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Abstract. Discovering predictive performance models, offering tume sup-
port, is an emerging topic in Process Mining research, wbaheffectively help
the optimization of business process enactments. Howeaking accurate esti-
mates is not easy especially when considering fine-graifopeance measures
(e.g., processing times) on a complex and flexible busineseps, where perfor-
mance patterns change over time, depending on both caserpiesand context
factors (e.g., seasonality, workload). We try to face sushuetion by an ad-hoc
predictive clustering approach, where different contekited execution scenar-
ios are discovered and modeled accurately via distinot-statire performance
predictors. A readable predictive model is obtained ewahtuwhich can make
performance forecasts for any new running process casesiby the predictor
of the cluster it is estimated to belong to. To ensure satisfg levels of effec-
tiveness and scalability, a concise encoding is used fdr leactrace, combining
both context data and a series of values of the target medspteat certain key
points in the trace. The approach was implemented in a sygtetotype, and
validated on a real-life context. Test results confirmeddtedability of the ap-
proach, and its efficacy in predicting both processing tiames associated SLA
violations.

1 Introduction

Process mining techniques [14] are widely reckoned as dquedtool for the analy-
sis of business processes, owing to their capability taaektrseful information out of
historical process logs, possibly providing the analyshwihigh-level process model.
While most traditional approaches focused on the discowémgontrol-flow models,
capturing the how process activities were executed in teg pecreasing attention has
been gained recently by the discovery of predictive prooesdels, capable to furnish
operational support at run-time. In particular, an emeaggasearch stream (see, e.g., [7,
13]) concerns the induction of state-aware models for ptej some relevant perfor-
mance metrics, defined on process instances. For exampl&]jran annotated finite-
state model is induced from a given log, where the stategspond to abstract repre-
sentation of log traces. Conversely, a non-parametriessipn model is used in [7], in
order to build the prediction for a new (possibly partiaf)ae upon its similarity to a set
of historical ones, while evaluating traces’ similaritysked on the comparison of their
respective abstract views. The interest towards such mowéhg tools stems from the
observation that performance forecasts can highly imppreeess enactments. Dif-
ferent ways to exploit state-aware predictors in a BPM prlatf have been proposed,
ranging, e.g., from task/resource recommendations [10%kmoatification [6].



However, accurate forecasts are not easy to make for firie-geasures (like, e.g.,
processing times), especially when the analyzed procesgssbomplex and flexible
dynamics, and its execution schemes and performanceselmaeg time, depending
on the context. In fact, the need to recognize and model theeimce of context factors
on process behavior is a hot issue in BPM community (see, [&%]), which calls
for properly extending traditional approaches to procesdeting (and, hopefully, to
process mining). In general, a way to increase process rpogghbion is to partition the
log by ad-hoc clustering methods [11, 8, 9], and to find a (npoeeise) model for each
cluster, regarding this latter as evidence for a peculiacetion scenario of the process.
To the best of our knowledge, however, all previous clusgenriented process mining
approaches are focused on control-flow aspects, while pa &fis been spent towards
improving the discovery of performance predictors.

In this paper we right attempt to overcome the above lingtegiby proposing an ad-
hoc predictive clustering approach, capable to detectmifft context-related execution
scenarios (oprocess varianfs and to equip each of them with a tailored performance-
prediction model. The final goal of the proposed approachb ind a novel kind of
predictive model, where performance forecasts for any ifisifed) process instance,
are made in two steps: the instance is first assigned to arefeiscenario (i.e., clus-
ter), whose performance model is then used for eventualkimgahe forecast. Tech-
nically, we extend and integrate a method for inducing mtad performance mod-
els [13], and a logics-oriented approach to predictivetelisg [4], where the discov-
ered model, named Predictive Clustering Tree (PCT), tdleform of a decision-tree.
In particular, the discovery of such scenarios (i.e., €tsjtis carried out by partition-
ing the log traces based on their associated context featwiéch may include both
internal properties of a case (e.g. the amount of goods steién an order manage-
ment process) and external factors that characterize tinatisin where it takes place
(e.g., workload, resource availability, and seasonatitiidators). Notably, the complex
structure of (performance-annotated) process logs makegdal application of PCT
learning methods likely ineffective and/or computatidyakpensive. We hence devise
a method for encoding each log trace in a propositional féeaturing both its context
properties and a selection of the performance measuremsstsiated with it.

Several innovative features distinguish our proposal fcoment literature. In partic-
ular, by automatically reckoning process variants witliedént performance patterns,
prediction accuracy can be improved considerably, as s&a by test results in the
paper. Further, as the underlying clustering model is esg@@ in terms of logical rules,
the discovered process variants and their associatedxtaatgants are easy to inter-
pret and to validate. This makes our approach potentialfyftien the ex-post analysis
(revision, and consolidation) of tacit context-adaptatimlicies, and in the design of
contextualized process models, capable to adapt effgctiveontext changes.

Organization. The rest of the paper is structured as follows. Section Béhtces some
notation and basic concepts. The specific problem faceceipaper and the proposed
solution approach are described in Section 3. Section 4dlsenisses an implementa-
tion of the approach, and its usage in a real-life settingMels as the quality metrics
used to evaluate predictions). After discussing some é@xyeert results in Section 5, we
finally draw a few concluding remarks in Section 6.



2 Formal Framework

Following a standard approach in the literature, we assumaefor each process in-
stance (a.k.a “case”) mace is recorded, encoding the sequenceswéntshappened
during the relative enactment. Different data parameters.,(the amount of goods
asked in a order-handling process) can be kept for any mdostance, while each
event is associated with a process task and a timestamp —reveiseegard other event
properties, such as, e.g., task parameters or executo@s@d/assume that a additional
features can be associated with each trace that characteezontext where it takes
place, and capture environmental factors (which may wéliémce performances).

