

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Scalable Parallel Co-Clustering Over Multiple Heterogeneous

Data Types

Francesco Folino, Gianluigi Greco,
Antonella Guzzo, Luigi Pontieri

RT-ICAR-CS-09-10 Ottobre 2009

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Scalable Parallel Co-Clustering Over Multiple

Heterogeneous Data Types

Francesco Folino1, Gianluigi Greco2, Antonella Guzzo3, Luigi Pontieri1

1 ICAR-CNR, National Research Council, via P. Bucci 41C, 87036, Rende, CS, Italy
2Dept. of Mathematics, University of Calabria, Italy

3Dept. DEIS, University of Calabria, Italy

{ffolino, pontieri}@icar.cnr.it, ggreco@mat.unical.it,

guzzo@deis.unical.it

Abstract. The bi-clustering, i.e., simultaneously clustering two types of objects

based on their correlations, has been studied actively in the last few years, in

virtue of its impact on several relevant applications, such as text mining, collab-

orative filtering, gene expression analysis. In particular, many research efforts

were recently spent on extending such a problem towards higher-order scenar-

ios, where more than two data types are to be clustered synergically, according to

pairwise inter-type relations. Measuring co-clustering quality as a weighted com-

bination of the distortions over input relations, a number of alternate-optimization

methods were developed of late, which scale linearly with the size of data. This

result is likely to be inadequate for large scale applications where massive vol-

umes of data are involved, and high performance solutions would be desirable.

However, to date, parallel clustering approaches have been investigated deeply

only for the case of just one or two inter-related data types. In this paper, we face

the more general (high-order) co-clustering problem by proposing a parallel im-

plementation of an effective and state-of-the-art method, by leveraging a parallel

computation infrastructure implementing popular Map-Reduce paradigm.

1 Introduction

The problem of simultaneously clustering two heterogeneous types of objects based

on their correlations (known as co-clustering or bi-clustering), was thoroughly studied

in several fields of research such as text mining, collaborative filtering and gene ex-

pression analysis, where it is crucial to group objects together based on their similarity

over a suitable subset of features. Many recent proposals tried to extend this problem

towards higher-order scenarios, where more than two data types are to be clustered syn-

ergically [4, 10, 11, 2]. Most of these efforts focus on the case where the domains are

correlated in a pairwise manner, and face an optimization problem where: (i) the quality

of the clustering along each pair of correlated domains is assessed via some standard

bi-clustering objective function (e.g., the loss in mutual information), and (ii) the qual-

ity of the “global” co-clustering is evaluated as a linear combination of these functions.

Based on such a formulation, a number of similar alternate-optimization schemes were

proposed, which allows to compute a solution efficiently, and scale nearly linearly with

the size of data, under the realistic assumption that a constant number of optimization

steps are sufficient to reach a local optimum. Conversely, the method in [10] faces the

problem of automatically weighting the different bi-clustering sub-tasks (i.e. one for

each contingency table), based on their capability to agree with each other without di-

verging too much from their optimal solution. Notably, even this self-tuning algorithm

ensures linear scaling with the size of data.

Yet, linear scalability still risks being inadequate for analyzing large collections of

data, which are becoming more and more common, due to the high volumes and variety

of data characterizing certain application contexts (e.g., world-wide web-based systems,

or biological repositories). Hence, resorting to some parallel computation scheme seems

to be the only solution that can truly satisfy such a need of high-performance (high-

order) co-clustering tools.

However, so far, a number of works applied some parallel computation only for clus-

tering single-/two- type data, some of which exploit the popular computing paradigm

Map-Reduce (e.g., [8] and [12]). The only parallelized co-clustering approach dealing

with more than two domains seems to be [3], which simultaneously clusters multiple

pairwise-correlated data types, in a way that minimizes the loss of mutual information

among all the domains, by iteratively refining the clusters for a pair of domains per

time. However, a major limitation of this method is that it does not allow to appropri-

ately weight the relevance/reliability of the pairwise relationships either manually (e.g.,

as in [4, 11, 2]) or automatically (as in [10]). In conclusion, the parallelization of high

order co-clustering algorithms is still an open field of research, especially for the case

of information-theoretic co-clustering.

