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Abstract. Modelling behavioral aspects of business processes is a hard and costly task, which 
usually requires heavy intervention of business experts. This explains the increasing attention given 
to process mining techniques, which automatically extract behavioral process models from log 
data. In the case of complex processes, however, the models identified by classical process mining 
techniques are hardly useful to analyze business operations at a suitable abstraction level. In fact, 
the need of process abstraction emerged in several application scenarios, and abstraction methods 
are already supported in some business-management platforms, which allow users to manually 
define abstract views for the process at hand. Therefore, it comes with no surprise that process 
mining research recently considered the issue of mining processes at different abstraction levels, 
mainly in the form of a taxonomy of process models, as to overcome the drawbacks of traditional 
approaches. This paper presents a general framework for the discovery of such a taxonomy, and 
offers a survey on different kinds of basic techniques that can be exploited to this purpose: (i) 
workflow modeling and discovery techniques, (ii) clustering techniques enabling the discovery of 
different behavioral process classes, and (iii) activity abstraction techniques for associating a 
generalized process model with each higher level taxonomy node.  

 

1. Introduction 
Workflow models are an effective way to specify the behavior of complex processes in terms of 
elementary activities and routing constructs (e.g. parallelism, loops, splits), and have been largely 
used in many Business Process Management (BPM) platforms. Unfortunately, modeling the 
behavioral aspects of a business process is a time-consuming task, usually requiring heavy 
intervention by business experts. This motivates the recent surge of interest towards process mining 
techniques38, which allow for automatically extracting a workflow model based on the execution 
logs available for a given process. 

However, traditional process discovery approaches designed to eventually support process 
enactments, extract workflow models specifying all the operational details for the process. 
Conversely, business users often want to analyze business operations at higher abstraction levels, 
and several commercial business-management platforms (e.g., iBOM6, ARIS22) offer capabilities 
for manually defining abstract views over a process. Thus, the automated discovery of multiple 
process views, at different granularity levels, is a natural extension of process mining and of 
workflow analysis techniques.  

In this work, we specifically consider the case where multi-level views are induced for describing 
the behaviour of a process, and eventually organized in the form of a taxonomy, a valuable kind of 
knowledge representation tool, which has found application in a disparate fields. A process 
taxonomy, specifically, is essentially a tree of workflow models, where the root provides the most 
abstract view over the executions of a process, and any other node refines this abstract model to 
describe a subclass of executions. Clearly, such a structure, describing the main behavioural 
variants of a process in an articulated and modular way, allows for effectively consolidating, 
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sharing and reusing knowledge about its behaviour. And, in fact, process taxonomies have been 
profitably used in the modelling and re-engineering of business processes (see, e.g., the MIT’s 
Process Handbook project30). 

A first step towards such an automatic construction of process taxonomies, based on process 
mining, was done in Reference 19, where different behavioural classes of a process are discovered 
with a clustering method, and equipped eventually with separate workflow models. Indeed, such a 
result can be used as a basis for obtaining a taxonomy of process models, by possibly exploiting 
diverse process abstraction techniques17,13,23,29,32,5,35,14, in order to provide high level nodes with 
coarser-grain process models. 

In fact, the discovery of taxonomies, in the form of concept hierarchies, was widely studied in the 
past, especially in the context of ontology learning systems41. Various approaches have been 
proposed in order to extract concepts’ taxonomies from different kinds of data sources. For 
instance, as to the case of structured input data, taxonomy learning methods have been defined 
which can take as input database schemas45, other existing ontologies46, knowledge bases47 and 
lexical semantic nets such as WordNet. Some learning systems (e.g., those in References 48, 49, 50, 
51) can also exploit semi-structured data (such as, e.g., dictionaries, HTML, XML and DTS’s 
documents) in the discovery of a concept taxonomy. In general, the most difficult source to deal 
with are unstructured data, such as sequences and text documents. In such a case, the typical 
approach (see, e.g., References 8, 26, 28, 31) relies on using some clustering algorithm in order to 
automatically induce a hierarchy of classes (for words and/or documents), and regarding each of 
these classes as the evidence for a distinct concept. Despite this problem is logically similar to the 
one addressed in this work, a main point of difference lies in the fact that every node in a concept 
taxonomy has a “static” nature, in that it does not encode dynamic behaviours, as it happens, 
instead, in the case of process models. Hence, these methods cannot be trivially reused when 
discovering a process taxonomy, where ad-hoc process induction/abstraction mechanisms are 
needed to capture process dynamics and guarantee some sort of behavioural consistency between 
each model in the taxonomy and its parent.  

This paper gives a survey of some major issues and solutions related to the discovery of process 
taxonomies. After introducing preliminary concepts (concerning workflow models, activity 
abstractions and behavioural consistency notions), a general approach to the discovery of process 
taxonomies is sketched in the third section, parametrically to three basic tasks: process discovery, 
trace clustering, and process abstraction. The following three sections discuss and compare some 
major approaches in the literature that can help solve each of these sub-problems, while few 
concluding remarks are drawn in the last section.  

 

2. Preliminaries: Workflows, Abstractions, and Behavioral Consistency 
Workflow models (precisely control-flow models) are a popular means for representing the 
behaviour of a process, and hence constitute a special kind of model for it. However, as in this 
paper we are not considering any other kinds of process models (e.g., data-flow models, 
organizational models, etc.), the terms “workflow model” and “process model” will be used 
interchangeably hereinafter. In the rest of this section, some basic concepts on workflow models 
and on activity abstraction are introduced. The section then presents some notions of behaviour 
inheritance/preservation for workflow models, which can help provide a semantical foundation to 
parent-child relationships in a taxonomy of process models. 
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2.1. Workflow Models (Schemas) and Logs 
A workflow model (a.k.a. workflow schema) specifies all possible flows along the activities of a 
process, by way of a set of constraints defining “legal” execution in terms of simple relationships of 
precedence and/or more elaborate constructs such as loops, parallelism, synchronization and choice 
(just to cite a few).  A significant amount of research has been done for the specification of process 
models (e.g., EPCs, Petri Nets).  

For the sake of clarity, a simple modelling language for workflow models is used hereinafter, where 
precedence relationships are depicted as arrows between two nodes of a workflow graph, while 
further execution constraints are specified with special labels associated with the input/output of a 
task. Specifically, an AND-join node (i.e., a node with AND on its input) acts as synchronizer (i.e. it 
can be executed only after all its predecessors have been completed), whereas a OR-join node can 
start as soon as one of its predecessors completes. Once  finished, an AND (resp., OR, XOR) -split 
node activates all (resp., some, one) of its output activities. Notice that most of the methods 
discussed in this paper are orthogonal to the language adopted to represent process behaviour, and 
they do not depend on the simplified notation introduced above.  

Example Fig. 1 shows a workflow model for a process concerning the handling of customers’ 
orders in a business company. For example, task l is an AND-join activity, as it must be notified 
that both the client is reliable and the order can be supplied. Conversely, b is a XOR-split activity, 
while it can activate just one of its adjacent activities. 

 

 

Figure 1. Workflow model for the sample HandleOrder process. 
 

Each time a workflow model is enacted, its activities are executed according to the associated 
constraints, till some final configuration is reached. Many process-oriented systems store 
information on process instances in a log repository, keeping track of the events happened during 
each of them. Basically, a process log can be seen as a set of traces, which, in the most simplistic 
scenario, correspond to strings over activity identifiers, representing sequences of activities.  A 
small log is shown in Fig. 2, for the example process HandleOrder.  
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Figure 2. Sample log for the HandleOrder process. 
 
Essentially this is the type of historical data that process discovery algorithms38 take in input in 
order to find a workflow model, even when the original one is unknown. The quality of a workflow 
model W can be evaluated relatively to a log L (the one actually used for inducing the model, or 
another log of the same process) by way of “conformance” measures (usually ranging over [0…1]), 
which can be distinguished into two main families: (a) fitness measures (a sort of completeness 
measures), which roughly tell how much the traces in L comply with the behavior encoded in W, by 
typically counting the violations that are needed to perform to replay all the traces through the 
model; and (b) precision measures, which try to quantify how much of the flexibility (ascribable to 
alternative/parallel constructs) of W  is really necessary to reproduce L. 
 

2.2. Activity Abstractions and Process Taxonomies 
Many process abstraction approaches store and exploit activity abstraction relationships. In order to 
make thinks concrete, we next describe a basic form of activity ontology, as defined in Reference 
17, which intuitively captures two different kinds of abstraction, corresponding to IS-A (a.k.a., 
“hypernimy” or “generalization”) relations and Part-Of (a.k.a., “partonomy” or “meronimy”) 
relations, respectively. Such relations were widely used for representing of business activities in 
several application contexts, such as, e.g., the MIT Process Handbook project30, where a catalogue 
of business processes models was defined, based on interviews with experts, which span several 
business domains and features about 5,000 activities.  

Hereinafter, we will name activity ontology a tuple D=áA,IsA,partOfñ, where A still denotes a set of 
activities, while IsA and PartOf  are binary relations over A. Intuitively, given two activities a and 
b, (b,a)ÎIsA indicates that b is a specialization of a, whereas (b,a)ÎPartOf indicates that b is a 
component of a. These basic properties can be extended in a transitive fashion, as follows.  Given 
two activities a and x, a abstracts x if there is a path from a to x in the graphs induced by IsA and 
PartOf. In such a case we also say that a is a complex activity; otherwise, a is a basic activity. In a 
sense, complex activities constitute high-level concepts defined by aggregating or generalizing the 
basics activities that actually occur in real process executions. This notion is the building block for 
defining a taxonomy of process models, where the knowledge about process behavior is structured 
into different abstraction levels.  

