

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Discovering Context-Aware Models for Predicting

Business Process Performances

Francesco Folino, Massimo
Guarascio, Luigi Pontieri

RT-ICAR-CS-12-02 Febbraio 2012

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sezione di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Discovering Context-Aware Models for Predicting
Business Process Performances

Francesco Folino, Massimo Guarascio, Luigi Pontieri

ICAR, CNR, Via Pietro Bucci 41C, 87036 Rende, Italy
{ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. Discovering predictive performance models, offering run-time sup-
port, is an emerging topic in Process Mining research, whichcan effectively help
the optimization of business process enactments. However,making accurate esti-
mates is not easy especially when considering fine-grain performance measures
(e.g., processing times) on a complex and flexible business process, where perfor-
mance patterns change over time, depending on both case properties and context
factors (e.g., seasonality, workload). We try to face such asituation by an ad-hoc
predictive clustering approach, where different context-related execution scenar-
ios are discovered and modeled accurately via distinct state-aware performance
predictors. A readable predictive model is obtained eventually, which can make
performance forecasts for any new running process case, by using the predictor
of the cluster it is estimated to belong to. To ensure satisfactory levels of effec-
tiveness and scalability, a concise encoding is used for each log trace, combining
both context data and a series of values of the target measure, kept at certain key
points in the trace. The approach was implemented in a systemprototype, and
validated on a real-life context. Test results confirmed thescalability of the ap-
proach, and its efficacy in predicting both processing timesand associated SLA
violations.

1 Introduction
Process mining techniques [14] are widely reckoned as a precious tool for the analy-
sis of business processes, owing to their capability to extract useful information out of
historical process logs, possibly providing the analyst with a high-level process model.
While most traditional approaches focused on the discoveryof control-flow models,
capturing the how process activities were executed in the past, increasing attention has
been gained recently by the discovery of predictive processmodels, capable to furnish
operational support at run-time. In particular, an emerging research stream (see, e.g., [7,
13]) concerns the induction of state-aware models for predicting some relevant perfor-
mance metrics, defined on process instances. For example, in[13], an annotated finite-
state model is induced from a given log, where the states correspond to abstract repre-
sentation of log traces. Conversely, a non-parametric regression model is used in [7], in
order to build the prediction for a new (possibly partial) trace upon its similarity to a set
of historical ones, while evaluating traces’ similarity based on the comparison of their
respective abstract views. The interest towards such novelmining tools stems from the
observation that performance forecasts can highly improveprocess enactments. Dif-
ferent ways to exploit state-aware predictors in a BPM platform have been proposed,
ranging, e.g., from task/resource recommendations [10] torisk notification [6].

However, accurate forecasts are not easy to make for fine-grain measures (like, e.g.,
processing times), especially when the analyzed process shows complex and flexible
dynamics, and its execution schemes and performances change over time, depending
on the context. In fact, the need to recognize and model the influence of context factors
on process behavior is a hot issue in BPM community (see, e.g., [15]), which calls
for properly extending traditional approaches to process modeling (and, hopefully, to
process mining). In general, a way to increase process modelprecision is to partition the
log by ad-hoc clustering methods [11, 8, 9], and to find a (moreprecise) model for each
cluster, regarding this latter as evidence for a peculiar execution scenario of the process.
To the best of our knowledge, however, all previous clustering-oriented process mining
approaches are focused on control-flow aspects, while no effort has been spent towards
improving the discovery of performance predictors.

In this paper we right attempt to overcome the above limitations by proposing an ad-
hoc predictive clustering approach, capable to detect different context-related execution
scenarios (orprocess variants), and to equip each of them with a tailored performance-
prediction model. The final goal of the proposed approach is to find a novel kind of
predictive model, where performance forecasts for any (unfinished) process instance,
are made in two steps: the instance is first assigned to a reference scenario (i.e., clus-
ter), whose performance model is then used for eventually making the forecast. Tech-
nically, we extend and integrate a method for inducing predictive performance mod-
els [13], and a logics-oriented approach to predictive clustering [4], where the discov-
ered model, named Predictive Clustering Tree (PCT), takes the form of a decision-tree.
In particular, the discovery of such scenarios (i.e., clusters) is carried out by partition-
ing the log traces based on their associated context features, which may include both
internal properties of a case (e.g. the amount of goods requested in an order manage-
ment process) and external factors that characterize the situation where it takes place
(e.g., workload, resource availability, and seasonality indicators). Notably, the complex
structure of (performance-annotated) process logs makes atrivial application of PCT
learning methods likely ineffective and/or computationally expensive. We hence devise
a method for encoding each log trace in a propositional form,featuring both its context
properties and a selection of the performance measurementsassociated with it.

Several innovative features distinguish our proposal fromcurrent literature. In partic-
ular, by automatically reckoning process variants with different performance patterns,
prediction accuracy can be improved considerably, as witnessed by test results in the
paper. Further, as the underlying clustering model is expressed in terms of logical rules,
the discovered process variants and their associated context variants are easy to inter-
pret and to validate. This makes our approach potentially helpful in the ex-post analysis
(revision, and consolidation) of tacit context-adaptation policies, and in the design of
contextualized process models, capable to adapt effectively to context changes.

Organization. The rest of the paper is structured as follows. Section 2 introduces some
notation and basic concepts. The specific problem faced in the paper and the proposed
solution approach are described in Section 3. Section 4 thendiscusses an implementa-
tion of the approach, and its usage in a real-life setting (aswell as the quality metrics
used to evaluate predictions). After discussing some experiment results in Section 5, we
finally draw a few concluding remarks in Section 6.

2 Formal Framework

Following a standard approach in the literature, we assume that for each process in-
stance (a.k.a “case”) atrace is recorded, encoding the sequence ofeventshappened
during the relative enactment. Different data parameters (e.g., the amount of goods
asked in a order-handling process) can be kept for any process instance, while each
event is associated with a process task and a timestamp – we here disregard other event
properties, such as, e.g., task parameters or executors. Wealso assume that a additional
features can be associated with each trace that characterize the context where it takes
place, and capture environmental factors (which may well influence performances).

Let us first denote byT andE the (fixed) reference universes of all (possibly partial)
traces and associated events that may appear in some log. Moreover, let̂µ : T → M the
unknown function that encodes the association between eachtrace and its performance
value — w.r.t. to some given reference performance metrics and an associated space
M of values. Notice that̂µ abstractly indicates the final target of our search, in that
we aim at eventually predict the values of the metrics on any novel enactment. We
also assume that two kinds of context properties are defined for process instance:(i)
(“intrinsic”) case attributesA1, ... , Aq, with associated domainsDA1 , ... , DAq , resp.,
and(ii) (“extrinsic”) environmental featuresB1, ... , Br, with domainsDB1 , ... , DBr ,
resp. – this latter kind of data are meant to capture the stateof the BPM system in
the moment when the instance starts. Finally, for any sequences, let len(s) denote its
length, ands[i] the element in positioni, for i = 1 . . . len(s). Finally, s(i] is its prefix
of s of lengthi, for i = 1 . . . len(s), ands(0] = 〈〉 (the empty sequence). Some further
concepts and notation are formally introduced next to conveniently refer to log contents.

