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Abstract

A new parallel implementation of genetic programming based on the cellular model is
presented and compared with both canonical genetic programming and the island model
approach. The method adopts a load balancing policy that avoids the unequal utilization of
the processors. Experimental results on benchmark problems of different complexity show the
superiority of the cellular approach with respect to the canonical sequential implementation
and the island model. A theoretical performance analysis reveals the high scalability of the
implementation realized and allows to predict the size of the population when the number

of processors and their efficiency are fixed.
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1 Introduction

Genetic programming (GP) [22, 23, 25] is an extension of genetic algorithms (G As)(and more
broadly evolutionary algorithms) that induces computer programs, usually represented as trees.
A genetic program system evolves iteratively a population of trees, having variable size, by ap-
plying variation operators. Each individual encodes a candidate solution and is associated with
a fitness value that measures the goodness-of-fit of that solution. The capability of genetic pro-
gramming in solving challenging problems, coming from different application domains, has been
largely recognized. Many problems have been solved by means of GP. For difficult problems,
however, in order to find a good solution, GP may require large number of generations by using
a population of sufficient size. The choice of population size is determined by the complexity of
the problem. It is well known that the evaluating fitness is the dominant time consuming task for
G P and evolutionary algorithms in general. The necessity of high computational resources, both
in terms of memory, to store big populations of trees, and in terms of time, to evaluate the fitness
of the individuals in the population, may degrade G P performance drastically when applied to
large difficult problems. There has been recent increasing interest in realizing high-performance
G P implementations to extend the number of problems that GP can cope with. To this end, dif-
ferent approaches to parallelize G P have been studied and proposed [6, 8, 10, 19, 20, 28, 30, 34].
An extensive survey on the subject can be found in [37]. Differently from parallel genetic algo-
rithms [2, 3], for which it has been found experimentally that their behavior is generally better
than their sequential counterpart, parallel G P implementations produce controversial outcomes

[32].



This paper presents a parallel GP implementation, called CAGE (CellulAr GEnetic pro-
gramming), on distributed-memory parallel computers based on the fine-grained cellular model.
Preliminary results of the implementation were presented in [12]. CAGE is endowed with a load
balancing mechanism that distributes the computational load among the processors equally. Ex-
periments on classical test problems show that the cellular model outperforms both the sequential
canonical implementation of GP and the parallel island model. A theoretical study of the per-
formances, based on the isoef ficiency function, reveals the high scalability of the system and
allows predicting the size of the problem when the number of processors and a given efficiency

(the percentage of utilization of processors) are fixed. The main novelties are the following:

e CAGE is the first parallel implementation of GP through the cellular model;

e the cellular implementation yields the same results of parallel genetic algorithms [2, 37],
that is, the multi-population case generally needs fewer evaluations to get the same solution

quality as a single-population case with the same total number of individuals;

e the very good performances of CAGE run counter to the widespread belief that parallel
GP is not suitable for cellular models [37] because of the varying size and complexity of the
individuals that makes cellular implementations of GP difficult both in terms of memory

and efficiency.

The paper is organized as follows. Section 2 proposes the main parallel models. Section 3
provides an overview of the parallel implementations. Section 4 presents the cellular parallel
implementation of GP. Section 5 evaluates the scalability of CAGE by using the isoefficiency
function. Section 6 presents the results of the method on some well-known benchmark problems

and validates the theoretical performance analysis on two of those problems. Furthermore, the



benefits of the proposed load balancing technique are showed. Finally, Section 7 presents a

comparison between our cellular model method and some island model implementations of G P.

2 Parallel Genetic Programming

G P belongs to the class of evolutionary algorithms and, as such, shares the same parallelization
features of evolutionary techniques. A classification of the approaches for parallelizing GP
includes three main models [2, 37]: the global model, the coarse-grained (island) model [26], and
the fine-grained (grid) model [31].

In the global model, the fitness of each individual is evaluated in parallel on different proces-
sors. A master process manages the population by assigning a subset of individuals to a number
of slave processes. During the evaluation there is no communication among the processors. At
the end of the evaluation the master collects the results and applies the variation operators to
generate the new population. This model is easy to implement but a main problem, as observed
in [37], can be a load imbalance, which decreases in the utilization of the processors due to
presence in the population of trees of different sizes.

The island model divides a population P of M individuals into N subpopulations Dy,
..., Dp, called demes, of M /N individuals. A standard GP algorithm works on each deme
and is responsible for initializing, evaluating, and evolving its own subpopulation. Subpopu-
lations are interconnected according to different communication topologies and can exchange
information periodically by migrating individuals from one subpopulation to another. The
number of individuals to migrate (migration rate), the number of generations after which mi-
gration should occur (frequency), the migration topology, and the number of subpopulations are

all parameters of the method that must be set.



In the grid model (also called cellular [41]) each individual is associated with a spatial loca-
tion on a low-dimensional grid. The population is considered as a system of active individuals
that interact only with their direct neighbors. Different neighborhoods can be defined for the
cells. The most common neighborhoods in the two-dimensional case are the 4-neighbor (von
Neumann neighborhood) consisting of the North, South, East, West neighbors and 8-neighbor
(Moore neighborhood) consisting of the same neighbors augmented with the diagonal neighbors.
In the ideal case, one processor is assigned to each grid point, thus fitness evaluation is per-
formed simultaneously for all the individuals. In practical implementations, however, this is not
true because the number of processors generally does not coincide with the number of points
on the grid. Selection, reproduction, and mating take place locally within the neighborhood.
Information diffuses slowly across the grid, giving rise to the formation of semi-isolated niches of
individuals having similar characteristics. The choice of the individual to mate with the central
individual and the replacement of the latter with one of the offspring can be accomplished in
several ways.

Ref. [37] noted that parallel genetic algorithms are faster than their sequential counterpart
and benefit from the multi population approach in two different aspects. First, the problem
of premature convergence is reduced thanks to the spatial isolation of the subpopulations that
co-evolve independently but promote local search. Second, the same solution quality can be
obtained in fewer generations, by using many populations instead of a single population with
the same total number of individuals.