Based on activity abstraction (resp. refinement) relationships, an intuitive notion of process model 
generalization (resp. specialization) can be stated: Given two workflow models W1 and W2, we say 
that W1 generalizes W2 (W2 specializes W1) w.r.t. an activity ontology D, if for each activity a2 of 
W2 (i) either a2 appears in W1 or there is an activity a1 in W1 s.t. a1 abstracts a2, and (ii) there is no 
activity b1 in W1 s.t. a2 abstracts b1.  

Definition 1 A process taxonomy is a tree of workflow models, where the leaves correspond to 
distinct classes of process executions, while any non-leaf schema provides a unified and 
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summarized representation over multiple heterogeneous behavioural classes. Formally, given an 
activity ontology D, like that introduced in the previous section, a tree of workflow models G is said 
to be a process taxonomy w.r.t. D if, for any pair of models W and Wp s.t. W is a child of Wp in G, 
Wp generalizes W.  

The basic abstraction relations described above could be specified in many formal knowledge 
representation languages, such as, e.g., the family of Description Logics – in this case each activity 
label x can be regarded as a concept term, while assuming that a log trace t is an instance of that 
concept if t contains at least one occurrence of x. Even more directly, one can use object-oriented 
modeling frameworks (e.g., OntoDLV2) natively supporting the constructs.  

Notice, moreover, that the definition of process taxonomy does not explicitly embed a precise 
notion of behavioural inheritance for the models appearing in it. Such a desirable property is indeed 
delegated to the underlying activity abstraction relationships, which could be practically defined in 
accordance with some kind of behavioral inheritance notion, as discussed in the next subsection. 
Notably, the choice of a reference notion of behavioural inheritance, determines the semantics of 
trace abstraction with respect to a given activity ontology like that defined before, as far as concerns 
the possible ways of replacing multiple occurrences of concrete activities with a higher-level one 
that features as an ancestor of these activities in one of the abstraction hierarchies of the ontology.  

2.3. Behavior Inheritance/Preservation 
Diverse notions of specialization and inheritance were defined in several application contexts, e.g., 
OO-Design/Programming and Process Modelling. The possibility of defining business process 
taxonomies was first considered in Reference 30, where a repository of process descriptions is 
envisaged supporting the design and sharing of process models. However, this pioneering work 
founds on a “static" representation of the processes which disregards the evolution of the process 
over time: each process P is modelled as a class featuring P’s activities as properties, which will be 
inherited by any P’s subclass – by the way, the framework also allows to remove inherited activities 
(non-monotonic inheritance).  

The problem of defining a specialization/inheritance notion capable to account for dynamic 
behaviour, has been studied against different process modelling languages, such as, e.g., UML 
diagrams37, Petri-nets3, and DataFlow diagrams27. Notably, the classical IS-A property relating the 
instances of a given class to its super-class is typically rephrased in these contexts by stating that all 
the execution instances of a model may also be regarded as instances of any model generalizing it, 
in connection with some suitable behavioural equivalence criterion (e.g., trace equivalence or 
branching bi-simulation). 

Two main kinds of specialization may be considered on a process model: extension (i.e. one or 
more activities, and their associated flow links, are added the model) and refinement (i.e. one or 
more activities in the model are refined by replacing each of them with some more specific activity 
or with a sub-process, composed of multiple finer-grain activities).  

In the first case, a key point for defining a proper notion of behavioural inheritance concerns how to 
abstract the execution of any activity that has been added to the sub-class model. Quite a complete 
and deep theoretical framework for dealing with such a situation is presented in Reference 3, where 
two basic notions of behaviour inheritance (and two derived notions based on them) are defined for 
workflow models represented as WF-nets39,41,43 (a special kind of Petri-nets). There, it is stated that 
the external behaviours shown by a model and by any of its specializations must not be 
distinguishable whenever: (a) only common activities are performed, while blocking the additional 
ones (“protocol inheritance”, conceptually similar to the notion of “invocation consistency" 37); or 
(b) when one simply abstracts from activities that are not in the base model (“projection 
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inheritance”, analogous to “observation consistency”37). Moreover, four inheritance-preserving 
transformation rules are presented in the same paper, which allow to specialize a WF-net model by 
adding new elements as part of typical control flow constructs (choice, iteration, sequential 
composition, and parallel composition, respectively). Notably, when using these rules, the resulting 
model is ensured to be a subclass of the original one, without requiring any explicit verification of 
behaviour equivalence (which is, in general, a costly task).  

The concept of process specialization as refinement of activities has been largely adopted in the 
field of process abstraction6,22,17,13,23,29,32,5 – closely related to the theme of this paper – where the 
aim is to simplify the description of a process model by providing the user with more abstract and 
readable process views. In fact, in this perspective, a more general (and succinct) view of a process 
can be get by making the given model undergo some activity abstraction transformation, which 
essentially amounts to replace a group of activities (or an entire sub-process) with a single higher-
level activity. Clearly enough such a transformation is the inverse of refining the resulting abstract 
model. In actual fact, specialization via extension as well has a counterpart in a process abstraction 
setting, which obviously corresponds to the elimination of activities; however, we do not discuss 
such a type of transformation further in the rest of this paper for two reasons: (i) it has not found as 
a wide usage as activity abstraction in the literature; (ii) one can still think of replacing one or more 
activities he/she wants to remove with some sort of “phantom” high-level activities, which can be 
kept hidden (along with their associated links) in the abstracted view shown to the user.  

As far as concerns the similarity of behaviors between a process model and its abstracted version, 
most process abstraction approaches do not fulfill a precise notion of inheritance like that in 
Reference 3. Anyway, some approaches have been defined which try to satisfy some kind of 
behavioural consistence, ensuring that routing and causal constraints among the activities are 
somewhat preserved in the resulting model. The prevalent way of obtaining such a result is to 
decompose the structure of the input workflow model into a number of process fragments, possibly 
defined in a recursive way (as in the case of the SPQR-tree structure4), such that each fragment 
corresponds to a well-specified composition pattern (e.g., sequential composition, or split/join 
structures). In this way, an order-preserving notion of process generalization can be met, provided 
that each set of partonomical relationships stored in the activity ontology are created in accordance 
with these fragments.  

An alternative solution consists in taking account for the ordering relationships between process 
activities that are implied by the control-flow model, when deciding which activities are to be 
aggregated together into a higher-level abstract activity. In particular, in Reference 29, the resulting 
model M’ is ensured to be an “order preserving” view of the original process model M, in that, for 
any pair of activities x and y in M’, if x precedes (resp., follows, is-independent-of) y, then any 
activity abstracted by x precedes (resp., follows, is-independent-of) all the activities abstracted by y. 
In other words, the implied ordering constraints between concrete activities of the process, which 
are produced by the abstraction process, must coincide with the ordering constrains in the original 
model. For example, with regard to Fig. 1, the model obtained by simply abstracting activities d and 
p together into a single complex activity, say x, would comply with this notion of behavior 
consistency; the converse would happen, instead, if we defined x as consisting of c and g. 

 

3. General Approach to Process Taxonomy Discovery 
The problem of discovering a process taxonomy (cf. Definition 1) can be approached via a two-
phase strategy, consisting of two macro-steps: (S1) Clustering-Based Hierarchy Discovery, where a 
hierarchical clustering of the log is computed by looking at behavioural similarities between log 
traces, so that each cluster can be regarded as representative of a different behavioural sub-class of 
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the process, and equipped with a separate workflow model (with the help of a workflow discovery 
algorithm); and (S2) Abstraction-Based Hierarchy Restructuring, where the hierarchy of workflow 
models is restructured into a taxonomy, by using process abstraction mechanisms allowing to 
associate each non-leaf node v with a workflow model that generalizes all the models appearing in 
the subtree rooted in v. 

 

 

Figure 3. A pictorial representation of the overall approach to the discovery of a process taxonomy: core 
tasks and related works in the literature. 
 

Clearly, such an approach hinges on three different basic computation tasks: (a) Workflow 
Induction, amounting to extracting a workflow model out of a given (sub-)set of log traces; (b) 
Trace Clustering, aimed at partitioning a given set of log trace into a number of behaviourally 
homogeneous groups; (c) Workflow Abstraction, devoted to deriving a generalized coarser-grain 
workflow model for a given set of workflow models. A range of methods are available in the 
literature, which can, in principle, help solve each of these core sub-problems. Figure 3 offers a 
rough, and yet hopefully intuitive, picture of how such methods can be exploited to discover a 
process taxonomy, according to the two-phase approach mentioned above. For each task, the figure 
shows the respective inputs and outputs, as well as a list of works in the literature (namely, 
references to items in the bibliography) that can be reused to implement it.  

Notice that, in Fig. 3, it is envisaged the integration of this main computation procedure with Log-
driven Abstraction techniques13,23, recently appeared in the literature, as an optional pre-processing 
step. Essentially, these techniques allow for identifying abstract activities as groups of correlated 
log events (based on clustering or pattern-mining algorithms). Each of such high-level activities can 
be stored in an activity ontology (along with its associated low-level activities), and can be used to 
produce and abstract view of the log – where, in each log trace, low-level activities are replaced 
with the corresponding high-level one. In fact, such a pre-processing step can be very effective in 
the case where the logs contains low-level events, which are not directly linked to semantically 
relevant process activities. Indeed, as the raw application of process discovery algorithms to such 
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logs would results in “spaghetti-like" models (with many task nodes and links between one 
another), it is convenient to bring the traces to a higher level of abstraction, prior to clustering and 
analysing them.  