Contribution and Organization. The main goal of this paper is just to go further along

this research by devising a parallelized efficient solution to the high-order co-clustering

problem. Specifically, we extend and refine the approach in [10] in order to compute

a co-clustering solution in a parallel manner, on the top of a Map-Reduce infrastruc-

ture. To this end, we take advantage of the open-source system Hadoop [1], providing

an implementation of core Map-Reduce functionalities. Moreover, we study the perfor-

mances of our approach from both an analytical and empirical viewpoint.

The rest of the paper is organized as follows. In Section 2 we introduce the high-

order co-clustering information-theoretic framework, and propose a meta-algorithm al-

lowing to compute a locally-optimal solution via alternate-optimization steps. Section

3 shows a parallel implementation scheme, and studies its scalability from a theoreti-

cal viewpoint. An empirical performances’ analysis is given in Section 4, based tests

conducted against both real and synthesized data, with the Hadoop-based implementa-

tion of the approach. Finally, Section 5 summarizes our work and traces a few lines of

further research.

2 Formal Framework

We next describe an information-theoretic framework, originally introduced in [10],

for co-clustering heterogeneous objects belonging to an arbitrary number of domains,

forming a star structure of interrelationships.

Let DY 1 = {y11, . . . , y
1
n1
}, . . . , DY N = {yN1 , . . . , yNnN

}, DX = {x1, . . . , xm} be

N+1 domains (i.e. sets of values), and let Y 1, . . . , Y N ,X be discrete random variables

taking values in DY 1 , . . . , DY n ,DX , resp. Each “auxiliary” domain DY i , with 1 ≤ i ≤
N , is only linked to the “central” one DX , according to a star structure. The correlations

between elements from DX and DY i are stored in a contingency matrix Pi, which can

be modeled as a joint probability distribution pi(X,Y i) between the random variables

X and Y i — pi(x, y
i
j) is the probability that X and Y i take the values x ∈ DX and

yij ∈ DY i , respectively.

Assume that the values in DX are to be clustered into k clusters, say D̂X =
{x̂1, x̂2, ..., x̂k}, and those inDY i are to be clustered in li clusters, say D̂Y i = {ŷ i

1 , ŷ
i
2 , ..., ŷ

i
li
},

for each 1 ≤ i ≤ N . Then, a high-order co-clustering for Y 1, ..., Y N w.r.t. X is a tuple

C = 〈CX , CY 1 , ..., CY N 〉, such that CX : DX 7→ D̂X , and CY : DY i 7→ D̂Y i , for

i = 1 . . .N .

Like in [6], for any domain, lower-case letters denote its elements, and upper-case

ones denote the random variable ranging over them, with clusters and clustered random

variables denoted by hatted letters.

The quality of a co-clustering solution can be measured as the loss in mutual in-

formation that occurs when the variables X , Y 1, ..., Y N are replaced with their re-

spective clustered versions X̂, Ŷ 1, ..., Ŷ N . In particular, the loss on the i-th contin-

gency matrix is denoted by ∆Ii(CX , CY i) = I(X ;Y i) − I(X̂ ; Ŷ i) (shortly, ∆Ii).
As stated in [6], this loss can be expressed as a dissimilarity between the original

joint distribution pi(·, ·) and a function qi(·, ·) that approximates it. More specifically,

∆Ii = D(pi(X,Y i)||qi(X,Y i)), where D(·||·) denotes the well-known Kullback-

Leibler (KL) divergence, and qi(X,Y i) is a function of the form:

qi(X,Y i) = pi(X̂, Ŷ i) · pi(X |X̂) · pi(Y |Ŷ i) (1)

which preserves all marginals of pi, and is univocally determined by the co-clustering

at hand.

When N = 1, the bi-clustering problem turns into searching for the function qi that

is the most similar to pi, according to D. This problem can be solved via the alternate

minimization scheme of [6], where, at each iteration, each element x ∈ DX (resp.,

y ∈ DY i) is greedily assigned to the cluster x̂∗ (resp. ŷ∗) that minimizes the point-wise

loss measure δi(x, x̂) (resp., δi(y, ŷ)) below:

δi(x, x̂) = D(pi(Y
i|x) || qi(Y

i|x̂)) (2)

δi(y, ŷ) = D(pi(X |y) || qi(X |ŷ)) (3)

This method is guaranteed to monotonically decrease the pairwise information loss,

since the loss function∆Ii can be computed by summing up the above point-wise losses

over all elements of either DX or DY i , and that these losses are all independent of each

others, i.e.: ∆Ii =
∑

y∈D
Y i

δi(y, CY i(y)) =
∑

x∈DX
δi(x,CX (x)).