The same results, however, have not been obtained for the coarse-grained parallel implemen-
tations of GP. In fact, although Koza [1, 24] reported a super-linear speedup for the 5-parity

problem, for other problems, Punch [32] found poorer results of convergence with respect to the



canonical GP. A systematic study on the performances of parallel genetic programming has
not been conducted. Punch [32] was the first to analyze the behavior of distributed GP with
respect to sequential GP. In the next section, we review the main parallel implementations of
GP. Next, after the description of CAGE, we compare the few experimental results available in

the literature with our approach.

3 Related Work

The most famous coarse-grained parallel implementation of GP is due to Koza and Andre [24, 1].
They used a PC 486 computer as host and a network of 64 transputers as processing nodes.
For the Fven-5 parity problem, they obtained a super-linear speedup using a population of
32000 individuals, 500 on each node and a migration rate of 8% in the four directions of each
subpopulation at each generation.

Juillé and Pollack [19, 20] described a parallel implementation of GP on a SIMD system.
Each SIMD processor simulated a computer program by using a simple instruction set defined
specifically for GP. S-expressions were evaluated efficiently, precompiling them in a postfix
program. The authors, for few classical problems, reported the execution time for one run and
the average execution time for one generation. For cos2z, using a population of 4096 individuals,
one per processor, they found a solution after an average of 17.5 generations with an average
execution time of 30.48 seconds.

Stoffel and Spector [35] described a high-performance GP system (HiGP) based on a virtual
stack machine (similar to [20]) that executed GP programs represented as fixed-length strings.
HiGP manipulated and generated linear programs instead of tree-structured S-expressions. Each

gene in a chromosome corresponded to an operator of the virtual machine. They executed 100



runs for a symbolic regression problem for a maximum of 30 generations and obtained good time
performances. Nothing, however, was said about convergence results.

Dracopoulos and Kent [5, 6] described two different implementations of parallel G P based on
the Bulk Synchronous Parallel (BSP) model [39] of parallel computation. The first implementa-
tion adopted the master-slave paradigm. A master process performed the standard sequential
GP algorithm and the slave processes assisted the master only during the fitness evaluation.
The slaves received equal portions of the population from the master, evaluated the fitness of
individuals, and returned them back to the master. The second implementation realized the
island model. Each process was considered an island and, every 10 generations, the top 10%
of individuals were migrated. Two different communication topologies were considered: the
ring and the star. The results presented regards only the speedup obtained for the Artificial
Ant Los Altos Hills problem by running these implementations for 50 generations. The authors
experiments showed that the coarse-grained parallel implementation achieved better speedups
than the global version. The convergence results of the two approaches were not reported.

Niwa and Iba [28] described a parallel implementation of GP, named Distributed Genetic
Programming (DGP), based on the island model and realized on a MIMD parallel system AP-
1000+ consisting of 32 processors. The global population was distributed among the processing
nodes, each of which executed a canonical GP on its subpopulation. At every generation,
the best individual of a subpopulation was sent asynchronously to its adjacent subpopulations
and, for each subpopulation, the worst individual was replaced by this one if the fitness of
the received individual was better than the best individual of the current subpopulation. The
authors used three different communication topologies: ring type, one-way torus, and two-way

torus. Experimental results on three problems (discovery of trigonometric identities, predicting



a chaotic time series and Boolean concept formation) revealed the ring topology as the best. A
comparison between DGP and CAGE is offered in section 7.

Oussaidéne et al. [29, 30] presented a parallel implementation of GP on a distributed-memory
machine that used the master-slave model. The Parallel Genetic Programming Scheme (PGPS)
had a master process whose task is to manage the GP algorithm, that is, it created the initial
population, applied the variation operators, and performed the selection of the individuals for
the reproduction phase. The slave processes controlled fitness evaluation, thus they received the
parse trees from the master process to evaluate. The trees were packed as strings in a buffer
and sent to the slaves. Each slave process unpacked the buffer content and rebuilt the parse tree
in memory. In order to distribute the computational load among the processing nodes equally,
two different load balancing algorithms (one static and another one dynamic) were used. The
dynamic scheduling algorithm gave better speedup results as compared to the static one. PGPS
has been applied to the evolution of trading strategies to infer robust trading models [29, 30].

Punch [32] discussed the conflicting results on the use of multiple populations in GP, in
contrast with the indisputable benefits obtained in genetic algorithms with the same approach.
He argued that there are problem-specific factors that affect the multiple-population approach.
He presented experiments for the Ant Santa Fe and the royal tree problem. A comparison
between his results and ours is offered in section 7.

Salhi et al. [34] reported a parallel implementation of GP based on a random island model,
designed specifically for symbolic regression problems. In such a model, individuals migrate at
random. This is possible because two new operators, import and export are introduced. They
have the role of supporting communication among the islands and have associated a probability

like the other variation operators. For two symbolic regression problems the authors obtained



a superlinear speedup, and for cos2x they obtained a linear speedup. Convergence results were
not reported.

Tongchim and Chongstitvatana [38] presented a coarse-grained parallel implementation of
G P with asynchronous migration and applied it on a mobile robot navigation problem. They
obtained a superlinear speedup by using a population size of 6000 individuals, while migrating
the top 5% of individuals of each subpopulation with a frequency depending on the number of
processors used.

Ferndndez et al. [8] presented an experimental study to verify the influence of two param-
eters, number of subpopulations and size of each population, on the performances of parallel
genetic programming. A standard GP tool was suitably modified to allow the coarse-grained
parallelization of GP. The tool, described in [7], used communication primitives of the PV M
(Parallel Virtual Machine) and adopted a client/server model where the server has the task
of managing input/output buffers and of choosing the communication topology (that can be
dynamically changed), while the clients constitute the subpopulations. The results reported for
the Even-5 parity and a regression problem were evaluated with respect to the number of nodes
evaluated in a GP tree, called computational effort. For these two problems they found optimal
ranges for parameter values. Such values, however, are problem dependent.

