 4 · 2;

if (K ≥ 0)

Q := 〈 Split(Part(Q), p) , Cont(Q) ∪
⋃

r∈Q+(p)
{〈r, sum(r)〉 } 〉;

t := t + 1;

end if

end while

return Q;

return t;

end

Therein: (i) P0 is the partition tree containing only one node (corresponding to the whole datacube),
and (ii) the function Split takes as arguments a partition tree Pi and a leaf node l of Pi, and returns the
partition tree obtained from Pi by inserting Q(l) (i.e., the quad-split partition of l) as children nodes of
l.

Informally, the algorithm described above takes t steps for building a quad-tree datacube with t
splits. It starts from the quad-tree datacube whose partition tree has a unique node (corresponding to
the whole datacube D) and, at each step, selects the best (terminal) block (according to G) and applies
the quad-split partition to it.

From the computational complexity point of view the above algorithm is very efficient. Indeed, it
can be easily proven that the Greedy Algorithm for the construction of an optimal quad-tree datacube
is O(t · logt), where t is the number of splits. Moreover, t = O(d1 · d2).

3.3 Enhancing Quad-Tree Datacubes by 2/nLT-indices

In this section we illustrate how we modify the previous greedy algorithm for the construction of an
optimal quad-tree datacube in order to improve the estimation accuracy. This issue is addressed by
using the already described 2/nLT-indices, giving a more accurate (w.r.t. CVA) approximation of data
distributions inside terminal blocks.

Before describing the quad-tree datacube construction, we need to define how we measure both the
error carried out by the (best) 2/nLT-index and the error produced by CVA estimation (used in absence
of 2/nLT-index). Concerning the first error we evaluate:

εnLT
q = minI∈Best(q)εq(I)

where εq(I) is defined by (1) in Section 2 and Best(q) is defined in Section 2 just after (1).
Concerning CVA estimation we define:

εCV A
q =

64
∑

i=1

(sum(bi) − sumCV A(bi))
2

where q is a non null block of D, bi represents the i−th (among 64 ones) sub-block of q obtained by
dividing its sides into 8 equal-size ranges, and sumCV A(bi) represents the estimation of the sum of
elements occurring in bi done by using CVA and the knowledge of sum(q).

Consider now an intermediate step of the greedy algorithm and suppose we have fixed the total
amount of storage space, say K, required for the compressed representation. Let denote by Q = 〈P, S〉
the quad-tree datacube we are building. Suppose we break the algorithm at a certain point such that the
remainder storage space (from K), is just sufficient to apply, to each node in Leaves(P ), the most suitable
2/nLT-index. We do not halt, in general, the construction of the quad-tree datacube here. Indeed, we
check if the application of the 2/nLT-index gives a real benefit in all the terminal blocks. There might
be nodes such that the application of the 2/nLT-index fails. For detecting such nodes, we evaluate, for
each node q, the difference:

εnLT
q − εCV A

q

We expect, in the most cases, a negative value as result. But for some blocks, it might happen that CVA
works well than the indexing technique, and thus, we would have a positive value for the above difference.
How to manage such a situation? Simply we do not apply the 2/nLT-index to such nodes and we re-invest
the associated storage space (if enough) for generating new splits and going in depth, where the greedy
criterion drives us, increasing the maximum resolution of the quad-tree partition. Thus, the two bits (per
node) describing the structure of the quad-tree datacube (see Section 3.1) can be used for encoding all
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possible types of nodes. In particular: (1) 〈0, 0〉 means non null terminal node with no 2/nLT-index (i.e.,
CVA), (2) 〈0, 1〉 means null terminal node, (3) 〈1, 0〉 means non null terminal node with 2/nLT-index (4)
〈1, 1〉 means split node (i.e., non terminal node). Recall that, in case (1), the sum of the block is not
kept, saving thus 32 bit. The quad-tree datacube construction algorithm is thus designed on the basis
of the above reasoning. At each step of the construction of the quad-tree, we apply the 2/nLT-indices
only to the terminal nodes of the quad-tree for which we obtain benefits; then, at the next step, first we
select the node to be split according to the criterion of maximum SSE, then we split it; however, if the
split node was equipped with a 2/nLT-index, the index is removed and the associated storage space is
re-invested. The process halts when the remainder available storage space is not enough for generating a
new split. The resulting algorithm is formalized as follows:

Indexed Quad-Tree Datacube Construction

Let good(C) be a function receiving a set of blocks C and returning the subset of blocks q of C such that
εnLT
q − εCV A

q < 0 (i.e., the application of a 2/nLT-index is fruitful).