Definition 1 (Trace). A trace τ (∈ T) is a triple 〈v, ā, s〉 such thatid is a unique
identifier, ā ∈ DA1 × ...× DAq) are the associated case data, ands is a sequence of
events (∈ E). For simplicity, let us also denotev=id(τ), ā = data(τ), s = seq(τ),
len(τ) = len(s), andτ [i] = s[i]. Moreover,env(τ) ∈ DB1 × ... × DBr) are the
environment features associated with any traceτ , andcontext(τ) ∈ DA1 × ...×DAq ×
DB1 × ...×DBr just denotes the juxtaposition of vectorsdata(τ) andenv(τ). Finally,
τ(i] = 〈vi, āi, si〉 is prefix of τ , for i =0 .. len(τ), such thatvi is a new identifier,
āi = ā, si = s(i], env(τ(i)] = env(τ), andcontext(τ(i)] = context(τ). �

Notice that any prefixτ(i] is a partial unfolding ofτ , and shares the same context data.

Definition 2 (Log). A log L (overT) is a finite subset ofT . Moreover, theprefix set
of L, denoted byP(L), is the set of all prefix traces that can be extracted fromL, i.e.,
P(L) = {τ(i] | τ ∈ L and0 ≤ i ≤ len(τ)}. For any logL, we will always assume that
µ̂(τ) is known for any prefix traceτ ∈ P(L). �

By the way, the latter statement can be handled formally by defining an auxiliary func-
tion that encodeŝµ on the prefixes of historical traces. For example, the (real)remaining
processing time of any prefix of such a traceτ is: µ̂RT(τ (i]) = time(τ [len(τ)])−time(τ [i]).

2.1 State-aware Performance Prediction
A Performance Prediction (Process) Model(PPM , for short), is for us a model that
can predict the performance value of any future process enactment, represented as a

partial trace. Such a model, indeed, can be regarded as a functionµ : T → M that tries
to estimatêµ all over the reference universe of traces.

Learning a PPM is then a special induction problem, where thetraining set is rep-
resented as a logL, such that the valuêµ(τ) of the target measure is known for each
(sub-)traceτ ∈ P(L). Different methods have been proposed to solve this problem[13,
7], which share the idea of capturing the dependence of performance values on traces
(i.e., case histories) by regarding these latter at some suitable abstraction level.

Definition 3 (Trace Abstraction Functions). Let h ∈ (N)
⋃

{∞} be a threshold on
past history. Atrace abstraction functionabsmode

h : T → R is a function mapping
each traceτ ∈ T to an elementabsmode

h (τ) in a properly defined spaceR of abstract
representations. For any traceτ ∈ T , while denotingn = len(τ), we define:

abslisth (τ) = 〈 task(τ [j]), . . . , task(τ [n]) 〉;
absseth (τ) = { task(τ [j]), . . . , task(τ [n]) };

absbagh (τ) = [(t, p) | t ∈ absseth (τ) andp = |{τ [k] | j ≤ k ≤ n, task(τ [k])=t}|]

wherej = n− h+ 1 if n > h, andj=1 otherwise. �

Obviously, the space (R) of abstract representations associated with each of these
abstraction functions is the set of sequences (resp., sets,multisets) over the task iden-
tifiers referred to byE’s events. Eachα ∈ R is a high level representation for some
traces, which is meant to capture an hidden state of the process analyzed. Notice that
these functions specialize those presented in [13], as we here only consider to abstract
each trace event into its associated task, still disregarding other event properties (e.g.,
executors). This restriction could be easily removed from our approach – even though,
often, using multiple properties for generalizing may leadto a combinatorial explo-
sion of the abstract representations produced (and to overfitting patterns). Specifically,
in [13], a Finite State Machine (FSM) model is derived, such that a one-to-one mapping
exists between its states and the representations producedby some abstraction function
abs, while each transition is labelled with an event property (namely, a task label in
our case). For example, let us assume thatabslist∞ is used, and thata, b andc refer to
three process tasks. Then, the resulting FSM model will feature a transition labelled
with c from state〈a, b〉 to state〈a, b, c〉, if there is some traceτ in the input log such
thatabslist∞ (τ(i]) = 〈a, b〉 andabslist∞ (τ(i+1]) = 〈a, b, c〉. In order to make this model
capable to make predictions (w.r.t. a measureµ), it is turned into anAnnotated Finite
State Machine (A-FSM), by equipping each nodes with a bag gathering the values thatµ̂
takes at the end of any trace prefixτ ∈ P(L) such that the abstractionabs(τ) coincides
with that of s. These measurements will serve to estimate the target measure for any
new process instance reachings. In particular, the simple (but usually effective) strat-
egy of computing an aggregate statistics (e.g., the average) over all the measurements
offers the opportunity to only store precomputed statistics, dismissing all detailed val-
ues. Notice that, in principle, the clustering-based scenario discovery scheme proposed
in this paper could be combined with other state-aware prediction techniques, as it is
parametric to the kind of predictive model that is eventually learnt for each scenario.
However, for the sake of concreteness, in this paper we will only consider the usage of
A-FSM models, and of their associated learning method.

2.2 Predictive Clustering

The core idea ofPredictive Clusteringapproaches [3] is that, once discovered an ap-
propriate clustering model, a prediction for a new instancecan be based only on the
cluster where it is deemed to belong, according to some suitable assignment function.
The underlying belief is that the higher similarity betweeninstances of the same cluster
will help derive a more accurate predictor – w.r.t. one induced from the whole dataset.

To this end, two kinds of features are considered for any elementz in a given space
Z of instances:descriptivefeatures, denoted bydescr(z) ∈ X , and target features,
denoted bytarg(z) ∈ Y – which are those to be predicted.

Then, apredictive clustering model (PCM), for a given training setL ⊆ Z, is a func-
tion m : X → Y of the formm(x) = p(c(x), x), wherec : X → N is a partitioning
function andp : N×X → Y is a prediction function.