An improvement of the tool described in [7] was presented in [10] and consisted of a par-
allel GP kernel that used M PI (Message Passing Interface) message passing system, and a
graphical-user interface. The communication between the processes/subpopulations and the
master process was synchronous. A new communication topology, the random one, among the
subpopulations, was added to the ring and mesh topologies. In the random topology, the master

process received a block of individuals and sent them to a randomly chosen subpopulation. This



software tool was used in [9] to study the influence of the communication topology and the fre-
quency of migration on the performances of parallel GP. Three test problems were considered:
Even-5 parity, Ant Santa Fe and a real world problem. The authors found that the random
and ring topology were better than the mesh for the ant problem. For the Even-5 parity, if the
population size was large, the grid was the best, while, if the population size was small, the ring
and the random were better. With regard to migration, a number of individuals of about 10%
the population size, every 5-10 generations, appeared to be the best values for all the problems

considered.

4 Parallel implementation of CAGE

This section describes the implementation of CAGFE on distributed-memory parallel computers.
To parallelize GP, CAGFE uses the cellular model. The cellular model is fully distributed
with no need of any global control structure and it is naturally suited for implementation on
parallel computers. It introduces fundamental changes in the way GP works. In this model, the
individuals of the population are located on a specific position in a toroidal two-dimensional grid
and the selection and mating operations are performed, cell by cell, only among the individual
assigned to a cell and its neighbors. This local reproduction has the effect of introducing an
intensive communication among the individuals that could influence negatively the performance
of the parallel implementation of GP. Moreover, unlike genetic algorithms, where the size of
individuals is fixed, the genetic programs are individuals of varying sizes and shapes. This
requires a large amount of local memory and introduces an unbalanced computational load per
grid point. Therefore, an efficient representation of the program trees must be adopted and a

load balancing algorithm must be employed to maintain the same computational load among
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the processing nodes.

The best way to overcome the drawbacks associated with the implementation of the cellular
model on a general-purpose distributed-memory parallel computer is to use a partitioning tech-
nique based on domain decomposition in conjunction with the Single- Program-Multiple-Data
(SPMD) programming model. According to this model, an application on N processing el-
ements (PEs) is composed of N similar processes, each of which operates on a different set
of data. For an effective implementation, data should be partitioned such that communica-
tion takes place locally and the computation load be balanced among the PEs. This approach
increases the granularity of the cellular model, transforming it from a fine-grained model to
a coarse-grained model. In fact, instead of assigning only one individual to a processor, the
individuals are grouped by slicing up the grid and assigning a slice of the population to a node.

C AGE implements the cellular GP model using a one-dimensional domain decomposition
(in the z direction) of the grid and an explicit message passing to exchange information among
the domains. This decomposition is more efficient than a two-dimensional decomposition. In
fact, in the two-dimensional decomposition, the number of messages sent is higher, even though
the size of the messages is smaller. On the other hand, in one-dimensional decomposition, the
number of messages sent is fewer but their size is greater. Considering that generally in a send
operation the startup time is much greater than the transfer time, the second approach is more
efficient than the first. The concurrent program that implements the architecture of CAGE is
composed of a set of identical slice processes. No coordinator process is necessary because the
computational model is decentralized completely. Each slice process, which contains a portion of
elements of the grid, runs on a single PFE of the parallel machine and executes the code, shown

in figure 1, on each subgrid point, thus updating all the individuals of the subpopulation.
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1. Read from a file the configuration parameters
2. Generate a random sub-population
3. Evaluate the individuals of the sub-population

4.  while not numGenerations do

5. update boundary data

6. for x =1 to width

7. for y =1 to height

8. select an individual k (located at position [x’,y’])

neighboring with i (located at position [x,y]);

9. generate offspring from i and k ;
10. apply the user-defined replacement policy to update i;
11. mutate i with probability pmut;
12. evaluate the individual i;
end for
end for

end while

Figure 1: Pseudocode of the slice process.

Each slice process uses the parameters read from a file (step 1) to configure the GP algorithm
that must be executed on each subgrid point. The parameters concern the population size, the
max depth that the trees can have after the crossover, the parsimony factor, the number of
iterations, the number of neighbors of each individual, and the replacement policy. We have
implemented three replacement policies: direct (the best of the offspring always replaces the
current individual), greedy (the replacement occurs only if offspring is fitter), and probabilistic
(the replacement happens according to difference of the fitness between parent and offspring
(simulated annealing)[11]).

Simulated annealing [21] is a randomized technique for finding a near-optimal approximate

12



solution of difficult combinatorial optimization problems that reflects the annealing process that
takes place in nature. A SA algorithm starts with a randomly generated candidate solution.
Then, it repeatedly attempts to find a better solution by moving to a neighbor with higher
fitness. In order to avoid getting trapped in poor local optima, simulated annealing strategy
occasionally allows for uphill moves to solutions of lower fitness by using a temperature parameter
to control the acceptance of the moves. At the beginning, the temperature has a high value and
then a cooling schedule reduces its value. The new solution is kept if it has a better fitness
than the previous solution, otherwise it is accepted with a probability depending on the current
temperature. As the temperature becomes cooler, it is less likely that bad solutions are accepted
and that good solutions are discarded. In our implementation, a parameter «, which has a value
between 0.95 and 1.0, is chosen to reduce the temperature at each generation and such that the
temperature assumes the final value when NumGenerations steps have been executed. The
best of the offspring replaces the current individual only if the difference between their fitness
is below the current temperature. This deterministic criterion [17] has been shown to be less
expensive and performs equivalently as the random technique.

The size of the subpopulation of each slice process is calculated by dividing the population
for the number of the processors on which CAGE is executed. Each slice process updates the
individuals belonging to its subgrid sequentially. Initially, in each process, a random subpopu-
lation is generated (step 2.) and its fitness is evaluated (step 3.). Then, steps 6-12 are executed
for generating the new subpopulation for numGenerations iterations. The variables width and
height define the boundaries of the 2D subgrid that is contained in a process. It should be
noted that two copies of the data are maintained for calculating the new population. In fact, as

each element of the current population is used many times, the current population cannot be
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overwritten.

Because of the data decomposition, physically neighboring portions of data are allocated to
different processes. To improve the performances and to reduce the overhead due to the remote
communications, we introduced a local copy of boundary data in each process. This avoids
remote communication more than once on the same data. Boundary data are exchanged at each
iteration before breeding the new population. In our implementation, the processes form a logical
ring and each processor determines its right- and left-neighboring processes. The communication
between processes is local since only the outermost individuals need to communicate between
the slice processes.