Let K be (initially) the total storage space (in bits) of the compressed datacube.

begin

Q := 〈 P0, {〈〈1..d1, 1..d2〉, sum(〈1..d1, 1..d2〉)〉} 〉

nLT (Q) := good({〈1..d1 , 1..d2〉}) ∩ {〈1..d1, 1..d2〉}

// nLT (Q) represents the set of blocks of the current nLT-approximable terminal blocks.

K := K − 32 − |good({〈1..d1 , 1..d2〉})| · 64 − 2;

// 32 bits are spent for representing the sum of the entire datacube;

// |good({〈1..d1 , 1..d2〉})| · 64 counts bits spent for applying the 2/nLT-index to the entire datacube;

// 2 bits are spent for recording the structure of the root of the quad-tree datacube;

t := 0;

// t counts the number of splits;

while (K ≥ 0)

Select a node in Leaves(Part(Q)), say it p, such that SSE(p) = maxq∈Leaves(Part(Q)){SSE(q)};

Let Q+(p) be the set of non null children nodes belonging

to the quad-split partition of p different from the right-most node.

K := K − |Q+(p)| · 32 − |good(Q(p))| · 64 + |(nLT (Q) ∩ {p})| · 64 − 4 · 2;

if (K ≥ 0)

Q := 〈 Split(Part(Q), p) , Cont(Q) ∪
⋃

r∈Q+(p)
{〈r, sum(r)〉 } 〉;

t := t + 1;

nLT (Q) := nLT (Q) ∪ good(Q(p)) \ (nLT (Q) ∩ {p});

end if

end while

apply the (suitable) 2/nLT-index to each block in nLT (Q);

return Q;

return t;

end

where (i) P0 is the partition tree containing only one node (corresponding to the whole datacube),
and (ii) the function Split takes as arguments a partition tree Pi and a leaf node l of Pi, and returns the
partition tree obtained from Pi by inserting Q(l) (i.e., the quad-split partition of l) as children nodes of
l. As a final remark, we observe that the computational complexity of the above greedy algorithm is the
same as the greedy algorithm described in Section 3.2.

4 Experimental Results

In this section we present some experimental results about the accuracy of estimating range sum queries
on quad-trre datacubes, comparing our method with the state-of-the-art techniques in the context of
compressed datacubes. In particular, we compare our technique with the histogram-based technique
MHIST proposed in [20], and with the wavelet-based techniques proposed respectively in [23] and [24].
In order to prove that the usage of 2/nLT-indices improves the accuracy of quad-tree datacubes, we have
tested our method with and without 2/nLT-indices. In the following we denote by QT− the quad-tree
based method not using 2/nLT-indices (that is, the method defined in Section 3.2), and by QT the
quad-tree based method using such indices (that is, the method defined in Section 3.3).
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The experiments were conducted at the same storage space.
First, we briefly describe such three techniques; next, we present the test bed used in our experiments.

