

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

An Incremental Clustering Scheme for Duplicate Detection in

Large Databases

Eugenio Cesario, Francesco Folino, Giuseppe Manco, Luigi Pontieri

RT-ICAR-CS-05-01 Gennaio 2005

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

An Incremental Clustering Scheme for Duplicate
Detection in Large Databases

Eugenio Cesario, Francesco Folino, Giuseppe Manco, Luigi Pontieri

ICAR-CNR
Via Bucci 41c, I87036 Rende (CS), Italy

{cesario,ffolino,manco,pontieri}@icar.cnr.it

Abstract. We propose an incremental algorithm for clustering duplicate
tuples in large databases, which allows to assign any new tuple t to the
cluster containing the database tuples which are most similar to t (and
hence likely refer to the same real-world entity t is associated with). The
core of the approach is a hash-based indexing technique that tends to
assign highly similar objects to the same buckets. Empirical evaluation
proves that the proposed method allows to gain considerable efficiency
improvement over a state-of-art index structure for searches in metric
spaces.

1 Introduction

Recognizing similarities in large collections of data is a major issue in the context
of information integration systems. An important challenge in such a setting is to
discover and properly manage duplicate tuples, i.e., syntactically different tuples
which are actually identical from a semantical viewpoint, for they referring to the
same real-world entity. The problem is particularly challenging when information
on object identity is carried by textual fields, which are usually subject to various
kinds of heterogeneity and mismatches across different information sources.

In the literature, this problem was addressed by different research communi-
ties, under a variety of names (such as, e.g., Merge/Purge, Record Linkage, De-
duplication, Entity-Name Matching, Object Identification). Most of the proposed
approaches mainly attempt to devise effective matching or clustering methods for
recognizing duplicated tuples, based on some similarity functions (see, e.g., [1–7,
1]), while paying minor attention to scalability. However, efficiency and scal-
ability issues do play a predominant role in many application contexts where
large data volumes are involved, specially when the object-identification task is
part of an interactive application, requiring short response times. In such a case,
any approach requiring quadratic time in the database size or producing many
random disk accesses ends up being unsuitable.

In this paper our main objective is the analysis of techniques for duplicate
detection in large databases. We approach the problem from a clustering per-
spective: given a set of tuples, our goal is to recognize subsets of tuples that,
with a high level of certainty, correspond to the same real-world entity. Three

main features make the problem at hand significantly different from previous
approaches: (i)tuples are represented as (small) sequences of tokens, where the
set of possible tokens is high; (ii) the number of clusters is too high to allow the
adoption of traditional clustering techniques, and (iii) the streaming (constantly
increasing) nature of the data imposes linear-time algorithms for clustering.

In particular, in sec. 2, we first formalize the discovery of duplicate objects as
a specific clustering problem. Then, sec. 3 illustrates an efficient technique that
is able to discover all clusters containing duplicate tuples in an incremental way.
The core of the approach is an effective indexing technique which, for any newly
arrived tuple t, efficiently retrieves the tuples in the database which are most
similar t (and which likely refer to the same real-world entity t is associated
with), based on a hashing technique assigning highly similar objects to the same
buckets. Finally, in sec. 5, we show experimental results demonstrating that the
hashing-based method allows to obtain considerable improvement in efficiency
w.r.t. a state-of-art indexing approach [8], which allow for searching in general
metric spaces.

2 Problem Statement

In the following we introduce some basic notation and preliminary definitions,
which will be used in the rest of the paper. An item domainM = {a1, a2, . . . , am}
is a collection of items. In our context m can be very large, or it may even be
m = ∞. Typically, M represents the set of all possible strings available from
a given alphabet. Moreover, we assume that M is associated with an ordering
relationship ≺M and a distance function distM(·, ·) :M×M 7→ [0, 1], expressing
the degree of dissimilarity between two generic items ai and aj .