Figure 1 shows a meta-algorithm, named HOCC, that extends the alternate min-

imization method of [6] to an arbitrary number of star-structured domains. Given the

domains DX , DY 1 ,..., DY N , the cluster sets D̂X , D̂Y 1 ,..., D̂Y N (specifying the num-

ber of clusters required for each dimension), and the joint probability distributions

p1(X,Y 1), ..., pN (X,Y N), an initial co-clustering is computed, and refined iteratively,

Input: Domains DX (central), DY 1 ,...,DYN ,

cluster sets D̂X , D̂Y 1 ,...,D̂Y N , and

joint distributions p1(X,Y 1), ..., pN(X,Y N);
Output: A co-clustering for X,Y 1,...,Y N ;

1. Set an arbitrary initial co-clustering 〈CX , CY 1 , ..., CY N 〉,
and all global variables;

2. Compute qi’s parameters, for i = 1..N ;

3. stop = false;

4. do

// Compute C′

Y i based on qi(X|Ŷ)), for i = 1..N
5. for each Y i and y ∈ DY i do

6. C′

Y i(y) = argmin
ŷ∈D̂

Y i
δi(y, ŷ);

7. Update qi’s parameters, for i = 1..N , and global variables;

8. for each x ∈ DX do

9. Compute C′

X(x), based on qi(Y
i|X̂)), for i = 1..N ;

10. Update qi’s parameters, for i = 1..N and globals variables;

11. stop = testExitCondition();

12. if not stop then set CX = C′

X , CY i = C′

Y i , for i = 1..N ;

13. until stop;

14. return 〈CX , CY 1 , ..., CY N 〉;

Fig. 1. Meta-Algorithm HOCC.

in an alternate manner. At each repetition of the main loop, first a new clustering C′
Y i

is computed for each auxiliary domain Y i (step 6), based on its associated distribution

qi (which depends on the previous clusterings CX , CY i , .., CY N). Since each auxiliary

dimension Y i is independent of the others, any of its elements y ∈ DY i can be greedily

assigned to the cluster ŷ that minimizes the score δi(y, ŷ), i.e.C′
Y i(y) = argmin

ŷ∈D̂
Y i

δi(y, ŷ).

Notably, these scores are fully specified by the current distribution qi. Modifying the

clusters of each auxiliary domain DY i now requires to update the parameters of dis-

tribution qi. Subsequently, the algorithm updates the clustering C′
X over the central

domain DX , based on all qi. Again, the parameters of all distributions qi are updated

accordingly.

The computation scheme sketched above can accommodate a number of specific

information-theoretic algorithms, including those (namely LC-HOCC and AD-HOCC)

proposed in [10], which both deal with the problem of setting the importance of the joint

probability matrices pi in a different way. This can be accomplished by customizing the

generic steps 9 and 11, and by suitably defining and handling a number of auxiliary

global variables, as discussed next.

2.1 Two concrete algorithms

LC-HOCC. Algorithm LC-HOCC [10] is essentially addressed to minimizing a linear

combination of the pairwise information losses ∆Ii, for 1 ≤ i ≤ N . Similarly to

[4, 11, 2], N real numbers β1, ..., βN , s.t.
∑N

i=1 βi = 1, are associated with the joint

distributions p1, .., pN , respectively. Then, a (locally) optimal co-clustering is looked

for, which minimizes the quantity
∑N

i=1 βi ·∆Ii.

Updating X’s clusters (step 9). In this case, the best cluster for any element x ∈ DX

is simply chosen as follows: C′
X(x) = argmin

x̂∈D̂X

∑N
i=1 βi · δi(x, x̂). Note that this

will never increase the (global) objective function
∑N

i=1 βi ·∆Ii.

Exit condition (step 11). Since the updating of clusters in LC-HOCC ensures the mono-

tonicity of the global objective function
∑N

i=1 βi ·∆Ii, it is enough to check the conver-

gence around local optima. Notice that no auxiliary global variable is needed, since the

convergence test can be done by simply verifying whether at least one element really

moved from a cluster to another.