An important class of such models arePredictive clustering trees (PCTs)[3, 4],
where the cluster assignment function is encoded by adecision tree, which can be learnt
via a recursive partitioning the training set. At each step,a split test is greedily chosen,
over one descriptive feature, which (locally) minimizes:

lossd(m,L)
∑

Ci

|Ci ∈ c(L)| / |T | ×
∑

z∈Ci

d(targ(z), p(z))2 (1)

whereCi ranges over the current partition ofL, andd is a distance measured overZ. –
When working with numeric targets, a good trade-off betweenscalability and accuracy
is typically achieved by simply instantiatingd with the classical Euclidean distance over
target features only. In this case,targ(avg(Ci)) over the target subspace can be also
used as the local (constant) predictor of clusterCi, with avg(Ci) = |Ci|

−1 ×
∑

z∈Ci
z

– i.e., the cluster’s average/centroid.
A variety of PCT learning methods exists in the literature, which differ either in

the type/number of target features (e.g., decision trees, regression trees, multi-target
regression models [2], clustering trees[4]), or in the underlying representation of data
instances – namely, relational (e.g., system TILDE [3]) andpropositional (e.g., system
CLUS [1]). In our setting, we will focus on the discovery of a multi-target regression
PCT out of propositional data, as explained later on.

The core assumption under our work is that process performances typically depend
on context factors. Therefore, for predicting the performances of any (partial) traceτ ,
we will consider its associated context datacontext(τ) as descriptive attributes.

Let us finally state below the specific kind of performance model we want to discover.

Definition 4 (Context-Aware Performance Prediction Model (CA-PPM)). Let L be
a log over trace universeT , with associated context featurescontext(T), andµ̂ : T →
M, be a performance measure, known for allτ ∈ P(L). Then, acontext-aware per-
formance prediction model(CA-PPM) for L is a pairM = 〈c, 〈µ1, . . . , µk〉〉, encod-
ing a predictive clustering modelgM for µ̂, such that: (i)c : context(T) → N, (ii)
µi : T → M, for i ∈ c(context(T)), and (iii) gM (τ)=µj(τ) with j=c(context(τ)). �

Notice that the dependence of the target measure on context features relies on the
separate modeling of different context-dependent execution scenarios (i.e., clusters),

while the eventual performance predictions are based upon acluster assignment func-
tion c, which estimates the membership of (possibly novel) process instances to these
scenarios. This model is a special kind ofPPM model, relying on a predictive cluster-
ing one. As such, it can be instantiated by combining a predictive clustering tree (PCT)
and multiple (performance-)annotated FSM (A-FSM) models,as building blocks for
implementing the functionsc and eachµi, respectively, as discussed in next section.

3 Problem Statement and Solution Approach
In principle, searching an explicit encoding for the hiddenperformance measurêµ,
based on a given logL, can be stated as the search for aCA-PPM (cf. Definition ??)
minimizing some loss measure, like that in Eq. 1, possibly evaluated on an independent
sampleL′ ⊆ T different than the training log. However, to avoid incurring in pro-
hibitive computation times, we rather follow a heuristics approach, where this problem
is turned into the combination of two simpler subproblems, as formally defined below.

Definition 5 (Problem CAPP). Givena logL overT , and a performance measureµ̂
only defined onP(L); solvethe following subproblems, sequentially:

CAPP-S1: find a functionc (locally) minimizing the loss over a summarized repre-
sentation of the given log traces and of their associated performance measurements,
irrespectively of the cluster-wise prediction functionq; and

CAPP-S2: find a functionq based on the partitionc(L) produced byc (keeping it fixed
to as found before). �

Such a simplifying rephrasing of the problem frees us from the burden of simultane-
ously searching over both any possible partitioningc and all of its associated prediction
functionsq. Moreover, we want to reuse existing tools for the inductionof PCTs and
of A-FSM models. This clearly requires to properly define thestructure of the training
data that will be used to learn a PCT model, since a naı̈ve application of PCT induction
algorithms to log contents might lead to unsatisfactory achievements in terms of both
scalability and prediction accuracy.

To this end, we propose the adoption of a propositional view of the log, where each
(fully unfolded) trace inL acts as an individual training example. We hence dismiss
the natural idea of learning the clustering model based on all partial traces inP(L)
(and on their associated performance measurements), for two reasons. First, if working
explicitly with all partial traces, the number of training samples will grow notably, es-
pecially in the case where log traces were generated by a process featuring complex and
flexible control logics (i.e., many tasks and a high degree ofnon-determinism). More
importantly, since performance values tend to change substantially along the course of
a process instance – this is right the rationale behind state-aware prediction approaches
like [7, 13] – the learner may get confused when trying to separate groups of instances
with similar target measurements. Think, e.g., as a noticeable example, to the case of
the remaining processing time measure, which progressively decreases as a process en-
actment goes forward.

On the other hand, using full historical traces as clustering instances, we must de-
cide what are their associated targets, which the PCT learning algorithm has to ap-
proximate at best. In fact, each traceτ corresponds to a sequence of target values

Fig. 1. Main conceptual steps of the approach and associated information.

(µ̂(τ(1], . . . , µ̂(τ)), and we do not want to use sequences as cluster prototypes, in order
to keep the evaluation of candidate split tests fast enough.

As a heuristics solution, each trace is mapped into a vector space, where the dimen-
sions correspond to relevant states of the (hidden) processmodel. Such target features
are defined by means of the trace abstraction functions in Definition 3, which attempt
to transform, indeed, each trace into an abstract representation of its enactment state,
based on its past history. Specifically, given an abstraction functionabs : T → R, a
“candidate” target feature can be defined for each abstract (state) representationα ∈ R,
such that the valueval(τ, α) of this feature for any traceτ is computed as follows:

val(τ, α) = agg({〈µ̂(τ(0]), ..., µ̂(τ(i]), ...〉 | 0 ≤ i ≤ len(τ) andabs(τ(i])=α}) (2)

whereagg is a function aggregating a sequence of measure values into asingle one
(e.g., the average, minimum, maximum, first, last in the sequence). Notice that, for all
the tests described in Section 5, we always selected the lastelements of such sequences.

Since the number of state abstractions may be rather high, some suitable strategy is
needed to select an optimal subset of them, in order to prevent the PCT learner from get-
ting lost in a high-dimensional and sparse target space (yetspending long computation
times). To this purpose, we devise an ad-hoc, greedy, selection strategy, for identifying
a restricted set of “pivot” state abstractions, which (locally) seem to be the best ones
for discriminating among different performance profiles. The selection criterion used
to this purpose relies on a fixed scoring functionφ : R × 2T → [0, 1] (which will be
discussed in details later on), which assigns each state abstractionα ∈ R to a score
φ(α,L), quantifying the confidence inα making a profitable target feature w.r.t. the
search of a predictive clustering forL. More precisely:

Definition 6 (Pivot State Abstraction). Let L be a log, andabs : T → R be a
trace abstraction function, andσ ∈ [0, 1] be a minimal relevance threshold. Then, any
a ∈ R is a pivot state abstractionfor L andσ w.r.t. abs, if φ(α,L) ≥ σ. Moreover,
PAσ(L, abs) is the set of all pivot state abstractions forL andσ w.r.t.abs. �

Provided with such a set of pivot state abstractionsPAσ(L, abs) = {αj1, ..., αju},
we can eventually face subproblemCAPP-S1 by solving a standard (multi-regression)
PCT induction on a dataset where:(i) each traceτ in the log corresponds to a dis-
tinct instance,(ii) the vectorcontext(τ) encodes the descriptive features ofτ and(iii)

Input: A log L over some trace universeT , with associated data attributesA = A1, . . . , Aq

and environment featuresB = B1, . . . , Br, a target measurêµ known overP(L),
a trace abstraction functionabs, and a relevance thresholdσ ∈ [0, 1].