A descriptor R = {A1, . . . , An} is a set of labels. A descriptor corresponds
to a database schema, with the simplification that each attribute label Ai, has
the same domain M associated.1 Then, given a descriptor R = {A1, . . . , An},
a tuple τR is defined as {A1 : t1;A2 : t2; . . . ;An : tn}, where for each i = 1..n
ti ⊆ M, itemset ti is called field itemset of τR for attribute Ai, and is denoted
by τR.Ai. We shall omit the subscript denoting the related descriptor, when it
be clear from the context.

Moreover, a distance function dist(τ iRi , τ
j
Rj

) ∈ [0, 1] can be defined for com-

paring two any tuples τ iRi and τ jRj , by suitably combining the distance values
computed through distM on the values of matching fields. Finally, a database is
a set of tuples DB = {τ1R1

, . . . , τNRN }, such that τ iRi is a tuple for Ri.

The Entity Resolution problem can be formally stated as the problem of trans-
forming a database DB into a new database DB′, such that the following condi-
tions hold:

1 This is justified by the fact that we aim at reconstructing semantic similarities from
a syntactic viewpoint only.

1. (Schema reconciliation) There exist a descriptor R such that, for each
tuple τ iRi ∈ DB, a new tuple τ iR ∈ DB

′′ can be defined, with the same

contents of τ iRi restructured according to R.

2. (Data reconciliation) Given a dissimilarity function dist(τ iRi , τ
j
Rj

) be-
tween two generic tuples, there exists a partition of DB” into groups P =
{C1, . . . , Ck} such that

k∑
u=1

∑
τ i
R
,τj
R
∈Cu

dist(τ iR, τ
j
R)

is minimized, and

k∑
u=1

k∑
v=1,v 6=u

∑
τ i
R
∈Cu,τjR∈Cv

dist(τ iR, τ
j
R)

is maximized.
3. (Identity definition) Given a partition P = {C1, . . . , Ck} of DB”, for each
Ci there exists a tuple τ iR such that

τ iR = argminτR

∑
τj
R
∈Ci

dist(τR, τ
j
R)

and DB′ = {τ1R, . . . , τkR}.

In the rest of the paper we focus on the Data Reconciliation problem: assum-
ing that a database DB is available which contains only tuples defined according
a fixed descriptor, we aim at grouping them in order to recognize duplicate tu-
ples. In practice, this is essentially a clustering problem, but it is formulated
in a specific situation, as the clusters to be discovered actually correspond to
all the distinct real-world entities which are represented in DB, in a redundant
and inconsistent manner. Indeed, a basic assumption characterizing the frame-
work is that there are several pairs of tuples in DB, which are quite dissimilar
from each other. This can be formalized by assuming that the size of the set
{〈τ iR, τ

j
R〉 | dist(τ iR, τ

j
R) ' 1 } is O(N2) . Thus, we can expect the number k of

clusters to be very high – typically, O(N). Moreover, we intend to cope with
the clustering problem in an incremental setting, where a new database DB∆
must be integrated with a previously reconciled one DB. Practically speaking,
the cost of clustering tuples in DB∆ must be (almost) independent of the size
N of DB.

3 A Clustering Approach to Data Reconciliation

The key issue in the problem described above is the capability of detecting
cluster membership for an element τR by means of a minimal number of com-
parisons. This can be achieved by exploiting a proper k-NN technique, in which

the k nearest neighbors of τR are efficiently extracted from the given database.
Algorithm 1 summarizes such a clustering procedure, which is parametric with
respect to the distance function used for comparing two any tuples. Notably, the
clustering method is defined in an incremental way, for it allowing to integrate a
new set of tuples into a previously computed partition. Indeed, besides the set of
new tuples DB∆, the algorithm receives a a database DB and an associated par-
tition P. As a result, it will produce a new partition P ′ of DB ∪DB∆, obtained
by adapting P with the tuples from DB∆. To this purpose, each tuple in DB∆
is associated with a cluster in P, detected through a sort of nearest-neighbor
classification scheme. The basic intuition in the proposed approach is that, since
the number of clusters is high (typically O(N)), then it suffices to compare few
“close” neighbors in order to obtain the appropriate cluster membership. In this
respect, the approach is similar to the one proposed in [9], the main difference
being that the nearest-neighbor classification scheme detects canopies “on-the-
fly”, i.e., without building them explicitly. The two remaining input parameters
k and δ are meant to rule such a classification task: k is the maximal number
of neighbors to be considered when assigning τ to a cluster, and δ is a thresh-
old representing an upper bound for the distance between τ and any of such
neighbors.

