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ABSTRACT
Geological data management and mining are critical areas of
modern-day geology research. High throughput and high in-
formation content are two important aspects of any geopro-
cessing application. Geological data mining is efficient and
faster if the geological data are indexed, stored and mined
on content. A challenge for geological information mining is
the distributed nature of the resources. Grid computing has
emerged as an important new field in the distributed com-
puting arena. It focuses on intensive resource sharing, in-
novative applications, and in some cases, high performance
orientation. This paper describes how Grids technologies
can be used to develop an infrastructure for developing geo-
processing applications that use content-based information
mining. We present the MOSÈ system, a Grid-enabled prob-
lem solving environment (PSE) able to support the activities
that concern the mining of geophysical data and modelling
and simulation of spatio-temporal phenomena for analyzing
and managing the identification and the mitigation of nat-
ural disasters like landslides, floods, wildfires, etc. MOSÈ
takes advantages of the standardized resource access and
workflow support for loosely coupled software components
provided by the web/grid services technologies.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Clustering

General Terms
algorithms, design, performance

Keywords
data mining, peer-to-peer, clustering
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1. INTRODUCTION
Geological data sets contain a huge amount of information

about spatial phenomena. The exploitation of this knowl-
edge with the aim to make it usable is one important as-
pect in developing geoprocessing applications. For example,
the spatial prediction of landslide hazards is one important
field of geoscientific research in which statistical classifica-
tion rules have been applied. The aim of these methods is
to identify areas that are susceptible to future landsliding,
based on the knowledge of past landslide events and terrain
parameters, geological attributes and other, possibly consid-
ering anthropogenic environmental conditions that are asso-
ciated with the presence or absence of such phenomena.

Mining geophysical data for extracting knowledge is an
essential task in modern geoscience applications. A chal-
lenge for spatial information mining is the lack of tools able
to deal with the distributed nature of resources. Emerg-
ing geoprocessing problem-solving environments are char-
acterized by increasing amounts of digital data and rising
demands for coordinated resource sharing across geograph-
ically dispersed sites. Next generation grid technologies are
promising to provide the necessary infrastructure facilitating
seamless sharing of computing resources. Currently there
exists no coherent framework for developing and deploying
geoprocessing applications on the grid.

The MOSÈ (Spatio-Temporal MOdelling of Environmen-
tal Evolutionary Processes by means of GeoSErvices) sys-
tem is a Grid-based problem solving environment (PSE) for

the developing of Geoprocessing applications. MOSÈ is a
PSE able to support the activities that concern the mod-
elling and simulation of spatio-temporal phenomena for an-
alyzing and managing the identification and the mitigation
of natural disasters like floods, wildfires, landslides etc. The
activities managed by MOSÈ are characterized by the ne-
cessity to handle large amount of spatio-temporal data and
to support the interoperability among simulation models,
distributed GIS, visualization systems, parameter estima-
tion services, discovery of spatio-temporal patterns in pre-
existing data, etc. In this domain, the data conversion and
the access, search, discovery and organization processes are
complex problems because data are geo-referenced, stored
in distributed GIS and can be used along three dimensions:
temporal, spatial and referred to the physical properties.
MOSÈ provides web based access to the spatial data by a
browser and allows to observe and to manipulate data in a
2D/3D space by selecting regions in thematic maps. Users
can examine features and patterns in a map in order to iden-
tify the region from which data must be extracted. Different



physical properties can be extracted by thematic maps by
data mining algorithms (clustering and classification) and
used to select the most appropriated simulation model for
the region analyzed. Similarly, from a temporal point of
view, users can extract data that concern different parts of
a temporal graph defining a period of time where the tem-
poral data must be searched. Selected data can be used
in input to a simulation model of the phenomenon that in-
teracts with components for the parameter estimation for
automated calibration of the model, 3D data visualization,
and spatial data mining tools for analyzing the results.

MOSÈ uses a Web service based computing portal archi-
tecture to coordinate the access to the resources. Workflow
technology is used to compose the services. The main com-
ponents of MOSÈ are simulation services, geographic infor-
mation (GI) services, geographic data and catalogues pro-
viding ontologies and metadata on the data and services.
Each component has a wrapper and an XML interface for a
simple composition.

In content networks, the problem of grouping informa-
tion, coming from different sites requires the adoption of a
distributed approach. Services of data mining supplied by
MOSÈ can be profitably applied when data are in different
sites on a network, especially in grid environment.