All the communications are performed using the M PI (Message Passing Interface) portable
message passing system so that CAGFE can be executed across different hardware platforms.
Since the processes are connected according to a ring architecture and each process has a lim-
ited buffer for storing boundary data, we use asynchronous communication in order to avoid
processors to idle.

Each processor has two send buffers (SRbuf,SLbuf) and two receive buffers (RRbuf,
RLbuf). The SRbuf and SLbuf buffers correspond to the outermost (right and left) individuals
of the subgrid. The receive buffers are added to the subgrid in order to obtain a bordered
grid. The exchange of the boundary data occurs, in each process, by two asynchronous send
operations followed by two asynchronous receive operations to the right- and left-neighboring
processes. After this, each process waits until the asynchronous operations complete.

Figure 2 shows the pseudocode for this data movement operation.

C AGE uses the standard tool for GP, sgpcl.1, a simple GP in the C language, available

freely at [36], to apply the GP algorithm to each grid point. However, in order to meet the
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MPI_Isend (SRbuf, right);
MPI_Isend(SLbuf, left);
MPI_Irecv(RRbuf, right);
MPI_ Irecv(RLbuf, left);

MPI_Waitall();

Figure 2: Pseudocode for data movement.

requirements of the cellular GP algorithm, a number of modifications were introduced.

We used the same data structure of sgpcl.l to store a tree in each cell. The structure
that stores the population was transformed from a one-dimensional array to a two-dimensional
one and we duplicated this structure in order to store the current and the new generated tree.
The selection procedure was replaced with one that uses only the neighborhood cells and three
replacement policies were added. Crossover is performed between the current tree and the
best tree in the neighborhood. Two procedures to pack and unpack the trees, that must be
sent/received to/from the other processes, were added. The pack procedure is used to send
the trees of the boundary data to the neighboring processes in a linearized form. We use a
breadth-first traversal to linearize the trees of the boundary data into an array. However, before
exchanging the array containing the linearized trees, we send another array containing the size
of the trees to the neighboring processes in order to allow an optimized allocation of the space
in memory of the receiving nodes. Immediately after, the unpack procedure rebuilds the data
and stores them in the new processor’s private address space.

In many GP applications, the size of the trees of the population is very variable and the
computational load is completely unbalanced. To equally distribute the computational load

among the processing nodes, CAGE introduces an intelligent partitioning of the grid. The
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FaH O Fod1l Fold 2

Figure 3: Load balancing strategy: each fold is divided in four strips.

partitioning strategy is a form of block-cyclic decomposition [4]. The idea is to split the grid
virtually in a number of folds and assign equal parts of each fold to each of the processors of the
multicomputer.

According to this strategy the cells partitioning is static, whereas the number of cells mapped
in each partition is dynamic. The grid of cells is first divided into f vertical folds, where f is
defined by the user. Each fold is then partitioned into p strips, where p is the number of
processors. In this way, each strip contains one or more contiguous columns of the grid.

To better specify the load balancing strategy, we number the slice processes from 0 to p - 1
and the grid columns from 1 to N. The block-cyclic data distribution maps the index of the k"

column of the grid onto a process P; with 0 < i < p — 1 according to the following formula:

kE—i=] | mod p
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where N, = f—]\; is the number of columns in each strip.

Figure 3 shows the layout of a grid (N = 12) partitioned in three folds (f = 3) each one
split in four strips (p = 4); in this case each strip contains one column and each process P; has
three elements.

This task distribution based on folds requires each process P; to communicate only with
processes P;_1 and FP,.1, so a simple logical ring connecting all the processors is sufficient to
accomplish all the communications. The number of folds and processes should be chosen with
caution, since the more strips are used, the bigger the communication overhead among the
processing elements becomes.

The next section presents a theoretical performance analysis of CAGE. This analysis allows
us to evaluate the performance of CAGE when the population size and the number of processors
are increased. Note that the quality of the solution obtained is not related to this kind of

analysis.

5 Performance Analysis

In this section, we analyze the performance of our parallel implementation of GP. We first focus
on genetic programs in which we do not consider the effects of the load balancing algorithm.
Then we extend our model to handle the strategy of load balancing presented in the previous
section. Analyzing the performance of a given parallel algorithm/architecture requires a method
to evaluate scalability. The isoefficiency function [16] is one among many parallel performance
metrics that measure scalability. It indicates how the problem size n must grow as the num-
ber of processor m increases in order to obtain a given efficiency F. It relates problem size to

the number of processors required to maintain the efficiency of a system, and lets us to deter-
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mine scalability with respect to the number of processors, their speed, and the communication
bandwidth of the interconnection network.

We assume that GP works on a population of size A X B points, where A is the width and
B is the height of the grid. Furthermore, s represents the average dimension of the trees of
the population. On a sequential machine we can model the computation time 77 for evolving a

population of genetic programs for one generation as:
Ty = tas + AB(tf + tup)

where t; is the average computation time required to perform the evaluation phase at a single
grid point; ¢, is the average time required at each generation to perform some simple operations,
such as the increment of the iterations and the zero setting of some variables; t,, is the time
necessary to update, after one evaluation, the state of each cell of the grid with the new genetic

program and the corresponding value of the fitness. So, defining t’f =ty + typ we have:
Ty = tas + ABt} (1)

The parallel execution time of the GP program on a distributed memory parallel machine with
p processors can be modelled by summing up the computation time needed to evaluate the
genetic programs on a partition A/p of the grid, the time for packing and unpacking the trees,
representing the genetic programs, and the communication time needed to exchange the buffers
containing the trees of the boundary data to the neighboring processes. Therefore, the parallel

execution time can be estimated as follows:
A
T, = (tas + EBtf) + Tpack + Tunpack + Tezc (2)

where T, is the time spent to pack each tree from its memory representation into two linearized

data structures, containing the size and the nodes of each tree respectively; Ty ,pack is the time
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necessary to rebuild the equivalent trees in memory of the received data from the neighboring
processors, and Teg. is the time required to exchange the borders.