The rest of this section is devoted to illustrate, in two separate subsections, two meta-algorithms 
encoding a computational scheme for the high-level computation steps (S1) and (S2) introduced 
above, respectively. Notice that these meta-algorithms are mainly meant to describe, in a more 
precise manner, how the core Workflow Induction, Trace Clustering, and Workflow Abstraction 
techniques are employed within the discovery of a process taxonomy. A deeper discussion of these 
three families of techniques will be provided later on, in the next three sections of the paper, 
respectively. 

3.1. Clustering-based Hierarchy Discovery 
Hierarchical clustering methods (agglomerative or divisive) have been extensively used in several 
application contexts in order to construct taxonomies automatically (see, e.g., References 8, 26). 
Traditionally, these schemes rely on suitable distance measures and linkage strategies, and produce 
a tree-like partitioning structure (“dendrogram”), which can serve as a basis to derive class 
hierarchy. However, many of these classical clustering methods risk being too time-consuming on 
large logs. A possible solution consists in finding an initial set of, fine grain, clusters for the input 
log, and then grouping them into higher-level clusters according to an agglomerative scheme, where 
the similarity among clusters is computed by only comparing the workflow models associated with 
them (with the help of workflow discovery techniques). Workflow oriented graph edit distances11 
and behavioural similarity measures40 could be exploited to this end. 

 

 
Figure 4. Meta-algorithm HierarchyDiscovery. 

 

As an alternative solution, in Fig. 4 a top-down clustering scheme is illustrated, where whatever 
(more scalable) clustering method can be exploited (as in Reference 19). In this meta-algorithm a 
given log is decomposed hierarchically into a number of sub-logs, by iteratively splitting a cluster 
whose associated model is expected to mix different usage scenarios. The result is a tree-like model 
where each node corresponds to a set of executions (i.e., process instances) and its children to a 
partition of that set.   

Initially a single workflow model W0 is extracted that is a first attempt to model the whole log. 
Iteratively, one of the models not refined yet (i.e., corresponding to a leaf of the tree) is refined: the 

INPUT:	 a	log	L,	two	natural	numbers	maxSize	and	K,	a	real	quality	threshold	g	
OUTPUT:	 a	workflow	hierarchy	H	
Method:	Perform	the	following	steps:	
A)	 Initialize	the	hierarchy	with	one	workflow	model	for	the	whole	log	

W0	=	mineWFSchema(L)		 //	mine	a	model	W0	from	all	traces	in	L		
cluster(W0)	=	L		 	 //	associate	W0	with	the	whole	log	L	
DW	=	{	W0	}				 	 //	DW	is	used	to	contain	all	the	leaf	schemas	of	H	

B)				WHILE	size(DW)£	maxSize	and	quality(DW)<	g	
Extract	the	least	accurate	model	W*	from	DW		 			//	according	to	measure	quality(�)	

											{C1,…,Ck}	=	partition(traces(W*))		
For	each	cluster	Cj	(j=1..k)	extracted	from	traces(W*),		

Wj=	mineWFSchema(L)		 	 //	mine	a	(refined)	model	for	the	cluster	
put	Wj	in	DW,	and	extend	H	by	adding	Wj	as	a	child	of	W*	
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set of traces that are associated with it are split into clusters by using the meta-function Partition, 
which could be implemented by some of the different trace clustering approaches proposed in the 
literature (and discussed later on). A new workflow model is then mined out for each of these 
clusters, by using some workflow discovery technique (see next section for more details). At the 
end of the process, a hierarchy of workflow model is obtained, where the leaf nodes constitute a 
disjunctive model representing the execution logs more accurately than W0. Note that the method is 
also parametric w.r.t. the measure quality, which should evaluate how much adequately the current 
set of unrefined workflow models – i.e., the ones on the frontier of the tree – capture the behavior of 
the process under analysis.  

Such an evaluation could be made by resorting to log conformance measures like the ones 
mentioned in the previous section and/or to structural complexity measures. 

 

 
 

Figure 5. Hierarchy found by HierarchyDiscovery on the running example (details for leaf models only). 
 

Example (contd.) In order to provide insight on how the above meta-algorithm could work in a 
practical case, we randomly generated 100,000 traces from the workflow in Fig. 1, under the 
additional constraint that task m cannot occur in any trace containing f (a fidelity discount is never 
applied to a new customer), and task o cannot appear in any trace containing d and p (fast 
dispatching cannot be performed whenever external supplies are asked for), hence simulating the 
presence of different process variants. We then applied the meta-algorithm HierarchyDiscovery, 
using the feature-based clustering in Reference 19 (see the section on log clustering methods for 
further details) to implement meta-function partition, without performing any quality check in the 
test of the main loop (i.e., function quality is implemented as to always return the maximal score). 
This peculiar choice bases on the observation that such an approach is expected to be effective 
enough in dealing with behavioral constraints like the ones used in our simulation, and in 
identifying behaviorally homogenous clusters. The resulting hierarchy is shown in Fig. 5.(a), where 
each node logically corresponds to a cluster of traces and to an associated workflow model (induced 
from the cluster). The model W0 preliminary found for the whole log (and associated with node v0) 
actually coincides with the one shown in Fig. 1. Since it was not as precise as required by the user, 
the log was partitioned into two clusters (k=2). The cluster associated with v2 was not refined 
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further, whereas that of v1 was split again into two sub-clusters. In fact, models W0 and W1 
(corresponding to v0 and v1, resp.) are just preliminary model for their associated log traces, which 
are indeed modeled in more precisely by the leaf models – shown in Fig. 5.(b-c-d). 

 

3.2. Abstraction-based Hierarchy Restructuring 
We next study how a hierarchy of workflow models can be restructured into a taxonomy of models, 
describing the process at different levels of details. The key point is to equip each non-leaf node 
with an abstract model generalizing those associated with the children of the node. To this aim, 
some suitable activity abstraction method must be used to replace groups of (structurally correlated) 
activities with higher-level activities.  

 

 
Figure 6. Algorithm BuildTaxonomy. 

 
The crucial steps are illustrated in Fig. 6, via a meta-algorithm, named BuildTaxonomy, inspired to 
the approach in Reference 17. The algorithm transforms a given model hierarchy H into a 
taxonomy, possibly using an activity ontology D, storing basic activity abstraction relationships. In 
a bottom-up fashion, each non-leaf node v in the hierarchy is equipped with a new workflow model, 
by using meta-function abstractSchema. This latter is provided with the model v and with the 
indication of which activities are to be abstracted (namely, the tasks that appear only in a proper 
subset of v’ children). Optionally, this task is carried out based on the contents of ontology D, 
which is then updated, as to store the links between abstracted activities and their corresponding 
complex ones in the novel (abstract) model of v. In such a case, D will be restructured eventually by 
removing “superfluous” activities – i.e., activities that does not appear in any model of H. The 
above meta-scheme is parametric to the initial contents of the activity ontology D (which can be 
empty or encoding existing domain knowledge), as well as to the actual algorithm implementing 
abstractSchema, which may disregard its third argument, which is just returned as it in output. 
 
Example (contd.) We next consider the application of the meta-algorithm in Fig. 6, where function 
abstractSchema is implemented as in Reference 17. Notably, any workflow model taken as input by 
this function is transformed by replacing “specific” activities (i.e. activities that does not appear in 
all input models) with new “virtual” ones abstracting them all via IS-A or PART-OF relationships, 
based on the current contents of the reference activity ontology. Figure 7 illustrates the final 
outcomes of this restructuring process: (i) a tree representing the process taxonomy, replicating the 
structure of the input workflow hierarchy; (ii) the contents of the activity ontology, mapping the 
abstract activities, created by the algorithm, to the corresponding concrete ones; (iii) the two 

INPUT:		a	workflow	hierarchy	H,	and	an	activity	ontology	D	(possibly	empty)	
OUTPUT:	a	modified	version	of	H		(such	that	H		is	a	process	taxonomy	w.r.t.	D)	and,	possibly,	of	D	
Method:	Perform	the	following	steps	
Create	a	set	S	of	models	containing	only	the	leaves	of	H		
WHILE	there	is	a	model	v	in	H,	s.t.	v	Ï	S	and	its	children	are	in	S	
				Let	aS	be	the	set	of	all	tasks	that	appear	in	some	of	the	children	of	v,	but	not	in	all	of	them	
				(v,D)	:=	abstractSchema(v,aS,D)	//	compute	a	new	model	where	the	tasks	aS	are	abstracted		
	 	 												//	while	possibly	taking	account	for	D	and	eventually	updating	it	
				put	v	in	S	
	

Remove	“superfluous”	complex	activities	from	D	(according	to	H’s	schemas)	
Return	H	and	D	
	



	 	 11	

restructured workflow models produced for the nodes v’0 and v’1 (i.e., the only two non-leaf nodes 
in the taxonomy) – the three remaining (leaf) nodes in the taxonomy (namely v’2, v’3, and v’4) are 
simply equipped with the same workflow models as their corresponding nodes (namely v2, v3, and 
v4, respectively) in the original workflow hierarchy (cf. Fig. 5) – i.e., leaf models are left unchanged 
in the restructuring phase. 