AD-HOCC. Rather than using an a priori weighting scheme, this method tries to find

an “agreement” among the different (and potentially discordant) loss functions. Essen-

tially, sub-optimal values for some information losses are tolerated, provided that a

bound α on the distance from their respective optimal values is ensured. Specifically,

α is an estimated lower bound for all the quantities ∆I∗i /∆Ii, where ∆Ii is the loss

produced by the the solution of DY i , while ∆I∗i is the minimal loss, which would be

obtained when co-clustering DX and DY i only.

Updating X’s clusters (step 9). The clustering CX of the central domain must be up-

dated in a way that guarantees a maximal value of the approximation bound α dis-

cussed above. First, for each element x ∈ DX all point-to-cluster losses δi over each

domain DY i are normalized w.r.t. the best possible assignment of x in that domain (i.e.,

min
x̂′∈D̂X

δ(x, x̂′)). Eventually, x is assigned to the cluster guaranteeing the maximal

approximation bound α(x, x̂), i.e.,: C′
X(x) = argmax

x̂∈D̂X
α(x, x̂).

Exit condition (step 11). Since the updating of X’s clusters does not enjoy any mono-

tonicity property with regard to the information loss functions, some specific termina-

tion criterion must be defined. A possible strategy consists in iterating as long as the

current agreement can be improved. To this end, a global approximation bound α is

computed after each updating of X’s cluster, based on the point-wise scores α(x, x̂),
as follows: α = minx∈DX

max
x̂∈D̂X

α(x, x̂). The exit condition mainly amounts to

verify that the new bound is higher than the one computed in the previous iteration of

the main loop — two further global variables α and α′ are then needed in order to make

such a comparison. By the way, to reduce the risk of converging into poorly accurate

solutions, a tolerance factor can be introduced. Further details on this issue can be found

in[10].

3 Parallel Implementation

In order to devise a parallel version of meta-algorithm HOCC, we observe that three

main kinds of operations recur in each iteration of the main loop: (a) updating the

distributions qi, for i = 1..N , (b) re-clustering all objects y of any auxiliary domain

DY i , based on qi and on the (column) distribution vectors pi(X |y), and (c) re-clustering

all objects x of central domain DX , based on qi and on the (row) distribution vectors

pi(Y |x).

Since any x ∈ DX (resp., y ∈ DY i) can be clustered independently of all other

elements in DX (resp., in DY j , for j = 1..N), steps (b) and (c) can proceed in parallel

over row/ column elements, if row-wise column-wise distribution vectors are assigned

to different processors.

On the other hand, for any i = 1..N , x ∈ DX and y ∈ DY i , qi(x, y) can be

reconstructed based on: (i) the information about the clusters x̂ and ŷ to which x and y,

respectively, were assigned in the previous iteration (i.e. x̂ = CX(x) and ŷ = CY i(y)),
and their associated (ii) mutual joint probability pi(x̂, ŷ) and (iii) marginals pi(x̂) and

pi(ŷ). Notably, the two latter pieces of information can be derived from the cluster-wise

joint distribution pi(X̂, Ŷ)) —with X̂ and Ŷ ranging on DX and DY i , respectively.

Moreover, for any pair of clusters x̂r ∈ D̂X and ŷc ∈ D̂Y i , the probability pi(x̂r, ŷc)
can be computed by summing up all of its associated element-wise joint probabilities.

i.e. pi(x̂r, ŷc) =
∑

{(x,y)|CX(x)=x̂r,CY i (y)=ŷc}
pi(x, y).

Thus, each processor can locally compute the new clusters for all the elements of

DX ,DY 1 , . . . , DY N that were assigned to it, as well as their partial contribution to the

corresponding cluster-wise joint distributions p1(X̂, Ŷ), . . . , pN (X̂, Ŷ). The overall

clustering functionsCX , CY 1 , . . . , CY N and the overall matrices p1(X̂, Ŷ), . . . , pN(X̂, Ŷ)
are obtained in a subsequent synchronization step, were the partial contributions pro-

vided by all processors are merged together.