Let us first denote by and ' the (fixed) reference universes of all (possibly partial)
traces and associated events that may appear in some logoworlet: : 7 — M the
unknown function that encodes the association betweentesmdand its performance
value — w.r.t. to some given reference performance metricsam associated space
M of values. Notice thaf, abstractly indicates the final target of our search, in that
we aim at eventually predict the values of the metrics on amyehenactment. We
also assume that two kinds of context properties are defimedrbcess instancéi)
(“intrinsic”) case attributesd, ..., A,, with associated domair34, ..., D4, resp.,
and(ii) (“extrinsic”) environmental featureB;, ..., B,., with domainsD?1 | ..., D5r,
resp. — this latter kind of data are meant to capture the statke BPM system in
the moment when the instance starts. Finally, for any sezpieret len(s) denote its
length, ands[:] the element in position, fori = 1...len(s). Finally, s(i] is its prefix
of s of lengthi, fori = 1...len(s), ands(0] = () (the empty sequence). Some further
concepts and notation are formally introduced next to coiarely refer to log contents.

Definition 1 (Trace). A trace 7 (¢ T) is a triple (v, a, s) such thatid is a unique
identifier,a € D4t x ... x D“44) are the associated case data, angla sequence of
events € E). For simplicity, let us also denote=id(7), a = data(7), s = seq(T),
len(t) = len(s), andr[i] = s[i]. Moreover,env(t) € DBt x ... x DPr) are the
environment features associated with any traa@ndcontext(r) € DAt x ... x D44 x
DBt x ...x DPr just denotes the juxtaposition of vectalgta(7) andenv (). Finally,
(i) = (vi,a’, s?) is prefixof 7, for i =0..len(7), such that’ is a new identifier,
a' =a, s = s(i], env(7(i)] = env(7), andcontext(7(i)] = context(r). O

Notice that any prefix (¢] is a partial unfolding of-, and shares the same context data.

Definition 2 (Log). A log L (overT) is a finite subset of . Moreover, theprefix set
of L, denoted byP(L), is the set of all prefix traces that can be extracted fiame.,
P(L) ={7(i] | 7 € Land0 < i < len(7)}. For any logL, we will always assume that
() is known for any prefix trace € P(L). O

By the way, the latter statement can be handled formally liyitg an auxiliary func-
tion that encodeg on the prefixes of historical traces. For example, the (reafipining
processing time of any prefix of such a trads: jirr(7(i]) = time(7[len(r)]) —time(r[i]).

2.1 State-aware Performance Prediction

A Performance Prediction (Process) Modét P M, for short), is for us a model that
can predict the performance value of any future processterat, represented as a



partial trace. Such a model, indeed, can be regarded astiolupc 7 — M that tries
to estimate: all over the reference universe of traces.

Learning a PPM is then a special induction problem, wherdrtigning set is rep-
resented as a lofj, such that the valug(r) of the target measure is known for each
(sub-)tracer € P(L). Different methods have been proposed to solve this profl8m
7], which share the idea of capturing the dependence of pedioce values on traces
(i.e., case histories) by regarding these latter at sontatdaiabstraction level.

Definition 3 (Trace Abstraction Functions).Let h € (N)(J{oco} be a threshold on
past history. Atrace abstraction functiombs™*% : T — R is a function mapping
each trace- € 7 to an elementbs**(r) in a properly defined spade of abstract
representations. For any traces 7, while denoting: = len(7), we define:

abs%St(T) = (task(r[j]), ..., task(r[n]) );
abs; (1) = { task(r[j]), ..., task(r[n]) };

abs; (1) = [(t,p) | t € absie*(7) andp = [{[k] | j < k < n, task(r[k])=t}|]
wherej =n — h+ 1if n > h, andj=1 otherwise. O

Obviously, the spaceR) of abstract representations associated with each of these
abstraction functions is the set of sequences (resp.,mattsets) over the task iden-
tifiers referred to byE's events. Eacla € R is a high level representation for some
traces, which is meant to capture an hidden state of the gsa®alyzed. Notice that
these functions specialize those presented in [13], as wedrdy consider to abstract
each trace event into its associated task, still disreggrdiher event properties (e.g.,
executors). This restriction could be easily removed framapproach — even though,
often, using multiple properties for generalizing may leéada combinatorial explo-
sion of the abstract representations produced (and to tiireyfpatterns). Specifically,
in [13], a Finite State Machine (FSM) model is derived, sutt & one-to-one mapping
exists between its states and the representations protysee abstraction function
abs, while each transition is labelled with an event propertgnGely, a task label in
our case). For example, let us assume titat's! is used, and that, b andc refer to
three process tasks. Then, the resulting FSM model willufeaa transition labelled
with ¢ from state(a, b) to state(a, b, ¢), if there is some trace in the input log such
thatabslst(7(i]) = (a,b) andabs’st(r(i + 1]) = (a, b, ¢). In order to make this model
capable to make predictions (w.r.t. a measuyeit is turned into anAnnotated Finite
State Machine (A-FSMby equipping each nodewith a bag gathering the values that
takes at the end of any trace prefix P (L) such that the abstractias(7) coincides
with that of s. These measurements will serve to estimate the target meefsuany
new process instance reachingn particular, the simple (but usually effective) strat-
egy of computing an aggregate statistics (e.g., the avem@e all the measurements
offers the opportunity to only store precomputed statistitismissing all detailed val-
ues. Notice that, in principle, the clustering-based sdermscovery scheme proposed
in this paper could be combined with other state-aware ptiedi techniques, as it is
parametric to the kind of predictive model that is evengubdhrnt for each scenario.
However, for the sake of concreteness, in this paper we will consider the usage of
A-FSM models, and of their associated learning method.



2.2 Predictive Clustering

The core idea oPredictive Clusteringapproaches [3] is that, once discovered an ap-
propriate clustering model, a prediction for a new instaca&e be based only on the
cluster where it is deemed to belong, according to someldaigssignment function.
The underlying belief is that the higher similarity betweestances of the same cluster
will help derive a more accurate predictor — w.r.t. one iretifrom the whole dataset.

To this end, two kinds of features are considered for any efgmin a given space
Z of instancesdescriptivefeatures, denoted byjescr(z) € X, andtargetfeatures,
denoted byarg(z) € Y —which are those to be predicted.

Then, apredictive clustering model (PCMior a given training set. C 7, is a func-
tionm : X — Y of the formm(x) = p(c(x),x), wherec : X — N is a partitioning
function andp : N x X — Y is a prediction function.

