

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Methods and Techniques for Discovering Taxonomies of
Behavioral Process Models

Francesco Folino, Gianluigi Greco, Antonella Guzzo, Luigi Pontieri

RT-ICAR-CS-11-03 Settembre 2011

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

	 	 1	

Methods and Techniques for Discovering Taxonomies of
Behavioral Process Models

Francesco Folino, ffolino@icar.cnr.it, ICAR-CNR

Gianluigi Greco, ggreco@mat.unical.it, University of Calabria
Antonella Guzzo, guzzo@deis.unical.it, University of Calabria

Luigi Pontieri, pontieri@icar.cnr.it, ICAR-CNR

Abstract. Modelling behavioral aspects of business processes is a hard and costly task, which
usually requires heavy intervention of business experts. This explains the increasing attention given
to process mining techniques, which automatically extract behavioral process models from log
data. In the case of complex processes, however, the models identified by classical process mining
techniques are hardly useful to analyze business operations at a suitable abstraction level. In fact,
the need of process abstraction emerged in several application scenarios, and abstraction methods
are already supported in some business-management platforms, which allow users to manually
define abstract views for the process at hand. Therefore, it comes with no surprise that process
mining research recently considered the issue of mining processes at different abstraction levels,
mainly in the form of a taxonomy of process models, as to overcome the drawbacks of traditional
approaches. This paper presents a general framework for the discovery of such a taxonomy, and
offers a survey on different kinds of basic techniques that can be exploited to this purpose: (i)
workflow modeling and discovery techniques, (ii) clustering techniques enabling the discovery of
different behavioral process classes, and (iii) activity abstraction techniques for associating a
generalized process model with each higher level taxonomy node.

1. Introduction
Workflow models are an effective way to specify the behavior of complex processes in terms of
elementary activities and routing constructs (e.g. parallelism, loops, splits), and have been largely
used in many Business Process Management (BPM) platforms. Unfortunately, modeling the
behavioral aspects of a business process is a time-consuming task, usually requiring heavy
intervention by business experts. This motivates the recent surge of interest towards process mining
techniques38, which allow for automatically extracting a workflow model based on the execution
logs available for a given process.

However, traditional process discovery approaches designed to eventually support process
enactments, extract workflow models specifying all the operational details for the process.
Conversely, business users often want to analyze business operations at higher abstraction levels,
and several commercial business-management platforms (e.g., iBOM6, ARIS22) offer capabilities
for manually defining abstract views over a process. Thus, the automated discovery of multiple
process views, at different granularity levels, is a natural extension of process mining and of
workflow analysis techniques.

In this work, we specifically consider the case where multi-level views are induced for describing
the behaviour of a process, and eventually organized in the form of a taxonomy, a valuable kind of
knowledge representation tool, which has found application in a disparate fields. A process
taxonomy, specifically, is essentially a tree of workflow models, where the root provides the most
abstract view over the executions of a process, and any other node refines this abstract model to
describe a subclass of executions. Clearly, such a structure, describing the main behavioural
variants of a process in an articulated and modular way, allows for effectively consolidating,

	 	 2	

sharing and reusing knowledge about its behaviour. And, in fact, process taxonomies have been
profitably used in the modelling and re-engineering of business processes (see, e.g., the MIT’s
Process Handbook project30).

A first step towards such an automatic construction of process taxonomies, based on process
mining, was done in Reference 19, where different behavioural classes of a process are discovered
with a clustering method, and equipped eventually with separate workflow models. Indeed, such a
result can be used as a basis for obtaining a taxonomy of process models, by possibly exploiting
diverse process abstraction techniques17,13,23,29,32,5,35,14, in order to provide high level nodes with
coarser-grain process models.

In fact, the discovery of taxonomies, in the form of concept hierarchies, was widely studied in the
past, especially in the context of ontology learning systems41. Various approaches have been
proposed in order to extract concepts’ taxonomies from different kinds of data sources. For
instance, as to the case of structured input data, taxonomy learning methods have been defined
which can take as input database schemas45, other existing ontologies46, knowledge bases47 and
lexical semantic nets such as WordNet. Some learning systems (e.g., those in References 48, 49, 50,
51) can also exploit semi-structured data (such as, e.g., dictionaries, HTML, XML and DTS’s
documents) in the discovery of a concept taxonomy. In general, the most difficult source to deal
with are unstructured data, such as sequences and text documents. In such a case, the typical
approach (see, e.g., References 8, 26, 28, 31) relies on using some clustering algorithm in order to
automatically induce a hierarchy of classes (for words and/or documents), and regarding each of
these classes as the evidence for a distinct concept. Despite this problem is logically similar to the
one addressed in this work, a main point of difference lies in the fact that every node in a concept
taxonomy has a “static” nature, in that it does not encode dynamic behaviours, as it happens,
instead, in the case of process models. Hence, these methods cannot be trivially reused when
discovering a process taxonomy, where ad-hoc process induction/abstraction mechanisms are
needed to capture process dynamics and guarantee some sort of behavioural consistency between
each model in the taxonomy and its parent.

This paper gives a survey of some major issues and solutions related to the discovery of process
taxonomies. After introducing preliminary concepts (concerning workflow models, activity
abstractions and behavioural consistency notions), a general approach to the discovery of process
taxonomies is sketched in the third section, parametrically to three basic tasks: process discovery,
trace clustering, and process abstraction. The following three sections discuss and compare some
major approaches in the literature that can help solve each of these sub-problems, while few
concluding remarks are drawn in the last section.

2. Preliminaries: Workflows, Abstractions, and Behavioral Consistency
Workflow models (precisely control-flow models) are a popular means for representing the
behaviour of a process, and hence constitute a special kind of model for it. However, as in this
paper we are not considering any other kinds of process models (e.g., data-flow models,
organizational models, etc.), the terms “workflow model” and “process model” will be used
interchangeably hereinafter. In the rest of this section, some basic concepts on workflow models
and on activity abstraction are introduced. The section then presents some notions of behaviour
inheritance/preservation for workflow models, which can help provide a semantical foundation to
parent-child relationships in a taxonomy of process models.

	 	 3	

2.1. Workflow Models (Schemas) and Logs
A workflow model (a.k.a. workflow schema) specifies all possible flows along the activities of a
process, by way of a set of constraints defining “legal” execution in terms of simple relationships of
precedence and/or more elaborate constructs such as loops, parallelism, synchronization and choice
(just to cite a few). A significant amount of research has been done for the specification of process
models (e.g., EPCs, Petri Nets).

For the sake of clarity, a simple modelling language for workflow models is used hereinafter, where
precedence relationships are depicted as arrows between two nodes of a workflow graph, while
further execution constraints are specified with special labels associated with the input/output of a
task. Specifically, an AND-join node (i.e., a node with AND on its input) acts as synchronizer (i.e. it
can be executed only after all its predecessors have been completed), whereas a OR-join node can
start as soon as one of its predecessors completes. Once finished, an AND (resp., OR, XOR) -split
node activates all (resp., some, one) of its output activities. Notice that most of the methods
discussed in this paper are orthogonal to the language adopted to represent process behaviour, and
they do not depend on the simplified notation introduced above.

Example Fig. 1 shows a workflow model for a process concerning the handling of customers’
orders in a business company. For example, task l is an AND-join activity, as it must be notified
that both the client is reliable and the order can be supplied. Conversely, b is a XOR-split activity,
while it can activate just one of its adjacent activities.

Figure 1. Workflow model for the sample HandleOrder process.

Each time a workflow model is enacted, its activities are executed according to the associated
constraints, till some final configuration is reached. Many process-oriented systems store
information on process instances in a log repository, keeping track of the events happened during
each of them. Basically, a process log can be seen as a set of traces, which, in the most simplistic
scenario, correspond to strings over activity identifiers, representing sequences of activities. A
small log is shown in Fig. 2, for the example process HandleOrder.

	 	 4	

Figure 2. Sample log for the HandleOrder process.

Essentially this is the type of historical data that process discovery algorithms38 take in input in
order to find a workflow model, even when the original one is unknown. The quality of a workflow
model W can be evaluated relatively to a log L (the one actually used for inducing the model, or
another log of the same process) by way of “conformance” measures (usually ranging over [0…1]),
which can be distinguished into two main families: (a) fitness measures (a sort of completeness
measures), which roughly tell how much the traces in L comply with the behavior encoded in W, by
typically counting the violations that are needed to perform to replay all the traces through the
model; and (b) precision measures, which try to quantify how much of the flexibility (ascribable to
alternative/parallel constructs) of W is really necessary to reproduce L.

2.2. Activity Abstractions and Process Taxonomies
Many process abstraction approaches store and exploit activity abstraction relationships. In order to
make thinks concrete, we next describe a basic form of activity ontology, as defined in Reference
17, which intuitively captures two different kinds of abstraction, corresponding to IS-A (a.k.a.,
“hypernimy” or “generalization”) relations and Part-Of (a.k.a., “partonomy” or “meronimy”)
relations, respectively. Such relations were widely used for representing of business activities in
several application contexts, such as, e.g., the MIT Process Handbook project30, where a catalogue
of business processes models was defined, based on interviews with experts, which span several
business domains and features about 5,000 activities.

