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Mining multi-variant process models from

low-level logs

Francesco Folino, Massimo Guarascio and Luigi Pontieri

ICAR-CNR, National Research Council, via P. Bucci 41C, 87036, Rende, CS, Italy,
{ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. Process discovery techniques are a precious tool for analyzing
the real behavior of a business process. However, their direct application
to lowly structured logs may yield unreadable and inaccurate models.
Current solutions rely on event abstraction or trace clustering, and as-
sume that log events refer to well-defined (possibly low-level) process
tasks. This reduces their suitability for logs of real BPM systems (e.g.
issue management) where each event just stores several data fields, none
of which fully captures the semantics of performed activities. We here
propose an automated method for discovering an expressive kind of pro-
cess model, consisting of three parts: (i) a logical event clustering model,
for abstracting low-level events into classes; (ii) a logical trace cluster-
ing model, for discriminating among process variants; and (iii) a set of
workflow schemas, each describing one variant in terms of the discovered
event clusters. Experiments on a real-life data confirmed the capability
of the approach to discover readable high-quality process models.

Key words: Business Process Mining, Log Abstraction, Trace Clustering.

1 Introduction

Workflow discovery techniques [1] have gained attention in BPM applications,
owing to their ability to extract (out of historical execution data) a descrip-
tive model for the behavior of a process, which can support key process analy-
sis/design, process improvement and strategic decision making tasks.
However, two critical issues undermine the effectiveness of traditional work-

flow discovery methods, when they are applied to the logs of lowly-structured
processes: (i) the high level of details that usually characterizes log events, which
makes it difficult to provide the analyst with an easily interpretable description
of the process in terms of relevant business activities, and (ii) the presence of
various execution scenarios (a.k.a. “process variants”), which exhibit different
business processing logics (often determined by key context factors), and cannot
be captured effectively with a single workflow model. In fact, when applied to
such logs, most current workflow discovery techniques tend to yield “spaghetti-
like” models, suffering from both low readability and low fitness [7].
Two kinds of solution methods have been proposed in the literature to alleviate

these problems: (i) turn raw events into high-level activities by way of automated
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abstraction techniques [10, 6], (ii) partition the log into trace clusters [8, 5, 4,
9], capturing homogenous execution groups, and then separatley model each
cluster with a simpler and more fitting workflow. Since both kinds of methods
assume that each log event refers to a predefined (possibly low-level) process
task, they are of limited usefulness for many real-world flexible BPM applications
(e.g., product management, or problem/issue tracking). In such cases, indeed,
each log event takes the form of a tuple storing several data fields, none of
which can be interpreted as a task label (capable to fully capture the semantics
of the performed activity). Moreover, the clusters produced by current event
abstraction (resp., trace partitioning) approaches are not self-descriptive, and
the analyst must carry out difficult and long interpretation/validation tasks to
turn them into meaningful classes of activities (resp., process instances).

Contribution In order to overcome these limitations, a two-fold mining problem
is stated in this work, for a given low-level multi-dimensional event log. On
the one hand, we want to discover an event clustering function, allowing for
automatically abstracting log events into (non a-priori known) event types, each
of which is meant to represent a distinguished pattern for the execution of single
work items. While exploiting such event abstraction, we also want to possibly
detect and model different process execution variants.
Our solution approach relies, first of all, on a specialized logic-based event

clustering method, which can find a clustering function encoded in terms of
decision rules (over event attributes), to provide the analyst with an interpretable
description of the discovered activity types (i.e. event clusters). We also find a
similar conceptual clustering function for partitioning the log traces into different
execution classes, by using their associated context data (e.g. cases’ properties
or environmental factors) as descriptive variables. To this end, an iterative trace-
clustering approach is proposed, which tries to greedily maximize the (average)
quality of the workflow schemas induced from the discovered trace clusters.
Expressing trace/event clusters via predictive (logical) rules is an important

distinguishing feature of our approach, which makes it possibly support the im-
plementation of advanced run-time services. This point is discussed in Section 6,
which also provides a comparison with related work in the literature.