An important class of such models apPeedictive clustering trees (PCT$3, 4],
where the cluster assignment function is encodeddgcésion tregwhich can be learnt
via a recursive partitioning the training set. At each stegplit test is greedily chosen,
over one descriptive feature, which (locally) minimizes:

lossd(m,L)Z |C; € e(L)| /1T x Z d(targ(z),p(2))? (1)

C; z€C;

whereC; ranges over the current partition bf andd is a distance measudoverZ. —
When working with numeric targets, a good trade-off betwsealability and accuracy
is typically achieved by simply instantiatinfyvith the classical Euclidean distance over
target features only. In this caseyrg(avg(C;)) over the target subspace can be also
used as the local (constant) predictor of clustgrwith avg(C;) = [Ci| ™' x > . 2
—i.e., the cluster’s average/centroid.

A variety of PCT learning methods exists in the literaturdijoch differ either in
the type/number of target features (e.g., decision treggession trees, multi-target
regression models [2], clustering trees[4]), or in the ulyideg representation of data
instances — namely, relational (e.g., system TILDE [3]) pr@positional (e.g., system
CLUS [1]). In our setting, we will focus on the discovery of ailtirtarget regression
PCT out of propositional data, as explained later on.

The core assumption under our work is that process perfaresaypically depend
on context factors. Therefore, for predicting the perfonoes of any (partial) trace,
we will consider its associated context datatext(r) as descriptive attributes.

Let us finally state below the specific kind of performance el@k want to discover.

Definition 4 (Context-Aware Performance Prediction Model CA- PPM). Let L be
a log over trace universg, with associated context featur@sitext(7 ), andj : T —
M, be a performance measure, known forrale P(L). Then, acontext-aware per-
formance prediction modéCA- PPM) for L is a pairM = {(c, {u1, ..., px)), encod-
ing a predictive clustering model, for i, such that: (i)c : context(T) — N, (ii)
wi: T — M, fori € c(context(T)), and (iii) gas (7)=p; (1) with j=c(context(r)). O

Notice that the dependence of the target measure on comigxirés relies on the
separate modeling of different context-dependent execigcenarios (i.e., clusters),



while the eventual performance predictions are based upduster assignment func-
tion ¢, which estimates the membership of (possibly novel) poaestances to these
scenarios. This model is a special kindfdP M model, relying on a predictive cluster-
ing one. As such, it can be instantiated by combining a ptediclustering tree (PCT)
and multiple (performance-)annotated FSM (A-FSM) modasspuilding blocks for
implementing the functionsand each.;, respectively, as discussed in next section.

3 Problem Statement and Solution Approach

In principle, searching an explicit encoding for the hidgerformance measurg,
based on a given log@, can be stated as the search faZA& PPM(cf. Definition ?7?)
minimizing some loss measure, like that in Eq. 1, possibaheated on an independent
sampleL’ C T different than the training log. However, to avoid incugim pro-
hibitive computation times, we rather follow a heuristippeoach, where this problem
is turned into the combination of two simpler subproblenssoamally defined below.

Definition 5 (Problem CAPP). Givena log L over7, and a performance measyie
only defined orP(L); solvethe following subproblems, sequentially:

CAPP-S1 find a functione (locally) minimizing the loss over a summarized repre-
sentation of the given log traces and of their associatddpeance measurements,
irrespectively of the cluster-wise prediction functigrand

CAPP-S2 find a functiong based on the partitios{ Z.) produced by: (keeping it fixed
to as found before). O

Such a simplifying rephrasing of the problem frees us froentiirden of simultane-
ously searching over both any possible partitioniragnd all of its associated prediction
functionsq. Moreover, we want to reuse existing tools for the inducté®CTs and
of A-FSM models. This clearly requires to properly define streicture of the training
data that will be used to learn a PCT model, since a naivecgpioin of PCT induction
algorithms to log contents might lead to unsatisfactoryi@aments in terms of both
scalability and prediction accuracy.

To this end, we propose the adoption of a propositional vieth@log, where each
(fully unfolded) trace inL acts as an individual training example. We hence dismiss
the natural idea of learning the clustering model based bpaatial traces inP(L)
(and on their associated performance measurements),dae@eons. First, if working
explicitly with all partial traces, the number of trainingraples will grow notably, es-
pecially in the case where log traces were generated by agsdeaturing complex and
flexible control logics (i.e., many tasks and a high degreeasf-determinism). More
importantly, since performance values tend to change antially along the course of
a process instance — this is right the rationale behind-statge prediction approaches
like [7,13] — the learner may get confused when trying to s&jeagroups of instances
with similar target measurements. Think, e.g., as a ndlieeexample, to the case of
the remaining processing time measure, which progrey<iareases as a process en-
actment goes forward.

On the other hand, using full historical traces as clusteiiistances, we must de-
cide what are their associated targets, which the PCT legralgorithm has to ap-
proximate at best. In fact, each tracecorresponds to a sequence of target values
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Fig. 1. Main conceptual steps of the approach and associated iafam

(a(7(1],..., (7)), and we do not want to use sequences as cluster prototppasiar
to keep the evaluation of candidate split tests fast enough.

As a heuristics solution, each trace is mapped into a veptres where the dimen-
sions correspond to relevant states of the (hidden) prones&l. Such target features
are defined by means of the trace abstraction functions imiiefi 3, which attempt
to transform, indeed, each trace into an abstract repras@mof its enactment state,
based on its past history. Specifically, given an abstradtioctionabs : 7 — R, a
“candidate” target feature can be defined for each absstate] representatione R,
such that the valueal(7, «) of this feature for any trace is computed as follows:

val(r, &) = agg({{(7(0]), ..., a(7(@]), ... | 0 < i < len(7) andabs(7(i])=a}) (2)

whereagg is a function aggregating a sequence of measure values isittggke one
(e.g., the average, minimum, maximum, first, last in the eaga). Notice that, for all
the tests described in Section 5, we always selected theléasents of such sequences.