Hereinafter, we will name activity ontology a tuple D=áA,IsA,partOfñ, where A still denotes a set of
activities, while IsA and PartOf are binary relations over A. Intuitively, given two activities a and
b, (b,a)ÎIsA indicates that b is a specialization of a, whereas (b,a)ÎPartOf indicates that b is a
component of a. These basic properties can be extended in a transitive fashion, as follows. Given
two activities a and x, a abstracts x if there is a path from a to x in the graphs induced by IsA and
PartOf. In such a case we also say that a is a complex activity; otherwise, a is a basic activity. In a
sense, complex activities constitute high-level concepts defined by aggregating or generalizing the
basics activities that actually occur in real process executions. This notion is the building block for
defining a taxonomy of process models, where the knowledge about process behavior is structured
into different abstraction levels.

Based on activity abstraction (resp. refinement) relationships, an intuitive notion of process model
generalization (resp. specialization) can be stated: Given two workflow models W1 and W2, we say
that W1 generalizes W2 (W2 specializes W1) w.r.t. an activity ontology D, if for each activity a2 of
W2 (i) either a2 appears in W1 or there is an activity a1 in W1 s.t. a1 abstracts a2, and (ii) there is no
activity b1 in W1 s.t. a2 abstracts b1.

Definition 1 A process taxonomy is a tree of workflow models, where the leaves correspond to
distinct classes of process executions, while any non-leaf schema provides a unified and

	 	 5	

summarized representation over multiple heterogeneous behavioural classes. Formally, given an
activity ontology D, like that introduced in the previous section, a tree of workflow models G is said
to be a process taxonomy w.r.t. D if, for any pair of models W and Wp s.t. W is a child of Wp in G,
Wp generalizes W.

The basic abstraction relations described above could be specified in many formal knowledge
representation languages, such as, e.g., the family of Description Logics – in this case each activity
label x can be regarded as a concept term, while assuming that a log trace t is an instance of that
concept if t contains at least one occurrence of x. Even more directly, one can use object-oriented
modeling frameworks (e.g., OntoDLV2) natively supporting the constructs.

Notice, moreover, that the definition of process taxonomy does not explicitly embed a precise
notion of behavioural inheritance for the models appearing in it. Such a desirable property is indeed
delegated to the underlying activity abstraction relationships, which could be practically defined in
accordance with some kind of behavioral inheritance notion, as discussed in the next subsection.
Notably, the choice of a reference notion of behavioural inheritance, determines the semantics of
trace abstraction with respect to a given activity ontology like that defined before, as far as concerns
the possible ways of replacing multiple occurrences of concrete activities with a higher-level one
that features as an ancestor of these activities in one of the abstraction hierarchies of the ontology.

2.3. Behavior Inheritance/Preservation
Diverse notions of specialization and inheritance were defined in several application contexts, e.g.,
OO-Design/Programming and Process Modelling. The possibility of defining business process
taxonomies was first considered in Reference 30, where a repository of process descriptions is
envisaged supporting the design and sharing of process models. However, this pioneering work
founds on a “static" representation of the processes which disregards the evolution of the process
over time: each process P is modelled as a class featuring P’s activities as properties, which will be
inherited by any P’s subclass – by the way, the framework also allows to remove inherited activities
(non-monotonic inheritance).

The problem of defining a specialization/inheritance notion capable to account for dynamic
behaviour, has been studied against different process modelling languages, such as, e.g., UML
diagrams37, Petri-nets3, and DataFlow diagrams27. Notably, the classical IS-A property relating the
instances of a given class to its super-class is typically rephrased in these contexts by stating that all
the execution instances of a model may also be regarded as instances of any model generalizing it,
in connection with some suitable behavioural equivalence criterion (e.g., trace equivalence or
branching bi-simulation).

Two main kinds of specialization may be considered on a process model: extension (i.e. one or
more activities, and their associated flow links, are added the model) and refinement (i.e. one or
more activities in the model are refined by replacing each of them with some more specific activity
or with a sub-process, composed of multiple finer-grain activities).

In the first case, a key point for defining a proper notion of behavioural inheritance concerns how to
abstract the execution of any activity that has been added to the sub-class model. Quite a complete
and deep theoretical framework for dealing with such a situation is presented in Reference 3, where
two basic notions of behaviour inheritance (and two derived notions based on them) are defined for
workflow models represented as WF-nets39,41,43 (a special kind of Petri-nets). There, it is stated that
the external behaviours shown by a model and by any of its specializations must not be
distinguishable whenever: (a) only common activities are performed, while blocking the additional
ones (“protocol inheritance”, conceptually similar to the notion of “invocation consistency" 37); or
(b) when one simply abstracts from activities that are not in the base model (“projection

	 	 6	

inheritance”, analogous to “observation consistency”37). Moreover, four inheritance-preserving
transformation rules are presented in the same paper, which allow to specialize a WF-net model by
adding new elements as part of typical control flow constructs (choice, iteration, sequential
composition, and parallel composition, respectively). Notably, when using these rules, the resulting
model is ensured to be a subclass of the original one, without requiring any explicit verification of
behaviour equivalence (which is, in general, a costly task).

The concept of process specialization as refinement of activities has been largely adopted in the
field of process abstraction6,22,17,13,23,29,32,5 – closely related to the theme of this paper – where the
aim is to simplify the description of a process model by providing the user with more abstract and
readable process views. In fact, in this perspective, a more general (and succinct) view of a process
can be get by making the given model undergo some activity abstraction transformation, which
essentially amounts to replace a group of activities (or an entire sub-process) with a single higher-
level activity. Clearly enough such a transformation is the inverse of refining the resulting abstract
model. In actual fact, specialization via extension as well has a counterpart in a process abstraction
setting, which obviously corresponds to the elimination of activities; however, we do not discuss
such a type of transformation further in the rest of this paper for two reasons: (i) it has not found as
a wide usage as activity abstraction in the literature; (ii) one can still think of replacing one or more
activities he/she wants to remove with some sort of “phantom” high-level activities, which can be
kept hidden (along with their associated links) in the abstracted view shown to the user.

As far as concerns the similarity of behaviors between a process model and its abstracted version,
most process abstraction approaches do not fulfill a precise notion of inheritance like that in
Reference 3. Anyway, some approaches have been defined which try to satisfy some kind of
behavioural consistence, ensuring that routing and causal constraints among the activities are
somewhat preserved in the resulting model. The prevalent way of obtaining such a result is to
decompose the structure of the input workflow model into a number of process fragments, possibly
defined in a recursive way (as in the case of the SPQR-tree structure4), such that each fragment
corresponds to a well-specified composition pattern (e.g., sequential composition, or split/join
structures). In this way, an order-preserving notion of process generalization can be met, provided
that each set of partonomical relationships stored in the activity ontology are created in accordance
with these fragments.

An alternative solution consists in taking account for the ordering relationships between process
activities that are implied by the control-flow model, when deciding which activities are to be
aggregated together into a higher-level abstract activity. In particular, in Reference 29, the resulting
model M’ is ensured to be an “order preserving” view of the original process model M, in that, for
any pair of activities x and y in M’, if x precedes (resp., follows, is-independent-of) y, then any
activity abstracted by x precedes (resp., follows, is-independent-of) all the activities abstracted by y.
In other words, the implied ordering constraints between concrete activities of the process, which
are produced by the abstraction process, must coincide with the ordering constrains in the original
model. For example, with regard to Fig. 1, the model obtained by simply abstracting activities d and
p together into a single complex activity, say x, would comply with this notion of behavior
consistency; the converse would happen, instead, if we defined x as consisting of c and g.

3. General Approach to Process Taxonomy Discovery
The problem of discovering a process taxonomy (cf. Definition 1) can be approached via a two-
phase strategy, consisting of two macro-steps: (S1) Clustering-Based Hierarchy Discovery, where a
hierarchical clustering of the log is computed by looking at behavioural similarities between log
traces, so that each cluster can be regarded as representative of a different behavioural sub-class of

	 	 7	

the process, and equipped with a separate workflow model (with the help of a workflow discovery
algorithm); and (S2) Abstraction-Based Hierarchy Restructuring, where the hierarchy of workflow
models is restructured into a taxonomy, by using process abstraction mechanisms allowing to
associate each non-leaf node v with a workflow model that generalizes all the models appearing in
the subtree rooted in v.

Figure 3. A pictorial representation of the overall approach to the discovery of a process taxonomy: core
tasks and related works in the literature.

Clearly, such an approach hinges on three different basic computation tasks: (a) Workflow
Induction, amounting to extracting a workflow model out of a given (sub-)set of log traces; (b)
Trace Clustering, aimed at partitioning a given set of log trace into a number of behaviourally
homogeneous groups; (c) Workflow Abstraction, devoted to deriving a generalized coarser-grain
workflow model for a given set of workflow models. A range of methods are available in the
literature, which can, in principle, help solve each of these core sub-problems. Figure 3 offers a
rough, and yet hopefully intuitive, picture of how such methods can be exploited to discover a
process taxonomy, according to the two-phase approach mentioned above. For each task, the figure
shows the respective inputs and outputs, as well as a list of works in the literature (namely,
references to items in the bibliography) that can be reused to implement it.