Complexity analysis. Let us study the computational costs of the meta-algorithm in

Figure 1. For the sake of simplicity, some upper bounds are assumed to be known for

the different parameters characterizing the size of input data — which consisting of

N + 1 domains (i.e., DX ,DY 1 ,..,DY N) and N pairwise correlation matrices P1,..., PN

(each of them encoding a joint probability distribution). Specifically, we assume that:

(i) at most n elements appear in each domain, (ii) at most k clusters are to be found

over each domain, and (iii) each contingency matrix contains at most m non-zero cells.

Let H be the number of nodes used in the computation, where each node h = 1..H
is provided with the (column-wise) correlation data corresponding to a fraction 1/H of

the elements in
⋃

i=1..N DY i , and with all the (row-wise) correlation data correspond-

ing to a fraction 1/H of the elements in DX . Moreover, we assume that input data

are distributed in a way that approximatively the same number of non-zero elements

(2N ×m/H) are given to each node.

Then, it can be shown that computing each iteration of the main loop in the HOCC
overH nodes, whatever of the two concrete implementation (i.e., LC-HOCC or AD-HOCC)

is used, has the following cost (ignoring communication overhead and assuming that

m ≥ n):

O

(
N ×m× k

H
+H ×N × k

2
)

where the term on the left accounts for parallel tasks, while the one on the right side

concerns synchronized steps of the elaboration. Clearly, the overall computation will

depend on the overall number of iterations. This latter, however, tends to stay under a

couple of dozens, in most practical cases, as a large number of studies in the literature

evidenced for different information-theoretic co-clustering methods. This result evi-

dences the benefits of parallelization, and ensures a (theoretically) quasi-linear speed-

up, under the hypothesis that H <<
√

m

k
— in fact this usually holds, as m is far

bigger then the number of clusters one is expected to search for (i.e. m ≥ n >> k).

3.1 Implementation with Map-Reduce

Map-reduce [5] is quite an intuitive computation model over large clusters of machines,

which somewhat takes inspiration from analogous primitives available in functional

languages such as Lisp. As a major advantage provided to programmers, it allows to

concentrate on key computational steps at a logical level, without considering low-

level complicate issues, concerning, e.g., fault-tolerance, data distribution and load bal-

ancing. In particular, in our implementation we exploited the open-source Hadoop[1]

framework, which offers basic Map-Reduce’s functionalities, and provides an efficient

distributed storage system, named HDFS, for storing input data and shared results.

Roughly, a Map-Reduce computation typically proceeds along the following phases:

(i) Split, where the data are partitioned among different nodes; (ii) Map, where all input

records are read concurrently, on different machines, and mapped to multiple (interme-

diate) key-value pairs; (iii) Partition and Shuffle, where the key-value pairs produced by

the Map phase are locally grouped and sorted according to their keys; and (iv) Reduce,

where each reducer node takes in input all the key-value pairs associated with the same

intermediate key, and combine them into a new key-value pair.

We pinpoint that our implementation ensures that, for any element x of the central

domain X , all of its joint probabilities (along all matrices pi) are kept together in the

split phase and sent to the same mapper. This choice clearly aims at reducing the amount

of data exchanged between all the nodes. To the same end, the output of each mapper is

forwarded to a combiner running on the same node, which applies the reduce procedure

to local data.

We next illustrate how Map-Reduce paradigm was used to implement the co-clustering

scheme in Figure 1, only focusing on the different pairs of Map and Reduce tasks that

we defined. For the sake of conciseness, for each of such tasks we indicate structure of

its input/output records, and assume that the first field (emphasized in bold letters) is

the key of the record itself.

A. Data Preprocessing. In this phase all correlation data are processed in order to as-

sociate each element of any domain (i.e., DX , DY 1 , ...DY N) with its non-zero joint

probabilities, and with its marginal probability. The following records are obtained

eventually: 〈(x, i), {(y, pi(x, y))|y ∈ DY i , pi(x, y) > 0}, pi(x)〉 for each x ∈ DX .

〈(y, i), {(x, pi(x, y))|x ∈ DX , pi(x, y) > 0}, pi(y)〉 for i = 1..N and for all y ∈ DY i .

This can be done in a parallel way, via a trivial map-reduce computation. Details are

omitted for space lack.