2 Preliminaries

Log data For each process case a trace is recorded, storing the sequence of events
happened during its enactment. Let E and T be the universes of all possible
events and traces, respectively, for the process under analysis. For each trace
τ ∈ T , len(τ) denotes the number of events stored in τ , while τ [i] is i-th event
in τ , for i ∈ {1, ..., len(τ)}.
For each event e ∈ E, let prop(e) be a tuple data properties (over some

attribute space) associated with e —each event also refers to a case ID and
to a timestamp, but these are useless for recognizing general activity patterns.
Execution cases as well are often associated with a number of data properties. For
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Fig. 1. Workflow schema induced from the Problem Management log, when using a
status-based event abstraction.

each trace τ ∈ T , let prop(τ) be the data properties of τ . Finally, let traces(L)
(resp., events(L)) denote the set of traces (resp., events) stored in L.

Workflow Schemas Our final aim is to describe process behavior by way of flow-
oriented models, like those commonly used to express the control-flow logics of
a business process. For the sake of concreteness, we here focus on the language
of heuristics nets [14], where a workflow schema is essentially a directed graph,
where each node represent a process activity, and each edge (x, y) encodes a
dependency of y on x. In addition, one can express cardinality-based fork (resp.,
join) constraints for nodes with multiple outgoing (resp., incoming) edges.
For any workflow schema W , let A(W ) be the set of all activities featuring in

W . The definition of A(W ) is a crucial point in our setting, where it may well
happen that no predefined business activities exist for the process. In such a case,
our approach consists in partitioning log events into event classes, representing
distinguished activity patterns, which can be eventually used to label the nodes
of a workflow schema.

Example 1. Let us consider a real-life Problem Management application (used as
a case study in Section 5), where each log trace registers the history of a ticket.
Each log event e is a tuple featuring 8 data attributes: the status (accepted,
queued, completed, or closed) and substatus (unmatched, awaiting assignment,
assigned, in progress, wait, cancelled, or closed) of the ticket when e happened;
the resource who generated e, and her nationality (res country); the support
team, functional division and organization line which the resource was
affiliated to; the country where the line was located (org country). Since such
representation carries no information on what process task was performed in
each event, we need to infer activity types from event tuples, to grasp some
suitable abstraction level on process behavior. A common approach consists in
abstracting each event tuple into just one of its attributes, and interpret it as
an activity label. Figure 1 shows the model discovered (by algorithm Heuristics
Miner [14]) after replacing each event with its respective status’s value. ⊳

Figure 1 evidences that a one-attribute event abstraction is likely to produce
a lowly informative (or even trivial) process model for a log storing fine-grain
execution traces. On the other hand, using a combination of multiple attributes
to the same purpose may well yield a cumbersome and overfitting workflow
schema, as confirmed by our tests. The latter solution is, in fact, also unviable in
many real application scenarios for scalability reasons, seeing as the computation
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time of typical approaches (to both workflow discovery and log abstraction) is
quadratic in the number of activities.

Behavioural Profiles Behavioural profiles [13] are basic ordering relationships
over activity pairs, which can summarize a workflow schema’s behavior, and can
be computed efficiently for many classes of workflow specification languages.
Let W be a workflow schema, and A(W ) be its associated activities. Let ≻W

be a “weak order” relation inferred from W , such that, for any x, y ∈ A(W ),
y ≻W x iff there is at least a trace admitted by W where y occurs after x. Then,
the behavioral profile matrix of W , denoted by B(W ), is a function mapping
each pair (x, y) ∈ A(W )×A(W ) to an ordering relation in { ,+, ‖}, as follows:
(i) B(W )[x, y] = , iff y ≻W x and x ⊁W y (strict order); (ii) B(W )[x, y] = +,
iff x ⊁W y and y ⊁W x (exclusiveness); (iii) B(W )[x, y] =‖, iff x ≻W y and
y ≻W x (observation concurrency).
Let τ be a trace in T (with event universe E), x and y be two event classes (i.e.

disjoint subsets of E), and B be a behavioral profile matrix. Then we say that
τ violates (resp., satisfies) B[x, y], denoted by τ 6⊢ B[x, y] (resp., τ ⊢ B[x, y]), if
the occurrences of x and y in τ infringe (resp., fullfill) the ordering constraints
in B[x, y]. Precisely, it is τ 6⊢ B[x, y] iff there exist i, j ∈ {1, ..., len(τ)} such that
τ [i] = y, τ [j] = x, and: either (i) B[x, y] = +, or (ii) B[x, y] = and i < j.
Behavioral profiles help us measure workflow conformance, as in what follows.