This first version of the MOSÈ [3] system regards the
analysis of landslide hazard areas in the Region Campania
near the Sarno area. The main actor in this scenario is a
manager who wants to get an overview of the Sarno area
with the indication of the regions which are currently slid
down and those which are susceptible to slide down (land-
slide hazard areas) within a fixed time. For each scenario,
the manager generates a workflow that orchestrates the web
services necessary to obtain the outcome, and submitted it
to the MOSÈ workflow enactment engine, which takes care
of its execution. Some of the components that constitute the
MOSÈ system use results of previous research developed in
the past years and guarantee high performance and accuracy
of the results [7].

The paper presents the software architecture of the MOSÈ
system (section 2), an example of a knowledge grid service
that enables mining of geophysical data using a distributed
multi-agent spatial clustering algorithm (section 3), an ap-
plication scenario in which the knowledge service for spatial
clustering is used together with other grid services to obtain
clusters of highly damaged buildings (section 4). Finally,
conclusions are presented (section 5).

2. SOFTWARE ARCHITECTURE OF MOS„E
The MOSÈ middleware is built on existing web/grid ser-

vices technologies and standards [6]. This section provides a

brief information on the MOSÈ architecture. A Web based
interface, shown in Figure 1, is used to access the services
offered by MOSÈ. The Web based portal supplies access to
the spatial data by the client browser and allows observ-
ing, selecting, and manipulating data in a 2D/3D space se-
lecting regions in thematic maps. Users can examine fea-
tures and patterns in a map in order to identify the region
from which data must be extracted and/or analysed. The

MOSÈ architecture employs a service-oriented architecture.
The architecture, shown in Figure 2, includes some compo-
nents exported as web/grid services, each with an associ-
ated repository preserving historical (or previously created)

Figure 1: MOSÈ Web based GUI.

information, a workflow executor and Web-based access to
a Geographical Information System (GIS).

The main components exported as web/grid services are:

• Data extractor component, to extract raster maps from
the GIS by Geomedia Web Map tool.

• Visualization component, based on AVS-Express, to
implement 2D/3D visualizations and virtual reality rep-
resentations of one or more layers of the data extracted
from the GIS.

• CamelotGrid [4], a cellular automata (CA) simulation
tool running on the computational grid.

• Estimation of model parameters component, based on
a parallel genetic algorithm running on a parallel ma-
chine available on the Grid. The CA models simulated
with CamelotGrid are calibrated with the parameters
that are estimated by this component.

• Data mining component, performing operations of spa-
tial clustering, classification, etc.

The core of the system is the Workflow Executor (WE)
that receives a workflow built by BPEL Designer and ex-
ecutes it on the Grid. A repository is associated to each
component to reuse results or models previously obtained.
CamelotGrid maintains a repository of the models of sim-
ulations, the parameter estimation service retains the pa-
rameters estimated for different regions for future reuse, the
data extractor keeps data in the data repository, the 3D vi-
sualization component maintains a repository of 3D models
of its simulations and finally the data mining component
uses a knowledge repository to save acquired knowledge.
Note that models can be obtained from previously executed
simulations or can be inserted ex-novo using apposite tools
of the PSE. MOSÈ can be used to execute simulations of
different complex natural phenomena. Users must specify



Figure 2: The MOSÈ software architecture.

the new CA model of the phenomenon and transfer it to
CamelotGrid. New metadata and ontologies describing the
data must be introduced and new GIS containing the geo-
graphical data for the application can be linked by the Web
Map tool.

3. AN EXAMPLE OF KNOWLEDGE
SERVICE: DISTRIBUTED SPATIAL
CLUSTERING

In content networks, the problem of grouping informa-
tion, coming from different sites requires the adoption of a
distributed approach. MOSÈ supplies services of data min-
ing that can be profitably applied when data are in different
sites on a network, especially in grid environment. In order
to give a more comprehensive explanation of the entire pro-
cess, in the following subsections, we will describe a signifi-
cant example of a data mining service that can be exploited
in order to perform the task of clustering, i.e. aggregation
of contents. The service, called P-SPARROW, executes the
task of clustering on spatial data distributed along the net-
work. It is based on a multi-agent paradigm that exhibit
a collective intelligent behavior (swarm intelligence [1]) and
combines the stochastic search of an adaptive flocking with
a density-based clustering method.

Note that the emergent collective behavior is the outcome
of a process of self-organization, in which insects are engaged
through their repeated actions and interaction with their
evolving environment. Intelligent behavior frequently arises
through indirect communication between the agents using
the principle of stigmergy [5].