Since the number of state abstractions may be rather highe saitable strategy is
needed to select an optimal subset of them, in order to ptéve®PCT learner from get-
ting lost in a high-dimensional and sparse target spacesf@iding long computation
times). To this purpose, we devise an ad-hoc, greedy, smlestrategy, for identifying
a restricted set of “pivot” state abstractions, which (Ijgaseem to be the best ones
for discriminating among different performance profilebeTselection criterion used
to this purpose relies on a fixed scoring function R x 27 — [0, 1] (which will be
discussed in details later on), which assigns each stateaatisna € R to a score
#(a, L), quantifying the confidence in making a profitable target feature w.r.t. the
search of a predictive clustering fé&xr More precisely:

Definition 6 (Pivot State Abstraction). Let L be a log, andubs : 7 — R be a
trace abstraction function, armde [0, 1] be a minimal relevance threshold. Then, any
a € R is apivot state abstractiofor L ando w.r.t. abs, if ¢(«, L) > o. Moreover,
PA,(L,abs) is the set of all pivot state abstractions foendo w.r.t. abs. O

Provided with such a set of pivot state abstractiéns, (L, abs) = {aj1, ... ajut
we can eventually face subprobl€?APP- S1 by solving a standard (multi-regression)
PCT induction on a dataset whel@: each tracer in the log corresponds to a dis-
tinct instance(ii) the vectorcontext(r) encodes the descriptive featuresradnd(iii)



Input: A log L over some trace universg, with associated data attributds= A, ..., A,
and environment featurd3 = Bx, ..., By, a target measurg known overP (L),
atrace abstraction functiarbs, and a relevance threshaide [0, 1].
Output: A CA- PPMmodel forL (fully encodingj all overT).
Method: Perform the following steps:
1 Associate a vectarontext(r) with each trace- € L, by computing featuresnuv(r)
2 Compute a seP A, (L, abs) of pivot state abstractions (cf. Def. 6)
3 LetPA,(L,abs) = {aa,...,as}
4 Build aperformance sketcH for L using both context vectors aflA, (L, abs)
1S = {(id(r),context(r), (val(t,a1),...,val(t,as)) ) |7 € L} —cf. Eq.2
Compute a PCT', with classification (resp., prediction) functier{resp.,q), by using
context(T) (resp.pal(T, «;), i=1..s) as descriptive (resp., target) featuvesc L
6 LetL[l],...,L[k] denote discovered clusters —with, ..., k} = ¢(S)
7 foreach L[i] do
8 Induce an FSM modef from L[i], usingabs as abstraction function
9  Derive an A-FSMf™ model fromf
10 Define prediction functiop; : 7 — M (for clusteri) based onf ™
11 end
12 return (¢, { p1, ..., e} )

ol

Fig. 2. Algorithm CA- PPM Di scovery

val(T, 1), ..., val(7, aj,,) are the target features of This dataset, called in the fol-
lowing a performance sketchf L (w.r.t. abs and o), offers a propositional view over
the log, enabling for a fast and effective calculation of edictive clustering model.

Figure 1 provides an overall summarized view of the diffeddnds of data and
of models featuring in our approach, with respect to its niagh-level computation
phases. A more detailed description of the different stémsipapproach is given in-
stead in Figure 2, in the form of an algorithm, nan@&d PPM Di scovery.

The interpretation of the algorithm is quite straightfordien that it basically refers
to the computation steps discussed so far. However, it ishwemarking that the in-
duction of an FSM model for each discovered clussrdp 8), and its subsequent
annotation with performance measuremesstisgp 9) are carried out by taking ad-
vantage of the techniques presented in [13]. Notably, theopaance measurements
associated with each state in the model are eventually ggtae into a single constant
estimator (namely, the average over them all), in the impletation ofu[i] (st ep 10).
Moreover, whenever a new tracegenerates an unseen sequence of states, as a simple
workaround, the function can be extended in a way that it$ @stimate forr will be
based on the last valid one made for it.

Finally, the selection of pivot state features performedtirp 2 hinges on the fol-
lowing scoring function:

60, 1) = {/ uar (L) X Georr(0, L) X dsupplat, L) 3)

whereg,qr (o, L), ¢eorr(ax, L), andes.pp (o, L) are all functions ranging ofd, 1].
Roughly speaking, function,.. (o, L) depends on the variability of the values pro-
duced byx on all input traces (i.e{val(«, 7)|7 € L}) and gives preference to higher-
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variability features — the more the variability of trace ree@s the higher the score.
Functiong..-(«, L) measures instead the maximal correlation between the takan
by the feature over each trace and the corresponding vakschfdescriptive (context)
feature — the higher the correlation the higher the scorallyi ¢4,y (o, L) simply is

2 x min(0.5, {7 € L |val(r,a) > 0}|) — low support state abstractions hardly help
find significant groups of traces, indeed. In a sense, theesteature is biased towards
any feature that guarantees a locally optimal compromisgdsn support, correlation
with descriptive features (which are the ones guiding thétmming of log traces) and
performance values’ variability (in order to find cluster®wing quite different per-
formance models). Before leaving the section, let us olestrat the peculiar feature
selection subproblem faced in our approach is beyond thpesobthe attribute se-
lection capabilities of the heuristics search method erdeédn predictive clustering
algorithms, due to the fact that our candidate featuresespond to target variables,
and not to predictor ones. This is also the reason why we ¢arivially reuse the wide
range of feature- (i.e., attribute-) selection technicaaslable in the literature.

4 Case Study: Time Prediction on a Logistics Process

After illustrating the prototype system, in Section 4.1the remainder of this section,
we discuss the experiments carried out on a real log datahendbtained results. In
particular, in Section 4.2, we first illustrate the applicatscenario, by discussing the
kind of data involved in it. Then, in Section 4.3, we introdube setting adopted for
evaluating the quality of discovered models. Finally, ict8® 5, the results of experi-
ments carried out on this scenario are evaluated.