 

 
 

Figure 7. Generalized workflow models in the taxonomy found for the example HandleOrder process. 
 

Let us now briefly describe how these results have been obtained. Provided with the hierarchy of 
Fig. 5 and with an initially empty activity ontology – we assume that no background knowledge on 
activity abstraction is available – algorithm BuildTaxonomy first generalizes the leaf models W3 and 
W4 (associated with v3 and v4, respectively), which share all the activities but o, d and p. In the 
resulting model W1

*, shown in Fig. 7.(c), d and p have been aggregated into a new complex activity 
x1 – while putting the pairs (d, x1) and (p, x1) in the PartOf  relationship. W1

* is then merged with 
the model W2, and a new abstract model W0

*, shown in Fig. 7.(d), is build for the root. This model 
features three complex activities: x1, aggregating d and p, as discussed before; x2, aggregating e and 
f; and x3 composed of m and o. The pairs (e, x2), (f, x2), (m, x3) and (o, x3) eventually appear in the 
PartOf relation of the activity ontology. Notice that a further complex activity x0 was created during 
the creation of the abstract schema W1

* in order to aggregate d and p; x0 was then abstracted by x1 
through an IS-A link (in fact these two complex activities had the same set of sub-activities and the 
same control flow links), and eventually removed from the activity ontology, for it does not feature 
in any of the workflow models in the resulting process taxonomy.  

 
4. Workflow Discovery Techniques 
Process mining techniques38 try to extract knowledge on the behaviour of a processes from an 
execution log. The rest of this section illustrates a number of techniques specifically designed for 
the induction of a workflow models. In general, the proposals in the literature differ both in the 
specific induction algorithm and in the language for representing workflows – ranging from simple 
directed graphs1,7,14, expressing precedence relationships, possibly extended with simple split/join 
constraints19,42, to more expressive formalisms, sometimes enjoying deep behavioral semantics, like 
WF-nets39,41,43.  
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The problem of discovering a workflow model was analyzed in Reference 39, where a class of Petri 
nets, named structured workflow (SWF) net, is identified. The algorithm proposed, named α, can 
rediscover such a model, under the hypothesis that the input log is “complete” – i.e., all pairs of 
tasks linked directly in the SWF appear consecutively in at least one log trace. Two extended 
versions of algorithm9,43, were proposed subsequently to discover two specific kinds of control-flow 
constructs: short loops (loops involving one or two activities only) and non-free-choice constructs 
(where the choice of which outgoing edges of a XOR-split node x is to be executed does not 
depends on x only), respectively.  

Simple metrics concerning task dependency and task frequency are exploited in a heuristics 
approach42, capable of discovering a graph-based model, called “dependency/frequency graph", 
which encodes both precedencies and split/join constraints. Notably, this approach can cope with 
noisy logs, based on user-given frequency thresholds. 

The discovery of block-structured workflows possibly containing duplicate tasks was addressed in 
References 20 and 21, where a two-step solution is presented: first a stochastic activity graph (SAG) 
is induced from the log, and then the SAG is turned into a block-structured workflow by suitable 
transformation rules. The use of term rewriting systems was also proposed to discover a 
hierarchically structured workflow model, in the form of an expression tree, where the leaves 
represent tasks (operands) while any other node is associated with a control flow operator34. 

An alternative solution10 to the workflow discovery problem relies on a global search method, based 
on genetic algorithms. This allows for dealing with complex routing constructs (including non-free-
choice and hidden tasks, i.e. routing activities that do not appear in the traces) and with noisy data, 
but implies highest computational costs. 

Based on the observation that extracting a single workflow model for very different cases may lead 
to over-generalized process models, workflow discovery has been combined with the clustering of 
log traces19. This permits to improve the precision of basic workflow discovery algorithms by 
capturing constraints that are beyond the expressiveness of their associated modeling languages. To 
this end, the approach in Reference 19 essentially exploits a top-down clustering scheme very alike 
the one in Fig. 4 (without any test on the quality of the current hierarchy), and returns a collection 
of workflow schemas, corresponding to the ones induced from the leaves of the discovered clusters’ 
tree. A more detailed discussion on the clustering technique is given in the next subsection, devoted 
to trace clustering approaches. 

A recent trend in the Process Mining community concerns the opportunity to exploit background 
knowledge in order to deal with incomplete logs, first pinpointed in Reference 16, where an ILP-
based discovery method is described. Specifically, after extracting temporal constraints, capturing 
dependence and parallelism relations between activities, negative events are generated artificially 
for each prefix of any log trace; using both log traces and artificial negative events as input, a logic 
program is induced with algorithm TILDE, which is eventually converted into a Petri net. 
Importantly, domain experts can directly provide an a-priori set of temporal constraints, possibly 
stating that (i) two activities are parallel (resp., not parallel), and (ii) that one precedes/succeeds 
(resp., does not precede/succeed). A constraint-based discovery framework was recently proposed 
in Reference 18, where the information gathered from the log and background knowledge are both 
expressed as precedence constraints, i.e., constraints over the topology of the graphs. The search of 
a simple kind of process model, encoding only precedencies between tasks, is then rephrased into a 
constraints satisfaction problem (CSP), which is eventually solved by leveraging an existing CSP 
solver. Even though the resulting model does not capture typical control-flow constructs, the 
activity dependencies encoded by it can be given as input to other workflow induction 
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algorithms39,41,43, in order to extract a fully expressive process model. Some major features of the 
approaches presented so far are summarized in Table 1.  

 
Table 1. Summary of Process Discovery techniques. The last two columns correspond to the formalism used 
for representing discovered process models and to the capability to take advantage of background knowledge 
about the structure of the process. 

 Handled Issues    

Paper Noise Duplic. 
Tasks 

Hidden 
Tasks 

Non-free 
Choice Loops Learning 

Approach 
Repr. 

Language 
Backgr. 
Knowl. 

[1] - - - - - Heuristics Dep. graph - 

[10] Ö - Ö Ö Ö Genetic alg. Petri Nets - 

[19] Ö - - Ö - Heuristics + 
Clustering Dep. graph - 

[16] Ö Ö Ö Ö Ö ILP Petri Nets Ö 

[20,21] Ö Ö Ö - - Heuristics Block 
Structured 

- 

[39] - - - - - Heuristics Petri Nets - 

[41] - - - - - Heuristics EPC, Petri 
Nets 

- 

[42] Ö - - Ö Ö Heuristics Dep. graph - 
[43] - - -  Ö - Heuristics Petri Nets - 
[18] - - - Ö - CSP solver DAG Ö 
[14] Ö - - Ö Ö Heuristics Dep. graph - 

 

 

As to the effectiveness of workflow discovery techniques in recognizing the actual structure of the 
analyzed process, various dimensions can be considered, which include the fitness and precision 
ones mentioned previously. Maximal fitness is actually achieved by almost all the algorithms 
above. However, this does not imply that the resulting model really captures the possible behavior 
of the unknown process, if the log does not satisfy the completeness notion underlying the induction 
algorithm. In particular, most algorithms based on heuristics-driven local search, assume that 
adjacent tasks appear consecutively in some traces. This discourse gets more varied when the 
process follows complex control-flow constructs (non-free-choices, duplicate tasks, hidden tasks, 
etc.) and the logs are noisy. As a matter of fact, Table 1 also reports the behavior of some major 
process mining algorithms with respect to such issues.   

On the other hand, the precision of process mining algorithms may rapidly fall when the analyzed 
process exhibits different execution scenarios, possibly combined with global behavioral 
constraints. In such a case, good results are achieved by approaches based on genetics algorithms10 
or on clustering19. Clearly, the first solution might be computationally unviable for large logs, while 
an excessive partitioning of log traces may lead to overfitting. In fact, more generally, the size of 
the log can impact severely on the real value of a discovered process model, especially when the 
analyzed process exhibits complex dynamics and a high level of concurrency. Indeed, in such a 
case, small samples of log traces hardly capture the different sequencing of activities that are 
admitted for the process, so that the model eventually discovered is likely to provide an under-
generalized (“overfitted”) representation of the process’ behavior. For example, it may happen that 
a precedency is incorrectly discovered between activities belonging to mutually parallel branches of 
the process, only because, in the given (incomplete) log, these activities always appear in the same 
order. A possible way to somewhat prevent the generation of overfitted models, in the case of 
clustering-based methods, is to simply set an upper bound to the number of clusters (as done in the 
algorithm of Fig. 4). 
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Anyway, using abstraction mechanisms as a pre-processing or post-processing tool can help 
alleviate this problem. In fact, as discussed in more details later on (in the section illustrating 
abstraction algorithm) a process discovery approach leveraging embedded abstraction capabilities 
was recently proposed in Reference 14. This method provides the analyst with a simplified 
dependency graph, where only significant enough activities and edges are depicted, while omitting 
(or aggregating) minor structural elements of the process structure.  

 

5. Trace Clustering Techniques 
Clustering techniques can help recognize different behavioral classes of process instances 
automatically, by exploiting the information captured in log data. In this section, we overview a 
series of recent methods for the clustering of workflow traces, which could be employed, within a 
recursive partitioning scheme, to induce a hierarchy of process execution classes, as discussed 
previously. Some major features of these methods are summarized in Table 2. 