Generate-Clusters(P,DB∆,k,δ)
Output: A partition P′ of DB ∪ DB∆;
1: P′ ← P; DB′ ← DB;
2: Let P′ = {C1, . . . , Cm} and DB∆ = {τ1, . . . , τn};
3: for i = 1 . . . n do
4: neighbors ← kNearestNeighbor(DB′, τ i, k, δ);
5: Cj ← MostLikelyClass(neighbors,P′);

6: DB′ ← DB′ ∪ {τ i};
7: if Cj = ∅ then

8: create a new cluster Cm+1 = {τ i};
9: P′ ← P′ ∪ {Cm+1};
10: else
11: Cj ← Cj ∪ {τ i};
12: Propagate(neighbors,P′);
13: end if
14: end for

Propagate(S,P)
P1: for all τ ∈ S do
P2: neighbors ← kNearestNeighbor(DB, τ, k);
P3: C ← MostLikelyClass(neighbors,P);
P4: if τ 6∈ C then
P5: C ← C ∪ {τ};
P6: Propagate(neighbors,P);
P7: end if
P8: end for

Fig. 1. Clustering algorithm

More in detail, for each tuple τ i in DB to be clustered, the neighbors of τ i are
retrieved by means of procedure kNearestNeighbor (line 4), which performs
a search for the k most prominent neighbors with a bounded range δ and using

τ i as query object. The cluster membership for τ i is determined by calling the
MostLikelyClass procedure (line 5), which selects a most likely cluster among
the ones associated with the neighbors of τ i. If τ i is estimated not to belong to
any existing cluster with a sufficient degree of certainty, τ i is assigned to a
newly generated cluster; otherwise, τ i is added to the cluster identified. Such an
estimation is carried out via a voting strategy, where for each neighbor τ i of τ a
contribution 1

dist (τ i,τ)
is added to the score of the cluster containing τ i. Tuple

τ is eventually assigned to the cluster that gets the highest score, provided that
this exceeds a given threshold (0.5, in our usual setting).

Whenever the new tuple is assigned to a preexistent cluster, procedure Prop-
agate, scans the neighbors of τ i in order to possibly revise their cluster mem-
bership, as it could be affected by the insertion of τ i. In particular, for each tuple
τ ′ in the input set, the membership of τ ′ is estimated by using again procedure
MostLikelyClass; in the case that the selected cluster does not coincide with
the one which actually contains τ ′, the membership of τ ′ is modified and the
procedure Propagate is recursively applied to the neighbors of τ . In principle,
since this task might be iterated over each reassigned tuple, it could have a linear
complexity w.r.t. the size of DB. However, in a typical Entity Resolution setting,
where clusters are quite distant from each others, such a propagation affects only
a reduced number of tuples, and terminates in a low number of iterations.

The complexity of Algorithm 1, given the size N of DB and M of DB∆, de-
pends on the three major tasks: the search for neighbors (line 4, having cost n),
the voting procedure (line 5, having a cost proportional to k), and the propaga-
tion of cluster labels (line 12, having a cost proportional to n, according to the
discussion above). Since they are performed for each tuple in DB∆, the overall
complexity is O(M(n + k)). Since k is O(1), it is the main contribution to the
complexity of the clustering procedure is due to the kNearestNeighbor pro-
cedure. Therefore, the efforts towards computational savings must be addressed
when designing a method for neighbor searches. Our main goal is doing this task
by minimizing the number of accesses to the database, and avoiding the compu-
tation of all pair-wise distances. As discussed in next section, this goal can be
achieved through a suitable indexing structure, allowing for retrieving neighbor
in sub-linear time.