4.1 The prototype system: pluginCA- TP

As a specialized version of algorithgA- PPM Di scover y, we implemented a proto-
type system, name@A- TP (i.e., Context-Aware Time Predictipywhich can discover
a CA- PPMfor predicting the remaining processing time measure, erai@assess the
validity of the approach on practical situations. The ptge system has been devel-
oped as plug-in for ProM framework [12], a powerful platfofon the analysis of pro-
cess logs, quite popular in the Process Mining communitg. [lgical architecture of
the system is sketched in Figure 2, where arrows betweek$giand for information
flows. The whole mining process is driven by the control lagfithe the plug-in, while



Fig. 4. Screenshots of theA- TP ProM’s plug-in: Parameter setting (left); Result view (i

the other modules basically replicate the main computati@ses of the algorithm. By
Log Datawe here denote a collection of process logs represented iMMM 2], a
format shared by many process mining tools (including ProM Scenario Discov-
ery module is responsible for identifying behaviorally homogeus groups of traces
in terms of both context data and remaining times. In padigthe discovery of differ-
ent trace clusters is carried out by tReedictive Clusteringsubmodule which groups
traces sharing both similar descriptive and target vallibis latter module leverages
the CLUSsystem [1], a predictive clustering framework for induclPGT models out
of propositional data. Such a model is found by trying to mje the multi-target
regression models (w.r.t. a given set of target attribuségjusters obtained by parti-
tioning the space of descriptive attributes. In this regtrelTrace Mappingsubmodule
acts as a “translator” which converts all log traces intoppitional tuples, accord-
ing to the (ARFF) format used in CLUS. As explained aboves thapping relies on
the explicit representation of both context data and taatfebutes, derived from the
original (MXML) log. In particular, theContext Extractiormodule extract exstrinsic
(environmental) context features, including workloadidatiors and aggregated time
dimensions, and add them to the descriptive attributes df &ace. Notice that this
module takes advantage of auxiliary data structures tdesfitiy search all log data that
help capture the local context of any tracdn particular, two indexes (based on search
trees) over log traces are used, which allow to quickly findred traces that started or
finished, respectively, in a given time range. In fact, thadexes are meant to retrieve
all the events occurred during the enactment,db reconstruct its context.

Complementarily, th@arget Features Extractiosubmodule provides thiace Map-
ping one with an quasi-optimal set of trace abstractions (obthlsy combining trace
activities in lists/sets/bags, possibly bounded in thie by a parametér), which will
be eventually used as target features for the predictivaealing step.

Log traces, labeled with cluster IDs, are delivered toThee Predictors Learning
module, which, leveraging the approach in [13], derivesliection of A-F'SM mod-
els. More specifically, the submodH&M Inductions used to build a transition model
for each cluster, whereas tR&M Annotatiorannotates them with time information.

As a final result, &A- PPMmodel is eventually built, which integrates multiple
F'SM models for scenario-specific time predictions, with a selogfcal rules (cor-
responding to the leaves of a PCT model) for discriminatingmag the discovered



scenarios. For inspection purposes and further analygisylhole model is then stored
in the CA-PP Modefepository.

Module Evaluatorhelps the user evaluate the quality of time predictions ertéist
set, by leveraging two submodules:FSM Evaluationand State Evaluationwhich
compute a series of standard error metrics for an edtiféS M model and for its indi-
vidual states, respectively. The measures of all predictiodels are gathered and even-
tually combined into global measures (described in Se@i8hby moduleZvaluator,
which arranges them in a easily-readabl@aluation Report

Figure 4 reports two screenshots of the plug-in, showingrtpet panel allowing for
setting all method’s parameters, and the sub-models @tsdavith a chosen cluster.

4.2 Application Scenario

Our approach has been validated on a real-life scenaritaipirg the handling of con-
tainers in a maritime terminal. There, a series of logistitivéties are registered for
each of the containers passing through the harbor, whiclatietamount to nearly 4
millions per year. Massive volumes of data are hence gesetaintinually, which can
profitably be exploited to analyze and improve the enactroglayistics processes. In
particular, we consider only containers which both arrive depart by sea, and focused
on the different kinds of moves they undergo over the “yaird’, the main area used in
the harbor for storage purposes. This area is logicallytfaréd into a finite number of
tri-dimensional slots, which are the units of storage spessal for containers, and are
organized in a fixed number of sectors

The lifecycle of any container can be roughly summarized#ews. The container
is unloaded from a ship and temporarily placed near to thé,datil it is carried to
some suitable yard slot for being stocked. Symmetricatiypcarding time, the con-
tainer is first placed in a yard area close to the dock, and[tdeed on a cargo. Dif-
ferent kinds of vehicles can be used for moving a contaimetuding, e.g., cranes,
straddle-carriers (a vehicle capable of picking and cagyi container, by possibly lift-
ing it up), and multi-trailers (a train-like vehicle thatrc&ransport many containers).
This basic life cycle may be extended with additional transf classified as “house-
keeping”, which are meant to make the container approadmékembark point or to
leave room for other containers. More precisely, the foll@abasic operations may be
registered for any containg(i) MOV, when it is moved from a yard position to another
by a straddle carrier(ii) DRB, when it is moved from a yard position to another by
a multi-trailer; (i) DRG, when a multi-trailer moves to get i(iv) LOAD, when it is
charged on a multi-trailefyv) DI S, when it is discharged off a multi-trailegyi) SHF,
when it is moved upward or downward, possibly to switch itsifjon with another
containeryvii) OUT, when a dock crane embarks it on a ship.

In our experimentation, we focused on a subset of 5336 awrsinamely the ones
that completed their entire life cycle in the hub along thstfiour months of year
2006, and which were exchanged with four given ports arobhadvediterranean sea.
In order to translate these data into a process-oriented, fae regarded the transit
of any container through the hub as a single enactment caagwfknown) logistic
process, where each log event refers to one of the basictaperabove (i.e.MOV,
DRB, DRG, LOAD, DI S, SHF, OUT) described above. Each kind of such operation is
regarded here as an activity of the reference logisticsganic



Several data attributes are available for each contairer éach process instance),
which include, in particular, its origin and final destirmatiports, its previous and next
calls, diverse characteristics of the ship that unloadet$iphysical features (e.g., size,
weight), and a series of categorical attributes conceriténgpntents (e.g., the presence
of dangerous or perishable goods).

In addition to these internal properties of containers, s@uditional environmen-
tal features are associated with each container, which aentrio capture the context
surrounding its arrival to the port. In particular, in oupeximentation, we only con-
sidered two very basic environmental features: (i) a rowgrkloadindicator, simply
coinciding with the number of containers still in the portiate ¢, and (ii) a series of
low-granularity time dimensions derived from the arriviah¢ (namely, the hour, day
of the week and month). Notice, however, that a variety oftamithl context variables
could be defined, in general, for a process instance (rangigg from resource avail-
ability to more sophisticated workload indicators), pbgsdepending on the specific
application domain. However, we leave this issue to futusekw

4.3 Performance Measures and Evaluation Setting

With regard to the scenario above, we want to assess thetyqo&lour approach in
predicting the (remaining) time needed to completely pse@econtainer (i.e., until the
QUT activity is performed on it). Knowing in advance such a nustis of great value
for harbor managers, in order to optimize the allocationesburces, and to possibly
prevent, for instance, incurring in violations of SLA (seer level agreement) terms.
In fact, certain typical SLAs establish that process enaotsimust not last more than
a Maximum Dwell Time (MDT)otherwise pecuniary penalties will be charged to the
trans-shipment company. By the way, besides MDT, anothpoitant parameter for
the scenario on hand is theerage dwell-time4 DT), i.e., the average sojourn time for
containers in the terminal, which will be also used next fmmalizing time measures.