Notice that, in Fig. 3, it is envisaged the integration of this main computation procedure with Log-
driven Abstraction techniques13,23, recently appeared in the literature, as an optional pre-processing
step. Essentially, these techniques allow for identifying abstract activities as groups of correlated
log events (based on clustering or pattern-mining algorithms). Each of such high-level activities can
be stored in an activity ontology (along with its associated low-level activities), and can be used to
produce and abstract view of the log – where, in each log trace, low-level activities are replaced
with the corresponding high-level one. In fact, such a pre-processing step can be very effective in
the case where the logs contains low-level events, which are not directly linked to semantically
relevant process activities. Indeed, as the raw application of process discovery algorithms to such

	 	 8	

logs would results in “spaghetti-like" models (with many task nodes and links between one
another), it is convenient to bring the traces to a higher level of abstraction, prior to clustering and
analysing them.

The rest of this section is devoted to illustrate, in two separate subsections, two meta-algorithms
encoding a computational scheme for the high-level computation steps (S1) and (S2) introduced
above, respectively. Notice that these meta-algorithms are mainly meant to describe, in a more
precise manner, how the core Workflow Induction, Trace Clustering, and Workflow Abstraction
techniques are employed within the discovery of a process taxonomy. A deeper discussion of these
three families of techniques will be provided later on, in the next three sections of the paper,
respectively.

3.1. Clustering-based Hierarchy Discovery
Hierarchical clustering methods (agglomerative or divisive) have been extensively used in several
application contexts in order to construct taxonomies automatically (see, e.g., References 8, 26).
Traditionally, these schemes rely on suitable distance measures and linkage strategies, and produce
a tree-like partitioning structure (“dendrogram”), which can serve as a basis to derive class
hierarchy. However, many of these classical clustering methods risk being too time-consuming on
large logs. A possible solution consists in finding an initial set of, fine grain, clusters for the input
log, and then grouping them into higher-level clusters according to an agglomerative scheme, where
the similarity among clusters is computed by only comparing the workflow models associated with
them (with the help of workflow discovery techniques). Workflow oriented graph edit distances11
and behavioural similarity measures40 could be exploited to this end.

Figure 4. Meta-algorithm HierarchyDiscovery.

As an alternative solution, in Fig. 4 a top-down clustering scheme is illustrated, where whatever
(more scalable) clustering method can be exploited (as in Reference 19). In this meta-algorithm a
given log is decomposed hierarchically into a number of sub-logs, by iteratively splitting a cluster
whose associated model is expected to mix different usage scenarios. The result is a tree-like model
where each node corresponds to a set of executions (i.e., process instances) and its children to a
partition of that set.

Initially a single workflow model W0 is extracted that is a first attempt to model the whole log.
Iteratively, one of the models not refined yet (i.e., corresponding to a leaf of the tree) is refined: the

INPUT:	 a	log	L,	two	natural	numbers	maxSize	and	K,	a	real	quality	threshold	g	
OUTPUT:	 a	workflow	hierarchy	H	
Method:	Perform	the	following	steps:	
A)	 Initialize	the	hierarchy	with	one	workflow	model	for	the	whole	log	

W0	=	mineWFSchema(L)		 //	mine	a	model	W0	from	all	traces	in	L		
cluster(W0)	=	L		 	 //	associate	W0	with	the	whole	log	L	
DW	=	{	W0	}				 	 //	DW	is	used	to	contain	all	the	leaf	schemas	of	H	

B)				WHILE	size(DW)£	maxSize	and	quality(DW)<	g	
Extract	the	least	accurate	model	W*	from	DW		 			//	according	to	measure	quality(�)	

											{C1,…,Ck}	=	partition(traces(W*))		
For	each	cluster	Cj	(j=1..k)	extracted	from	traces(W*),		

Wj=	mineWFSchema(L)		 	 //	mine	a	(refined)	model	for	the	cluster	
put	Wj	in	DW,	and	extend	H	by	adding	Wj	as	a	child	of	W*	

	 	 9	

set of traces that are associated with it are split into clusters by using the meta-function Partition,
which could be implemented by some of the different trace clustering approaches proposed in the
literature (and discussed later on). A new workflow model is then mined out for each of these
clusters, by using some workflow discovery technique (see next section for more details). At the
end of the process, a hierarchy of workflow model is obtained, where the leaf nodes constitute a
disjunctive model representing the execution logs more accurately than W0. Note that the method is
also parametric w.r.t. the measure quality, which should evaluate how much adequately the current
set of unrefined workflow models – i.e., the ones on the frontier of the tree – capture the behavior of
the process under analysis.

Such an evaluation could be made by resorting to log conformance measures like the ones
mentioned in the previous section and/or to structural complexity measures.

Figure 5. Hierarchy found by HierarchyDiscovery on the running example (details for leaf models only).

Example (contd.) In order to provide insight on how the above meta-algorithm could work in a
practical case, we randomly generated 100,000 traces from the workflow in Fig. 1, under the
additional constraint that task m cannot occur in any trace containing f (a fidelity discount is never
applied to a new customer), and task o cannot appear in any trace containing d and p (fast
dispatching cannot be performed whenever external supplies are asked for), hence simulating the
presence of different process variants. We then applied the meta-algorithm HierarchyDiscovery,
using the feature-based clustering in Reference 19 (see the section on log clustering methods for
further details) to implement meta-function partition, without performing any quality check in the
test of the main loop (i.e., function quality is implemented as to always return the maximal score).
This peculiar choice bases on the observation that such an approach is expected to be effective
enough in dealing with behavioral constraints like the ones used in our simulation, and in
identifying behaviorally homogenous clusters. The resulting hierarchy is shown in Fig. 5.(a), where
each node logically corresponds to a cluster of traces and to an associated workflow model (induced
from the cluster). The model W0 preliminary found for the whole log (and associated with node v0)
actually coincides with the one shown in Fig. 1. Since it was not as precise as required by the user,
the log was partitioned into two clusters (k=2). The cluster associated with v2 was not refined

OR

b

AND

XOR

OR

e i
l

h
g

p d

c

a

m

n

XOR

XOR

AND

!"#

!"#

!$# !%#

!&# !'#

OR

b

AND

XOR

OR

f

i
l

h
g c

a

o

n

XOR

XOR

AND

OR

b

AND

f

i
l

h
g

p d

c

a
n XOR

XOR

AND

!"#

(a) Taxonomy structure (tree) (b) Workflow model W2 associated with node v2

(c) Workflow model W3 associated with node v3 (d) Workflow model W4 associated with node v4

	 	 10	

further, whereas that of v1 was split again into two sub-clusters. In fact, models W0 and W1
(corresponding to v0 and v1, resp.) are just preliminary model for their associated log traces, which
are indeed modeled in more precisely by the leaf models – shown in Fig. 5.(b-c-d).

3.2. Abstraction-based Hierarchy Restructuring
We next study how a hierarchy of workflow models can be restructured into a taxonomy of models,
describing the process at different levels of details. The key point is to equip each non-leaf node
with an abstract model generalizing those associated with the children of the node. To this aim,
some suitable activity abstraction method must be used to replace groups of (structurally correlated)
activities with higher-level activities.

Figure 6. Algorithm BuildTaxonomy.

The crucial steps are illustrated in Fig. 6, via a meta-algorithm, named BuildTaxonomy, inspired to
the approach in Reference 17. The algorithm transforms a given model hierarchy H into a
taxonomy, possibly using an activity ontology D, storing basic activity abstraction relationships. In
a bottom-up fashion, each non-leaf node v in the hierarchy is equipped with a new workflow model,
by using meta-function abstractSchema. This latter is provided with the model v and with the
indication of which activities are to be abstracted (namely, the tasks that appear only in a proper
subset of v’ children). Optionally, this task is carried out based on the contents of ontology D,
which is then updated, as to store the links between abstracted activities and their corresponding
complex ones in the novel (abstract) model of v. In such a case, D will be restructured eventually by
removing “superfluous” activities – i.e., activities that does not appear in any model of H. The
above meta-scheme is parametric to the initial contents of the activity ontology D (which can be
empty or encoding existing domain knowledge), as well as to the actual algorithm implementing
abstractSchema, which may disregard its third argument, which is just returned as it in output.

Example (contd.) We next consider the application of the meta-algorithm in Fig. 6, where function
abstractSchema is implemented as in Reference 17. Notably, any workflow model taken as input by
this function is transformed by replacing “specific” activities (i.e. activities that does not appear in
all input models) with new “virtual” ones abstracting them all via IS-A or PART-OF relationships,
based on the current contents of the reference activity ontology. Figure 7 illustrates the final
outcomes of this restructuring process: (i) a tree representing the process taxonomy, replicating the
structure of the input workflow hierarchy; (ii) the contents of the activity ontology, mapping the
abstract activities, created by the algorithm, to the corresponding concrete ones; (iii) the two

INPUT:		a	workflow	hierarchy	H,	and	an	activity	ontology	D	(possibly	empty)	
OUTPUT:	a	modified	version	of	H		(such	that	H		is	a	process	taxonomy	w.r.t.	D)	and,	possibly,	of	D	
Method:	Perform	the	following	steps	
Create	a	set	S	of	models	containing	only	the	leaves	of	H		
WHILE	there	is	a	model	v	in	H,	s.t.	v	Ï	S	and	its	children	are	in	S	
				Let	aS	be	the	set	of	all	tasks	that	appear	in	some	of	the	children	of	v,	but	not	in	all	of	them	
				(v,D)	:=	abstractSchema(v,aS,D)	//	compute	a	new	model	where	the	tasks	aS	are	abstracted		
	 	 												//	while	possibly	taking	account	for	D	and	eventually	updating	it	
				put	v	in	S	
	

Remove	“superfluous”	complex	activities	from	D	(according	to	H’s	schemas)	
Return	H	and	D	
	

	 	 11	

restructured workflow models produced for the nodes v’0 and v’1 (i.e., the only two non-leaf nodes
in the taxonomy) – the three remaining (leaf) nodes in the taxonomy (namely v’2, v’3, and v’4) are
simply equipped with the same workflow models as their corresponding nodes (namely v2, v3, and
v4, respectively) in the original workflow hierarchy (cf. Fig. 5) – i.e., leaf models are left unchanged
in the restructuring phase.