4 Optimizing the Search for Neighbors

As previously described, procedure kNearestNeighbor plays a fundamental
role in the performance of the algorithm specified in fig. 1. In order to efficiently
retrieve the neighbors of the current tuple, we can resort to an indexing scheme
that can support the execution of similarity queries, and can be incrementally
populated with new tuples.

To this purpose we introduce a novel hashing-based indexing scheme, which
is expected to guarantee, in the average, the execution of neighbor searches
in a time independent of the number of database tuples. The proposed index
structure, called Hash Index, is represented as a pair H = 〈FI,ES〉, where:

– FI, referred to as Feature Index, is a component that associates any tuple
with a set of codes, each of them referencing a bucket that contains similar
tuples, for they sharing a relevant set of properly defined features;

– ES, referred to as External Store, is a component that is responsible for effi-
ciently storing such buckets and ensuring an optimized usage of disk pages.

The basic idea underlying the definition of this indexing scheme is to map
any tuple to a set of features, so that the similarity between two tuples can be
evaluated by simply looking at their respective features. Under such a perspec-
tive, the role of the hashing technique is to maintain the association between
tuples and the corresponding features, so that the neighbors of a tuple τ can
be efficiently computed, by simply retrieving the tuples that appear in the same
buckets which correspond to τ . For the sake of simplicity, we next illustrate how
the approach can be defined in the case only a single attribute is used for com-
paring two tuples. In such a situation, the overall indexing structure has to be
built only on the basis on the values of the selected attribute. Let τ be a tuple
and ti be the field itemset representing the value of τ for a chosen attribute Ai,
i.e., ti = τ.Ai. In this context, we assume that the dissimilarity of two tuples τ
and τ ′ is measured by taking the Jaccard distance between their associated field
itemset for the attribute Ai, i.e. dist(τ, τ ′) = distJ(τ.Ai, τ

′.Ai) = 1− τ.Ai∩τ ′.Ai
τ.Ai∪τ ′.Ai

A simple strategy for mapping a tuple τ to a set of features consists in ex-
tracting a set of “subkeys” from ti, and associating each of these subkeys with a
bucket, which will actually contain all the tuples sharing the given subkey with
τ . More precisely, a subkey of ti is any non-empty subset of ti. Moreover, an
m-subkey of ti, with 0 < m ≤ |ti|, is a subkey of ti consisting of exactly m items.
The indexing scheme works as follows. For a given tuple τ , a significant set of
subkeys is extracted for an itemset ti corresponding to the focusing attribute
Ai. Then, each selected subkey s is exploited in searching for tuples sharing s
in H. Figure 4 illustrates, in more details, how the hash-based indexing scheme
can be exploited to support nearest-neighbor searches. The algorithm works on
the basis of two main parameters: the number k of desired neighbors, and the
maximum allowed distance δ from the query object τ . As noticed above, we re-
strict ourselves to a case where the distance between tuples is defined on just one
attribute, which we indicate as an additional parameter A within the algorithm.

The algorithm uses two auxiliary structures, namely the set S of subkeys to be
generated, and the set neighbors of neighbor tuples to return as an answer. For
convenience, both structures are organized as priority queues: in particular, keys
in S are sorted according to their size, whereas tuples in neighbors are sorted
according to their distance from the query tuple τ . Moreover, we fix the capacity
of neighbors to k, as we are only interested in the most prominent k neighbors.