Definition 1. Let L be an event log, W be a workflow schema, and σ ∈ N

be a (lower) noise threshold. Then the compliance of W w.r.t. L, denoted
by compl(W,L), is defined as: compl(W,L) = 1

|A(W )|2 × |{(x, y) ∈ A(W ) ×

A(W ) | ¬(∃≥σ τ ∈ traces(L) s.t. τ 6⊢ B(W )[x, y])}|. Moreover, the pre-
cision of W w.r.t. L, denoted by prec(W,L), is defined as: prec(W,L) =

1
|A(W )|2 × |{(x, y) ∈ A(W ) × A(W ) | B(W )[x, y]=‖ and ¬(∃≥στ ∈ L s.t.

|{x, y} ∩ tasks(τ)| = 1)}| where ∃≥σ is a counting quantifier, asserting the exis-
tence of at least σ elements in a given set.1 �

3 Problem Statement

As discussed above, we want to discover two interrelated clustering models: one
for log events, and another for log traces (intended to recognize process variants).
For the sake of interpretability, in both cases we seek a clustering model that

can be encoded by decision rules. Let us assume that each rule is a conjunctive
boolean formula of the form (A1 ∈ V1) ∧ (A2 ∈ V2) ∧ . . . ∧ (Ak ∈ Vk), where, for
each i ∈ {1, . . . , k}, Ai is a descriptive attribute defined on some given set Z of
data instances, and Vi is a subset of Ai’s domain. For any I ⊆ Z and for any
such a rule r, let cov(r, I) denote the set of all I’s instances that satisfy r.
A conceptual clustering model for Z is a list C = 〈r1, ..., rn〉 of conceptual

clustering rules (for some positive integer number n), which defines a partitioning

of Z into n parts P1, . . . , Pn, where Pi = cov(ri, Z)/
⋃i−1

j=1 cov(rj , Z).

1 In the tests described in Section 5 we always set σ = 0.01 · |traces(L)|.
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Our ultimate goal is to find a multi-variant process model leveraging two such
clustering functions (for events and traces, resp.), as it is formally defined next.

Definition 2. Let L be a log, and T (resp., E) the associated trace (resp.,
event) universe. Then, a High-Level Process Model (HLPM) for L is a triple
〈CE , CT ,WS〉 such that: (i) CE = 〈rE1 , . . . , r

E
p 〉 is a conceptual clustering model

for E, where p ∈ N is the number of event clusters, and rEi (for i = 1, .., p) is the
clustering rule of the i-th event cluster; (ii) CT = 〈rT1 , . . . , rTq 〉 is a conceptual

clustering model for T , where q ∈ N is the number of trace clusters, and rTj (for
j = 1, .., q) is the clustering rule of the j-th trace cluster; WS = 〈W1, . . . ,Wq〉
is a list of workflow schemas, where Wk (for k=1, .., q) models the k-th trace
cluster, using the classes yielded by CE as activities. �

Clearly enough, sub-model CE plays as an event abstraction function, which
maps each event e ∈ E to an event class, based on logical clustering rules (ex-
pressed on e’s properties). Analogously, model CT partitions historical execution
traces into behaviorally homogenous clusters (via logical clustering rules over
traces’ properties). Each discovered trace cluster, regarded as a distinct process
variant, is also equipped with a workflow schema, where some of the clusters of
CE feature as (high-level) activity nodes.
Our discovery problem can be stated conceptually as the search for an optimal

HLPM that maximizes some associated quality measure, such as those defined in
the previous section.

4 Solution Approach

Technically, we rephrase the discovery of conceptual clustering models (over
either events or traces) as a predictive clustering problem. Basically, predic-
tive clustering approaches [3] assume that two kinds of data attributes char-
acterize each element z in a given space Z = X × Y of instances: descriptive
attributes and target attributes, denoted by descr(z) ∈ X and targ(z) ∈ Y ,
respectively. The goal of these approaches is to find a logical partitioning func-
tion (of the same nature as our conceptual clustering models) that minimizes∑

Ci
|Ci| × V ar({targ(z) |z ∈ Ci}), where Ci ranges over current clusters, and

V ar(S) is the variance of set S.
Different predictive clustering models exists in the literature. Owing to scala-

bility and readability reasons, we preferred Predictive Clustering Trees (PCTs),
where the clustering function is a (propositional) decision tree.
We next introduce ad-hoc propositional encodings for events and traces, al-

lowing for inducing a clustering model by reusing a PCT learner.