Figure 7. Generalized workflow models in the taxonomy found for the example HandleOrder process.

Let us now briefly describe how these results have been obtained. Provided with the hierarchy of
Fig. 5 and with an initially empty activity ontology – we assume that no background knowledge on
activity abstraction is available – algorithm BuildTaxonomy first generalizes the leaf models W3 and
W4 (associated with v3 and v4, respectively), which share all the activities but o, d and p. In the
resulting model W1

*, shown in Fig. 7.(c), d and p have been aggregated into a new complex activity
x1 – while putting the pairs (d, x1) and (p, x1) in the PartOf relationship. W1

* is then merged with
the model W2, and a new abstract model W0

*, shown in Fig. 7.(d), is build for the root. This model
features three complex activities: x1, aggregating d and p, as discussed before; x2, aggregating e and
f; and x3 composed of m and o. The pairs (e, x2), (f, x2), (m, x3) and (o, x3) eventually appear in the
PartOf relation of the activity ontology. Notice that a further complex activity x0 was created during
the creation of the abstract schema W1

* in order to aggregate d and p; x0 was then abstracted by x1
through an IS-A link (in fact these two complex activities had the same set of sub-activities and the
same control flow links), and eventually removed from the activity ontology, for it does not feature
in any of the workflow models in the resulting process taxonomy.

4. Workflow Discovery Techniques
Process mining techniques38 try to extract knowledge on the behaviour of a processes from an
execution log. The rest of this section illustrates a number of techniques specifically designed for
the induction of a workflow models. In general, the proposals in the literature differ both in the
specific induction algorithm and in the language for representing workflows – ranging from simple
directed graphs1,7,14, expressing precedence relationships, possibly extended with simple split/join
constraints19,42, to more expressive formalisms, sometimes enjoying deep behavioral semantics, like
WF-nets39,41,43.

	 	 12	

The problem of discovering a workflow model was analyzed in Reference 39, where a class of Petri
nets, named structured workflow (SWF) net, is identified. The algorithm proposed, named α, can
rediscover such a model, under the hypothesis that the input log is “complete” – i.e., all pairs of
tasks linked directly in the SWF appear consecutively in at least one log trace. Two extended
versions of algorithm9,43, were proposed subsequently to discover two specific kinds of control-flow
constructs: short loops (loops involving one or two activities only) and non-free-choice constructs
(where the choice of which outgoing edges of a XOR-split node x is to be executed does not
depends on x only), respectively.

Simple metrics concerning task dependency and task frequency are exploited in a heuristics
approach42, capable of discovering a graph-based model, called “dependency/frequency graph",
which encodes both precedencies and split/join constraints. Notably, this approach can cope with
noisy logs, based on user-given frequency thresholds.

The discovery of block-structured workflows possibly containing duplicate tasks was addressed in
References 20 and 21, where a two-step solution is presented: first a stochastic activity graph (SAG)
is induced from the log, and then the SAG is turned into a block-structured workflow by suitable
transformation rules. The use of term rewriting systems was also proposed to discover a
hierarchically structured workflow model, in the form of an expression tree, where the leaves
represent tasks (operands) while any other node is associated with a control flow operator34.

An alternative solution10 to the workflow discovery problem relies on a global search method, based
on genetic algorithms. This allows for dealing with complex routing constructs (including non-free-
choice and hidden tasks, i.e. routing activities that do not appear in the traces) and with noisy data,
but implies highest computational costs.

Based on the observation that extracting a single workflow model for very different cases may lead
to over-generalized process models, workflow discovery has been combined with the clustering of
log traces19. This permits to improve the precision of basic workflow discovery algorithms by
capturing constraints that are beyond the expressiveness of their associated modeling languages. To
this end, the approach in Reference 19 essentially exploits a top-down clustering scheme very alike
the one in Fig. 4 (without any test on the quality of the current hierarchy), and returns a collection
of workflow schemas, corresponding to the ones induced from the leaves of the discovered clusters’
tree. A more detailed discussion on the clustering technique is given in the next subsection, devoted
to trace clustering approaches.

A recent trend in the Process Mining community concerns the opportunity to exploit background
knowledge in order to deal with incomplete logs, first pinpointed in Reference 16, where an ILP-
based discovery method is described. Specifically, after extracting temporal constraints, capturing
dependence and parallelism relations between activities, negative events are generated artificially
for each prefix of any log trace; using both log traces and artificial negative events as input, a logic
program is induced with algorithm TILDE, which is eventually converted into a Petri net.
Importantly, domain experts can directly provide an a-priori set of temporal constraints, possibly
stating that (i) two activities are parallel (resp., not parallel), and (ii) that one precedes/succeeds
(resp., does not precede/succeed). A constraint-based discovery framework was recently proposed
in Reference 18, where the information gathered from the log and background knowledge are both
expressed as precedence constraints, i.e., constraints over the topology of the graphs. The search of
a simple kind of process model, encoding only precedencies between tasks, is then rephrased into a
constraints satisfaction problem (CSP), which is eventually solved by leveraging an existing CSP
solver. Even though the resulting model does not capture typical control-flow constructs, the
activity dependencies encoded by it can be given as input to other workflow induction

	 	 13	

algorithms39,41,43, in order to extract a fully expressive process model. Some major features of the
approaches presented so far are summarized in Table 1.

Table 1. Summary of Process Discovery techniques. The last two columns correspond to the formalism used
for representing discovered process models and to the capability to take advantage of background knowledge
about the structure of the process.

 Handled Issues

Paper Noise Duplic.
Tasks

Hidden
Tasks

Non-free
Choice Loops Learning

Approach
Repr.

Language
Backgr.
Knowl.

[1] - - - - - Heuristics Dep. graph -

[10] Ö - Ö Ö Ö Genetic alg. Petri Nets -

[19] Ö - - Ö - Heuristics +
Clustering Dep. graph -

[16] Ö Ö Ö Ö Ö ILP Petri Nets Ö

[20,21] Ö Ö Ö - - Heuristics Block
Structured

-

[39] - - - - - Heuristics Petri Nets -

[41] - - - - - Heuristics EPC, Petri
Nets

-

[42] Ö - - Ö Ö Heuristics Dep. graph -
[43] - - - Ö - Heuristics Petri Nets -
[18] - - - Ö - CSP solver DAG Ö
[14] Ö - - Ö Ö Heuristics Dep. graph -

As to the effectiveness of workflow discovery techniques in recognizing the actual structure of the
analyzed process, various dimensions can be considered, which include the fitness and precision
ones mentioned previously. Maximal fitness is actually achieved by almost all the algorithms
above. However, this does not imply that the resulting model really captures the possible behavior
of the unknown process, if the log does not satisfy the completeness notion underlying the induction
algorithm. In particular, most algorithms based on heuristics-driven local search, assume that
adjacent tasks appear consecutively in some traces. This discourse gets more varied when the
process follows complex control-flow constructs (non-free-choices, duplicate tasks, hidden tasks,
etc.) and the logs are noisy. As a matter of fact, Table 1 also reports the behavior of some major
process mining algorithms with respect to such issues.

On the other hand, the precision of process mining algorithms may rapidly fall when the analyzed
process exhibits different execution scenarios, possibly combined with global behavioral
constraints. In such a case, good results are achieved by approaches based on genetics algorithms10
or on clustering19. Clearly, the first solution might be computationally unviable for large logs, while
an excessive partitioning of log traces may lead to overfitting. In fact, more generally, the size of
the log can impact severely on the real value of a discovered process model, especially when the
analyzed process exhibits complex dynamics and a high level of concurrency. Indeed, in such a
case, small samples of log traces hardly capture the different sequencing of activities that are
admitted for the process, so that the model eventually discovered is likely to provide an under-
generalized (“overfitted”) representation of the process’ behavior. For example, it may happen that
a precedency is incorrectly discovered between activities belonging to mutually parallel branches of
the process, only because, in the given (incomplete) log, these activities always appear in the same
order. A possible way to somewhat prevent the generation of overfitted models, in the case of
clustering-based methods, is to simply set an upper bound to the number of clusters (as done in the
algorithm of Fig. 4).