Among the variety of metrics available in the literaturepnder to assess the predic-
tion accuracy of our models we resort (like in [13]) to thessiaroot mean squared
error (rmse) mean absolute error (magandmean absolute percentage error (mape)
In order to reduce the estimation bias, errors are measweatding to a (10 fold)
cross-validation procedure.Formally, let us assumeithatP(L’) be a (possibly par-
tial) trace in current test fold’ (amounting t010% of L’s trace), and thafie(7)
(resp.,usr(7)) denote the actual (resp., predicted) remaining timerfofhen the in-
dividual prediction errors associated with all the prefikes., partial enactments) of
7's are measured as follow§) mae = (1/|P(L)[) x 32, cp(pn liwr(T) — pirr(T)[; (i)
rmse = (2, cppn (frr(r) — pee(7))?/|P(L)] )V/2; and (iii) mape = (1/[P(L')]) x
ZTEP(L’)(U)’RT(T) — per(7)|) / fire(T).

In addition to the average prediction errors above (prowgjdictual loss measures),
we will also evaluate the capability of @A-P P model to support the prediction of
“overtime faults”, regarded as a specific form of SLA vioteits. To this end, let us de-
note byr. a trace encoding the full history of a contairgandr,(i] be its projection
till some given step. Then, an overtime fault for,(i] is predicted based on the likeli-
hood/ t 4.+ (7(7]) that the total timeue(7.(¢]), which will be eventually spent to fully
handlec, does not exceedDT. Precisely, lettingTime(7.(i]) denote the time already



NextHarbor € {VCE,KOP,FOS,GOA,SAL,VAR,
TXG,NYC,CND,MTR,0DS} ~AND [MOV2]
NavLine_OUT = JMCS AND 0,000291
NavLine_IN € {CPS,MSK,SEN,HLL,UAC} ~ AND
PrevHarbor € {ASH,MER,ALY,NYC,LEH,
HOU,HFA,EWR,ORF,CHS}  AND
ArrivalDay € {SAT,SUN} AND
Arrivalhour > 11.0 AND
Workload > 117.0
THEN

Cluster label = 37
@ (b)

Fig. 5. Excerpt from aCA- PPMmodel for the harbor log, showing the (a) decision rule and (b
A-FMS model relatively to one of the clusters found — (a) aoydoan be regarded a (data-driven
automatically-generated) description for a context varéad its associated process variant, resp.

elapsed for from its arrival at the system, this likelihood is computedallows:

ffault(Tc) = 1- eTime('rch][))I#RT(Tc(i])’ if eTime(TC(i]) + luRT(TC(i]) > MDT
g 0, if eTime(7.(1]) + per(7e(i]) < MDT

For a suitably chosen risk tolerance threshglgd,, an alert is eventually triggered,
while looking at the partial enactment(:], whenever’ ;.1 (7.(i]) > ~pisk, t0 NO-
tify the high risk of an incoming overtime fault — the greatiee threshold, the lower
sensitivity to the detection of potential overtime faultben, interpreting fault predic-
tion as a classification problem with two given classes,tileue vs.f al se overtime
faults, we can measure the prediction accuracy by comptitiegatest’ N of False
Negatives (i.e., overtime faults that were not deemed ds)sual 7’ P of False Positive
(i.e., normal cases signaled as risky), as well as classiealsures oPrecision(i.e.,
P =TP/(TP + FP),Recall(ie., R = TP/(TP + FN)), with TP denoting the
number of true positives, i.e., correctly predicted oveetifaults. Incidentallyr. (7] is a
t r ue positive iftime(7(len(7))) > M DT, andt r ue negative otherwise.

5 Experiment Results

A series of experiments were performed, in order to assesgffhctiveness and the
efficiency of our approach in discoveringG\- PPMfor remaining times’ prediction,
based on the log described in the previous section. To thisvea tested our approach
with various configurations of its parameters. In the follogy we will report results ob-
tained for different configurations of the two parametespamted with the abstraction
functionabsy*°d¢: the horizon limith, and the abstractiomode € {list, bag} — results
with set-based abstractions are not shown here, due torthiear relevance, as dis-
cussed afterwards. Conversely, a fixed configuration is Bfomthreshold> (namely,
o = 0.4), which was chosen pragmatically based on a series of sp&esfis, omitted
here for space reasons.

All error results illustrated next were averaged over 18ldriwhereas their respec-
tive variance are not reported for the sake of brevity. Ngtlwowever, that standard
deviation was always lower than 5% of the average, for eaunth &f quality measures.

Qualitative Results Before illustrating quantitative results in detail, let sisow an
example of one&CA- PPM(whenabs), = abs’*? ando = 0.4) induced from the above



Parameters @bs}°7¢) FSM [13] CA — TP CA —TPT
mode| h rmse mae mape rmse mae mape rmse mae mape
1 0,655 | 0,444 | 2,985 | 0,649 | 0,436 | 2,964 || 0,647 | 0,436 | 2,811
2 0,465 | 0,211 0,516 || 0,335 0,102 | 0,376 || 0,335| 0,095 | 0,355
LIST 4 0,465 | 0,204 | 0,418 || 0,342 | 0,102 | 0,246 || 0,160 0,058 | 0,114
8 0,465 | 0,204 | 0,407 || 0,349 | 0,102 | 0,175 || 0,164 | 0,058 | 0,107
16 0,465 | 0,204 | 0,407 || 0,349 | 0,102 | 0,175 || 0,164 | 0,058 | 0,107
Total 0,503|0, 253|0, 947||0, 409|0, 169|0, 787||0, 298|0, 141|0, 699
1 0,655 | 0,444 | 2,985 0,649 | 0,436 | 2,964 || 0,647 | 0,436 | 2,811
2 0,473 | 0,218 0,560 || 0,342 | 0,109 | 0,404 || 0,342 | 0,102 | 0,375
BAG 4 0,465 | 0,211 0,420 || 0,335| 0,095 | 0,248 || 0,156 | 0,058 | 0,118
8 0,465 | 0,211 0,420 || 0,342 | 0,095 | 0,170 || 0,156 | 0,058 | 0,107
16 0,465 | 0,211 0,420 || 0,342 | 0,095 | 0,170 || 0,156 | 0,058 | 0,107
Total 0, 505|0, 259|0, 961]|0, 406|0, 166|0, 791||0, 296|0, 143|0, 704
| Grand Total [0,504]0, 256]0, 954][0, 407[0, 167]0, 789][0, 297[0, 142]0, 701)

Table 1. Results on time prediction errors farA-T P w.r.t. baselineF’SM, for different ab-
straction function&bsi””e, while fixingo = 0.4.