MHIST (Multi-dimensional Histogram). An MHIST histogram is built by a multi-step algorithm which,
at each step, chooses the bucket which is the most in need of partitioning (as explained below), and
partitions it along one of its dimensions. The bucket B to be split is the one which is characterized by
an attribute Xi whose individual data distribution (called marginal distribution) contains two adjacent
values ej , ej+1 with the largest difference in source values. B is split along the dimension of Xi by putting
a boundary between ej and ej+1. For each bucket, three values are stored: the sum of its elements and
the positions of its front corner (w.r.t. the linear order of the cells) and its far corner. Denoting the
amount of available storage space as S, the number of buckets which can be stored is given by: bS/3c.
Wavelet-based Compression Techniques. Wavelets are mathematical transformations implementing
hierarchical decomposition of functions. They have been originally used in different research and appli-
cation contexts (like image and signal processing [17, 22]), and recently have been applied to selectivity
estimation [16] and to the approximation of OLAP range queries over data cubes [23, 24]. The compressed
representation of a data distribution is obtained in two steps. First, a wavelet transformation is applied
to the data distribution, and N wavelet coefficients are generated (the value of N depends both on the
size of the data and on the particular type of wavelet transform which has been used). Next, among
such N coefficients, the m < N most significant ones (i.e. the largest coefficients) are selected. For each
selected coefficient, two numbers are stored: its value and its position. Thus, denoting the amount of
available storage space as S, the number of buckets which can be stored is given by: bS/2c.

The compression technique described in [23] does not apply the wavelet transform directly to the
source data cube. First, the partial sum data cube is generated, and each of its cell values is replaced
with its natural logarithm (it has been shown that the combination of the logarithm transformation with
the approximation technique generally reduces the relative error of the approximation). Next, the above
described compression process is applied to such an obtained cube.

In [24] a sophisticated wavelet based technique which mainly aims to improve the I/O efficiency of
the compact data cube construction is proposed. A difference with the approach described above is that
it is applied directly on the source data cube.

In the following, the two wavelet based techniques will be denoted respectively as WAVE1 (working
on the partial sum data cube) and WAVE2.

4.1 Measuring approximation error

Let’s denote the exact answer to a sum query qi as Si, and the estimated answer as S̃i. The absolute
error of the estimated answer to qi is defined as: eabs

i = |vi − S̃i|. The relative error is defined as:

erel
i = |Si−S̃i|

max{1,Si}
. Our definition of relative error is the same as the one used in [24], and is slightly

different from the classical one, which is not defined when Si = 0.
The accuracy of the various techniques has been evaluated by measuring the average absolute error

‖ eabs ‖ and the average relative error ‖ erel ‖ of the answers to the range queries belonging to the
following query sets:

QS1 = {Sum(r)| r = 〈σ1, σ2〉 is a range such that: vrt(r) ∩ vrt(D) 6= ∅};
QS+

1 = {Sum(r)| r = 〈σ1, σ2〉 is a range such that: Sum(r) ∈ QS1 and Sum(r) > 0};
QS0

1 = QS1 \QS+
1 ;

QS2(∆1, ∆2) = {Sum(r)| r = 〈σ1, σ2〉 is such that: ub(σ1) = lb(σ1) + ∆1 and ub(σ2) = lb(σ2) + ∆2};
QS+

2 (∆1, ∆2) = {Sum(r)| r = 〈σ1, σ2〉 is a range such that: Sum(r) ∈ QS2(∆1, ∆2) and Sum(r) > 0};
QS0

2(∆1, ∆2) = QS2(∆1, ∆2) \ QS+
2 (∆1, ∆2).

That is, QS1 contains sum queries defined over ranges such that one of their corners coincides with
a corner of the data cube. QS+

1 is the subset of QS1 containing queries whose answer is not null.
QS2(∆1, ∆2) contains sum queries defined over all ranges of size ∆1 · ∆2. QS+

2 (∆1, ∆2) is the subset of
QS2 containing queries whose answer is not null. Note that the value of the relative error for a query
belonging to QS+

1 or QS+
2 (∆1, ∆2) fulfils the classical definition of relative error.

Query sets QS+
1 and QS+

2 have been introduced since it can be meaningful to treat the approximation
error of a query whose exact answer is zero differently w.r.t. the error of a query with non-zero answer.
That is, when the exact answer is zero, the absolute error of the estimated answer is a good metrics for
the approximation error: if Si = 0 it is meaningful to check whether S̃i is small or not. Thus, we use
different ways for measuring approximation errors: by computing ‖ erel ‖ over QS1 and QS2, we “put
together” the relative errors of queries whose answer is not zero with the absolute errors of queries whose
answer is zero. By computing ‖ erel ‖ over QS+

1 , QS+
2 , and ‖ eabs ‖ over QS0

1 , QS0
2 we consider the case

Si = 0 separately from the case Si 6= 0. In the following, the values of the average relative error and the
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average absolute error evaluated on a query set QS will be denoted, respectively, as: ‖ erel(QS) ‖ and
‖ eabs(QS) ‖.