	 	 14	

Anyway, using abstraction mechanisms as a pre-processing or post-processing tool can help
alleviate this problem. In fact, as discussed in more details later on (in the section illustrating
abstraction algorithm) a process discovery approach leveraging embedded abstraction capabilities
was recently proposed in Reference 14. This method provides the analyst with a simplified
dependency graph, where only significant enough activities and edges are depicted, while omitting
(or aggregating) minor structural elements of the process structure.

5. Trace Clustering Techniques
Clustering techniques can help recognize different behavioral classes of process instances
automatically, by exploiting the information captured in log data. In this section, we overview a
series of recent methods for the clustering of workflow traces, which could be employed, within a
recursive partitioning scheme, to induce a hierarchy of process execution classes, as discussed
previously. Some major features of these methods are summarized in Table 2.

A first kind of approach to trace clustering relies on sequence-oriented techniques12,24, operating on
the whole event trace “as-is" based on string distance metrics. For instance, a context-aware
approach based on the generic edit distance was proposed in Reference 24. The edit distance
between two sequences is defined as the cost of the optimal combination of edit operations
(insertion, deletion or substitution) that allow to transform one sequence into another. The cost of
edit operations is tailored to the peculiarities (primarily, concurrence nature) of workflow processes
by devising ad-hoc algorithms for automatically deriving an optimal setting of such costs.
Moreover, an agglomerative clustering scheme is adopted, and the minimum variance criterion
(trying to locally minimize intra-cluster variances) is used to select how clusters are to be grouped
into higher level ones. Conversely, a model-based (probabilistic) approach is used in Reference 12,
where, still regarding log traces as sequences, a mixture of first-order Markov models is found, via
the Expectation-Maximization (EM) algorithm, which approximates their distribution at best.

Table 2. Summary of trace clustering techniques. The third and forth columns indicate the capability of
accounting for properties going beyond the list of executed activities (e.g., data parameters, executors) and
the basic similarity/dissimilarity criterion guiding the clustering, respectively.

Paper Structure Trace
Representation

Non-
Structural
Properties

Clustering Bias Approach

[12] Sequences/String Ö Likelihood Model-based

[19] Pattern-based
Vectors Ö Euclidian Distance K-means

[24] Sequences/String - Edit Distance AHC

[25] Pattern-based
Vectors Ö Euclidian Distance AHC

[36] Bag of
Activities/Transitions Ö Euclidian/Hamming/Jaccard

Distance
K-means/ AHC/

SOM/ QTC

The main drawback of string-oriented techniques12,24 is the typically higher computational cost,
which may make them unpractical when massive logs are to be analyzed. Notice that this problem
cannot be circumvented, in general, by way of sampling techniques, as a huge number of distinct
log traces can be actually necessary to rediscover a workflow with many parallel branches – which
may yield many distinct log traces that only differ from each other in the ordering of the parallel
(and hence mutually independent) tasks. And yet, heuristics-based correction mechanisms, for

	 	 15	

taking account of the concurrent nature of workflow processes, might by ineffective against highly
concurrent processes.

In principle, higher scalability is achieved with feature-based approaches19,25,36, owing to the
possibility to exploit consolidated efficient methods for clustering vectorial data and efficient
algorithms for deriving the features from the given log. On the other hand, the quality of results
depends on the capability of the considered structural patterns to capture and discriminate the main
execution variants of the process. Hence, a trade-off between the expressiveness of the patterns
used as features and the cost of extracting them must be suitably selected, according to the specific
application context. Different methods have been proposed to map log traces into such a feature
space, most of which focus on the frequency of activities in the log. A prevalent approach to
clustering traces consists in transforming them into vectors where each dimension corresponds to an
activity19. Clearly such a bag-of-activities representation, suffers, as a major drawback, from the
loss of temporal information, as it disregard the ordering of activities.

One way to alleviate this problem is to regard any trace as a sequence of activities and to extract a
number of k-grams (i.e. subsequences of length k) from it, as features for the clustering. In
particular, in Reference 36, the vector space model is used with multiple feature types,
corresponding to different trace profiles, i.e. sets of related items describing traces from a specific
perspective (activities, transitions, data, performance, etc). Each item is associated with a measure
assigning a numeric value to any trace. Therefore, by transforming each log trace into a vector
containing all these measures, any distance-based clustering method can be exploited to partition
the log. In particular, three distinct distance measures are considered to calculate the similarity
between cases: Euclidean distance, Hamming distance and Jaccard distance. Using these similarity
measures, four clustering schemes are exploited applied to partition log traces: K-means, Quality
Threshold Clustering (QTC), Agglomerative Hierarchical Clustering (AHC) and Self-Organizing
Map (SOM).

This vector space model was combined with new context-aware features25, by expanding the core
idea of considering activity subsequences that are conserved across multiple traces. Unlike the k-
gram approach, subsequences of variable length are detected which frequently occur in the log, and
are assumed to correspond to some hidden functionalities of the process. Using these conserved
subsequences as features, the clustering is expected to put together traces that are mutually similar
from a functional viewpoint. In more details, the following kinds of conserved subsequences
(inspired to sequence mining approaches) are used: Maximal Repeats, Super Maximal Repeats, and
Near Super Maximal Repeats. Such subsequences are eventually as the dimensions of the vector
space, while adopting Euclidean distance and the minimum variance criterion for the clustering.

A hierarchical clustering approach19 exploits a special kind of sequential features, named
discriminant rules16, devised for capturing behavioral patterns that are not properly modeled by a
given workflow model. Precisely, a discriminant rule has the from [a1 …ah] -/-> a s.t.: (i) [a1 …ah
] and [aha] are both “highly” frequent (i.e., the frequency is above a given threshold s), and (ii) [a1
…ah a] is “lowly” frequent (its frequency is below another threshold g). As an instance, the rule [fil]-
/->m for the example process HandleOrder, captures the fact that a fidelity discount is never applied
when a (new) client is registered – this constraint is not captured by the worfklow model in Fig. 1.
Such rules can be straightforwardly derived from frequent sequential patterns, discovered
efficiently via a level-wise search strategy.

As a final remark, we observe that the clustering of log traces might well take advantage of the
good results achieved in the field of co-clustering, one of the hottest topics in Data Mining
community in recent years, where multiple data types are to be partitioned simultaneously based on
their mutual correlations. Indeed, co-clustering methods have shown to work well even when the

	 	 16	

real goal is to cluster one data type with a sparse and high-dimensional space of attributes (like, e.g.,
text documents and associated terms). A pioneering effort along such a direction was done in
Reference 15 (in an outlier detection setting), where the mining of structural patterns is combined
with a co-clustering scheme focusing on the associations between such patterns and the given
traces. In our opinion, such an approach can achieve good quality results when used for clustering
the log of a process featuring a large number of structural patterns, without incurring in the
notorious “curse of dimensionality” problem.

Moreover, it could be beneficial to further investigate on the exploitation of model-based clustering
schemes, which exhibited very good effectiveness and scalability performances in diverse data
mining applications. Clearly this requires them to be suitably extended in order to effectively cope
with the peculiar nature of workflow executions, and, in particular, with the presence of concurrent
execution branches. In fact, this issue is not considered adequately in Reference 12, which mainly
reuses a classical method conceived for purely sequential data.

6. Process Abstraction Techniques
A large body of work has been done to (semi-)automatically derive abstract views from a workflow
model, in order to simplify the representation of the process. In principle, one could think of
exploiting some of the inheritance-preserving transformation rules defined in Reference 3 to this
end. However, to the best of our knowledge, no automated abstraction approach exists in the
literature following that theoretical framework. By contrast, such a kind capability is featured by
more recent process abstraction approaches17,13,23,29,32,5,35,14, typically based on less precise
modelling languages and looser behavioural consistency notions. As a matter of fact, we believe
that such an approximated modelling of process dynamics can be tolerated in a knowledge
discovery setting, in exchange for a higher automation degree. Therefore we next focus on these
latter techniques, whose main features are reported in Table 3. In particular, the table reports, for
each technique, which kinds of data it takes as input – by specifically telling whether it receives, or
not, an execution log, a workflow model, an activity ontology, and which activities are to be
abstracted (named here “target tasks”) – and which kinds of results it produces – i.e., only an
abstract workflow model, or a set of activity abstractions (regarded here as a sort of activity
ontology), or both. Moreover, for each technique it is reported the underlying abstraction mode (i.e.,
aggregation or elimination of activities/edges) as well as whether the returned workflow model (if
any) fulfils some notion of order preservation w.r.t. the input one (if any).

Most of these works only resort to the aggregation of process activities29,32,5. In particular, in
Reference 29, an abstract view of a workflow model is obtained automatically by replacing multiple
real activities with “virtual" ones, based on ad-hoc aggregation rules, ensuring that all original
ordering relationships among the activities are preserved. In more detail, three rules must be
followed to ensure the ordering property: (i) activity membership, (ii) activity atomicity and (iii)
order preservation. The first rule allows either base or previously-defined virtual activities to be
members of other virtual activities. The atomicity rule serves to describe the operational semantic
property of the abstracted model. Finally, the order preservation principle provides a syntactical
constraint ensuring that the abstracted processes also follow the atomicity property. In practice, this
is meant to ensure that implied ordering relations in an abstract model comply with those in the base
process. An algorithm is then illustrated which can compute such an order-preserving abstracted
version for a given process model (represented as a dependency graph with AND/XOR logics and
single-entry single-exit loops), based on a reference subset of activities (named “essential”
activities) specified by the user, as mandatory abstraction targets (presumably corresponding to
irrelevant or private tasks). The algorithm iteratively aggregates essential activities and adjacent

	 	 17	

ones into legal virtual activities (i.e., groups of base activities that does not violate any order-
preservation constraint) until a fix point is reached.