3.1 The P-SPARROW clustering algorithm
Density-based clustering methods try to find clusters on

the basis of the density of points in regions. Dense regions
that are reachable from each other are merged to formed
clusters. DBSCAN [2] is one the most popular density based
methods and it is based on the idea that all the points of
a data set can be regrouped into two classes: clusters and
noise. Clusters are defined as a set of dense connected re-
gions with a given radius (Eps) and containing at least a
minimum number (MinPts) of points. The two parame-
ters, Eps and MinPts, must be specified by the user and
allow to control the density of the cluster that must be re-
trieved. The algorithm defines two different kinds of points
in a cluster: core points and non-core points. A core point
is a point with at least MinPts number of points in an Eps-
neighborhood of the point. The non-core points in turn are
either border points if they are not core points but they are
density-reachable from another core point or noise points if
they are not core points and are not density-reachable from
other points. To find the clusters in a data set, DBSCAN
starts from an arbitrary point and retrieves all points that
are density-reachable from that point. A point p is density
reachable from a point q, if the two points are connected by
a chain of points such that each point has a minimal number
of data points, including the next point in the chain, within
a fixed radius. If the point is a core point, then the pro-
cedure yields a cluster. If the point is on the border, then
DBSCAN goes on to the next point in the database and
the point is assigned to the noise. DBSCAN builds clusters
in sequence (that is, one at a time), in the order in which
they are encountered during space traversal. The retrieval



of the density of a cluster is performed by successive spatial
queries. Such queries are supported efficiently by spatial
access methods such as R*-trees.

DBSCAN is not suitable for finding approximate clusters
in very large datasets neither it is adapt to work in a dis-
tributed environment. In fact, DBSCAN starts to create and
expand a cluster from a randomly picked point. It works
very thoroughly and completely accurately on this cluster
until all points in the cluster have been found. Then an-
other point outside the cluster is randomly selected and the
procedure is repeated. This method is not suited to stopping
early with an approximate identification of clusters.

As in DBSCAN, P-SPARROW finds cluster perform-
ing region-queries on core points but it replaces the exhaus-
tive search of the core points with a stochastic multi-agent
distributed search that discovers in parallel the points. P-
SPARROW is constituted of two phases: a local phase for
the discovery of the core points on each peer and a merge
phase that concerns a global relaxation process in which
nodes exchange cluster labels with nearest neighbors until a
fixed point (i.e. all nodes detect no change in the labels) is
reached.

for i=1 . . . MaxIterations

foreach agent (yellow, green)

if (not visited (current point))

density = compute local density();

mycolor= color agent(density);

endif

end foreach

foreach agent (yellow, green)

dir= compute dir();

end foreach

foreach agent (all)

switch (mycolor){
case yellow, green: move(dir, speed(mycolor));

break;

case white: stop ();generate new agent();break;

case red: stop (); merge();

if (new red()) clone agent();break; }
end foreach

if ((bag out.dimension()> threshold)or(i%IterMigr==0))

send bag();

if (bag in full()) notify changes();

end for

Figure 3: The pseudo-code of P-SPARROW exe-
cuted on every peer.

All the data are partitioned among the peers, proportion-
ally to the computing power and to the cpu-load of the
peer itself. Each peer implements the flocking algorithm,
described in figure 3, using a fixed number of agents that
initially occupy a randomly generated position in the space.
Each agent moves testing the neighborhood of each object
(data point) it visits in order to verify if the point can be
identified as a core point. Then, P-SPARROW uses a flock-
ing algorithm, inspired by the principles of the Geographical
Analysis Machine [8], with an exploring behavior in which
individual members (agents) search some goals, whose po-
sitions are not known a priori, in parallel and signal the
presence or the lack of significant patterns into the data to

other flock members, by changing color. The entire flock
then moves towards the agents (attractors) that have dis-
covered interesting regions to help them, avoiding the un-
interesting areas that are instead marked as obstacles. The
color is assigned to the agents by a function associated to the
data analyzed during the exploration, according to the DB-
SCAN density-based rules and with the same parameters:
MinPts, the minimum number of points to form a cluster
and Eps, the radius of the circle containing these points. In
practice, the agent computes the local density (density) in a
circular neighborhood (with a radius determined by its lim-
ited sight, i.e. Eps) and then it chooses the color (and the
speed) in accordance to some simple rules, better described
in table 1.

property > threshold ⇒ mycol = red (speed = 0)

threshold
4 < prop. ≤ threshold ⇒ mycol = green (speed = 1)