The time for packing and unpacking is:
Tpack + Tunpack = Bs(tl + t2) = BSt:mm:D (3)

where ¢; is the time to visit a tree and build the linearized data structures and ¢, is the time to
rebuild the tree. Let tyynp = t1 +t2. To take into account the communication time, we consider
that each task must exchange with two neighboring tasks the borders of its own portion and
receive those of the neighbors for a total of four messages. As we must exchange two data
structure (trees and their size), the time required to exchange the borders can be estimated,

according to Hockney’s model [18], as:
Type = A(ts + sBty) + Aty + 4Bty) = 8ty + 4Bty (4 + s) (4)

where s is the average size of a tree, 5 is the startup time, that is, the time required to initiate
the communication, and t; is the incremental transmission time per byte, which is determined
by the physical bandwidth of the communication channel linking the source and destination

processors. Therefore we can represent the parallel execution time as:
A,
Tp = tap + B[Etf + 4tb(4 + 3) + Stpunp] (5)

where t,, = 8t + 45 + @. The o parameter includes all the times that do not depend on the
size of the grid and the communication among processors.

The overhead function Ty of a parallel system represents the total sum of all overhead incurred
by the p processors during the parallel execution of the algorithm and it depends on the problem

size. In our case Tj is given by:

Ty = pTp, — T = p(tap +4Bty(4 + s) + Bstpunp) (6)
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under the really plausible hypothesis that ¢, is negligible with respect to the total time. The

speedup on p processors can be evaluated as S = % and the efficiency as £ = %. Using the

expressions 1 and 5, the speedup and the efficiency can be expressed respectively as:

T tas + ABt,
g =L = f (7)
Ty tap + B[St} + 4t (4 + 5) + Stpuny)
S tas + ABt,
RS vl ®)
p ABt T+ p[4Bty(4 + s) + sBtpunp + tap)

For scalable parallel systems, the problem size T; must grow to keep the efficiency fixed, as p
increases. To maintain efficiency to fixed value (between 0 and 1), the following relation must

be satisfied:

1

AB = 7 KTy (9)

(6) where k = % is a constant depending on the efficiency to be maintained. From expression

(1) and (6) we obtain:
ABt 2= kp(tep + 4Bty(4 + 5) + Bstpunp) (10)

The isoefficiency function is determined by abstracting the problem size as a function of p,
through algebraic manipulations in the equation (9). In our case, examining the equation (10),
we can notice that doubling the number of processors, we must double the width of the grid, in
order to maintain the efficiency to a constant value. The isoefficiency function for our system is
therefore ©(p). Since the amount of computation increases linearly with respect to p in order
to keep the efficiency constant, our implementation is highly scalable. From equation (7) we

deduce that for a fixed problem size, the speedup saturates at:

tas + ABt’f
tap + B4ty (4 + ) + stpunp)

(11)
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when increasing to infinity the number p of processors. Moreover, from equation (10) we can
estimate the size of the problem that we should allocate on p processors to obtain a fixed value

of efficiency. For example, to have an efficiency of 90% on 24 processors, A should be:

9 % 24(tap + 4Bty(4 + 5) + Bstpunp)

!/

A

1%

(12)

The previous analysis does not consider the effects of the load balancing strategy. Now we
modify the model in order to include the load balancing strategy. The main changes of the
model concern the estimation of the time to pack and unpack the trees in the equation (3) and
the time T¢,., required to exchange the borders in the equation (4). In fact, we now do not
have to exchange only the border data regarding a contiguous portion of the grid (A/p) but
the border data of all the strips allocated on a generic process. Considering that the number of
strips mapped on a process is equal to the number of folds f, the equations (3) and (4) will be

modified as follows:

Tpack + Tunpack = fBStpunp (13)

Teze = 4(ts + Sthb) + 4(t5 + 4thb) = 8ts + 4thb(4 + 5) (14)

Using this expression we obtain for the overhead function T the following expression:

To = p* Ty — Ty = p(tap + 4Bty(4 + 5) + Bstyunp) (15)

that used in the expression 9 shows as our implementation is still scalable.
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6 Results

This section presents experimental and theoretical results of our cellular parallel implementation
on some well-known test problems. Furthermore, the benefits of the load balancing technique
introduced in section 4 are shown. The parallel implementation was realized on a CRAY T3E
parallel machine with 256 processors based on DEC Alpha processor with 128 Mbytes of memory.

We used sgpcl.l [36] as the sequential implementation of genetic programming.

6.1 Experimental Analysis

This subsection presents a detailed description of each test problem. The convergence results
obtained with CAGFE when the greedy replacement policy was adopted are compared with
sequential GP. We also present the convergence behavior of CAGFE when the direct, greedy,
and probabilistic replacement policies were used and the influence of the population size on the
convergence of the method. The parameters of the method are shown in table 1 and functions
and terminal symbols for each problem are described in table 2. Each problem was run 20 times
for 100 generations. For all the experiments, we used the M oore neighborhood and a population
size of 3200, except for Symbolic Regression. For this problem, the size of the population was
800 individuals.

Symbolic Regression ([22] par. 7.3). The symbolic regression problem consists in searching
for a non-trivial mathematical expression that, given a set of values z; for the independent
variable(s), always assumes the corresponding value y; for the dependent variable(s) of a given
mathematical function. In the first experiment, the target function was the polynomial z* +
23 4+ 22 + 2. A sample of 20 data points (z;,7;) was generated by randomly choosing the values

of the independent variable z in the interval [-1,1].

22



Table 1: CAGE Parameters

Maximum number of generations 100
Probability of crossover 0.8
Probability of choosing internal points for crossover 0.1
Probability of mutation 0.1
Probability of reproduction 0.1
Generative Method for initial random population Ramped
Maximum depth for a new tree 6
Max depth for a tree after crossover 17
Max depth of a tree for mutation 4
Parsimony factor 0.0

Table 2: Terminal symbols and functions for each problem.