A first kind of approach to trace clustering relies on sequence-oriented techniques12,24, operating on 
the whole event trace “as-is" based on string distance metrics. For instance, a context-aware 
approach based on the generic edit distance was proposed in Reference 24. The edit distance 
between two sequences is defined as the cost of the optimal combination of edit operations 
(insertion, deletion or substitution) that allow to transform one sequence into another. The cost of 
edit operations is tailored to the peculiarities (primarily, concurrence nature) of workflow processes 
by devising ad-hoc algorithms for automatically deriving an optimal setting of such costs. 
Moreover, an agglomerative clustering scheme is adopted, and the minimum variance criterion 
(trying to locally minimize intra-cluster variances) is used to select how clusters are to be grouped 
into higher level ones. Conversely, a model-based (probabilistic) approach is used in Reference 12, 
where, still regarding log traces as sequences, a mixture of first-order Markov models is found, via 
the Expectation-Maximization (EM) algorithm, which approximates their distribution at best.  

Table 2. Summary of trace clustering techniques. The third and forth columns indicate the capability of 
accounting for properties going beyond the list of executed activities (e.g., data parameters, executors) and 
the basic similarity/dissimilarity criterion guiding the clustering, respectively.  
 

Paper Structure Trace 
Representation 

Non-
Structural 
Properties 

Clustering Bias Approach 

[12] Sequences/String Ö Likelihood Model-based 

[19] Pattern-based 
Vectors Ö Euclidian Distance K-means 

[24] Sequences/String - Edit Distance AHC 

[25] Pattern-based 
Vectors Ö Euclidian Distance AHC 

[36] Bag of 
Activities/Transitions Ö Euclidian/Hamming/Jaccard 

Distance 
K-means/ AHC/ 

SOM/ QTC 
 

 

The main drawback of string-oriented techniques12,24 is the typically higher computational cost, 
which may make them unpractical when massive logs are to be analyzed. Notice that this problem 
cannot be circumvented, in general, by way of sampling techniques, as a huge number of distinct 
log traces can be actually necessary to rediscover a workflow with many parallel branches – which 
may yield many distinct log traces that only differ from each other in the ordering of the parallel 
(and hence mutually independent) tasks. And yet, heuristics-based correction mechanisms, for 
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taking account of the concurrent nature of workflow processes, might by ineffective against highly 
concurrent processes. 

In principle, higher scalability is achieved with feature-based approaches19,25,36, owing to the 
possibility to exploit consolidated efficient methods for clustering vectorial data and efficient 
algorithms for deriving the features from the given log. On the other hand, the quality of results 
depends on the capability of the considered structural patterns to capture and discriminate the main 
execution variants of the process. Hence, a trade-off between the expressiveness of the patterns 
used as features and the cost of extracting them must be suitably selected, according to the specific 
application context. Different methods have been proposed to map log traces into such a feature 
space, most of which focus on the frequency of activities in the log. A prevalent approach to 
clustering traces consists in transforming them into vectors where each dimension corresponds to an 
activity19. Clearly such a bag-of-activities representation, suffers, as a major drawback, from the 
loss of temporal information, as it disregard the ordering of activities.  

One way to alleviate this problem is to regard any trace as a sequence of activities and to extract a 
number of k-grams (i.e. subsequences of length k) from it, as features for the clustering. In 
particular, in Reference 36, the vector space model is used with multiple feature types, 
corresponding to different trace profiles, i.e. sets of related items describing traces from a specific 
perspective (activities, transitions, data, performance, etc). Each item is associated with a measure 
assigning a numeric value to any trace. Therefore, by transforming each log trace into a vector 
containing all these measures, any distance-based clustering method can be exploited to partition 
the log.  In particular, three distinct distance measures are considered to calculate the similarity 
between cases: Euclidean distance, Hamming distance and Jaccard distance. Using these similarity 
measures, four clustering schemes are exploited applied to partition log traces: K-means, Quality 
Threshold Clustering (QTC), Agglomerative Hierarchical Clustering (AHC) and Self-Organizing 
Map (SOM). 

This vector space model was combined with new context-aware features25, by expanding the core 
idea of considering activity subsequences that are conserved across multiple traces. Unlike the k-
gram approach, subsequences of variable length are detected which frequently occur in the log, and 
are assumed to correspond to some hidden functionalities of the process. Using these conserved 
subsequences as features, the clustering is expected to put together traces that are mutually similar 
from a functional viewpoint. In more details, the following kinds of conserved subsequences 
(inspired to sequence mining approaches) are used: Maximal Repeats, Super Maximal Repeats, and 
Near Super Maximal Repeats. Such subsequences are eventually as the dimensions of the vector 
space, while adopting Euclidean distance and the minimum variance criterion for the clustering. 

A hierarchical clustering approach19 exploits a special kind of sequential features, named 
discriminant rules16, devised for capturing behavioral patterns that are not properly modeled by a 
given workflow model. Precisely, a discriminant rule has the from [a1 …ah ] -/-> a s.t.:  (i) [a1 …ah 
] and [aha ] are both “highly” frequent (i.e., the frequency is above a given threshold s), and (ii) [a1 
…ah a ] is “lowly” frequent (its frequency is below another threshold g). As an instance, the rule [fil]-
/->m for the example process HandleOrder, captures the fact that a fidelity discount is never applied 
when a (new) client is registered – this constraint is not captured by the worfklow model in Fig. 1. 
Such rules can be straightforwardly derived from frequent sequential patterns, discovered 
efficiently via a level-wise search strategy.  

As a final remark, we observe that the clustering of log traces might well take advantage of the 
good results achieved in the field of co-clustering, one of the hottest topics in Data Mining 
community in recent years, where multiple data types are to be partitioned simultaneously based on 
their mutual correlations. Indeed, co-clustering methods have shown to work well even when the 
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real goal is to cluster one data type with a sparse and high-dimensional space of attributes (like, e.g., 
text documents and associated terms). A pioneering effort along such a direction was done in 
Reference 15 (in an outlier detection setting), where the mining of structural patterns is combined 
with a co-clustering scheme focusing on the associations between such patterns and the given 
traces. In our opinion, such an approach can achieve good quality results when used for clustering 
the log of a process featuring a large number of structural patterns, without incurring in the 
notorious “curse of dimensionality” problem. 

Moreover, it could be beneficial to further investigate on the exploitation of model-based clustering 
schemes, which exhibited very good effectiveness and scalability performances in diverse data 
mining applications. Clearly this requires them to be suitably extended in order to effectively cope 
with the peculiar nature of workflow executions, and, in particular, with the presence of concurrent 
execution branches. In fact, this issue is not considered adequately in Reference 12, which mainly 
reuses a classical method conceived for purely sequential data. 

 

6. Process Abstraction Techniques 
A large body of work has been done to (semi-)automatically derive abstract views from a workflow 
model, in order to simplify the representation of the process. In principle, one could think of 
exploiting some of the inheritance-preserving transformation rules defined in Reference 3 to this 
end. However, to the best of our knowledge, no automated abstraction approach exists in the 
literature following that theoretical framework. By contrast, such a kind capability is featured by 
more recent process abstraction approaches17,13,23,29,32,5,35,14, typically based on less precise 
modelling languages and looser behavioural consistency notions. As a matter of fact, we believe 
that such an approximated modelling of process dynamics can be tolerated in a knowledge 
discovery setting, in exchange for a higher automation degree. Therefore we next focus on these 
latter techniques, whose main features are reported in Table 3. In particular, the table reports, for 
each technique, which kinds of data it takes as input – by specifically telling whether it receives, or 
not, an execution log, a workflow model, an activity ontology, and which activities are to be 
abstracted (named here “target tasks”) – and which kinds of results it produces – i.e., only an 
abstract workflow model, or a set of activity abstractions (regarded here as a sort of activity 
ontology), or both. Moreover, for each technique it is reported the underlying abstraction mode (i.e., 
aggregation or elimination of activities/edges) as well as whether the returned workflow model (if 
any) fulfils some notion of order preservation w.r.t. the input one (if any). 

Most of these works only resort to the aggregation of process activities29,32,5. In particular, in 
Reference 29, an abstract view of a workflow model is obtained automatically by replacing multiple 
real activities with “virtual" ones, based on ad-hoc aggregation rules, ensuring that all original 
ordering relationships among the activities are preserved. In more detail, three rules must be 
followed to ensure the ordering property: (i) activity membership, (ii) activity atomicity and (iii) 
order preservation. The first rule allows either base or previously-defined virtual activities to be 
members of other virtual activities. The atomicity rule serves to describe the operational semantic 
property of the abstracted model. Finally, the order preservation principle provides a syntactical 
constraint ensuring that the abstracted processes also follow the atomicity property. In practice, this 
is meant to ensure that implied ordering relations in an abstract model comply with those in the base 
process. An algorithm is then illustrated which can compute such an order-preserving abstracted 
version for a given process model (represented as a dependency graph with AND/XOR logics and 
single-entry single-exit loops), based on a reference subset of activities (named “essential” 
activities) specified by the user, as mandatory abstraction targets (presumably corresponding to 
irrelevant or private tasks). The algorithm iteratively aggregates essential activities and adjacent 
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ones into legal virtual activities (i.e., groups of base activities that does not violate any order-
preservation constraint) until a fix point is reached. 