Output: A CA-PPM model forL (fully encodingµ̂ all overT).
Method: Perform the following steps:

1 Associate a vectorcontext(τ) with each traceτ ∈ L, by computing featuresenv(τ)
2 Compute a setPAσ(L, abs) of pivot state abstractions (cf. Def. 6)
3 LetPAσ(L, abs) = {α1, . . . , αs}
4 Build aperformance sketchS for L using both context vectors andPAσ(L, abs)

// S = {(id(τ), context(τ), 〈val(τ, α1), . . . , val(τ, αs)〉) |τ ∈ L} – cf. Eq.2
5 Compute a PCTT , with classification (resp., prediction) functionc (resp.,q), by using

context(τ) (resp.,val(τ, αi), i=1..s) as descriptive (resp., target) features∀τ ∈ L
6 LetL[1], . . . , L[k] denote discovered clusters – with{1, . . . , k} = c(S)
7 for eachL[i] do
8 Induce an FSM modelf from L[i], usingabs as abstraction function
9 Derive an A-FSMf+ model fromf

10 Define prediction functionµi : T → M (for clusteri) based onf+

11 end
12 return 〈 c, { µ1, . . . , µk} 〉

Fig. 2. Algorithm CA-PPM Discovery

val(τ, αj1), ..., val(τ, αju) are the target features ofτ . This dataset, called in the fol-
lowing a performance sketchof L (w.r.t. abs andσ), offers a propositional view over
the log, enabling for a fast and effective calculation of a predictive clustering model.

Figure 1 provides an overall summarized view of the different kinds of data and
of models featuring in our approach, with respect to its mainhigh-level computation
phases. A more detailed description of the different steps of our approach is given in-
stead in Figure 2, in the form of an algorithm, namedCA-PPM Discovery.

The interpretation of the algorithm is quite straightforward, in that it basically refers
to the computation steps discussed so far. However, it is worth remarking that the in-
duction of an FSM model for each discovered cluster (step 8), and its subsequent
annotation with performance measurements (step 9) are carried out by taking ad-
vantage of the techniques presented in [13]. Notably, the performance measurements
associated with each state in the model are eventually aggregated into a single constant
estimator (namely, the average over them all), in the implementation ofµ[i] (step 10).
Moreover, whenever a new traceτ generates an unseen sequence of states, as a simple
workaround, the function can be extended in a way that its next estimate forτ will be
based on the last valid one made for it.

Finally, the selection of pivot state features performed instep 2 hinges on the fol-
lowing scoring function:

φ(α,L) = 3

√

φvar(α,L)× φcorr(α,L)× φsupp(α,L) (3)

whereφvar(α,L), φcorr(α,L), andφsupp(α,L) are all functions ranging on[0, 1].
Roughly speaking, functionφvar(α,L) depends on the variability of the values pro-

duced byα on all input traces (i.e.,{val(α, τ)|τ ∈ L}) and gives preference to higher-

Log Data

Trace
Mapping

Predictive
Clustering

Context
Extraction

Target
Features
Extraction

A-FSM
Evaluation

State
Evaluation

FSM
Induction

FSM
Annotation

Context Aware – Time Predictor (CA-TP) Plugin

Scenario Discovery Time Predictors Learning

Evaluation
Evaluation

Report

CA-PP
Model

Fig. 3. CA-TP plug-in architecture.

variability features – the more the variability of trace measures the higher the score.
Functionφcorr(α,L) measures instead the maximal correlation between the valuetaken
by the feature over each trace and the corresponding value ofeach descriptive (context)
feature – the higher the correlation the higher the score. Finally,φsupp(α,L) simply is
2 × min(0.5, |{τ ∈ L | val(τ, α) > 0}|) – low support state abstractions hardly help
find significant groups of traces, indeed. In a sense, the above feature is biased towards
any feature that guarantees a locally optimal compromise between support, correlation
with descriptive features (which are the ones guiding the partitioning of log traces) and
performance values’ variability (in order to find clusters showing quite different per-
formance models). Before leaving the section, let us observe that the peculiar feature
selection subproblem faced in our approach is beyond the scope of the attribute se-
lection capabilities of the heuristics search method embedded in predictive clustering
algorithms, due to the fact that our candidate features correspond to target variables,
and not to predictor ones. This is also the reason why we cannot trivially reuse the wide
range of feature- (i.e., attribute-) selection techniquesavailable in the literature.

4 Case Study: Time Prediction on a Logistics Process

After illustrating the prototype system, in Section 4.1, inthe remainder of this section,
we discuss the experiments carried out on a real log data and the obtained results. In
particular, in Section 4.2, we first illustrate the application scenario, by discussing the
kind of data involved in it. Then, in Section 4.3, we introduce the setting adopted for
evaluating the quality of discovered models. Finally, in Section 5, the results of experi-
ments carried out on this scenario are evaluated.

4.1 The prototype system: pluginCA-TP

As a specialized version of algorithmCA-PPM Discovery, we implemented a proto-
type system, namedCA-TP (i.e.,Context-Aware Time Prediction), which can discover
aCA-PPM for predicting the remaining processing time measure, n order to assess the
validity of the approach on practical situations. The prototype system has been devel-
oped as plug-in for ProM framework [12], a powerful platformfor the analysis of pro-
cess logs, quite popular in the Process Mining community. The logical architecture of
the system is sketched in Figure 2, where arrows between blocks stand for information
flows. The whole mining process is driven by the control logicof the the plug-in, while

Fig. 4.Screenshots of theCA-TP ProM’s plug-in: Parameter setting (left); Result view (right).

the other modules basically replicate the main computationphases of the algorithm. By
Log Datawe here denote a collection of process logs represented in MXML [12], a
format shared by many process mining tools (including ProM). TheScenario Discov-
ery module is responsible for identifying behaviorally homogeneous groups of traces
in terms of both context data and remaining times. In particular, the discovery of differ-
ent trace clusters is carried out by thePredictive Clusteringsubmodule which groups
traces sharing both similar descriptive and target values.This latter module leverages
theCLUSsystem [1], a predictive clustering framework for inducingPCT models out
of propositional data. Such a model is found by trying to optimize the multi-target
regression models (w.r.t. a given set of target attributes)of clusters obtained by parti-
tioning the space of descriptive attributes. In this regard, theTrace Mappingsubmodule
acts as a “translator” which converts all log traces into propositional tuples, accord-
ing to the (ARFF) format used in CLUS. As explained above, this mapping relies on
the explicit representation of both context data and targetattributes, derived from the
original (MXML) log. In particular, theContext Extractionmodule extract exstrinsic
(environmental) context features, including workload indicators and aggregated time
dimensions, and add them to the descriptive attributes of each trace. Notice that this
module takes advantage of auxiliary data structures to efficiently search all log data that
help capture the local context of any traceτ . In particular, two indexes (based on search
trees) over log traces are used, which allow to quickly find all the traces that started or
finished, respectively, in a given time range. In fact, theseindexes are meant to retrieve
all the events occurred during the enactment ofτ , to reconstruct its context.