Parameters @bs}"°?°) CA — TP (A%) CA — TPT (A%)
mode| h rmseg mag mape rmse mag mape
1 -0,8% -1,6% -0,7% -1,.2% -1,6% -5,8%
2 -28,1%| 51,7 | -27,2%|| -28,1%| -552%| -31,3%
LIsT 4 -26,6%| -50,0%| -41,1%|| -65,6%| -71.4%| -72,8%
8 25,006 -50,0%| -57,0%|| -64,8%| -71.4%| -73,8%
16 25,006 -50,0%| -57,0%| -64,8%| -71.4%| -73,8%
Total —18,8%|—33,3%|—16,8%]||—40, 8%|—44,3%|—26,2%
1 -0,8% -1,6% -0,7% -1.2% -1,6% -5,8%
2 -27,7%| -50,0%| -27,8%|| -27,7%| -53,8%| -33,0%
BAG 4 -28,1%| -55,2%6| -41,0%| -66,4%| -72,4%| -72,0%
8 -26,6%| -55, 2| -59,6%|| -66,4%| -72,4%| -74,5%
16 -26,6%| -552%| -59.6%| -66,4%| -72.4%| -7145%
Total —19,6%|—36,0%|—17,7%||—41,4%|—44,9%|—26,8%
[ Grand Total [—19,2%[—34, 7%[—17,3%[[—41, 1%[—44,6%[—26, 5%

Table 2. Error reductions %) of CA — T'P w.r.t. baselineF’'SM, when varying the kind of
abstractiorubs;, and horizom, while fixing o = 0.4.

log, in order to enable for a rough evaluation of the deseepfieatures of the model
— even though its main goal is to offer operational supporti®ans of performance
predictions. In particular, the Figure 5 (a) reports, as di@o of the clustering func-
tion, the decision rule corresponding to one of the cludtmuad (namely, cluste37),
which actually corresponds to one of the leaves of the PCTadidcovered with
CLUS. This rule allows for easily interpreting the semastif the cluster in terms of
both container properties (namely, the origin gérevHar bor , the destination port
Next Har bor , the navigation line that is going to take it awblgvLi ne_CUT, the
navigation line bringing it in the current poxavLi ne_l N), and environmental con-
text data (namely, the basic workload indicatér k|l oad, based on instance counts,
and aggregated time dimensiofusr i val Day or Arri val Hour ). Despite its sim-
plicity, the rule helps characterize a very peculiar, andrgatively frequent scenario
(the cluster gathers, indeet out of the5336 traces) for the handling of containers.
As a matter of fact, the A-FSM modeiound for the same cluster (shown in Figure 5
(b)) witnesses that for this peculiar configuration of canfactors (i.e., context vari-
ant), the containers tend to undergo a very small, and gpéeific, paths over logistics

! Bag element counters are shown as superscripts, and omiiedequal ta



operations. By the way, each node in theF'SM is labelled with the bag of (the 4
more recent) operations leading to it — e.g., the node taggtad MOV?, QUT] encodes
all the traces in the cluster that undergo tioVs before leaving the yard (operation
QUT). Along with labels, each node also reports a constant gtiedifor the remaining
time (normalized w.r.t. ADT). Edge labels codify, insteathich operations can trigger
the corresponding node transition. For the sake of clafitycontainer is in the state
labelled asIOVE, SHF] and a furtheiMOV operation occurs, then the next state will be
the one associated witMDV?, SHF]. Notably, this simple A-FMS model gave a neatly
positive contribution to the accuracy of the glolad- PPMmodel — very low errors
(namely,rmse = 0.138, mae = 0.080, andmape = 0.302) were produced, indeed,
on the test traces that were assigned to it.

Time Prediction Effectiveness Table 1 summarizes the errors made in predicting re-
maining times (normalized by the average dwell time ADT)tfug case ofmse and
mae), using both outC A — T'P plug-in and the prediction method proposed in [13]
(here denoted by'SM, and also employed as a base learner in our approach). The
tests were performed using different trace abstractiootfansabs;,, and keeping fixed
thresholds = 0.4. For the sake of comparison, Table 2 also reports the pageruf
error reduction A%) obtained byCA- TP w.r.t. F'SM. Moreover, the results @A- TP
are further differentiated according to which kinds of dgstve features were used.
Specifically,CA- TP~ refers to the case wher&CA- PPMis built only considering static
container properties (e.g., dimensions, origin/destingports). Conversel\GA- TP+
indicates the case where log traces are also associateaxtithsic context features
(namely, workload indicators and seasonality dimensiong)ddition to their primitive
data attributes. These figures clearly show that our clingtdrased method performs
always better than the baseline, independently of the petexrnonfiguration adopted.

By a closer look, two factors appear to affect more the peréorces: the usage of
derived context features and the value of history horizom particular, the advantage
of using environment-driven features is neat, despite tiwee very rough and partial,
seeing as the average error reduction (computed over all exgtrics) ofCA- TP is
close t037%, whereasCA- TP~ “just” gets a24% improvement. As ta, it is easily
seen that, although the benefits of using our solution geiseafable as soon ds> 1,
the best performances are reachedifer 4, when all kinds of errors shrink more than
65% w.r.t. the baseline (see Table 2). Stretching the horizomhe@s seem to bring
no further advantages (apart minor improvements forithee error with abs24%).
This result is not surprising, seeing as accuracy achiemesmaight even fall when
using high values of, due to the excessive level of detail on trace histories {arle
consequent high risk of overfitting).