0 < property ≤ threshold
4 ⇒ mycol = yellow (speed = 2)

property = 0 ⇒ mycol = white (speed = 0)

Table 1: Assigning speed and color to the agents

So red agents reveal a high density of interesting patterns
in the data, green, a medium one, yellow, a low one and
white agents indicate a total absence of patterns. The color
is used as a communication mechanism among flock mem-
bers to indicate them the roadmap to follow. The main idea
behind our approach is to take advantage of the colored
agent in order to explore more accurately the most interest-
ing regions (signaled by the red agents) and avoid the ones
without clusters (signaled by the white agents). Red and
white agents stop moving in order to signal these regions to
the others, while green and yellow ones fly to find clusters.
Green agents will move more slowly than yellow agents in
order to explore more carefully zones with a higher density
of points. The variable speed introduces an adaptive behav-
ior in the algorithm. In fact, agents adapt their movement
and change their behavior (speed) on the basis of their pre-
vious experience represented from the red and white agents.
Anyway, each flying agent computes its heading by taking
the weighted average of alignment, separation and cohesion.

Green and yellow agents compute their movement observ-
ing the positions of all the agents that are at most at some
fixed distance (dist max ) from them and applying the rules
of Reynolds’ [9] with the following modifications: alignment
and cohesion do not consider yellow agents, since they move
in a not very attractive zone; cohesion is the resultant of
the heading towards the average position of the green flock-
mates (centroid), of the attraction towards red agents, and
of the repulsion by white agents; a separation distance is
maintained from all the agents, whatever their color is.

New red agents executes the merge procedure; i.e., a tem-
porary label will be given to these agents and to all the
points of their neighborhood, if they are not already labeled.
Otherwise the minimum of all the labels will be assigned to
all the core points in this neighborhood, in order to make
them belong to the same cluster. In this way, on each peer
the set of red agents (core points) determinates the local
model of clustering. Neighboring peers must be informed
about the new core points or about the new labels in order
to merge all the points belonging to the same cluster. To
this end, red agents create clone agents and put them in



Figure 4: The software architecture of P-Sparrow.

an apposite bag and, when a fixed number of clone agents is
achieved (i.e. a bag of agents has reached the desired dimen-
sion) or a certain number of iterations have been performed,
each peer will send the bag containing the cloned red agents
to the neighboring peers. Consequently, the agents received
from the other peers will be put in another bag that will be
used in the next iteration (or when it becomes full) for the
merge phase. In practice, the new agents continuously up-
date the labels as multiple clusters take shape concurrently.
This continues until nothing changes, by which time all the
clusters will have been labeled with the minimum initial la-
bel of all the sites containing the data. All the points having
the same label form a cluster.

3.2 The software architecture
The software architecture of P-SPARROW is described in

figure 4.
The flock platform manages the cellular space in which

the agents move. Furthermore, it supplies the main pro-
cedures concerning the agents (move, remote move, create
new agent, clone agents, etc..) using the underlying levels.
Agents of different colors will be scheduled by means of the
agents scheduler.

The resource manager (RM) execute efficiently range
queries (i.e. compute density) in the dataset, accessing the
repository, in order to choose the new color of the agents.
The RM is also responsible of putting new agents received
by the neighboring peers in the appropriate zone in order
to start a new phase of merge. The arrival of a new bag of
agents is signaled by the notifier manager that supplies
also information about new events such as the fall of a peer,
the convergence of the algorithm, etc... The network man-
ager handles the send and the receive of the bags of agents
on the basis of the topology of the system, depending on the
characteristics of the network, using JXTA sockets.

3.3 Sequoia benchmark
To evaluate the performance of P-Sparrow, we used a spa-

tial dataset, SEQUOIA [10], composed by 62556 names of
landmarks (and their coordinates), and extracted from the
US Geological Survey’s Geographic Name Information Sys-
tem. In practice, the points in figure 5, represent points of
interest in the sequoia area and the three main clusters, dis-
covered from our algorithm, correspond respectively to the
areas of S. Francisco, Sacramento and Los Angeles.

Figure 5: The Sequoia dataset.

The dataset was partitioned respectively on 16, 32 and 80
peers to simulate a real environment in which the data are
distributed on different sites.