B. Initializing co-clusters and distributions qi. Via a simple map-reduce computa-

tion, we randomly set an initial co-clustering, and calculate its associated low-order

statistics pi(X̂, Ŷ), for i = 1..N . Two kinds of mappers are used, for processing row-

wise records (of the form 〈(x, i), {pi(x, y)}〉) and column-wise records (of the form

〈(y, i), {pi(x, y)}〉), respectively.

Map. Each mapper computes the new cluster for each row (resp., column) element

x ∈ DX (resp. y ∈ Di
Y) it receives in input, and produces a new record where the

key is the ID of the cluster chosen. This intermediate key is associated with both a

singleton set containing the element’s ID (i.e. {x} or {y}, resp.) and a set encoding all

of its non-zero probabilities. Specifically, for any element y ∈ DY i (resp. x ∈ DX),

the mapper returns an intermediate record 〈(i, ŷ), {y}, {(x̂, pi(x̂|y)) | pi(x̂|y) > 0}〉
(resp., 〈x̂, {x}, {(i, ŷ, pi(ŷ|x)) | pi(ŷ|x) > 0}〉) — where pi(x̂|y)=

∑
x∈DX

pi(x|y)
and pi(ŷ|x)=

∑
y∈D

Y i
pi(x|y).

Reduce. The reducers combine the records above by computing the union of the el-

ements’ ID associated with the same cluster, and by summing up the corresponding

probabilities in a cluster-by-cluster way (for obtaining the sufficient statistics pi(X̂, Ŷ)
for each qi). As a final result a record 〈x̂, {x ∈ DX | CX(x) = x̂}, {(ŷ, pi(x̂, ŷ)) | ŷ ∈

D̂Y i , pi(x̂, ŷ) > 0}〉, is generated for each cluster x̂ ∈ D̂X . Similarly, a record 〈(i, ŷ), {y ∈

DY i | CY i(y) = ŷ}, {(x̂, pi(x̂, ŷ)) | x̂ ∈ D̂X , pi(x̂, ŷ) > 0}〉, is produced for each

cluster ŷ ∈ D̂Y i and for i = 1..N .

C. Updating the clustering of the auxiliary domains. In this phase, for any domain

DY i a new clustering C′
Y i must be computed by assigning each object y ∈ DY i to

its “closest” cluster in DY i , according to the scores δ in Equation 3. Notice that this

implies comparing each non-zero joint probability associated with y (in the column

distribution pi(X |y)) with the corresponding element in qi(X |y). As observed earlier,

this latter distribution can be estimated “on-the-fly” based on the previous clusterings

CX and CY i and on the associated statistics pi(X̂, Ŷ). These are indeed the only partial

results that must be shared by the nodes involved in the co-clustering computation.

Map. Each mapper receives a record corresponding to an y ∈ Di
Y and encoding its

column distribution pi(X |y), and locally decides which cluster ŷ it must be assigned to.

A new record is then generated that associates the selected cluster ŷ (key) with two kinds

of information: the element y and all of its contributions to the cluster-wise probabilities

pi(X̂, Ŷ) — i.e. a record of the form 〈(i, ŷ), {y}, {(x̂, pi(x̂|y)) | pi(x̂|y) > 0}〉.

Reduce. Reducers combine the above intermediate records, based on cluster IDs, by

merging the associated (singleton) membership vectors and by aggregating the proba-

bilities into the cluster-wise statistics pi(X̂, Ŷ). Since this computation is identical to

that performed in the initialization of the clusters, we omit further details.

D. Updating the clustering of the central domain. From a conceptual viewpoint, this

task is pretty similar to the clustering of an auxiliary domain, as long as concerns the

flow of data and the results. Actually, the main difference lies in the fact that each

element x being re-clustered is now associated with N probability vectors pi(Y |x) (i.e.

the x-th row in matrix Pi) for i = 1..N .