Problem Name

Terminal symbols

Functions

Symbolic Regression || {X} {+, -, *,%, sin, cos, exp,rlog}
Discovery of trig. id. || {X,1.0} {+, -, *,%, sin}
Symbolic Integration || {X } {+, -, *,%, sin, cos, exp,rlog}

Even-4 parity

{do,d1,d2,d3}

{AND, OR, NAND, NOR}

Even-5 parity

{do,dy,d>,d3,ds}

{AND, OR, NAND, NOR}

Ant(Santa Fe)

{Forward, Right, Left}

{IfFoodAhead,Prog2, Prog3}

Royal Tree

X}

{A7B7C7D7E }
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Discovery of trigonometric identities. ([22] par. 10.1) In the second experiment, our
aim was to discover a trigonometric identity for cos2z. 20 values z; of the independent variable z
were chosen randomly in the interval [0,27] and the corresponding value y; = cos2z; computed.
The 20 pairs (z;,y;) constituted the fitness cases. The fitness was then computed as the sum of
the absolute value of the difference between y; and the value generated by the program on z;.

Symbolic Integration. ([22] par. 10.5) The symbolic integration problem consists in
searching for a symbolic mathematical expression that is the integral of a given curve. In this
experiment the curve was cosz + 2z + 1 so the genetic program had to obtain sinz + 22 + x,
given 50 pairs (z;,y;) in the interval [0,27].

For these three problems it can be useful to adopt the hits criterion suggested by Koza ([22]
p. 163), which consists in accepting that the numerical value returned by the S-expression differs
from the correct value within a small tolerance (e.g. 0.01). Actually, for symbolic integration,
this tolerance value is essential to find a solution since the integral is approximated with trape-
zoids, thus we adopted the criterion for this experiment. With regard to the other two, we show
the results with and without the hits criterion.

Even-4 parity. ([22] par. 20.4) The Even-J parity problem consists in deciding the parity
of a set of 4 bits. A Boolean function receives 4 Boolean variables and it returns TRUE only
if an even number of variables is true. Thus the goal function to discover is f(z1, 22,23, 24)

= T129%3T4 V T1L9T3%4 V T122X3Ta V T1T2T3%4 V T1Z2%3T4 V T129T3T4 V T1 T2 Z3 Za. The
fitness cases explored were the 24 combinations of the variables. The fitness was the sum of the
Hamming distances between the goal function and the solution found.

Even-5 parity. ([22] par. 20.5) The Even-5 parity problem consists in deciding the parity

of a set of 5 bits. The 2° combinations of the 5 Boolean variables constituted the fitness cases
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and the fitness was the same as Even-4 parity problem.

Ant Santa Fe. ([22] par. 7.2) The artificial ant problem consists in finding the best list
of moves that an ant can execute on a 32 X 32 matrix in order to eat all the pieces of food put
on the grid. In this experiment we used the Santa Fe trail that contains 89 food particles. The
fitness function was obtained by diminishing the number of food particles by one every time the
ant arrived in a cell containing food. The ant can see the food only if it is in the cell ahead
in its same direction (I f FoodAhead move); otherwise it can move randomly (left or right) for
two (Progn2) or three (Progn3) moves.

Royal Tree. The royal tree problem was invented by Punch et al. [33] with the aim of
having at disposal a benchmark problem for testing the effectiveness of GP, analogously to the
royal road problems defined by Holland for genetic algorithms [27]. This problem consists of a
single base function that can be specialized to obtain the desired level of difficulty and it has
a unique solution tree. A series of functions, a, b, ¢, etc., with increasing arity is defined. An
a function has arity 1, a b function has arity 2, and so on. A perfect tree is defined for each
function. A level-e tree has depth 5 and 326 nodes. A score for each subtree id defined and the
raw fitness is the score of the root. This score is computed by summing the weighted scores of
its direct children. We run the experiments on a level-e royal tree.

These two last problems are known to be purposely difficult for distributed GP. Next, for
each of the above problems, experimental results are reported and discussed. Besides the figures
that show the convergence results, we adopted the same method of Punch [32] to present the
results of the experiments as the number of Wins and Losses obtained by running canonical
GP and CAGE for 20 times. The wins are denoted as W : (z,y), where z represents the number

of optimal solutions found before 100 generations and y the average generation in which the
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optimal solution was found. The losses are denoted as L : (q,r,s), where ¢ is the number of
losses (no optimal solution found before 100 generations) r is the average best-of-run fitness,
and s is the average generation when the best-of-run occurred. Tables 3 and 4 summarize all
the experiments.

Figure 4 shows the results for symbolic regression. In particular, in figure 4(a) the comparison
between the convergence of canonical sequential GP and CAGE is presented. CAGE reaches a
good fitness value more rapidly than canonical GP and it obtains the exact solution in 18 out of
the 20 runs at, approximately, the 11th generation, while canonical GP finds the solution in 11
runs at the 42th generation. If we introduce the hits criterion (0.01), the results do not change
for either method. This behavior is expected since when the methods fail, the average fitness
is 0.25 for CAGE, and 0.52 for canonical GP. Figure 4(b) shows the CAGE behavior when the
three replacement policies are used. The greedy and probabilistic policies are similar. In figures
4(b) and (c) a logarithmic scale is used for a better view of the fitness values. Figure 4(c) shows
the influence of the population size on the convergence of the method. It is clear that the bigger
is the population the faster is the convergence.

Figure 5 shows the results for the discovery of trigonometric identities. For this problem
(figure 5(a)) canonical GP is not able to find any solution before 100 generations. The best
value found is 0.32 at about the 45th generation. CAGE finds the exact solution in 7 runs and
reaches a value of 0.0029, when it does not find it, at approximately the 83th generation. If
we adopt the hits criterion, canonical GP again fails for all the 20 runs while CAGE succeeds
for all the 20 runs at approximately the 21th generation. Notice that all the figures regards
the experiments without the hits criterion. Figure 5(b) shows the CAGE behavior when the

three replacement policies are used. The greedy approach is the best. Figure 5(c) shows the
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convergence of the method with different population sizes. As the figure shows, with 6400
individuals the convergence is much faster and the fitness has an average value of 0.001 at about
the 95th generation. Figures 5(b) and (c) also use a logarithmic scale.