We run our algorithm using 100 agents working until they
explore the 1%, 2%, 5% and 10% of the entire data set, using
16, 32 and 80 peers. All the experiments were averaged over
30 trials. Our algorithm uses the same parameters as DB-
SCAN. Therefore, if we visited all the points of the dataset,
we would obtain the same results as DBSCAN, as the merge
phase is the same. Then, in our experiments we consider
as 100% the cluster points found by DBSCAN (note DB-
SCAN visit all the points). We want to verify how we come
close to this percentage visiting only a portion of the entire
dataset and that must be effective for different number of
peers involved in the computation. Note that the dominant
operation in the computation is the execution of the range
queries, performed each time a point is visited, while the
time of the other operations is negligible. So, the fact of re-
ducing the percentage of visited points considerably reduces
the execution time.

For a large number of peers, the density of points for clus-
ter for peer necessarily decreases; so we have to choose a dif-
ferent value of the parameter MinPts to keep into account
this aspect. In practice, we choose a value of MinPts in-
versely proportional to the number of peers (i.e. if we fix
MinPts as 8 on 16 peers, we have to fix as 4 on 32 peers and
so on). In figure 6 (a and b) and 7 (a and b) we show the
experimental results concerning the accuracy and scalability



(a)

(b)

Figure 6: Number of points for cluster for Sequoia
dataset (percentage in comparison to the total num-
ber of points for cluster) when P-SPARROW ana-
lyzes 1% and 2% of total points, using 16, 32 and 80
peers.

of the algorithm by varying the number of peers for Sequoia
dataset.

For instance, on 80 peers, visiting only the 5% of points,
on average, we obtain an accuracy of about 80% and visiting
the 10% of data we reach 93% of accuracy.

Furthermore, the scalability (i.e. the effect on the accu-
racy of increasing the number of peers and so reducing the
number of data points for peer) is quite good. In fact, if
look at the Sequoia dataset, for the 5% case, we obtained a
reduction from 88% for 16 peers to 81% for 80 peers while
for the 10% case, we have a little reduction from 99% to
94%. Visiting only 1% of the dataset we have low percent-
age of points found; however they are sufficient to have an
approximate idea of the shape of the clusters.

4. AN APPLICATION SCENARIO
One of the difficulties that civil protection authorities have

to deal with in order to confront emergency conditions such
as a landslide, is the management of the information com-
ing up from the area where the landslide takes place. The
difficulty becomes bigger due to the fact that after an land-
slide the demand for urgent intervention is huge. Emergency
response actions must be taken immediately by civil protec-
tion authorities and a framework plan for planning and ex-

(a)

(b)

Figure 7: Number of points for cluster for Sequoia
dataset (percentage in comparison to the total num-
ber of points for cluster) when P-SPARROW ana-
lyzes 5% and 10% of total points, using 16, 32 and
80 peers.

ecution of post landslide operations is essential. One of the
most critical actions that must be taken by civil engineers
after a landslide is the discovery of post landslide damaged
buildings. Data concerning the location of the buildings,
their main characteristics and damage to different parts of
the structure are collected, and can be compared to landslide
map and historical damage locations.

MOSÈ can help a member of the civil protection to dis-
cover areas named hot spots which may represent the regions
of highly damaged buildings.

Consider a scenario in which spatial data concerning the
location of damaged buildings are sent by detectors and
stored in different nodes. A decision-maker of the civil pro-
tection could use MOSÈ to recognize the highest density
areas with damaged building in order to prevent the access
to the area’s inhabitants. We have applied MOSÈ on data
concerning the landslide hazard areas in the Region Cam-
pania near the Sarno area. Results of the entire process are
shown in figure 8, obtained using the overlap visualizer of
MOSÈ. In the red circles, you can observe the three clus-
ters representing the clusters of damaged buildings, obtained
from a complete execution of P-SPARROW.

Obviously, the information must be obtained as quickly as
possible. P-SPARROW, permits to find approximate clus-
ters even if we do not explore all the points of the data
sets. So the user can receive a first information about the



Figure 8: Visualisation of the workflow result.

interesting areas and can immediately act, afterwards, can
ask for a more precise information, as P-SPARROW go on
finding new points of clusters.

5. CONCLUSIONS
This paper presents the MOSÈ system that is capable of

managing Geoprocessing applications on a Grid using con-
tent based mining techniques. The primary advantages of
MOSÈ are the performance gain obtained using web/grid
distributed resources and the support for the interoperabil-
ity of data and resources. Furthermore, the P-Sparrow ser-
vice is able to perform approximate clustering on distributed
resources using a multi-agent based paradigm. Its incremen-
tal nature is particularly adapt for coping with emergency
conditions.
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