Definition 3. Let L be a log, over event (resp., trace) universe E (resp., T ).
Then, the e-view of L, denoted by VE(L), is a relation containing a tuple zi,j
for each τi ∈ traces(L) and for each j ∈ {1, . . . , len(τi)} (i.e. for each event
τ [j] ∈ events(L)), such that: (i) descr(zi,j) = prop(τi[j]), and (ii) targ(zi,j) =

〈 j
len(τi)

, j
maxL

, len(τi)−j

maxL
〉, where maxL = max({ len(τ) | τ ∈ traces(L)}). �
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In such a log view (acting as training set for predictive clustering), the descriptive
(input) attributes each instance zi,j are the data fields in prop(τi[j]) (see Sec 2),
while the target ones are three indicators (derived from the relative/absolute
position j of τi[j] in its surrounding trace). Intuitively, we want events with
similar intra-trace positions (and similar properties) to be put together.
For the clustering of traces, we introduce another log view, named t-view,

where the context data and abstract activities of each trace play as descriptive
features, while the target variables express local activity relationships.
Specifically, let B be a behavioral profile matrix (derived from some workflow

schema), and α : E → A be an event clustering function. Then, for each trace
τ and any activities ai and aj in A we define a target variable vB(τ, ai, aj) as

follows: (i) vB(τ, ai, aj) = 1 if τ 6⊢ B[ai, aj ]; (ii) vB(τ, ai, aj) =
f(τ,ai,aj)

2×c(τ,ai,aj)
if both

ai and aj occur in τ , where c(τ, ai, aj) = |{(i′, j′) | i′, j′ ∈ {1, . . . , len(τ)} ∧ i′ 6=
j′ ∧ α(τ [i′]) = ai ∧ α(τ [j′]) = aj}|, and f(τ, ai, aj) = sum({sgn(j′ − i′) | i′, j′ ∈
{1, . . . , len(τ)}∧ α(τ [i′]) = ai ∧ α(τ [j′]) = aj}), where sgn denotes function
signum; and (iii) vB(τ, ai, aj) = null if τ does not contain both ai and aj . This
way, vB(τ, ai, aj) can capture a violation to a behavioral profile (case i), or keep
information on the mutual positions of ai and aj , if both occur in τ (case ii).

Definition 4. Let L be a log over event and trace universes E and T , A =
{a1, . . . , ak} be a set of event clusters (regarded as abstract activities), and
α : E → A be an event clustering function. Let also B : A × A → { ,+, ‖}
be a behavioral profile matrix. Then, the t-view of L w.r.t. α and B, denoted by
VT (L, α,B), is a relation containing, for each τ ∈ traces(L), a tuple zτ such that:
(i) descr(zτ ) = prop(τ) ⊕ actα(τ), where ⊕ denotes tuple concatenation, and
actα(τ) is a vector in {0, 1}k such that, for i = 1, .., k, actα(τ)[i] = 1 iff activity
ai occurs in τ (i.e. iff ∃j ∈ {1, . . . , len(τ)} s.t. α(τ [j]) = ai); and (ii) targ(zτ ) =
〈vB(τ, a1, a1), . . . , vB(τ, a1, ak), vB(τ, a2, a2), ..., vB(τ, a2, ak), . . . , vB(τ, ai, ai), . . . ,
vB(τ, ai, ak), . . . , vB(τ, ak, ak)〉. �

Algorithm HLPM-mine Our approach to the discovery of a HLPM is illustrated as
an algorithm, named HLPM-mine and reported in Figure 2. The algorithm follows
a two-phase strategy: it first finds a conceptual clustering model (Steps 1-3) for
the events, and then computes a collection of trace clusters, along with their
associated clustering rules and workflow schemas (Steps 4-24).
Conceptual clustering models are found through function minePCT, which

leverages a PCT-learning method in [3]. In the algorithm, this function is ap-
plied to both an e-view (Step 2), and a t-view (Step 12). Two further parameters
allow to constrain a PCT’s growth: the minimal coverage a node must have to
be possibly split, and the maximal number of leaves, respectively.
The PCT found for log events is turned into a conceptual clustering model

through an iterative bottom-up procedure, named extractRules, omitted for
lack of space. Basically, starting with the rules of the tree leaves, this procedure
replaces each rule r with that of the parent, if |cov(r,VE(L))| < minCov ×
|VE(L)|, and the variance of cov(r,VE(L)) is higher than, or nearly equal to, the
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Input: Log L, maximal number m ∈ N of trace clusters, minimal clusters’
coverage minCov ∈ [0, 1], minimal quality-gain γ ∈ [0, 1]