Complementarily, theTarget Features Extractionsubmodule provides theTrace Map-
ping one with an quasi-optimal set of trace abstractions (obtained by combining trace
activities in lists/sets/bags, possibly bounded in their size by a parameterh), which will
be eventually used as target features for the predictive clustering step.

Log traces, labeled with cluster IDs, are delivered to theTime Predictors Learning
module, which, leveraging the approach in [13], derives a collection ofA-FSM mod-
els. More specifically, the submoduleFSM Inductionis used to build a transition model
for each cluster, whereas theFSM Annotationannotates them with time information.

As a final result, aCA-PPM model is eventually built, which integrates multipleA-
FSM models for scenario-specific time predictions, with a set oflogical rules (cor-
responding to the leaves of a PCT model) for discriminating among the discovered

scenarios. For inspection purposes and further analysis, the whole model is then stored
in theCA-PP Modelrepository.

ModuleEvaluatorhelps the user evaluate the quality of time predictions on the test
set, by leveraging two submodules:A-FSM Evaluationand State Evaluation, which
compute a series of standard error metrics for an entireA-FSM model and for its indi-
vidual states, respectively. The measures of all predictive models are gathered and even-
tually combined into global measures (described in Section4.3) by moduleEvaluator,
which arranges them in a easily-readableEvaluation Report.

Figure 4 reports two screenshots of the plug-in, showing theinput panel allowing for
setting all method’s parameters, and the sub-models associated with a chosen cluster.

4.2 Application Scenario
Our approach has been validated on a real-life scenario, pertaining the handling of con-
tainers in a maritime terminal. There, a series of logistic activities are registered for
each of the containers passing through the harbor, which actually amount to nearly 4
millions per year. Massive volumes of data are hence generated continually, which can
profitably be exploited to analyze and improve the enactmentof logistics processes. In
particular, we consider only containers which both arrive and depart by sea, and focused
on the different kinds of moves they undergo over the “yard”,i.e., the main area used in
the harbor for storage purposes. This area is logically partitioned into a finite number of
tri-dimensional slots, which are the units of storage spaceused for containers, and are
organized in a fixed number of sectors

The lifecycle of any container can be roughly summarized as follows. The container
is unloaded from a ship and temporarily placed near to the dock, until it is carried to
some suitable yard slot for being stocked. Symmetrically, at boarding time, the con-
tainer is first placed in a yard area close to the dock, and thenloaded on a cargo. Dif-
ferent kinds of vehicles can be used for moving a container, including, e.g., cranes,
straddle-carriers (a vehicle capable of picking and carrying a container, by possibly lift-
ing it up), and multi-trailers (a train-like vehicle that can transport many containers).
This basic life cycle may be extended with additional transfers, classified as “house-
keeping”, which are meant to make the container approach itsfinal embark point or to
leave room for other containers. More precisely, the following basic operations may be
registered for any container:(i) MOV, when it is moved from a yard position to another
by a straddle carrier;(ii) DRB, when it is moved from a yard position to another by
a multi-trailer; (iii) DRG, when a multi-trailer moves to get it;(iv) LOAD, when it is
charged on a multi-trailer;(v) DIS, when it is discharged off a multi-trailer;(vi) SHF,
when it is moved upward or downward, possibly to switch its position with another
container;(vii) OUT, when a dock crane embarks it on a ship.

In our experimentation, we focused on a subset of 5336 containers, namely the ones
that completed their entire life cycle in the hub along the first four months of year
2006, and which were exchanged with four given ports around the Mediterranean sea.
In order to translate these data into a process-oriented form, we regarded the transit
of any container through the hub as a single enactment case ofa (unknown) logistic
process, where each log event refers to one of the basic operations above (i.e.,MOV,
DRB, DRG, LOAD, DIS, SHF, OUT) described above. Each kind of such operation is
regarded here as an activity of the reference logistics process.

Several data attributes are available for each container (i.e., each process instance),
which include, in particular, its origin and final destination ports, its previous and next
calls, diverse characteristics of the ship that unloaded it, its physical features (e.g., size,
weight), and a series of categorical attributes concerningits contents (e.g., the presence
of dangerous or perishable goods).

In addition to these internal properties of containers, some additional environmen-
tal features are associated with each container, which are meant to capture the context
surrounding its arrival to the port. In particular, in our experimentation, we only con-
sidered two very basic environmental features: (i) a roughworkload indicator, simply
coinciding with the number of containers still in the port attime tc, and (ii) a series of
low-granularity time dimensions derived from the arrival time (namely, the hour, day
of the week and month). Notice, however, that a variety of additional context variables
could be defined, in general, for a process instance (ranging, e.g., from resource avail-
ability to more sophisticated workload indicators), possibly depending on the specific
application domain. However, we leave this issue to future work.

4.3 Performance Measures and Evaluation Setting

With regard to the scenario above, we want to assess the quality of our approach in
predicting the (remaining) time needed to completely process a container (i.e., until the
OUT activity is performed on it). Knowing in advance such a metrics is of great value
for harbor managers, in order to optimize the allocation of resources, and to possibly
prevent, for instance, incurring in violations of SLA (service level agreement) terms.
In fact, certain typical SLAs establish that process enactments must not last more than
a Maximum Dwell Time (MDT); otherwise pecuniary penalties will be charged to the
trans-shipment company. By the way, besides MDT, another important parameter for
the scenario on hand is theaverage dwell-time (ADT), i.e., the average sojourn time for
containers in the terminal, which will be also used next for normalizing time measures.