Lines 4-17 specify how the set neighbors is filled. First, a subkey x is extracted
(line 5), and the associated bucket is identified by employing the FI.Search
method, which actually returns the logical address h of this bucket. If a bucket
is associated with s, then lines 10-14 iteratively extract the tuples stored in the
bucket (using ES.Read) and try to insert them within the neighbors structure.
In particular, a tuple τe can be inserted within neighbors in two cases: (a) either

kNearestNeighbors(DB,τ ,k,δ)
1: Let t = τ.A, where A is the attribute indexed by FI and

ES;
2: S ← {s | s is a δ-significant subkey of t };
3: neighbors ← ∅; neighbors.capacity ← k;
4: while S 6= ∅ do
5: x = S.Extract();
6: h ← FI .Search(x);
7: if (h = 0) then
8: h← FI .Insert(x);
9: else
10: while τe = ES .Read(h) do
11: if neighbors.size < k or dist(τe, τ) <

neighbors.Max() then
12: neighbors.Insert(τe, dist(τe, τ));
13: end if
14: end while
15: end if
16: ES .Insert(τ, h);
17: end while
18: return neighbors;

Fig. 2. The kNearestNeighbor procedure.

the size of neighbors does not exceed its capacity, or (b) neighbors capacity is
k, but it contains an element whose distance from τ is higher than the distance
between τe and τ . In both cases, τe is inserted in neighbors (line 12). If needed,
the element with highest distance from τ is removed from neighbors, in order to
make room for τe. As a side effect, the algorithm updates the index structure
(i.e., FI and ES), in order to correctly refer to the novel tuple τ .

A major point is that both the indexing of τ and the retrieval of its neighbors
are based on generating δ-significant subkeys of the field itemset t of τ corre-
sponding to the attribute A used for indexing purposes. Clearly, the number
of subkeys for a given itemset is exponential in the cardinality of the itemset
itself. Therefore, the generation of subkeys for an itemset t should be bounded
to produce only a minimal set of “significant” subkeys, which yet allow to re-
trieve all the itemsets whose distance from t is lower than a specified threshold
δ. Notice that, if we restrict ourselves to 1-subkeys, then the indexing schemes
behaves exactly like a inverted-lists index. However, inverted indexes do not
guarantee that a minimal set of candidate tuples is retrieved. In particular, we
say that a subkey s of a given itemset t is δ-significant if distJ(t, s) ≤ δ. Clearly
enough, all the δ-significant subkeys of t coincide with the m-subkeys of t, for
b|t| × (1− δ)c ≤ m ≤ |t|.

It is easy to see that any itemset t′ such that distJ(t, t′) ≤ δ must contain at
least one of the δ-significant subkeys of t. Indeed, distJ(t, t′) ≤ δ implies that:

|t ∩ t′| ≥ |t ∪ t′| × (1− δ) ≥ |t| × (1− δ)

thus requiring that |t∩ t′| is a δ-significant subkey of t. In other words, searching
for tuples that exhibit at least one of the δ-significant subkeys derived from a
tuple τ represents a strategy for retrieving all the neighbors of τ without scanning
the whole database. Notice that the above strategy guarantees the minimality

Fig. 3. Hash Index structure

condition: indeed, if τe.A and τ.A contain a sensible number of different items,
then their δ-significant subkeys do not overlap. As a consequence, the probability
that τe is retrieved for comparison with τ is low.

As an example, let us consider the index structure exemplified in fig. 3. The
index contains the tuples τ i = {A : {a, b, c, d}, . . .}, τ j = {A : {a, b, c, h}, . . .}
and τk = {A : {a, c, f}, . . .}, which are inserted by fixing δ = 0.1 as distance
threshold. Observe that each subkey is associated with a bucket containing the
tuples that exhibit the subkey: for example, the bucket linked by the {a, b, c}
subkey contains both τ i and τ j whereas the bucket linked by {a, c, f} contains
τk. When searching for the neighbors of a new tuple τr = {A : {a, b, c, f}, . . .},
the algorithm generates the δ-significant subkeys of τr, listed in the left of the
figure. By querying the index structure with the subkeys, we obtain τ i, τ j (by
means of {a, b, c}), and τk (by means of {a, c, f}).