The effect of the abstraction mode appears to be less maskazk very similar
(good) results are found in both cases. Actually, whatévand the kind of context
features, less that% error reduction is obtained (on all metrics) when adoptiag b
abstractions, w.r.t. the case where lists were used. Jnadl notice that poorer per-
formances were obtained, in general, when using all methditlsset-oriented trace
abstraction functions (i.eqbs;¢*). However, since our approaches confirmed, even in
such a case, similar degrees of improvement over the basabrthose in Table 2, these
results are not reported here for lack of space.



Fig. 6. Accuracy scores for the prediction of overtime faults@yl — 7'P" and by the baseline
methods, when varying,.;x, while fixing o =0.4, h=4, andabsi‘l”.

Fault Prediction Effectiveness In general, the quality of overtime fault estimation is
measured w.r.t. some given maximum dwell-time MDT, whiclyjsically set within
predefined agreements, on service quality, between thpishifines and the terminal
handler. In our tests we simply fixéd DT =2 x ADT (namely,M DT'=11.46 days).

Figure 6 sheds light on the ability our approach discrimgratvertime” from “in-
time” containers. To this purpose, we report both Precisiod Recall scores for dif-
ferent values of the risk threshold; ., when a fixed, good-working, configuration of
the underlying trace abstraction criterion (namely;, =abs24¢) is used for both our
approach and the baseline one [1B]9M), ando=0.4 in our feature selection proce-
dure. Notice that we only consider here the case where olfreferred to aCA- TP
in the figure) is provided with all kinds of (both intrinsic@extrinsic) context features
available in the application scenario. As expected, réeatls to worsen when increas-
ing visk, While an opposite trend is perceived for precision restiterestingly, when
using lower values ofy.;s. (i.e., @ more aggressive warning policy) the capability of
our approach to recognize real overtime cases is compeiling the baseline predic-
tor — in particular, an astonishing recall @5 (vs. 0.64) is reached withy,.;sx=0. In
general, recall scores are usually more important thariggo@cones in our scenario,
since containers “stuck” in the yard implies high monetarsts, and if effectively rec-
ognizing them, suitable counter-measures could be urdarta possibly resorting to
the usage of additional (storage/processing) resourda@shvare not used in normal
conditions for economical reasons. Clearly, such remexdikidies as well come with a
cost, even though it is typically far lower than SLA-violati penalties. Anyway, see-
ing as our method gets quite good precision scores over araitg ofy,.;.'s values,
it is reasonable to expect that a suitable trade-off can hehexd, according to actual
application requirements. More specifically, notice tiat precision scores of the two
methods are very similar for any value 9f;;; (in particular, our method never work
significantly worse than the baseline one), and both flattehwith ~,.,s, = 0.4.



Parameters @bs} °7¢) CA —TPT FSM [13]
mode] h Cluster#{ Ti ne [sec]|Ti ne, .. [sec]||Ti me [sec]
1 9 16,4 7.4 3,9
2 51,3 20,0 9,7 5,6
LI ST 4 63,8 19,6 7,9 10,7
8 57,9 20,2 8,1 16,0
16 57,9 92,3 32,6 89,8
Total 46,8 32 13,1 25,2
1 9 17 7,3 4,0
2 50,7, 19,7, 9,6 55
BAG 4 64 18,7 7,6 8,4
8 57,9 19,8 8,0 10,6
16 57,9 79,0 36,01 32,3
Total 46,68 30,9 13,7 12,2
[ Grand Total [ 46,74] 31,4] 13, 4]] 18,7]

Table 3. Number of clusters found b§' A-T'PT, and computation times faf' A-T'P™ and the
baseline method, for different abstraction functiens;*°* ando = 0.4.

Scalability Analysis Table 3 shows the average computation times (in second=) tak
by CA- TPT and by the method in [13], in order to build a prediction moasl well

as the number of clusters found in the first case (for the shkerpleteness) — obvi-
ously, the second method does not perform any clusteringeofog. Again, different
abstraction methodshs;**? and a fixed value of were considered in the tests, which
were all performed on a dedicated computer, equipped witlmtah dual-core proces-
sor and a 2GB (DDR2 1033 MHz) RAM, and running Windows XP Pssienal. For
both methods, the real computation times are reported indhenn denoted byi ne.
ConverselyTi me,,, corresponds to the time that would be spent in a virtual se@na
where an idealistic “overhead-free” parallelization ofr @pproach is used for con-
currently learning thed- 'S M models of all trace clusters. Although, as expected, our
approach takes always longer times than the baseline metteofbrmer achieves a sat-
isfactory trade-off between effectiveness and efficieWéyare further comforted by the
idealistic estimateSi e, which let us be confident in the possibility of strengthen
the scalability of our approach by resorting to a parallgdlementation of it.

6 Conclusions

In this paper we have proposed an ad-hoc predictive clustapproach which allows
for discovering performance-oriented models which caniiir operational support at
run-time, by making performance forecasts for novel pregestance. In a nutshell, the
approach first recognizes a number of homogeneous exealtisters, and then pro-
vides each of them with a specific performance-predictiodehoThis is technically

done by extending an existing method for the discoverindiptie performance mod-
els by embedding it in a logics-based clustering scheme.niéodology has been
implemented as a plug-in in the ProM framework and validatedh real case study.
Empirical results confirm the efficacy of the approach in g processing times,

and in helping foresee SLA violations, as well as its scéitsgbAs future work, we plan

to investigate on making tighter the link between the clilstephase and the induction
of cluster predictors (e.qg., by introducing some kind ofife&ck, or putting them within

an alternate optimization scheme), as well as on the usagevel methods both for
defining environment-related context variables, and facimg performance-relevant



space abstraction. Moreover, we will study the combinadioour approach with other
basic performance prediction methods (such as the one)ind§ivell as the adoption
of (possibly probabilistic) process models offering a @etbmpromise between a con-
cise representation of concurrent behaviors and the réttmgof performance-relevant
execution states. In particular, it is worth considerirglossibility to automatically ab-
stract and merge together similar states (e.g., by suigtiBnding methods like those
in [5]), in order to obtain more compact and generalizedahtiuster proces models.
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