Among the variety of metrics available in the literature, inorder to assess the predic-
tion accuracy of our models we resort (like in [13]) to the classic root mean squared
error (rmse), mean absolute error (mae), andmean absolute percentage error (mape).
In order to reduce the estimation bias, errors are measured according to a (10 fold)
cross-validation procedure.Formally, let us assume thatτ ∈ P(L′) be a (possibly par-
tial) trace in current test foldL′ (amounting to10% of L’s trace), and that̂µRT(τ)
(resp.,µRT(τ)) denote the actual (resp., predicted) remaining time forτ . Then the in-
dividual prediction errors associated with all the prefixes(i.e., partial enactments) of
τ ’s are measured as follows:(i) mae = (1/|P(L′)|) ×

∑
τ∈P(L′) |µ̂RT(τ) − µRT(τ)|; (ii)

rmse = (
∑

τ∈P(L′)(µ̂RT(τ) − µRT(τ))
2/|P(L′)|)1/2; and (iii) mape = (1/|P(L′)|) ×

∑
τ∈P(L′)(|µ̂RT(τ)− µRT(τ)|) / µ̂RT(τ).
In addition to the average prediction errors above (providing actual loss measures),

we will also evaluate the capability of aCA-PP model to support the prediction of
“overtime faults”, regarded as a specific form of SLA violations. To this end, let us de-
note byτc a trace encoding the full history of a containerc, andτc(i] be its projection
till some given stepi. Then, an overtime fault forτc(i] is predicted based on the likeli-
hoodℓfault(τc(i]) that the total timeµRT(τc(i]), which will be eventually spent to fully
handlec, does not exceedMDT. Precisely, lettingeT ime(τc(i]) denote the time already

IF

NextHarbor ∈ {VCE,KOP,FOS,GOA,SAL,VAR,

T XG,NYC,CND,MT R,ODS} AND

NavLine OUT= JMCS AND

NavLine IN ∈ {CPS,MSK,SEN,HLL,UAC} AND

PrevHarbor ∈ {ASH,MER,ALY,NYC,LEH,

HOU,HFA,EWR,ORF,CHS} AND

ArrivalDay ∈ {SAT,SUN} AND

Arrivalhour> 11.0 AND

Workload> 117.0

THEN

Cluster label = 37

(a) (b)

Fig. 5. Excerpt from aCA-PPM model for the harbor log, showing the (a) decision rule and (b)
A-FMS model relatively to one of the clusters found – (a) and (b) can be regarded a (data-driven
automatically-generated) description for a context variant and its associated process variant, resp.

elapsed forc from its arrival at the system, this likelihood is computed as follows:

ℓfault(τc) =

{

1− MDT
eTime(τc(i])+µRT(τc(i])

, if eT ime(τc(i]) + µRT(τc(i]) > MDT

0, if eT ime(τc(i]) + µRT(τc(i]) ≤ MDT

For a suitably chosen risk tolerance thresholdγrisk, an alert is eventually triggered,
while looking at the partial enactmentτc(i], wheneverℓfault(τc(i]) > γrisk, to no-
tify the high risk of an incoming overtime fault – the greaterthe threshold, the lower
sensitivity to the detection of potential overtime faults.Then, interpreting fault predic-
tion as a classification problem with two given classes, i.e., true vs.false overtime
faults, we can measure the prediction accuracy by computingthe ratesFN of False
Negatives (i.e., overtime faults that were not deemed as such) andFP of False Positive
(i.e., normal cases signaled as risky), as well as classicalmeasures ofPrecision(i.e.,
P = TP/(TP + FP), Recall(i.e.,R = TP/(TP + FN)), with TP denoting the
number of true positives, i.e., correctly predicted overtime faults. Incidentally,τc(i] is a
true positive if time(τ(len(τ))) > MDT , andtrue negative otherwise.

5 Experiment Results
A series of experiments were performed, in order to assess the effectiveness and the
efficiency of our approach in discovering aCA-PPM for remaining times’ prediction,
based on the log described in the previous section. To this end, we tested our approach
with various configurations of its parameters. In the following, we will report results ob-
tained for different configurations of the two parameters associated with the abstraction
functionabsmode

h : the horizon limith, and the abstractionmode ∈ {list, bag} – results
with set-based abstractions are not shown here, due to theirminor relevance, as dis-
cussed afterwards. Conversely, a fixed configuration is shown for thresholdσ (namely,
σ = 0.4), which was chosen pragmatically based on a series of specific tests, omitted
here for space reasons.

All error results illustrated next were averaged over 10 trials, whereas their respec-
tive variance are not reported for the sake of brevity. Notice, however, that standard
deviation was always lower than 5% of the average, for each kind of quality measures.

Qualitative Results Before illustrating quantitative results in detail, let usshow an
example of oneCA-PPM (whenabsh = absbag4 andσ = 0.4) induced from the above

Parameters (absmode
h) FSM [13] CA − TP

−
CA − TP

+

mode h rmse mae mape rmse mae mape rmse mae mape

LIST

1 0,655 0,444 2,985 0,649 0,436 2,964 0,647 0,436 2,811
2 0,465 0,211 0,516 0,335 0,102 0,376 0,335 0,095 0,355
4 0,465 0,204 0,418 0,342 0,102 0,246 0,160 0,058 0,114
8 0,465 0,204 0,407 0,349 0,102 0,175 0,164 0,058 0,107
16 0,465 0,204 0,407 0,349 0,102 0,175 0,164 0,058 0,107

Total 0,503 0, 253 0, 947 0,409 0, 169 0, 787 0, 298 0, 141 0, 699

BAG

1 0,655 0,444 2,985 0,649 0,436 2,964 0,647 0,436 2,811
2 0,473 0,218 0,560 0,342 0,109 0,404 0,342 0,102 0,375
4 0,465 0,211 0,420 0,335 0,095 0,248 0,156 0,058 0,118
8 0,465 0,211 0,420 0,342 0,095 0,170 0,156 0,058 0,107
16 0,465 0,211 0,420 0,342 0,095 0,170 0,156 0,058 0,107

Total 0,505 0, 259 0, 961 0,406 0, 166 0, 791 0, 296 0, 143 0, 704

Grand Total 0,504 0, 256 0, 954 0,407 0, 167 0, 789 0, 297 0, 142 0, 701

Table 1. Results on time prediction errors forCA-TP w.r.t. baselineFSM , for different ab-
straction functionsabstypeh , while fixingσ = 0.4.