5 Experimental Results

In this section the behavior of the proposed approach is studied with the help
of an empirical evaluation, performed on both synthesized and real data. To
this purpose, we equip the Generate-Clusters algorithm in fig. 1 with both
the index structure illustrated in sec. 4 and a state-of-the-art indexing structure
for proximity searches, named M-Tree [8]. Experiments are aimed at evaluating
whether an appropriate number of clusters is generated, as well as whether the
hashing-based indexing method allows for efficiency improvement w.r.t. the ap-
proach based on M-Trees. As a matter of fact, the M-tree is an index/storage
structure, which looks like a n-ary tree, and is capable of indexing generic ob-
jects, provided that a suitable distance metric is defined for comparing them.
The interesting point of the M-tree structure is that it represents a balanced hi-
erarchical clustering structure, in which each cluster has a fixed size (related to
the size of a page to be stored on disk). Thus, a similarity search can be accom-
plished by traversing the tree, and ignoring subtrees reputed uninteresting for

(a) No of distances on real data (b) No of I/O Reads on real data

(c) No of I/O Writes on real data (d) FP-rate vs. data size on synthe-
sized data

Fig. 4. Summary of evaluation.

the search purpose. However, the benefits of this indexing structure are likely
to degrade in a typical entity resolution scenario, where most of the internal
nodes in the tree tend to correspond to a quite “heterogeneous” set of tuples,
and hence a high number of levels, i.e., nearly linear in the number of distinct
entities, is required to suitably partition the whole data set. Further details on
M-Trees can be found in [8].

The results of the clustering algorithm in the two cases are analysedby con-
sidering three parameters:

– The number of distances computed during the selection of the neighbors.
This is an effective evaluation parameter, which represents how many com-
parisons are performed during an insert/select operation and provides for an
estimation of the CPU overhead.

– The number of disk pages read during the selection of objects. In principle,
the hash-based approach could cause continuous leaps in the read operations,
even if a small number of comparisons is needed.

– The number of disk pages written during the updating of the index. Since
the index has to be incrementally maintained, it is important to evaluate the
cost of such a maintenance.

The clustering algorithm was applied to the task of de-duplicating a real-world
data set consisting of 105,140 tuples, representing information about customers
of an Italian bank. Each tuple exhibit an average of 8 relevant neighbors, and,
in general, distances between tuples exhibit high values.

The performance of the clustering algorithm with regards to the adoption of
both the M-Tree and the Hash index structure are compared in fig. 4, where
the efficiency measures have been averaged on 5,000 tuples. We used the M-tree
implementation available on the Web, tuned by setting a node size of 4K and a
Random split policy. In both techniques we fixed δ = 0.2 and k = 10.

Fig. 4 shows the efficiency performances of the approaches w.r.t. the data size.
In particular, the horizontal axis represents the portion of data examined so far.
The evaluation of the incrementality of the approach can be made by observing
whether the increase of the measure under consideration is bounded. This clearly
does not happen for the number of distances and I/O Reads in the case of the
M-tree approach which are roughly linear in the tree size. On the other side,
performance metrics for the Hash are bounded by a constant factor, as expected.
An opposite trend can be seen in the number of disk writes. This is mainly due
to the different philosophy underlying the two structures. The number of disk
writes in the Hash method depends on the number of δ-relevant subkeys. The
larger is the set of subkeys, the higher is the number of writes needed in order
to update the index. On the contrary, the M-tree is a balanced structure whose
update causes (at most) a number of writes which is proportional to the depth
of the tree. Indeed, in order to update its structure, the M-tree has to select the
most appropriate position for the current tuple. After a suitable node has been
selected the tree inserts the tuple in the node and writes it back to the disk.
Overheads occur only when the insertion causes a node overflow: the node is
split and the insertion is propagated upward in the tree.

Effectiveness can be evaluated by measuring the overlap between the expected
number of clusters and the actual number of clusters computed. Clearly, the
latter depends on the k and δ parameters, which directly influence an indexing
scheme in performing neighbor searches. Hence, an important issue is whether
the neighbors retrieved from the index suffice to perform a correct classification.
To this purpose, we introduce the FP-rate measure, denoted by FP-rate(τ,DB),
and representing the rate of (False Positives) tuples in DB which are retrieved
by the indexing scheme but are not relevant to clustering τ , i.e., they should not
belong to the same cluster as τ . A global FP-rate measure can be computed by
averaging the FP-rates locally to each tuple τ i and the pertaining portion of
the database DB∆ (i.e., the dataset DB i = {τ1, . . . , τi−1}).