Figure 6 shows the results for symbolic integration. In figure 6(a) the comparison between the
convergence of canonical sequential GP and CAGE is presented. CAGE in about 5 generations
reaches a fitness value that canonical GP is not able to find in 100 generations. Furthermore
canonical GP finds the solution only in one run at the 93th generation with an average fitness
value of 3.7, while CAGE obtains the solution in 7 runs at about the 69th generation. When
CAGE does not reach the exact solution, it has an average fitness value of 0.45 generation at
the 74th generation.

Figures 7 and 8 reports the results for Even-4 and Even-5 problems. It is well known that
this family of problems is very difficult. Koza [22] (p.532) states that when Even-5 was run with
a population of 4000 individuals for 51 generations no solution was found after 20 runs. It was
necessary to double the population to have a solution at the eighth run. With our parameters,
canonical GP could not find any solution for both Even-4 and Even-5. CAGE, on the contrary,
obtained the solution in 17 out of 20 runs for Even-4 and it was successful in two runs for
Even-5. This behavior is evident from the figures 7(a) and 8(a). Canonical GP obtained a
fitness value that is far from the solution and it was not able to appreciably improve it before
the 100th generation. CAGE did not find the solution in only two cases for Even-4. For Even-5
it obtained the solution in two runs but, when it failed to find it, the average best-of-run fitness
was very low. Figure 8(c) shows the convergence improvement when populations of increasing
sizes are used. For instance, when CAGE ran with a population of 6400 individuals, at the

100th generation the average fitness wass 1.77, while with 1600 individuals it was 3.10.
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Table 3: Results for Canonical GP

Canonical GP

Problem Name Wins Losses Mean | Deviation
Symbolic Regression || W:(11,42.18) | L:(9,0.54,44.78) 0.24 0.27
Discovery of trig. id. || W:(0) L:(20,0.32,44.60) 0.32 0.19
Symbolic Integration || W:(1,93) L:(19,3.76,46.95) 3.57 2.50
Even-4 parity W:(0) L:(20,4.65,40.15) 4.65 0.71
Even-5 parity W:(0) L:(20,12.55,50.95) 12.55 0.52
Ant(Santa Fe) W:(2,62.50) | L:(18,27.50,35.72) | 24.75 | 10.49
Royal Tree W:(0) L:(20,122763,45.65) | 122763 | 24.40

In figure 9 the convergence results of C AGFE with respect to canonical GP are shown for the
Ant Santa Fe problem. The figure clearly points out that, after 100 generations, canonical GP
is far from the solution, while CAGFE failed only once in finding the solution. By doubling the
population the convergence is much faster and CAGFE always succeeded before an average of 55
generations. Also for the Royal tree problem (figure 10(a)) canonical GP always failed, while
C AGE obtains the solution for all the 20 runs at, approximately, the 78th generation. Figure
10(c) shows the convergence when 800, 1600 and 3200 individuals are used and it clearly points
out that, by increasing the population size, the method has a better convergence.

For all the seven problems C AGE outperformed canonical GP. This result allows us to state
that the parallel cellular genetic programming implementation, analogously to parallel genetic
algorithms [37], needed fewer evaluations to get the same solution quality than for the single

population case with the same total number of individuals.
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Table 4: Results of CAGE

CAGE

Problem Name Wins Losses Mean | Deviation

Symbolic Regression | W:(18,10.83) | L:(2,0.25,31.00) 0.025 0.076

Discovery of trig. id. || W:(7,18.43) L:(13,0.0026,76.15) | 0.002 0.002

Symbolic Integration | W:(7,69.43) L:(13,0.45,74.15) 0.30 0.44

Even-4 parity W:(17,60.12) | L:(3,1.0,35.67) 0.15 0.36
Even-5 parity W:(2,96.5) | L:(18,2.72,82.22) | 2.45 | 1.43
Ant(Santa Fe) W:(19,55.10) | L:(1,9.0,71.0) 0.45 1.96
Royal Tree W:(20,77.70) | L:(0) 0 0

6.2 Experimental performance evaluation

To illustrate the use of our scalability prediction technique and to assess its accuracy, we present
two examples: the Even-4 parity problem and the Ant problem. For both problems we considered
a population of 128x13 cells.

Table 5 shows, for the Even-4 parity problem, the estimated values of the parameters neces-
sary to evaluate the parallel execution time T}, for different number of processors using equation
(2). The t’f value was estimated by measuring its computational cost for different problem sizes
(i.e. changing the A value) and then using the Matlab toolkit to automatically calculate the
least-squares fit of the equation that defines t’f with the experimental data. Likewise, we es-
timated ?,,np. fep Was estimated by measuring its computational cost for different number of
processors and then calculating the least-squares fit of the equation that defines ¢,, with the
experimental data. The t; and #;, values for the CRAY T3E machine were estimated as already

done in a previous work for a Meiko CS-2 machine [14]. The average size s of the trees was
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Table 5: Even-4 parity problem parameters (Cray T3E)

Parameter | Value(usec)
t'f 921
tpunp 52.6
tap 11
ts 15
ty 0.00300

18.35 nodes. Table 6 shows the measured and predicted execution times, and the relative error
associated with each prediction for the Even-4 problem.

For the Ant problem, the average size s of the trees was 19.84 nodes and the values of
the constants to evaluate 7}, are shown in table 7. Table 8 shows the measured and predicted
execution times, and the relative error associated with each prediction for the Ant problem.

The results described in tables 6 and 8 show a good agreement between the model and
the experiments. In fact, for the Even-4 problem the measured times were, on average, 6%
off the predicted and, on average, 7% off for the Ant problem. The relative error is smaller
in the second example because the computation component of the model dominates. Since
it is the most accurately estimated model term, the prediction becomes increasingly accurate
with larger problems. A more accurate prediction model is obtainable using a refined model of
communication cost [15].