Map. Still assuming that all the joint probabilities of any element x ∈ X are kept to-

gether, each mapper can choose the new clusters C′
Y i(x) locally, by computing all the

scores δi(x, x̂), for each possible cluster x̂ (cf. Equation 2) – based on the clusterings

CX , C′
Y 1 , .., C′

Y N and global statistics pi(X̂, Ŷ) computed in the previous map-reduce

task. These score are indeed the only information needed to make the decision indepen-

dently of the politics adopted for weighting the pairwise relationships (e.g.,AD-HOCC

or LC-HOCC). As for the updating of auxiliary domains’ clusters, the selected cluster

x̂ is treated as a new key, and is associated with both x and its non-zero contributions

to clustered distributions pi(X̂, Ŷ), for i = 1..N . Eventually, for each any element x a

record is produced of the form 〈x̂, {x}, {(i, ŷ, pi(ŷ|x)) | pi(ŷ|x) > 0}〉.

Reduce. Again, reducers combine the above intermediate records by merging their as-

sociated singleton membership vectors and by aggregating the probabilities into the

cluster-wise statistics pi(X̂, Ŷ). This computation is identical to the one carried out in

the initialization phase, and hence we do not detail it any more.

All of the map-reduce tasks described above are coordinated by a single driver task,

which keeps on iterating the parallel computation phases C and D until the termination

condition is satisfied.

4 Experiments

The experimental activity was conducted over both synthetic and real data. Tests on

real-world data were aimed at assessing the accuracy of the co-clustering solutions

found, while those on synthetic data were devoted to support scalability analyses, and

to verify the actual benefits of parallelization. All running code was implemented in

Java by using the Sun JDK version 1.6.0 17-b04.

In all tests, the number of required clusters over each domain was set equal to the

number of clusters expected for that domain. Moreover, in order to reduce statistical

bias, 20 runs were performed against every dataset, then reporting average measures.

4.1 Effectiveness Tests on Real Data

For testing the effectiveness of our implementation, we reproduced some of the exper-

iments in [10], using data extracted from popular 20-Newsgroup corpus. This corpus

gathers a number of news documents, from 20 different newsgroups. In particular, we

built two different datasets, named TM1 and TM2, where a subset of documents was

taken from certain newsgroups. The newsgroups themselves can be considered as cat-

egories for their associated documents, and can be grouped in classes based on their

topics. In more detail, dataset TM1 consists of documents of five categories (i.e. news-

groups) organized in two classes concerning sport and politics, respectively. TM2 col-

lects instead documents of five categories (i.e. newsgroups), organized in three groups,

related to computers, autos/motorcycles and electronic devices, respectively.

Effectiveness was evaluated based on the correspondence between the original groups

of documents and the ones discovered by co-clustering the documents together with the

other kinds of objects they are correlated with (i.e., the words contained in them and the

group/category they came from). To this purpose, we resorted two classical accuracy

measures: (i) the micro-averaged precision P and (ii) the normalized mutual informa-

tion (NMI).

The co-clustering approach was tested with both the AD-HOCC LC-HOCC strate-

gies, using this latter with different values of the weights βc and βt = 1−βc associated

with the document-by-terms and the document-by-terms matrices, respectively. Each

P NMI

Methods βc TM1 TM2 TM1 TM2

LC-HOCC

0.9 0.850 0.718 0.484 0.593

0.7 0.838 0.649 0.444 0.476

0.5 0.813 0.673 0.362 0.479

0.3 0.832 0.657 0.422 0.471

0.1 0.831 0.656 0.417 0.449

AD-HOCC N.A. 0.887 0.749 0.606 0.602

Table 1. Results on real datasets.

run was performed on the 200 biggest documents, by considering 2000 terms filtered

according to a common stop-words list and to their relevance, based on their mutual

information over the whole corpus of documents. For any document belonging to h cat-

egories, its correlation with each of them was set to 1/h in the document-by-category

matrix and the document-by-term matrix were initialized with k-means.

The results obtained, shown in Table 1, are perfectly in line with those of the se-

quential versions of the algorithms [10]. In particular, it is worth noticing thatAD-HOCC

always produces better results (in terms of both precision and NMI) than LC-HOCC,

whatever value of βc is used.

4.2 Scalability tests on synthesized data

Scalability tests were performed on a cluster of 16 nodes, with a locally attached 1TB

SATA hard drive. Each node is a dual-core processor (Intel Xeon E5520 2,26GHz) with

2GB DDR3 1333MHz RAM and running Linux CentOS 5.3 with kernel 2.6.18.