4.2 Synthetic Data Sets

The synthetic data sets used in our experiments are similar to those of [24]. The synthetic data generator
populates r rectangular regions of a bi-dimensional array of size d · d, distributing into each of them a
portion of the total sum value T . The size of the dimensions of each region is randomly chosen between
lmin and lmax, and the regions are uniformly distributed in the bi-dimensional array. The total sum T
is partitioned across the r regions according to a Zipf distribution with parameter z. To populate each
region, we first generate a Zipf distribution whose parameter is randomly chosen between zmin and zmax.
Such a distribution contains as many values as the number of cells inside the region. Next, we associate
these values to the cells in such a way that the closer is a cell to the centre of the region, the larger its
value is. Outside the dense regions, some isolated non-zero values are randomly assigned to the array
cells.

4.3 Results

Experiments on synthetic data show the superiority of our technique w.r.t. other methods. We consider
the accuracy of the various methods w.r.t. to several parameters, i.e. the storage space available for the
compressed representation, the skew inside each region, the size of the queries (using query set QS2), and
we consider both dense and sparse datacubes. The storage space is expressed as the number of 32 bits
integers which are available for the compressed representation of the datacube.
Storage space We considered several sparse datacubes of size 2000 · 2000 generated setting lmin = 25,
lmax = 70, zmin = 0.5, zmax = 1.5, containing on the average about 23000 non zero cells, and dense
datacubes of size 500 · 500 with lmin = 90, lmax = 130, zmin = 0.5, zmax = 1.5, containing on the average
about 97000 non zero cells. The accuracy of the estimation w.r.t. the storage space is depicted in Fig.7
(sparse datacube) and Fig.8(dense datacube), where ‖ erel(QS+

1 ) ‖, ‖ eabs(QS0
1) ‖ and ‖ erel(QS1) ‖ for

the different techniques are compared. We used a logarithmic scale for ‖ erel(QS+
1 ) ‖ and ‖ eabs(QS0

1) ‖,
and a linear scale for ‖ erel(QS1) ‖. In particular, in the right-hand picture of Fig.7 and Fig.8 only QT
and QT− are compared, since the errors produced by the other methods are out of scale.
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Figure 7: ‖ erel(QS+
1 ) ‖, ‖ eabs(QS0

1) ‖ and ‖ erel(QS1) ‖ w.r.t. the storage space for a sparse datacube
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Skew inside regions We considered sparse datacubes of size 2000 · 2000 with lmin = 25, lmax = 70,
obtained for different values of the skew inside each region. The accuracy of the estimation (measured
using ‖ erel(QS+

1 ) ‖) w.r.t. the different skew values is depicted in picture in the left-hand side of
Fig.9. Interestingly, every techniques are more effective in handling small and large levels of skew than
intermediate ones (z = 1.5). When the skew is high, only a few values inside each region are very frequent,
so that the dense regions contains mainly these values. MHIST and QT group these values into the same
buckets causing small errors, and the wavelet decomposition applied in these regions generates a lot of
with value zero. Analogously, when the skew is small, the frequencies corresponding to different values
are nearly the same and so the data distribution is quite uniform, so that the CVA assumption generates
small errors.

Size of the query We considered the same sparse and dense datacubes used for measuring the
accuracy w.r.t. the storage space, and evaluated the accuracies of the various techniques for different
query sizes on the compressed representations obtained using 1600 4-byte integers. In the pictures in the
centre and in the right-hand side of Fig.9, ‖ erel(QS+

2 (∆, ∆)) ‖ and ‖ erel(QS2(∆, ∆)) ‖, for different
values of ∆, are shown. In Fig.10, analogous results for dense datacubes are reported.
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Figure 9: Results for sparse datacubes
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Figure 10: Results for dense datacubes on query set QS2
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