In Reference 32, an abstraction approach is described which relies on the partonomical 
decomposition obtained by building an SPQR-tree4 for the given workflow model. As mentioned 
above, in such a tree, each leaf node coincides with a single (atomic) process task, while any other 
node corresponds to a “fragment” of the workflow model. The approach relies on a manual control 
by the user, who is in charge of specifying which process task (or collection of tasks) in the original 
workflow model is to be abstracted. Based on a series of abstraction rules (specifically defined for 
each kind of composition pattern) the approach automatically replaces each task t, explicitly 
indicated by the user, with the finest grain workflow fragment encompassing t (i.e. the closest 
ancestor of t in the SPQR-tree). Clearly, the process can be iterated to produce coarser 
representations of the workflow.  

 
Table 3. Summary of Process Abstraction approaches. Note that in the case of Reference 17 we just consider 
the method implementing function abstractSchema (see Fig. 6).  

 Input  Output Method 

Paper Log  Model Abs. 
dict. 

Target 
tasks 

Abstr. 
model  

Abs. 
dict. 

Abstr. 
modes Technical aspects Order 

pres. 

[17] - Ö Ö Ö Ö Ö aggreg. 
Ontology-based matching 
scores and a fuzzy order-

preservation score 

- 
 

[13] Ö - - - - Ö aggreg. 
Hierarchical clustering of 

tasks (mapped to vectors of 
log-driven features) 

- 

[23] Ö - - - - Ö aggreg. 
Extracts sequence-oriented 
frequent patterns from log 

traces 
- 

[29] - Ö - many Ö - aggreg. Graph reduction rules Ö 

[32] - Ö - one Ö - aggreg. 
Replaces the target task 

with the smallest SPQR’s 
block enclosing it  

Ö 

[5] - Ö - many  Ö - aggreg. + 
elimination 

Finds, and remove or 
aggregate, minimal SESE 

fragments that enclose 
target tasks 

Ö 

[35] - Ö Ö - - Ö aggreg. 
Finds task aggregations that 

best match nodes in the 
given partonomy 

- 

[14] Ö - - - Ö - aggreg. +  
elimination 

Uses significance and 
correlation scores to decide 
which tasks/edges are to be 

abstracted 

- 

 

 
A similar approach is proposed in Reference 5, aiming at providing personalized process 
visualization to the user based on her specific needs. Two basic abstraction operations are defined 
to this purpose: (a) aggregation and (b) reduction (i.e., elimination). Aggregation allows for 
replacing original activities with some abstracted (more general) elements. Reduction makes it 
possible to remove process activities when relevant information or confidential process details must 
be hidden to a particular user group. Both these operations rely on the so-called SESE (single entry 
single exit) fragments, i.e., subprocesses having exactly one incoming edge and one outgoing edge 
connected with it. In more details, a reduction operation substitutes a SESE with a new edge 
between its predecessor and successor activity. Aggregation, instead, introduces a new, more 
general activity abstracting a SESE block. Aggregation and reduction operations are performed 
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while trying to preserve, at best, the ordering relationships between activities, and other control-
flow constraints. 
The aggregation-based approach in Reference 35, still taking a workflow model as input, can yet 
take advantage of a partonomy relation over the activities, as a form of semantics-oriented 
background knowledge guiding the abstraction process. The approach is semi-automated in that it 
only suggests a list of possible activity aggregations (in the table, this fact is summarized with the 
sole return of an activity ontology as output), without computing an abstracted process view. 
However, the user can exploit each of these aggregations to eventually obtain such a view, by 
simply replacing it with an abstract activity. Essentially, the approach selects a list of activity 
groups such that, for each group G, (i) all the activities in G are topologically close enough in the 
process model (namely, their mutual distance in the workflow graph is under a given threshold) and 
(ii) the activities in G achieve an optimal compliance score w.r.t. the input partonomy. This latter 
score is computed by way of a coverage measure, which, basically, evaluates what a percentage of 
the descendants of a partonomy node match some of the activities in G. Notably, the activity names 
in the input partonomy are allowed not to range over the same vocabulary as the activity labels in 
the model being abstracted, and a thesaurus-based similarity measure is exploited in order to 
meaningfully match process activities to partonomy terms. 

As mentioned above, the approach in Reference 17 generally attempts to generalize multiple 
workflow schemas, describing different variants of a process, by producing an overall workflow 
schema where the structural elements connected with all shared activities are kept unchanged, while 
groups of “specific” activities (i.e., activities not appearing in all the models) are replaced with new 
“higher-level” activities, abstracting them all via IS-A or PART-OF relationships. Precisely, such 
abstraction is performed by way of a heuristics algorithm (whose major features are summarized in 
Table 3), which iteratively selects a pair (x,y) of “specific” activities to be abstracted together into a 
single higher-level activity. Such a pair is chosen in a greedy fashion, trying to minimize the 
number of spurious flow links that their merging introduces between the remaining activities, and 
considering their mutual similarity w.r.t. the contents of the activity ontology D.  This is done by 
resorting to a series of affinity measures assessing how much any two “specific” activities are 
suitable to be merged according the abstraction relationships already stored in D: (i) a “topological” 
affinity measure simE(x,y), measuring how similar the neighbourhoods of x and y are w.r.t. the flow 
graph; and (ii) two “semantical” affinity measures, simD

P(x,y) and simD
G(x,y), expressing how 

similar x and y are w.r.t. the relationships of IS-A and PART-OF, respectively, stored in D.  All 
these measures are combined into an overall ranking function score as follows: score (x,y)=0, if 
(x,y) is not a “merge-safe" pair of activities; and score(x,y) = max { simE (x,y), simD

P(x,y), simG
P 

(x,y) }, otherwise. By the way, a pair (x,y) of activities is said merge-safe (w.r.t. a given an set E of 
precedence relationships), if one of the following conditions holds: (i)  there exist no path in E  
connecting x and y; (ii) x and y are directly linked by some edges in E and after removing these 
edges no other path exists between them. 

An emerging trend of research in the Process Mining community concerns the derivation of activity 
abstractions directly out of execution logs13,23. In general, such approaches tries to aggregate 
activities based on how they appears to be mutually correlated in past process traces. As we pointed 
out previously, such a kind of tools can be very helpful in the discovery of process taxonomies, 
especially for gaining a suitable level of abstraction over overly detailed logs. Moreover, by 
iterating the application of such techniques to abstracted logs, it is possible to discover a multi-layer 
activity ontology. In particular, in the sequence-based approach of Reference 13, multiple 
abstraction levels are discovered for log events by using a hierarchical agglomerative clustering 
method, based on the proximity of events within log traces. Log traces can be then transformed into 
sequences of abstract activities by choosing a cut of the discovered hierarchy of event clusters, and 
by replacing each event with the ancestor lying on that cut. The second proposal23 exploits instead 
repetition patterns (tandem repeats) and sequence patterns borrowed from bio-informatics, to 
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capture loops and groups of correlated activities. Specifically, the approach works in two phases: 
first, it extracts repetition patterns by looking at log traces individually, and then discovers common 
groups of activities by logically regarding the whole log as a sequence. More complex constructs, 
such as choice and intra-loop parallelism, are resolved by applying the pre-processing method on 
log traces iteratively. Efficient (suffix-tree based) structures are used to curb computation time. 
Moreover, in order to make the approach robust to the presence of both parallelism and choice 
constructs, a single abstract activity is created for patterns whose associated activity sets either 
contain each other or share many elements.  

Leveraging the idea of using a process model as a map showing relevant aspects of process 
behaviour, an abstraction-enhanced process discovery approach has been proposed in Reference 14, 
which is meant to describe effectively lowly structured processes. Essentially, the approach 
associate activities and edges with significance and correlation scores, and eventually shows a 
compact dependency graph where only edges and activities whose scores are above a user-given 
threshold, whereas less significant activities/edges are either grouped into abstract nodes, named 
(activity) clusters, if they are correlated enough among each other, or removed at all from the 
model, otherwise. As mentioned previously, this method, mixing features from both workflow 
induction techniques and log-driven abstraction ones, is a process discovery technique empowered 
with flexible abstraction capabilities.  

A key point, in this setting, is the capability of the abstraction algorithm to take account for the fact 
that the output model is to generalize multiple process variants (i.e., execution classes). To this 
regard, a concept of common abstraction of multiple workflow schemas was also defined in 
Reference 3 (according to the behavioural inheritance notions given in the same work), but without 
providing any automated technique for its computation. In fact, the only method that was explicitly 
conceived to perform abstraction on (the non-leaf nodes of) a hierarchy of process models is the one 
in Reference 17. This is done by exploiting a particular implementation of meta-function 
abstractSchema, which takes as input a workflow schema (modeling a node n in the hierarchy), an 
activity ontology, and a set of tasks to be abstracted – which coincide with all the tasks associated 
with some of the children of n, but not with all of them. In fact, all of the other (semi-)automated 
model-based abstraction approaches29,32,5 just consider a pair of workflows per time (i.e., a “sub-
class” workflow and a “super-class” workflow), and furnish mechanisms for deriving one from the 
other. However, in principle, all of these methods can be exploited as well to carry out such a task, 
since they still allow the user to indicate which tasks need to be abstracted (named “target tasks” in 
Table 3). Therefore, it is possible to reuse these approaches to abstract all the tasks in a process 
model that are not shared by all of its sub-models in the taxonomy tree. Clearly, as the method in 
Reference 32 only takes a target task, such an operation would require multiple iterations of it. 
Moreover, all of these methods can be exploited by the analyst (possibly interactively) to further 
increase the level of abstraction of some models (e.g., the root one) in the discovered taxonomy. 