Parameters (absmode
h) CA − TP

− (∆%) CA − TP
+ (∆%)

mode h rmse mae mape rmse mae mape

LIST

1 -0,8% -1,6% -0,7% -1,2% -1,6% -5,8%
2 -28,1% -51,7% -27,2% -28,1% -55,2% -31,3%
4 -26,6% -50,0% -41,1% -65,6% -71,4% -72,8%
8 -25,0% -50,0% -57,0% -64,8% -71,4% -73,8%
16 -25,0% -50,0% -57,0% -64,8% -71,4% -73,8%

Total −18,8% −33,3% −16,8% −40,8% −44,3% −26,2%

BAG

1 -0,8% -1,6% -0,7% -1,2% -1,6% -5,8%
2 -27,7% -50,0% -27,8% -27,7% -53,8% -33,0%
4 -28,1% -55,2% -41,0% -66,4% -72,4% -72,0%
8 -26,6% -55,2% -59,6% -66,4% -72,4% -74,5%
16 -26,6% -55,2% -59,6% -66,4% -72,4% -74,5%

Total −19,6% −36,0% −17,7% −41,4% −44,9% −26,8%

Grand Total −19,2% −34,7% −17,3% −41,1% −44,6% −26,5%

Table 2. Error reductions (%) of CA − TP w.r.t. baselineFSM , when varying the kind of
abstractionabsh and horizonh, while fixingσ = 0.4.

log, in order to enable for a rough evaluation of the descriptive features of the model
– even though its main goal is to offer operational support bymeans of performance
predictions. In particular, the Figure 5 (a) reports, as a portion of the clustering func-
tion, the decision rule corresponding to one of the clustersfound (namely, cluster37),
which actually corresponds to one of the leaves of the PCT model discovered with
CLUS. This rule allows for easily interpreting the semantics of the cluster in terms of
both container properties (namely, the origin portPrevHarbor, the destination port
NextHarbor, the navigation line that is going to take it awayNavLine OUT, the
navigation line bringing it in the current portNavLine IN), and environmental con-
text data (namely, the basic workload indicatorWorkload, based on instance counts,
and aggregated time dimensionsArrivalDay or ArrivalHour). Despite its sim-
plicity, the rule helps characterize a very peculiar, and yet relatively frequent scenario
(the cluster gathers, indeed,43 out of the5336 traces) for the handling of containers.

As a matter of fact, the A-FSM model1 found for the same cluster (shown in Figure 5
(b)) witnesses that for this peculiar configuration of context factors (i.e., context vari-
ant), the containers tend to undergo a very small, and quite specific, paths over logistics

1 Bag element counters are shown as superscripts, and omittedwhen equal to1

operations. By the way, each node in theA-FSM is labelled with the bag of (the 4
more recent) operations leading to it – e.g., the node taggedwith [MOV2, OUT] encodes
all the traces in the cluster that undergo twoMOVs before leaving the yard (operation
OUT). Along with labels, each node also reports a constant prediction for the remaining
time (normalized w.r.t. ADT). Edge labels codify, instead,which operations can trigger
the corresponding node transition. For the sake of clarity,if a container is in the state
labelled as [MOVE, SHF] and a furtherMOV operation occurs, then the next state will be
the one associated with [MOV2, SHF]. Notably, this simple A-FMS model gave a neatly
positive contribution to the accuracy of the globalCA-PPM model – very low errors
(namely,rmse = 0.138, mae = 0.080, andmape = 0.302) were produced, indeed,
on the test traces that were assigned to it.

Time Prediction Effectiveness Table 1 summarizes the errors made in predicting re-
maining times (normalized by the average dwell time ADT) forthe case ofrmse and
mae), using both ourCA − TP plug-in and the prediction method proposed in [13]
(here denoted byFSM , and also employed as a base learner in our approach). The
tests were performed using different trace abstraction functionsabsh, and keeping fixed
thresholdσ = 0.4. For the sake of comparison, Table 2 also reports the percentage of
error reduction (∆%) obtained byCA-TP w.r.t.FSM . Moreover, the results ofCA-TP
are further differentiated according to which kinds of descriptive features were used.
Specifically,CA-TP− refers to the case where aCA-PPM is built only considering static
container properties (e.g., dimensions, origin/destination ports). Conversely,CA-TP+

indicates the case where log traces are also associated withextrinsic context features
(namely, workload indicators and seasonality dimensions), in addition to their primitive
data attributes. These figures clearly show that our clustering-based method performs
always better than the baseline, independently of the parameter configuration adopted.

By a closer look, two factors appear to affect more the performances: the usage of
derived context features and the value of history horizonh. In particular, the advantage
of using environment-driven features is neat, despite theywere very rough and partial,
seeing as the average error reduction (computed over all error metrics) ofCA-TP+ is
close to37%, whereasCA-TP− “just” gets a24% improvement. As toh, it is easily
seen that, although the benefits of using our solution gets appreciable as soon ash > 1,
the best performances are reached forh = 4, when all kinds of errors shrink more than
65% w.r.t. the baseline (see Table 2). Stretching the horizon beyond8 seem to bring
no further advantages (apart minor improvements for themape error with absBAG

8).
This result is not surprising, seeing as accuracy achievements might even fall when
using high values ofh, due to the excessive level of detail on trace histories (andto the
consequent high risk of overfitting).

The effect of the abstraction mode appears to be less marked,since very similar
(good) results are found in both cases. Actually, whateverh and the kind of context
features, less than1% error reduction is obtained (on all metrics) when adopting bag
abstractions, w.r.t. the case where lists were used. FInally, we notice that poorer per-
formances were obtained, in general, when using all methodswith set-oriented trace
abstraction functions (i.e.,absseth). However, since our approaches confirmed, even in
such a case, similar degrees of improvement over the baseline, as those in Table 2, these
results are not reported here for lack of space.

0 0,1 0,2 0,3 0,4 0,5 0,6 0.7
0

0,2

0,4

0,6

0,8

1

γ
risk

P
CA−TP

+

P
FSM

R
CA−TP

+

R
FSM

Fig. 6. Accuracy scores for the prediction of overtime faults byCA − TP+ and by the baseline
methods, when varyingγrisk, while fixingσ =0.4, h=4, andabsbagh .

Fault Prediction Effectiveness In general, the quality of overtime fault estimation is
measured w.r.t. some given maximum dwell-time MDT, which istypically set within
predefined agreements, on service quality, between the shipping lines and the terminal
handler. In our tests we simply fixedMDT = 2×ADT (namely,MDT=11.46 days).

Figure 6 sheds light on the ability our approach discriminate “overtime” from “in-
time” containers. To this purpose, we report both Precisionand Recall scores for dif-
ferent values of the risk thresholdγrisk, when a fixed, good-working, configuration of
the underlying trace abstraction criterion (namely,absh=absBAG

4) is used for both our
approach and the baseline one [13] (FSM), andσ=0.4 in our feature selection proce-
dure. Notice that we only consider here the case where our tool (referred to asCA-TP+

in the figure) is provided with all kinds of (both intrinsic and extrinsic) context features
available in the application scenario. As expected, recalltends to worsen when increas-
ing γrisk, while an opposite trend is perceived for precision results. Interestingly, when
using lower values ofγrisk (i.e., a more aggressive warning policy) the capability of
our approach to recognize real overtime cases is compellingw.r.t. the baseline predic-
tor – in particular, an astonishing recall of0.95 (vs. 0.64) is reached withγrisk=0. In
general, recall scores are usually more important than precision ones in our scenario,
since containers “stuck” in the yard implies high monetary costs, and if effectively rec-
ognizing them, suitable counter-measures could be undertaken – possibly resorting to
the usage of additional (storage/processing) resources, which are not used in normal
conditions for economical reasons. Clearly, such remedialpolicies as well come with a
cost, even though it is typically far lower than SLA-violation penalties. Anyway, see-
ing as our method gets quite good precision scores over a widerange ofγrisk ’s values,
it is reasonable to expect that a suitable trade-off can be reached, according to actual
application requirements. More specifically, notice that the precision scores of the two
methods are very similar for any value ofγrisk (in particular, our method never work
significantly worse than the baseline one), and both flatten on 1 with γrisk = 0.4.