In Reference 32, an abstraction approach is described which relies on the partonomical
decomposition obtained by building an SPQR-tree4 for the given workflow model. As mentioned
above, in such a tree, each leaf node coincides with a single (atomic) process task, while any other
node corresponds to a “fragment” of the workflow model. The approach relies on a manual control
by the user, who is in charge of specifying which process task (or collection of tasks) in the original
workflow model is to be abstracted. Based on a series of abstraction rules (specifically defined for
each kind of composition pattern) the approach automatically replaces each task t, explicitly
indicated by the user, with the finest grain workflow fragment encompassing t (i.e. the closest
ancestor of t in the SPQR-tree). Clearly, the process can be iterated to produce coarser
representations of the workflow.

Table 3. Summary of Process Abstraction approaches. Note that in the case of Reference 17 we just consider
the method implementing function abstractSchema (see Fig. 6).

 Input Output Method

Paper Log Model Abs.
dict.

Target
tasks

Abstr.
model

Abs.
dict.

Abstr.
modes Technical aspects Order

pres.

[17] - Ö Ö Ö Ö Ö aggreg.
Ontology-based matching
scores and a fuzzy order-

preservation score

-

[13] Ö - - - - Ö aggreg.
Hierarchical clustering of

tasks (mapped to vectors of
log-driven features)

-

[23] Ö - - - - Ö aggreg.
Extracts sequence-oriented
frequent patterns from log

traces
-

[29] - Ö - many Ö - aggreg. Graph reduction rules Ö

[32] - Ö - one Ö - aggreg.
Replaces the target task

with the smallest SPQR’s
block enclosing it

Ö

[5] - Ö - many Ö - aggreg. +
elimination

Finds, and remove or
aggregate, minimal SESE

fragments that enclose
target tasks

Ö

[35] - Ö Ö - - Ö aggreg.
Finds task aggregations that

best match nodes in the
given partonomy

-

[14] Ö - - - Ö - aggreg. +
elimination

Uses significance and
correlation scores to decide
which tasks/edges are to be

abstracted

-

A similar approach is proposed in Reference 5, aiming at providing personalized process
visualization to the user based on her specific needs. Two basic abstraction operations are defined
to this purpose: (a) aggregation and (b) reduction (i.e., elimination). Aggregation allows for
replacing original activities with some abstracted (more general) elements. Reduction makes it
possible to remove process activities when relevant information or confidential process details must
be hidden to a particular user group. Both these operations rely on the so-called SESE (single entry
single exit) fragments, i.e., subprocesses having exactly one incoming edge and one outgoing edge
connected with it. In more details, a reduction operation substitutes a SESE with a new edge
between its predecessor and successor activity. Aggregation, instead, introduces a new, more
general activity abstracting a SESE block. Aggregation and reduction operations are performed

	 	 18	

while trying to preserve, at best, the ordering relationships between activities, and other control-
flow constraints.
The aggregation-based approach in Reference 35, still taking a workflow model as input, can yet
take advantage of a partonomy relation over the activities, as a form of semantics-oriented
background knowledge guiding the abstraction process. The approach is semi-automated in that it
only suggests a list of possible activity aggregations (in the table, this fact is summarized with the
sole return of an activity ontology as output), without computing an abstracted process view.
However, the user can exploit each of these aggregations to eventually obtain such a view, by
simply replacing it with an abstract activity. Essentially, the approach selects a list of activity
groups such that, for each group G, (i) all the activities in G are topologically close enough in the
process model (namely, their mutual distance in the workflow graph is under a given threshold) and
(ii) the activities in G achieve an optimal compliance score w.r.t. the input partonomy. This latter
score is computed by way of a coverage measure, which, basically, evaluates what a percentage of
the descendants of a partonomy node match some of the activities in G. Notably, the activity names
in the input partonomy are allowed not to range over the same vocabulary as the activity labels in
the model being abstracted, and a thesaurus-based similarity measure is exploited in order to
meaningfully match process activities to partonomy terms.

As mentioned above, the approach in Reference 17 generally attempts to generalize multiple
workflow schemas, describing different variants of a process, by producing an overall workflow
schema where the structural elements connected with all shared activities are kept unchanged, while
groups of “specific” activities (i.e., activities not appearing in all the models) are replaced with new
“higher-level” activities, abstracting them all via IS-A or PART-OF relationships. Precisely, such
abstraction is performed by way of a heuristics algorithm (whose major features are summarized in
Table 3), which iteratively selects a pair (x,y) of “specific” activities to be abstracted together into a
single higher-level activity. Such a pair is chosen in a greedy fashion, trying to minimize the
number of spurious flow links that their merging introduces between the remaining activities, and
considering their mutual similarity w.r.t. the contents of the activity ontology D. This is done by
resorting to a series of affinity measures assessing how much any two “specific” activities are
suitable to be merged according the abstraction relationships already stored in D: (i) a “topological”
affinity measure simE(x,y), measuring how similar the neighbourhoods of x and y are w.r.t. the flow
graph; and (ii) two “semantical” affinity measures, simD

P(x,y) and simD
G(x,y), expressing how

similar x and y are w.r.t. the relationships of IS-A and PART-OF, respectively, stored in D. All
these measures are combined into an overall ranking function score as follows: score (x,y)=0, if
(x,y) is not a “merge-safe" pair of activities; and score(x,y) = max { simE (x,y), simD

P(x,y), simG
P

(x,y) }, otherwise. By the way, a pair (x,y) of activities is said merge-safe (w.r.t. a given an set E of
precedence relationships), if one of the following conditions holds: (i) there exist no path in E
connecting x and y; (ii) x and y are directly linked by some edges in E and after removing these
edges no other path exists between them.

An emerging trend of research in the Process Mining community concerns the derivation of activity
abstractions directly out of execution logs13,23. In general, such approaches tries to aggregate
activities based on how they appears to be mutually correlated in past process traces. As we pointed
out previously, such a kind of tools can be very helpful in the discovery of process taxonomies,
especially for gaining a suitable level of abstraction over overly detailed logs. Moreover, by
iterating the application of such techniques to abstracted logs, it is possible to discover a multi-layer
activity ontology. In particular, in the sequence-based approach of Reference 13, multiple
abstraction levels are discovered for log events by using a hierarchical agglomerative clustering
method, based on the proximity of events within log traces. Log traces can be then transformed into
sequences of abstract activities by choosing a cut of the discovered hierarchy of event clusters, and
by replacing each event with the ancestor lying on that cut. The second proposal23 exploits instead
repetition patterns (tandem repeats) and sequence patterns borrowed from bio-informatics, to

	 	 19	

capture loops and groups of correlated activities. Specifically, the approach works in two phases:
first, it extracts repetition patterns by looking at log traces individually, and then discovers common
groups of activities by logically regarding the whole log as a sequence. More complex constructs,
such as choice and intra-loop parallelism, are resolved by applying the pre-processing method on
log traces iteratively. Efficient (suffix-tree based) structures are used to curb computation time.
Moreover, in order to make the approach robust to the presence of both parallelism and choice
constructs, a single abstract activity is created for patterns whose associated activity sets either
contain each other or share many elements.

Leveraging the idea of using a process model as a map showing relevant aspects of process
behaviour, an abstraction-enhanced process discovery approach has been proposed in Reference 14,
which is meant to describe effectively lowly structured processes. Essentially, the approach
associate activities and edges with significance and correlation scores, and eventually shows a
compact dependency graph where only edges and activities whose scores are above a user-given
threshold, whereas less significant activities/edges are either grouped into abstract nodes, named
(activity) clusters, if they are correlated enough among each other, or removed at all from the
model, otherwise. As mentioned previously, this method, mixing features from both workflow
induction techniques and log-driven abstraction ones, is a process discovery technique empowered
with flexible abstraction capabilities.

A key point, in this setting, is the capability of the abstraction algorithm to take account for the fact
that the output model is to generalize multiple process variants (i.e., execution classes). To this
regard, a concept of common abstraction of multiple workflow schemas was also defined in
Reference 3 (according to the behavioural inheritance notions given in the same work), but without
providing any automated technique for its computation. In fact, the only method that was explicitly
conceived to perform abstraction on (the non-leaf nodes of) a hierarchy of process models is the one
in Reference 17. This is done by exploiting a particular implementation of meta-function
abstractSchema, which takes as input a workflow schema (modeling a node n in the hierarchy), an
activity ontology, and a set of tasks to be abstracted – which coincide with all the tasks associated
with some of the children of n, but not with all of them. In fact, all of the other (semi-)automated
model-based abstraction approaches29,32,5 just consider a pair of workflows per time (i.e., a “sub-
class” workflow and a “super-class” workflow), and furnish mechanisms for deriving one from the
other. However, in principle, all of these methods can be exploited as well to carry out such a task,
since they still allow the user to indicate which tasks need to be abstracted (named “target tasks” in
Table 3). Therefore, it is possible to reuse these approaches to abstract all the tasks in a process
model that are not shared by all of its sub-models in the taxonomy tree. Clearly, as the method in
Reference 32 only takes a target task, such an operation would require multiple iterations of it.
Moreover, all of these methods can be exploited by the analyst (possibly interactively) to further
increase the level of abstraction of some models (e.g., the root one) in the discovered taxonomy.