Moreover, only a few methods29,32,5 enjoy some kind of behaviour consistency notion. More 
specifically, all of them are guaranteed to produce an abstracted model that preserves all ordering 
relationships in the original one – actually, in the case of Reference 5, little violations to this 
constraint are tolerated in exchange for achieving a more compact process view. Such an order 
preservation property is not fulfilled instead by any of the remaining approaches. However, it is 
possible to make the method in Reference 17 overcome this limitation, by simply ensuring that all 
the Part-Of relationships, created in the abstraction, conform to such an order-preservation notion. 
This can be done, e.g., either (i) by enforcing ordering-oriented constraints over the activities, like 
in Reference 29, or (ii) by requiring that activities can be abstracted by only using partonomical 
relationships implied by some given structural decomposition scheme (like the fragment-oriented 
ones used in References 32 and 5).  
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It is worth noticing that only the abstraction algorithms in References 17 and 35 can take advantage 
of existing abstraction relations (e.g., partonomies, hypernymies or both) over process activities – 
even though the latter does not compute an abstract process model, but only gives the analyst a set 
of possible activity aggregations. Notably, this feature allows for possibly reusing available domain 
knowledge or the results of other process abstraction techniques, producing such a kind of 
relations13,23,17,35, or of classical approaches to the discovery of concept 
ontologies/hierarchies41,8,26,28,31 from text documents (provided, in our case, with some textual 
description of process activities). 

Finally, we observe that the computation times of all schema-oriented abstraction methods17,29,32,5 
are practically equivalent, since all of them are (low-degree) polynomials in  the size of the input 
workflow models, which usually consist of few hundred of tasks at most (and of a sparse network 
of dependency links).  

 

7. Conclusion 
Several mining and abstraction methods have been presented which can help discover a 
taxonomical process model for a given process, representing it at different abstraction levels. In 
particular, after automatically discovering a hierarchy of behavioural classes by way of suitable 
clustering methods, a process taxonomy can be derived by applying process abstraction methods to 
non-leaf nodes, eventually equipping them with higher-level models. Choosing an optimal 
combination of these basic tools is not easy in general, and it may well depend on the specific 
application domain at hand. However, we hope that our study can give some basic guidelines for 
analysts/designers who want to take advantage of such (semi-) automated techniques in their 
attempt to build such an expressive representation for a given business process and for its execution 
variants. A number of challenging issues are still open and deserve further investigation. For 
example, the recognition of abstract activities can benefit from available background knowledge on 
the activities’ semantics, possibly extracted from a given thesaurus or a process ontology. 
Moreover, discovered process taxonomy can be exploited profitably to analyze relevant measures, 
such as usage statistics and performance metrics, along the different usage scenarios of the process 
at hand. Specifically, by using a taxonomy as an aggregation hierarchy for multi-dimensional 
OLAP analysis, it is possible to enable the user to interactively evaluate such measures over 
different groups of process instances. Notably, such an extension would be a valuable feature of 
interactive process mining systems, where the user is assisted in evaluating the discovered process 
models and in the tuning of parameters. Finally, the discovered taxonomies can serve as a basis for 
further knowledge discovery tasks, such as the mining of generalized association rules between, 
e.g., the users or resources involved in the workflow process under analysis. 

 
References 
1. Agrawal R, Gunopulos D, Leymann F. Mining process models from workflow logs. In Proc. 

6th Int. Conf. on Extending Database Technology (EDBT'98); 1998 469-483. 
2. Ricca F, Gallucci L, Schindlauer R, Dell'Armi T, Grasso G, Leone N. OntoDLV: An ASP-based 

System for Enterprise Ontologies Journal of Logics and Computation 2009, 19(4): 643-670.  
3. Basten T, van der Aalst WMP. Inheritance of Behavior Journal of Logic and Algebraic 

Programming 2001, 47(2):47-145. 
4. Battista GD, Tamassia R. On-Line Maintenance of Triconnected Components with SPQR-Trees 

Algorithmica 1996, 15(4):302-318. 
5. Bobrik R, Reichert M, Bauer T. View-based process visualization. In Proc. 5th Int. Conf. on 

Business Process Management (BPM'07); 2007 88-95. 



	 	 21	

6. Casati F, Castellanos M, Dayal U, Shan MC. iBOM: a platform for intelligent business 
operation management. In Proc. 21st Int. Conf. on Data Engineering (ICDE’05); 2005 1084-
1095. 

7. Chen CWK, Yun DYY. Discovering process models from execution history by graph matching. 
In Proc. 4th Int. Conf. on Intelligent Data Engineering and Automated Learning (IDEAL’03); 
2003 887-892. 

8. Chuang SL, Chien LF. A practical web-based approach to generating topic hierarchy for text 
segments. In Proc. 13th ACM Int. Conf. on Information and Knowledge Management 
(CIKM’04); 2004 127-136. 

9. de Medeiros AKA, van Dongen BF, van der Aalst WMP, Weijters AJMM. Process mining: 
Extending the α-algorithm to mine short loops. In Technical Report WP 113; 2004. 

10. de Medeiros AKA, Weijters  AJMM, van der Aalst WMP. Genetic Process Mining: An 
Experimental Evaluation Data Mining and Knowledge Discovery 2007, 14(2):245-304. 

11. Dijkman RM, Dumas M, Garcia-Bañuelos L, Käärik R. Aligning Business Process Models. In 
Proc. 13th Int. Conf. EDOC; 2009 45–53. 

12. Ferreira DR, Zacarias M, Malheiros M, Ferreira P. Approaching process mining with sequence 
clustering: Experiments and findings. In Proc. 5th Int. Conf. on Business process management 
(BPM'07); 2007 360-374. 

13. Günther CW, Rozinat A, van der Aalst WPM. Activity Mining by Global Trace Segmentation. 
In Business Process Management Workshops 2009; 2009 129-139. 

14. Günther CW, van der Aalst WPM. Fuzzy mining: adaptive process simplification based on 
multi-perspective metrics. In Proc. 5th Int. Conf. on Business Process Management (BPM’07); 
2007 328-343. 

15. Ghionna L, Greco G, Guzzo A, Pontieri L. Outlier Detection Techniques for Process Mining 
Applications. In Proc. 17th Int. Symposium on Foundations of Intelligent Systems (ISMIS’08); 
2008 150–159. 

16. Goedertier S, Martens D, Vanthienen J, Baesens B. Robust process discovery with artificial 
negative events Journal of Machine Learning Research 2009, 10:1305-1340. 

17. Greco G, Guzzo A, Pontieri L. Mining Taxonomies of Process Models Data & Knowledge 
Engineering 2008, 67(1):74-102.  

18. Greco G, Guzzo A, Pontieri L. Process Discovery via Precedence Constraints. In Proc. 20th 
Europ. Conf. on Artificial Intelligence (ECAI’12); 2012. 

19. Greco G, Guzzo A, Pontieri L, Saccà D. Discovering expressive process models by clustering 
log traces IEEE Trans. on Knowledge and Data Engineering 2006, 18(8):1010-1027. 

20. Herbst J, Karagiannis D. Integrating machine learning and workflow management to support 
acquisition and adaptation of workflow models Journal of Intelligent Systems in Accounting, 
Finance and Management 2000, 9:67-92. 

21. Herbst J, Karagiannis D. Workflow mining with InWoLvE Computers in Industry (Special 
Issue: Process/Workflow Mining) 2003, 53(3):245-264. 

22. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). Measure, analyze and optimize 
your business process performance (whitepaper). 

23. Jagadeesh Chandra Bose RP, van der Aalst WPM. Abstractions in Process Mining: A 
Taxonomy of Patterns. In Proc. 7th Int. Conf. on Business Process Management (BPM'09); 
2009 159-175. 

24. Jagadeesh Chandra Bose RP, van der Aalst WPM. Context Aware Trace Clustering: Towards 
Improving Process Mining Results. In Proc. SIAM Int. Conf. on Data Mining (SDM'09); 2009 
401-412. 

25. Jagadeesh Chandra Bose RP, van der Aalst WPM. Trace Clustering based on Conserved 
Patterns Towards Achieving Better Process Models. In Proc. 5th Int. Workshop on Business 
Process Intelligence (BPI'09); 2009 170-181. 



	 	 22	

26. Kozareva Z, Hovy R. A semi-supervised method to learn and construct taxonomies using the 
web. In Proc. Int. Conf. on Empirical Methods in Natural Language Processing (EMNLP’10); 
2010 1110–1118. 

27. Lee J, Wyner GM. Defining specialization for dataflow diagrams Information Systems 2003, 
28(6):651-671. 

28. Li T, Zhu S. Hierarchical document classification using automatically generated hierarchy 
Journal of Intelligent Information Systems 2007, 29(2):211-230. 

29. Liu DR, Shen M. Workflow modeling for virtual processes: an order-preserving process-view 
approach Information Systems 2003, 28:505-532.  

30. Malone TW et al. Tools for inventing organizations: Toward a handbook of organizational 
processes Management Science 1999, 45(3):425-443, 1999. 

31. Navigli R, Velardi P, Faralli S. A Graph-Based Algorithm for Inducing Lexical Taxonomies 
from Scratch. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI’11); 2011 1872-1877.  