Effectiveness was measured over synthesized data. Tuples were generated ac-
cording to the following parameters: (i) the average size T of the itemsets as-
sociated with each attribute in the tuple; (ii) the size of M; (iii) the number
of clusters C; (iv) the number of tuples N . Each cluster was obtained by ran-
domly choosing a subset of the items in M. Then, each tuple in the cluster was
generated by choosing items from the subset associated with the cluster. In or-

der to guarantee the right degree of overlap, each new tuple was generated as a
variation of a previously generated one.

We tested the hash based approach for increasing values of T . Figure 4(d)
summarizes the values of FP-rate. As we can see, the rate is constant (fairly low)
except in the case T = 5. The latter exhibits higher values mainly because the
size of the itemsets contained in the tuples causes the generation of 1-subkeys,
which cause a large number of false positives.

6 Conclusions and Future Works

In this paper, we addressed the problem of recognizing duplicate information,
specifically focusing on scalability and incrementality issues. The core of the pro-
posed approach is an incremental clustering algorithm, which aims at discovering
clusters of duplicate tuples, based on a novel hashing-based indexing technique.
An empirical analysis, both on synthesized and on real data, showed the validity
of the approach, which does exhibit a considerable improvement in performance
with respect to a traditional, state-of-the-art, index structure.

The proposed approach is expected to efficiently recognizing duplicate tuples
which are similar according to set-based similarity functions. In particular, the
effectiveness of the approach is based on the adoption of the Jaccard distance,
which does not exploit the dissimilarity distM between tokens. Experiments
on real data, show that the above dissimilarity works well in practical cases.
Nevertheless, the approach could in principle fail in cases where a more refined
dissimilarity functions is needed [3, 10].

To this purpose, we are currently studying a more refined key-generation tech-
nique for the algorithm in fig. 3, which allows a controlled level of approximation
in the search for the nearest neighbors of a tuple. Extremely interesting to this
context is the family of Locality-Sensitive hashing functions [11–13], which are
guaranteed to assign two any objects to the same buckets with a probability
which is directly related to their degree of mutual similarity. Preliminary results
still show the suitability of the approach proposed in this paper, at the cost of
a relatively low number of missed neighbors (FN-rate).

References

1. Monge, A.E., Elkan, C.P.: The field matching problem: Algorithms and applica-
tions. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. (1996)
267–270

2. Monge, A.E., Elkan, C.P.: An efficient domain-independent algorithm for detect-
ing approximately duplicate database records. In: Proc. SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery. (1997) 23–29

3. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. IJCAI Workshop on Information Inte-
gration on the Web. (2003) 73–78

4. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining. (2003) 39–48

5. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.
(2002) 269–278

6. Cohen, W., Richman, J.: Learning to match and cluster entity names. In: Proc.
ACM SIGIR Workshop on Mathematical/Formal Methods in Information Re-
trieval. (2001)

7. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: Proc. 8th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining. (2002) 475–480

8. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proc. of the 23rd Int. Conf. on Very Large Data Bases.
(1997) 426–435

9. McCallum, A.K., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional
data sets with application to reference matching. In: Proc. 6th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining. (2000) 169–178

10. Bilenko, M., et al.: Adaptive name matching in information integration. IEEE
Intelligent Systems 18(5) (2003) 16–23

11. Indyk, P., Motwani, R.: Approximate nearest neighbor - towards removing the
curse of dimensionality. In: Proc. 30th Symposium on Theory of Computing. (1998)
604–613

12. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering on the
web. In: Proc. 6th Int.WWW Conf. (1997) 1157–1166

13. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proc. 25th Conf. on Very Large Data Bases. (1999) 518–529