Moreover, only a few methods29,32,5 enjoy some kind of behaviour consistency notion. More
specifically, all of them are guaranteed to produce an abstracted model that preserves all ordering
relationships in the original one – actually, in the case of Reference 5, little violations to this
constraint are tolerated in exchange for achieving a more compact process view. Such an order
preservation property is not fulfilled instead by any of the remaining approaches. However, it is
possible to make the method in Reference 17 overcome this limitation, by simply ensuring that all
the Part-Of relationships, created in the abstraction, conform to such an order-preservation notion.
This can be done, e.g., either (i) by enforcing ordering-oriented constraints over the activities, like
in Reference 29, or (ii) by requiring that activities can be abstracted by only using partonomical
relationships implied by some given structural decomposition scheme (like the fragment-oriented
ones used in References 32 and 5).

	 	 20	

It is worth noticing that only the abstraction algorithms in References 17 and 35 can take advantage
of existing abstraction relations (e.g., partonomies, hypernymies or both) over process activities –
even though the latter does not compute an abstract process model, but only gives the analyst a set
of possible activity aggregations. Notably, this feature allows for possibly reusing available domain
knowledge or the results of other process abstraction techniques, producing such a kind of
relations13,23,17,35, or of classical approaches to the discovery of concept
ontologies/hierarchies41,8,26,28,31 from text documents (provided, in our case, with some textual
description of process activities).

Finally, we observe that the computation times of all schema-oriented abstraction methods17,29,32,5
are practically equivalent, since all of them are (low-degree) polynomials in the size of the input
workflow models, which usually consist of few hundred of tasks at most (and of a sparse network
of dependency links).

7. Conclusion
Several mining and abstraction methods have been presented which can help discover a
taxonomical process model for a given process, representing it at different abstraction levels. In
particular, after automatically discovering a hierarchy of behavioural classes by way of suitable
clustering methods, a process taxonomy can be derived by applying process abstraction methods to
non-leaf nodes, eventually equipping them with higher-level models. Choosing an optimal
combination of these basic tools is not easy in general, and it may well depend on the specific
application domain at hand. However, we hope that our study can give some basic guidelines for
analysts/designers who want to take advantage of such (semi-) automated techniques in their
attempt to build such an expressive representation for a given business process and for its execution
variants. A number of challenging issues are still open and deserve further investigation. For
example, the recognition of abstract activities can benefit from available background knowledge on
the activities’ semantics, possibly extracted from a given thesaurus or a process ontology.
Moreover, discovered process taxonomy can be exploited profitably to analyze relevant measures,
such as usage statistics and performance metrics, along the different usage scenarios of the process
at hand. Specifically, by using a taxonomy as an aggregation hierarchy for multi-dimensional
OLAP analysis, it is possible to enable the user to interactively evaluate such measures over
different groups of process instances. Notably, such an extension would be a valuable feature of
interactive process mining systems, where the user is assisted in evaluating the discovered process
models and in the tuning of parameters. Finally, the discovered taxonomies can serve as a basis for
further knowledge discovery tasks, such as the mining of generalized association rules between,
e.g., the users or resources involved in the workflow process under analysis.

References
1. Agrawal R, Gunopulos D, Leymann F. Mining process models from workflow logs. In Proc.

6th Int. Conf. on Extending Database Technology (EDBT'98); 1998 469-483.
2. Ricca F, Gallucci L, Schindlauer R, Dell'Armi T, Grasso G, Leone N. OntoDLV: An ASP-based

System for Enterprise Ontologies Journal of Logics and Computation 2009, 19(4): 643-670.
3. Basten T, van der Aalst WMP. Inheritance of Behavior Journal of Logic and Algebraic

Programming 2001, 47(2):47-145.
4. Battista GD, Tamassia R. On-Line Maintenance of Triconnected Components with SPQR-Trees

Algorithmica 1996, 15(4):302-318.
5. Bobrik R, Reichert M, Bauer T. View-based process visualization. In Proc. 5th Int. Conf. on

Business Process Management (BPM'07); 2007 88-95.

	 	 21	

6. Casati F, Castellanos M, Dayal U, Shan MC. iBOM: a platform for intelligent business
operation management. In Proc. 21st Int. Conf. on Data Engineering (ICDE’05); 2005 1084-
1095.

7. Chen CWK, Yun DYY. Discovering process models from execution history by graph matching.
In Proc. 4th Int. Conf. on Intelligent Data Engineering and Automated Learning (IDEAL’03);
2003 887-892.

8. Chuang SL, Chien LF. A practical web-based approach to generating topic hierarchy for text
segments. In Proc. 13th ACM Int. Conf. on Information and Knowledge Management
(CIKM’04); 2004 127-136.

9. de Medeiros AKA, van Dongen BF, van der Aalst WMP, Weijters AJMM. Process mining:
Extending the α-algorithm to mine short loops. In Technical Report WP 113; 2004.

10. de Medeiros AKA, Weijters AJMM, van der Aalst WMP. Genetic Process Mining: An
Experimental Evaluation Data Mining and Knowledge Discovery 2007, 14(2):245-304.

11. Dijkman RM, Dumas M, Garcia-Bañuelos L, Käärik R. Aligning Business Process Models. In
Proc. 13th Int. Conf. EDOC; 2009 45–53.

12. Ferreira DR, Zacarias M, Malheiros M, Ferreira P. Approaching process mining with sequence
clustering: Experiments and findings. In Proc. 5th Int. Conf. on Business process management
(BPM'07); 2007 360-374.

13. Günther CW, Rozinat A, van der Aalst WPM. Activity Mining by Global Trace Segmentation.
In Business Process Management Workshops 2009; 2009 129-139.

14. Günther CW, van der Aalst WPM. Fuzzy mining: adaptive process simplification based on
multi-perspective metrics. In Proc. 5th Int. Conf. on Business Process Management (BPM’07);
2007 328-343.

15. Ghionna L, Greco G, Guzzo A, Pontieri L. Outlier Detection Techniques for Process Mining
Applications. In Proc. 17th Int. Symposium on Foundations of Intelligent Systems (ISMIS’08);
2008 150–159.

16. Goedertier S, Martens D, Vanthienen J, Baesens B. Robust process discovery with artificial
negative events Journal of Machine Learning Research 2009, 10:1305-1340.

17. Greco G, Guzzo A, Pontieri L. Mining Taxonomies of Process Models Data & Knowledge
Engineering 2008, 67(1):74-102.

18. Greco G, Guzzo A, Pontieri L. Process Discovery via Precedence Constraints. In Proc. 20th
Europ. Conf. on Artificial Intelligence (ECAI’12); 2012.

19. Greco G, Guzzo A, Pontieri L, Saccà D. Discovering expressive process models by clustering
log traces IEEE Trans. on Knowledge and Data Engineering 2006, 18(8):1010-1027.

20. Herbst J, Karagiannis D. Integrating machine learning and workflow management to support
acquisition and adaptation of workflow models Journal of Intelligent Systems in Accounting,
Finance and Management 2000, 9:67-92.

21. Herbst J, Karagiannis D. Workflow mining with InWoLvE Computers in Industry (Special
Issue: Process/Workflow Mining) 2003, 53(3):245-264.

22. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). Measure, analyze and optimize
your business process performance (whitepaper).

23. Jagadeesh Chandra Bose RP, van der Aalst WPM. Abstractions in Process Mining: A
Taxonomy of Patterns. In Proc. 7th Int. Conf. on Business Process Management (BPM'09);
2009 159-175.

24. Jagadeesh Chandra Bose RP, van der Aalst WPM. Context Aware Trace Clustering: Towards
Improving Process Mining Results. In Proc. SIAM Int. Conf. on Data Mining (SDM'09); 2009
401-412.

25. Jagadeesh Chandra Bose RP, van der Aalst WPM. Trace Clustering based on Conserved
Patterns Towards Achieving Better Process Models. In Proc. 5th Int. Workshop on Business
Process Intelligence (BPI'09); 2009 170-181.

	 	 22	

26. Kozareva Z, Hovy R. A semi-supervised method to learn and construct taxonomies using the
web. In Proc. Int. Conf. on Empirical Methods in Natural Language Processing (EMNLP’10);
2010 1110–1118.

27. Lee J, Wyner GM. Defining specialization for dataflow diagrams Information Systems 2003,
28(6):651-671.

28. Li T, Zhu S. Hierarchical document classification using automatically generated hierarchy
Journal of Intelligent Information Systems 2007, 29(2):211-230.

29. Liu DR, Shen M. Workflow modeling for virtual processes: an order-preserving process-view
approach Information Systems 2003, 28:505-532.

30. Malone TW et al. Tools for inventing organizations: Toward a handbook of organizational
processes Management Science 1999, 45(3):425-443, 1999.