Synthetic datasets were produced with the Java generator described in [10], by

varying the following parameters: (i) the number N > 1 of auxiliary domains, (ii) the

sizes m, n1, ..., nN of the domains DX , DY 1 , ..., DY N , (iii) the number of required

clusters along each dimension.

The improvement gained through parallelization can be appreciated in Figure 2.

There the time spent for co-clustering several datasets is reported, when varying the

size of the central domain (up to 2000 objects) and the number of processor nodes,

while fixing the number of auxiliary domains to 16 (i.e. N = 16) and the size of each

of them to 2500 (i.e. ni = 2500 for i = 1..N).

In particular, Figure 2.(a) evidences the gain in the execution time that the paral-

lelized version has w.r.t. the sequential one. The same behavior is shown in Figure 2.(b),

in terms of relative speed-up, which is almost linear, even though with a slope lower

than 1. This is mainly due to communication costs and to other kinds of overhead of the

runtime Map-Reduce environment used in the tests. We finally notice that the speed-up

slope gets better when higher volumes of data (namely, higher amounts of elements

in the central domain) are given in input. In fact, increasing the number of elements

that are to be clustered only impacts on parallelized tasks and not on the synchronized

aggregation of their partial results.

1 2 4 8 16
0

50

100

150

200

250

Number of Nodes
T

im
e

(s
ec

)

8000
4000
2000
1000

(a)

1 2 4 8 16
0

2

4

6

8

10

12

Number of Nodes

S
pe

ed
up

8000
4000
2000
1000

(b)

Fig. 2. Computation time when varying the number of processing nodes and the size of central

domain.

5 Conclusion

This work attempts to face the problem of efficiently co-clustering an arbitrary number

of inter-related domains, which has received little attention in the community of parallel

Data Mining — which mainly concentrated on the case of just one or two data types.

Specifically, we illustrated a parallel implementation of two a state-of-the-art methods,

based on a Map-Reduce infrastructure. Theoretical and empirical analyses confirmed

both the scalability of the approach and its capability to achieve the same accuracy as

the sequential version of the methods. As future work, we plan to extend the approach

to arbitrary inter-relationships structure (going beyond the star-shaped one considered

in this paper), yet providing a parallelized implementation based on Map-Reduce.

References

1. http://hadoop.apache.org/.

2. Arindam Banerjee, Sugato Basu, and Srujana Merugu. Multi-way clustering on relation

graphs. In Proceedings of the 7th SIAM International Conference on Data Mining (SDM

2007), pages 145–156. SIAM, 2007.

3. R. Bekkerman and M. Scholz. Data weaving: scaling up the state-of-the-art in data clustering.

In Proc. of the 17th ACM conference on Information and knowledge management, pages

1083–1092, 2008.

4. Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum. Multi-way distributional clustering

via pairwise interactions. In ICML ’05: Proceedings of the 22nd international conference on

Machine learning, pages 41–48, New York, NY, USA, 2005. ACM Press.

5. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com-

mun. ACM, 51(1):107–113, 2008.

6. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc.

9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD03), pages

89–98, New York, NY, USA, 2003. ACM Press.

7. I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory multipro-

cessors. In Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale

Parallel KDD Systems, SIGKDD, pages 245–260, 2000.

8. C.T. Chu et al. Map-reduce for machine learning on multicore. In NIPS, pages 281–288,

2006.

9. T. George and S. Merugu . A scalable collaborative filtering framework based on co-

clustering. In Proc of the Fifth IEEE International Conference on Data Mining, pages 625–

628, 2005.

10. Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Co-clustering multiple heterogeneous

domains: Linear combinations and agreements. IEEE Transactions on Knowledge and Data

Engineering, 99(PrePrints).

11. Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wú, and Philip S. Yu. Spectral clustering for

multi-type relational data. In Proceedings of the 23rd International Conference on Machine

learning (ICML 2006), pages 585–592, New York, NY, USA, 2006. ACM Press.

12. S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-reduce: A case study

towards petabyte-scale end-to-end mining. In Proc. of the 2008 Eighth IEEE International

Conference on Data Mining, pages 512–521, 2008.

13. J. Zhou and A. Khokhar. Parrescue: Scalable parallel algorithm and implementation for bi-

clustering over large distributed datasets. In Proc. of the 26th IEEE International Conference

on Distributed Computing Systems, pages 21–, 2006.