From equation 8, we calculate that the value of the speedup is bound to 122.02 for the Even-4
problem and to 64.9 for the Ant problem. The lower value of speedup for the Ant problem is

due to the much larger communication/computation ratio. In fact, the average computation
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Table 6: Cray T3E execution time predictions for 100 iterations (Even-4 parity problem)

Num. procs | Num. individuals | Measured | Predicted | Relative Error
per node (sec) (sec) (percent)

1 1664 - - -

2 832 - - -

4 416 41.706 39.518 5.09
8 208 22.593 20.425 9.60
16 104 11.262 10.847 3.69
32 52 6.556 6.057 7.60
64 26 3.844 3.663 4.71

time, required to perform the evaluation phase at a single grid point in the Ant problem, is
about the half of the time required for the Even-4 problem. We can obtain a better value of
speedup increasing the granularity, that is, allocating a larger number of cells for node. We can
use formula 7 to calculate the exact size of A to increase the speedup. For example, from this
formula, we obtain a size of A equal to 1135 to have an efficiency of 90% on 64 processors. The
model can be helpful to calculate the correct size of the population of the GP in order to obtain
a given efficiency for a specific architecture. Furthermore, we can determinate, for a specific

population, the optimal number of processors that allow reaching a specific efficiency.

6.3 Evaluation of the load balancing strategy

This subsection briefly presents some results concerning the load balancing strategy proposed

in section 4. Before implementing the strategy we have analyzed the size of the trees of the
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Table 7: Ant problem parameters (Cray T3E)

Parameter | Value(usec)
t'f 530
tpunp 52.6
tap 11
ts 15
ty 0.00300

population for different problems and iterations. Figure 11 shows a snapshot of the size of the
trees for different iterations (namely 10th, 20th, 30th and 40th) for the Even-4 problem, using
a 50 x 30 grid. The size of the trees is very variable and the computational load is completely
unbalanced. This behavior is similar for many of the problems used in our analysis. We have
implemented and tested the load balancing strategy for all the problems of our test suite. A
complete description of the results is presented in [13]. 20 % improvement on average has
been obtained for the most of the problems. This result confirms the importance of a load
balancing strategy for parallel GP implementations in order to avoid an inefficient utilization of

the processors. Note that all the experiments presented in the previous subsection were obtained

without load balancing.

7 Comparison with the island model

This section compares the results presented by Niwa and Iba [28], those reported by Punch [32],

and by Fernindez et al. [8], with those obtained by CAGE. To compare our method with these
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Table 8: Cray T3E execution time predictions for 100 iterations (Ant problem)

Num. procs | Num. individuals | Measured | Predicted | Relative Error
per node (sec) (sec) (percent)

1 1664 - - -

2 832 44.222 45.491 -2.87
4 416 25.029 23.430 6.39
8 208 12.753 12.400 2.76
16 104 6.891 6.885 0.08
32 52 4.805 4.128 14.10
64 26 2.404 2.749 -14.35

other island-model implementations, we ran CAGE with the same parameters of each approach.
However, since we did not run their software, a number of details could be different and influence

the quality of the results. For example, Punch used the lilgp package [33], while Ferndndez et

al. used the GPC++ package [40].

Figures 12(a) and (b) report the results obtained by CAGE and by Niwa and Iba [28] for the
discovery of trigonometric identities problem. In figure 12(a), for a better view of the results,
the fitness is displayed when it assumes values between 0 and 1. Figure 12(b) was obtained by
scanning the figure in [28]. With regard to this problem, the better implementation Niwa and
Iba obtained (ring topology) gives a fitness value of 0.5 at the 20th generation, of 0.2 at about
the 30th, and 0.1 at about the 62th. CAGE, instead, obtained a fitness value of 0.5 at the 10th

generation, of 0.2 at about the 15th, and 0.1 at the 20th. We do not know how many wins and

losses they had.
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Table 9: wins and losses

Punch CAGE
Problem Name || Wins Losses Wins Losses
Ant(Santa Fe) W:(7,240) | L:(9,73,181) W:(13,94) L:(3, 28.00, 50.00)
Royal Tree W:(0) L:(16,10005,338) | W:(15,119) | L:(1, 98304, 129)

Figures 13(a) and (b) show the results obtained by CAGE and by Niwa and Iba [28] for the
Even-4 parity problem. For this problem, Niwa and Iba do not always find the correct Boolean
function not even after 500 generations. CAGE fails in only three runs before 100 generations
with an average best-of-run fitness of 1 at the average generation 36 when the best-of-run
occurred. Unfortunately we do not have these kind of details with regard to the implementation
of Niwa and Iba. At the 100th generation, their average fitness value is about 1.1.

To compare our results with those of Punch [32], we computed the wins and losses for the ant
and royal tree problems by running CAGE the same number of times (16) as Punch reported,
the same population size (1000) and for 500 generations. Punch obtained the best result for
the ant problem by using a ring of 5 populations with proportional selection and no mutation,
while for the royal tree with over selection and no mutation. Table 9 compares these results with
CAGE’s and it confirms the better performances of CAGFE with respect to the island approach.
The single-population results that Punch obtained by using the GP tool lilgp [33] are better
than the multi-population results for these two problems. The best results of his canonical GP
are W : (10,109) and L : (6,73,300) for the ant problem and W : (8,233), L : (8,9064,159) for
the royal tree problem. Even compared with these results, CAGE performed better.

Finally we compared CAGE results for the Even-5 parity problem with those obtained by
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Figure 14: Effort computed for the Even-5 parity problem.

Ferndndez et al. [8], which introduced the computational effort as a measure to compare results
of the same problem. The computational effort is the number of nodes that are evaluated in
a GP tree. Let N and I be the number of times an experiment has been executed and the
number of individuals of the population, respectively. Furthermore let AVG_LENGTH be the
average number of nodes per individual. Then the required effort in a particular generation is
I xNx AVG_LENGTH. Figure 14 shows the effort required by CAGE. An effort equal to 7
million is required to reach a fitness value of about 24. In [8], with the same effort, the fitness

value is about 11. Thus CAGE requires fewer evaluations.

8 Conclusions

A fine-grained parallel implementation of GP through cellular model on distributed-memory
parallel computers, has been presented. Experimental results showed very good performances
of the proposed approach. The experimental study on a variety of benchmark problems has

substantiated the validity of the cellular implementation over both the island model and the
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sequential single-population approach. The implementation of a load balancing strategy allows

CAGE a very good utilization of the computing resources. Finally, a theoretical performance

analysis based on the isoefficiency function permitted us to classify CAGE as a highly scalable

system and to predict execution time, speedup, and efficiency.
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