Parameters (absmode
h) CA − TP

+ FSM [13]
mode h Cluster#Time [sec] Timepar [sec] Time [sec]

LIST

1 9 16,8 7,4 3,9
2 51,3 20,0 9,7 5,6
4 63,8 19,6 7,9 10,7
8 57,9 20,2 8,1 16,0
16 57,9 92,3 32,6 89,8

Total 46,8 32 13,1 25,2

BAG

1 9 17 7,3 4,0
2 50,7 19,7 9,6 5,5
4 64 18,7 7,6 8,4
8 57,9 19,8 8,0 10,6
16 57,9 79,0 36,0 32,3

Total 46,68 30,9 13,7 12,2

Grand Total 46,74 31,4 13,4 18,7

Table 3. Number of clusters found byCA-TP+, and computation times forCA-TP+ and the
baseline method, for different abstraction functionsasbmode

h andσ = 0.4.

Scalability Analysis Table 3 shows the average computation times (in seconds) taken
by CA-TP+ and by the method in [13], in order to build a prediction model, as well
as the number of clusters found in the first case (for the sake of completeness) – obvi-
ously, the second method does not perform any clustering of the log. Again, different
abstraction methodsabsmode

h and a fixed value ofσ were considered in the tests, which
were all performed on a dedicated computer, equipped with anIntel dual-core proces-
sor and a 2GB (DDR2 1033 MHz) RAM, and running Windows XP Professional. For
both methods, the real computation times are reported in thecolumn denoted byTime.
Conversely,Timepar corresponds to the time that would be spent in a virtual scenario,
where an idealistic “overhead-free” parallelization of our approach is used for con-
currently learning theA-FSM models of all trace clusters. Although, as expected, our
approach takes always longer times than the baseline method, the former achieves a sat-
isfactory trade-off between effectiveness and efficiency.We are further comforted by the
idealistic estimatesTimepar, which let us be confident in the possibility of strengthen
the scalability of our approach by resorting to a parallel implementation of it.

6 Conclusions

In this paper we have proposed an ad-hoc predictive clustering approach which allows
for discovering performance-oriented models which can furnish operational support at
run-time, by making performance forecasts for novel process instance. In a nutshell, the
approach first recognizes a number of homogeneous executionclusters, and then pro-
vides each of them with a specific performance-prediction model. This is technically
done by extending an existing method for the discovering predictive performance mod-
els by embedding it in a logics-based clustering scheme. Themethodology has been
implemented as a plug-in in the ProM framework and validatedon a real case study.
Empirical results confirm the efficacy of the approach in predicting processing times,
and in helping foresee SLA violations, as well as its scalability. As future work, we plan
to investigate on making tighter the link between the clustering phase and the induction
of cluster predictors (e.g., by introducing some kind of feedback, or putting them within
an alternate optimization scheme), as well as on the usage ofnovel methods both for
defining environment-related context variables, and for selecting performance-relevant

space abstraction. Moreover, we will study the combinationof our approach with other
basic performance prediction methods (such as the one in [7]), as well as the adoption
of (possibly probabilistic) process models offering a better compromise between a con-
cise representation of concurrent behaviors and the recognition of performance-relevant
execution states. In particular, it is worth considering the possibility to automatically ab-
stract and merge together similar states (e.g., by suitablyextending methods like those
in [5]), in order to obtain more compact and generalized intra-cluster proces models.

References

1. CLUS: A predictive clustering system. Available athttp://dtai.cs.kuleuven.be/clus/.
2. H. Blockeel, S. Dzeroski, and J. Grbovic. Simultaneous prediction of multiple chemical

parameters of river water quality with TILDE. InProc. of the Third European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD’99), pages 32–40, 1999.

3. H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees.Arti-
ficial Intelligence, 101(1-2):285–297, 1998.

4. H. Blockeel, L. De Raedt, and J. Ramon. Top-down inductionof clustering trees. InProc. of
the Fifteenth International Conference on Machine Learning (ICML’98), pages 55–63, 1998.

5. C. Caragea, A. Silvescu, D. Caragea, and V. Honavar. Abstraction augmented markov mod-
els. In Proc. of the 2010 IEEE Int. Conf. on Data Mining (ICDM’10), ICDM ’10, pages
68–77, 2010.

6. R. Conforti, G. Fortino, M. La Rosa, and A. H. M. ter Hofstede. History-aware, real-time
risk detection in business processes. InProc. of 19th Int. Conf. on Cooperative Information
Systems (CoopIS’11), pages 100–118, 2011.

7. B. F. Dongen, R. A. Crooy, and W. M. P. van der Aalst. Cycle time prediction: When will
this case finally be finished? InProc. of 16th International Conference on Cooperative
Information Systems (CoopIS’08), pages 319–336, 2008.

8. F. Folino, G. Greco, A. Guzzo, and L. Pontieri. Mining usage scenarios in business pro-
cesses: Outlier-aware discovery and run-time prediction.Data & Knowledge Engineering,
70(12):1005–1029, 2011.

9. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process models by
clustering log traces.IEEE Trans. on Knowl. and Data Engineering, 18(8):1010–1027, 2006.

10. H. Schonenberg, B. Weber, B. Dongen, and W. P. M. van der Aalst. Supporting flexible
processes through recommendations based on history. InProc. of the 6th International Con-
ference on Business Process Management (BPM’08), pages 51–66, 2008.

11. M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace clustering in process mining. In
Business Process Management Workshops, pages 109–120, 2008.

12. W. M. P. van der Aalst andet al. ProM 4.0: Comprehensive support for real process analysis.
In Proc. of 28th Int. Conf. on Applications and Theory of Petri Nets and Other Models of
Concurrency (ICATPN’07), pages 484–494, 2007.

13. W. M. P van der Aalst, M. H. Schonenberg, and M. Song. Time prediction based on process
mining. Information Systems, 36(2):450–475, 2011.

14. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.
M. M. Weijters. Workflow mining: a survey of issues and approaches.Data & Knowledge
Engineering, 47(2):237–267, 2003.

15. J. L. De La Vara, R. Ali, F. Dalpiaz, J. Sánchez, and P. Giorgini. COMPRO: a methodological
approach for business process contextualisation. InProc. of 18th Int. Conf. on Cooperative
Information Systems (CoopIS’10), pages 132–149, 2010.