31. Navigli R, Velardi P, Faralli S. A Graph-Based Algorithm for Inducing Lexical Taxonomies
from Scratch. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI’11); 2011 1872-1877.

32. Polyvyanyy A, Smirnov V, Weske M. The Triconnected Abstraction of Process Models. In
Proc. 7th Int. Conf. on Business Process Management (BPM'09); 2009 229-244.

33. Rozinat A, van der Aalst WMP. Conformance checking of processes based on monitoring real
behaviour Information Systems 2008, 33(1):64–95.

34. Schimm G. Mining most specific workflow models from event-based data. In Proc. Int. Conf.
on Business Process Management (BPM’03); 2003 25-40.

35. Smirnov S, Dijkman R, Mendling J, Weske M. Meronymy-Based Aggregation of Activities in
Business Process Models. In Proc. 29th Int. Conf. on Conceptual Modeling (ER’10); 2010 1-14.

36. Song M, Günther CW, van der Aalst WPM. Trace Clustering in Process Mining. In Business
Process Management Workshops (BPM'08); 2008 109-120.

37. Stumptner M, Schrefl M. Behavior consistent inheritance in UML. In Proc. 19th Int. Conf. on
Conceptual Modeling (ER’00); 2000 527-542.

38. van der Aalst WMP et al. Workflow mining: A survey of issues and approaches Data &
Knowledge Engineering 2003, 47(2):237-267.

39. van der Aalst WMP, Weijters AJMM, Maruster L. Workflow mining: Discovering process
models from event logs IEEE Transactions on Knowledge and Data Engineering 2004,
16(9):1128-1142.

40. van Dongen BF, Dijkman RM, Mendling J. Measuring Similarity between Business Process
Models. In Proc. 24th Int. Conf. on Advanced Information Systems Engineering (CAiSE’08);
2008 450–464.

41. van Dongen BF, van der Aalst WMP. Multi-phase process mining: Aggregating instance graphs
into EPCs and Petri Nets. In Proc. Int. Workshop on Applications of Petri Nets to Coordination,
Workflow and Business Process Management (PNCWB’05); 2005 35-58.

42. Weijters AJMM, van der Aalst WMP. Rediscovering workflow models from event-based data
using Little Thumb Integrated Computer-Aided Engineering 2003, 10(2):151-162.

43. Wen L, van der Aalst WMP, Wang J, Sun JG. Mining process models with non-free-choice
constructs Data Mining and Knowledge Discovery 2007, 15, 145-180.

44. L. Zhou. Ontology learning: state of the art and open issues. In “Information Technology and
Management”. Springer 8 (3), pp 241—252, 2007.

45. Kashyap V. Design and Creation of Ontologies for Environmental Information Retrieval. In
Proc. 12th Workshop on Knowledge Acquisition, Modeling and Management; 1999.

46. Williams AB, Tsatsoulis C. An Instance-based Approach for Identifying Candidate Ontology
Relations within a Multi-Agent System. In Proc ECAI 2000 Workshop on Ontology Learning
(OL’2000); 2000.

47. Suryanto H, Compton P. Learning classification taxonomies from a classification knowledge
based system. In Proc. ECAI 2000 Workshop on Ontology Learning (OL’2000); 2000.

	 	 23	

48. Pernelle N, Rousset MC, Ventos V. Automatic Construction and Refinement of a Class
Hierarchy over Semistructured Data. In Proc. IJCAI 2001 Workshop on Ontology Learning
(OL’2001); 2001.

49. Kavalec M, Svatek V. Information Extraction and Ontology Learning Guided by Web
Directory. In Proc. of the ECAI 2002 Workshop on Machine Learning and Natural Language
Processing for Ontology Engineering (OLT’2002); 2002

50. Maedche A, Staab S. Ontology learning for the Semantic Web IEEE Journal on Intelligent
Systems 2001, 16(2): 72-79.

51. Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T, Nigam K, Slattery S. Learning to
construct knowledge bases from the World Wide Web Artificial Intelligence 2000, 118: 69-113.

	 	 24	

Appendix: Experimental Results
In order to give some evidence for the benefits that can descend from the discovery of process
models hierarchies and taxonomies, we next report an excerpt of the experimental analysis
illustrated in Reference 17. As a matter of facts, in that work a specific instantiation of the two
general meta-algorithms in Figures 4 and 6 are considered. Specifically, as concerns the discovery
of a schema hierarchy (Fig. 4), the induction of each workflow model (i.e., function
mineWFSchema) is performed by using the algorithm in Reference 42, while the k-means-based
clustering method introduced in Reference 19 is exploited to split a (sub-)log into clusters (i.e.,
function partition). Moreover, the taxonomy restructuring process hinges on the abstraction
procedure introduced in the same work17.
Benefits of log clustering. A series of tests were performed on 10 synthesized benchmark log files,
available in ProM, which reproduce different kinds of behavior, ranging from basic constructs like
sequences, choices, parallel forks, and loop, to complex ones, like non-free choice and invisible
tasks. Three conformance measures33, all ranging over [0,1], are used here to evaluate the quality of
discovered models. can roughly be defined as follows: (i) Fitness evaluates the percentage of
mismatches occurring along a non-blocking replay of log traces through the model: the more the
mismatches the lower the measure; (ii) Simple behavioral appropriateness (SB-Precision for short)
estimates the amount of the ‘‘extra behavior” allowed by the model, quantified according to the
average number of transitions that are enabled during a replay of the log; (iii) Advanced Behavioral
Appropriateness (AB-Precision for short), which expresses the amount of model flexibility (i.e.,
alternative or parallel behavior) that was not needed to replay the log. Conformance measures were
only computed on leaf schemas only, which actually represent the concrete process variants found
via the clustering, and averaged by assigning each schema a weight equal to the fraction of log
traces fallen in its associated cluster.
The results computed in this way are compared, in Table, with those obtained by simply
discovering a single workflow schema for the whole log, still using the base learning algorithm in
Reference 42. More precisely, Tab. 3 reports the increase (in percent) in the value of the three
conformance measures that is achieved when passing from the base workflow induction algorithm42

to the clustering-enhanced workflow discovery approach. Notably, this latter seems to overcome the
difficulty of the base learner to deal with complex routing constructs and non-local task
dependencies (cf., log files a6nfc, herbstFig6p36, and DriversLicence). This proves that more
complete and precise process models can often be discovered by taking advantage of a clustering
scheme, capable to separate different process variants.

Table 4. Quality improvement, on different benchmark logs, achieved by the clustering-based workflow
induction scheme of Fig. 4, (w.r.t. to a single overall workflow induced from the whole log).

Dataset Fitness SB-Precision AB-Precision
a6nfc 1.2% 3.8% 54%
Example Log 2.0% 3.9% 93%
a7 3.9% 9.6% 39%
a100Skip 4.2% 1.8% -
al1 4.2% 1.0% -
DriversLicence - 3.9% 29%
herbstFig6p36 - 2.0% 20%
al2 - 1.2% -
CHOICE 4.8% 2.7% -
a12 - 1.2% -

Benefits of process abstraction. In order to show the benefit of abstraction mechanisms, we next
report some results of an extensive experimentation (presented in Reference 17), which was
conducted on the logs of an Italian maritime container terminal. Roughly speaking, the operational
system supports and registers several logistic tasks for each container which come to the port, and

	 	 25	

underwent various kinds of moves over the ‘‘yard” -- i.e., the main storage area used in the harbor,
consisting of bi-dimensional slots, organized in blocks (nearly 100). A sample 5336 of such data
was selected, corresponding to history of containers handled along the first two months of year
2006, and exchanged with other ports of the Mediterranean sea. These data were converted in a
process-oriented form, by encoding the sequence of yard blocks occupied by a container into a
distinct log trace.
By applying the approach in Fig. 4 (instantiated with the techniques in References 42 and 19),
followed by the restructuring scheme of Fig. 6 (instantiated with the abstraction method of
Reference 17), a taxonomy of five workflow schemas was found, structured into three abstraction
levels: the root T, two nodes T0 and T1, as children T, and two children of T0, denoted as T0_0 and
T0_1. These schemes (omitted here for lack of space) differ neatly in complexity and readability. In
particular, the leaf schema T0_0 consists of about 90 nodes, while the other two contain less than one
half. A more compact process view was obtained for the higher-level views: 37 nodes in the schema
T0, and 32 nodes in the root schema.
Interestingly, the effect of using abstraction mechanisms was not merely syntactical. Indeed, many
of the activities that were abstracted together share some semantical affinity. For example, some
pairs of activities (i.e., yard blocks in this case) that were merged together via IS-A or Part-Of
relationships are reported below: (i) (004D,04D), subsequently reckoned as two different names for
the same block, due to a mispelling error; (ii) (REF01,REF5), which are two blocks equipped with
refrigerating systems; (iii) (TR5,TRF5), (TR7,TRF7), which are both pairs of codes for multi-trailer
vehicles, logically viewed as (mobile) yard areas.
In conclusion, due to the high number of activity labels, any classical workflow discovery
technique, in its own, would yield a rather unreadable and imprecise process model. By contrast, the
process taxonomies computed with the approach described so far were reckoned by experts as
really helpful for an explorative analysis of log data, thanks to both the recognition of distinct
execution variants and the compactness of higher-level schemas.