32. Polyvyanyy A, Smirnov V, Weske M. The Triconnected Abstraction of Process Models. In 
Proc. 7th Int. Conf. on Business Process Management (BPM'09); 2009 229-244. 

33. Rozinat A, van der Aalst WMP. Conformance checking of processes based on monitoring real 
behaviour Information Systems 2008, 33(1):64–95. 

34. Schimm G. Mining most specific workflow models from event-based data. In Proc. Int. Conf. 
on Business Process Management (BPM’03); 2003 25-40. 

35. Smirnov S, Dijkman R, Mendling J, Weske M. Meronymy-Based Aggregation of Activities in 
Business Process Models. In Proc. 29th Int. Conf. on Conceptual Modeling (ER’10); 2010 1-14. 

36. Song M, Günther CW, van der Aalst WPM. Trace Clustering in Process Mining. In Business 
Process Management Workshops (BPM'08); 2008 109-120. 

37. Stumptner M, Schrefl M. Behavior consistent inheritance in UML. In Proc. 19th Int. Conf. on 
Conceptual Modeling (ER’00); 2000 527-542. 

38. van der Aalst WMP et al. Workflow mining: A survey of issues and approaches Data & 
Knowledge Engineering 2003, 47(2):237-267. 

39. van der Aalst WMP, Weijters AJMM, Maruster L. Workflow mining: Discovering process 
models from event logs IEEE Transactions on Knowledge and Data Engineering 2004, 
16(9):1128-1142. 

40. van Dongen BF, Dijkman RM, Mendling J. Measuring Similarity between Business Process 
Models. In Proc. 24th Int. Conf. on Advanced Information Systems Engineering (CAiSE’08); 
2008 450–464. 

41. van Dongen BF, van der Aalst WMP. Multi-phase process mining: Aggregating instance graphs 
into EPCs and Petri Nets. In Proc. Int. Workshop on Applications of Petri Nets to Coordination, 
Workflow and Business Process Management (PNCWB’05); 2005 35-58. 

42. Weijters AJMM, van der Aalst WMP. Rediscovering workflow models from event-based data 
using Little Thumb Integrated Computer-Aided Engineering 2003, 10(2):151-162. 

43. Wen L, van der Aalst WMP, Wang J, Sun JG. Mining process models with non-free-choice 
constructs Data Mining and Knowledge Discovery 2007, 15, 145-180. 

44. L. Zhou. Ontology learning: state of the art and open issues. In “Information Technology and 
Management”. Springer 8 (3), pp 241—252, 2007. 

45. Kashyap V. Design and Creation of Ontologies for Environmental Information Retrieval. In 
Proc. 12th Workshop on Knowledge Acquisition, Modeling and Management; 1999. 

46. Williams AB, Tsatsoulis C. An Instance-based Approach for Identifying Candidate Ontology 
Relations within a Multi-Agent System. In Proc ECAI 2000 Workshop on Ontology Learning 
(OL’2000); 2000. 

47. Suryanto H, Compton P. Learning classification taxonomies from a classification knowledge 
based system. In Proc. ECAI 2000 Workshop on Ontology Learning (OL’2000); 2000. 



	 	 23	

48. Pernelle N, Rousset MC, Ventos V. Automatic Construction and Refinement of a Class 
Hierarchy over Semistructured Data. In Proc. IJCAI 2001 Workshop on Ontology Learning 
(OL’2001); 2001. 

49. Kavalec M, Svatek V. Information Extraction and Ontology Learning Guided by Web 
Directory. In Proc. of the ECAI 2002 Workshop on Machine Learning and Natural Language 
Processing for Ontology Engineering (OLT’2002); 2002 

50. Maedche A, Staab S. Ontology learning for the Semantic Web IEEE Journal on Intelligent 
Systems 2001, 16(2): 72-79. 

51. Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T, Nigam K, Slattery S. Learning to 
construct knowledge bases from the World Wide Web Artificial Intelligence 2000, 118: 69-113. 
 

  



	 	 24	

Appendix: Experimental Results 
In order to give some evidence for the benefits that can descend from the discovery of process 
models hierarchies and taxonomies, we next report an excerpt of the experimental analysis 
illustrated in Reference 17. As a matter of facts, in that work a specific instantiation of the two 
general meta-algorithms in Figures 4 and 6 are considered. Specifically, as concerns the discovery 
of a schema hierarchy (Fig. 4), the induction of each workflow model (i.e., function 
mineWFSchema) is performed by using the algorithm in Reference 42, while the k-means-based 
clustering method introduced in Reference 19 is exploited to split a (sub-)log into clusters (i.e., 
function partition). Moreover, the taxonomy restructuring process hinges on the abstraction 
procedure introduced in the same work17.  
Benefits of log clustering. A series of tests were performed on 10 synthesized benchmark log files, 
available in ProM, which reproduce different kinds of behavior, ranging from basic constructs like 
sequences, choices, parallel forks, and loop, to complex ones, like non-free choice and invisible 
tasks. Three conformance measures33, all ranging over [0,1], are used here to evaluate the quality of 
discovered models. can roughly be defined as follows: (i) Fitness evaluates the percentage of 
mismatches occurring along a non-blocking replay of log traces through the model: the more the 
mismatches the lower the measure; (ii) Simple behavioral appropriateness (SB-Precision for short) 
estimates the amount of the ‘‘extra behavior” allowed by the model, quantified according to the 
average number of transitions that are enabled during a replay of the log; (iii) Advanced Behavioral 
Appropriateness (AB-Precision for short), which expresses the amount of model flexibility (i.e., 
alternative or parallel behavior) that was not needed to replay the log. Conformance measures were 
only computed on leaf schemas only, which actually represent the concrete process variants found 
via the clustering, and averaged by assigning each schema a weight equal to the fraction of log 
traces fallen in its associated cluster. 
The results computed in this way are compared, in Table, with those obtained by simply 
discovering a single workflow schema for the whole log, still using the base learning algorithm in 
Reference 42. More precisely, Tab. 3 reports the increase (in percent) in the value of the three 
conformance measures that is achieved when passing from the base workflow induction algorithm42 

to the clustering-enhanced workflow discovery approach. Notably, this latter seems to overcome the 
difficulty of the base learner to deal with complex routing constructs and non-local task 
dependencies (cf., log files a6nfc, herbstFig6p36, and DriversLicence). This proves that more 
complete and precise process models can often be discovered by taking advantage of a clustering 
scheme, capable to separate different process variants. 
 
Table 4. Quality improvement, on different benchmark logs, achieved by the clustering-based workflow 
induction scheme of Fig. 4, (w.r.t. to a single overall workflow induced from the whole log). 

Dataset Fitness SB-Precision AB-Precision 
a6nfc 1.2% 3.8% 54% 
Example Log 2.0% 3.9% 93% 
a7 3.9% 9.6% 39% 
a100Skip 4.2% 1.8% - 
al1 4.2% 1.0% - 
DriversLicence - 3.9% 29% 
herbstFig6p36 - 2.0% 20% 
al2 - 1.2% - 
CHOICE 4.8% 2.7% - 
a12 - 1.2% - 

 
 

 
Benefits of process abstraction. In order to show the benefit of abstraction mechanisms, we next 
report some results of an extensive experimentation (presented in Reference 17), which was 
conducted on the logs of an Italian maritime container terminal. Roughly speaking, the operational 
system supports and registers several logistic tasks for each container which come to the port, and 
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underwent various kinds of moves over the ‘‘yard” -- i.e., the main storage area used in the harbor, 
consisting of bi-dimensional slots, organized in blocks (nearly 100). A sample 5336 of such data 
was selected, corresponding to history of containers handled along the first two months of year 
2006, and exchanged with other ports of the Mediterranean sea. These data were converted in a 
process-oriented form, by encoding the sequence of yard blocks occupied by a container into a 
distinct log trace.  
By applying the approach in Fig. 4 (instantiated with the techniques in References 42 and 19), 
followed by the restructuring scheme of Fig. 6 (instantiated with the abstraction method of 
Reference 17), a taxonomy of five workflow schemas was found, structured into three abstraction 
levels: the root T, two nodes T0 and T1, as children T, and two children of T0, denoted as T0_0 and 
T0_1. These schemes (omitted here for lack of space) differ neatly in complexity and readability. In 
particular, the leaf schema T0_0 consists of about 90 nodes, while the other two contain less than one 
half. A more compact process view was obtained for the higher-level views: 37 nodes in the schema 
T0, and 32 nodes in the root schema. 
Interestingly, the effect of using abstraction mechanisms was not merely syntactical. Indeed, many 
of the activities that were abstracted together share some semantical affinity. For example, some 
pairs of activities (i.e., yard blocks in this case) that were merged together via IS-A or Part-Of 
relationships are reported below: (i) (004D,04D), subsequently reckoned as two different names for 
the same block, due to a mispelling error; (ii) (REF01,REF5), which are two blocks equipped with 
refrigerating systems; (iii) (TR5,TRF5), (TR7,TRF7), which are both pairs of codes for multi-trailer 
vehicles, logically viewed as (mobile) yard areas. 
In conclusion, due to the high number of activity labels, any classical workflow discovery 
technique, in its own, would yield a rather unreadable and imprecise process model. By contrast, the 
process taxonomies computed with the approach described so far were reckoned by experts as 
really helpful for an explorative analysis of log data, thanks to both the recognition of distinct 
execution variants and the compactness of higher-level schemas. 