Output: An HLPM for T

1. V := VE(L); // compute L’s e-view (cf. Def. 3)
2. T := minePCT(V,minCov,∞);
3. CE := extractRules(T,minCov, γ); // CE is a clustering model for E

4. Create an initial cluster c0 gathering all L traces;
5. w0 := mineWF(L, CE); compute B(w0);
6. TClust := {c0}; W (c0) := w0; rule(c0) := [true];
7. Q := {c0}; // Q is a queue of candidate trace clusters
8. while (0 < |TClust| < m) and Q 6= ∅ do

9. c∗ = argminc∈Q(|c| × compl(W (c), c));
10. if |c∗| ≥ minCov × |traces(L)| then
11. V := VT (c∗, CE,B(W (c∗))); // build a t-view (cf. Def. 4)
12. T := minePCT(V,minCov,m− |TClust|+ 1);
13. Let ∆Cl be the clusters associated with T ’s leaves
14. for each cluster c in ∆Cl do

15. Let traces(c) be the traces assigned to c;
16. W (c) := mineWF(traces(c), CE); compute B(W (c));
17. rule(c) := mergeRules(rule(c∗), rule(c));
18. end for

19. if {W (c) | c ∈ ∆Cl} ≺γ W (c∗) then //cf. Def. 5
20. TClust := TClust ∪∆Cl − {c∗}; Q := Q ∪∆Cl;
21. end if

22. Q := Q− {c∗};
23. end if

24. end while

25. CT :=〈〉; WS:=〈〉; // inititalize the trace-clustering model and workflow list
26. for each cluster c ∈ TClust do

27. CT .append(rule(c)); WS.append(W (c));
28. end for

29. return 〈CE, CT ,WS〉

Fig. 2. Algorithm HLPM-mine

parent’s variance (precisely, the former is lower than the latter of a fraction γ at
most). Notice that, in current implementation this test is performed on a separate
pruning set. Whenever a rule r is removed, all the instances in cov(r,VE(L)) are
assigned to the parent rule (i.e. to the rule of the parent of r’s node), which is
appended to the clustering model, if it does not appear in it yet.
Trace clusters are computed through an iterative partitioning scheme (Step

4-24), where TClust is the set of current trace clusters, and Q just contains the
ones that may be further split. For any trace cluster c, W (c) and rule(c) store
the associated workflow schema and clustering rule, respectively.
Before the loop, TClust just consists of one cluster, gathering all L’s traces.

At each iteration, we try to split the cluster c∗ in Q that has been given the
lowest compliance score by the (profile-based) conformance measure compl (see
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Def. 1), among all those overcoming the coverage thresholdminCov. To this end,
a PCT model T is induced from the propositional view of cluster c∗, according
to the discovered event clustering CE , and the behavioral profiles of the schema
associated with c∗ (see Def. 4).
For each leaf cluster c in T , we extract a workflow schema and the associated

behavioral profiles, and merge the rule of c with that of the cluster (namely, c∗)
T was induced from (Steps 16-17).
At this point, the algorithm verifies if the workflows discovered after splitting

cluster c∗ really allowed to model more effectively the behavior of c∗’s traces.
This check relies on an ad-hoc quality relationship, named γ-improve, which is
defined next, based on the conformance metrics compl and prec (see Def. 1).

Definition 5. Let c be a set of traces, {c1, .., ck} be a partition of c, W be a
workflow schema for c, and WS = {W1, ..,Wk} be a set of workflow schemas s.t.
Wi models ci and A(Wi) ⊆ A(W ), for i = 1, .., k. Then, for γ ∈ [0, 1], we say that

WS γ-improves W , denoted by WS ≺γ W , iff (i)
∑k

i=1
|traces(ci)|·compl(Wi,ci)

|traces(c)| >

(1 + γ) · compl(W, c), or (ii) compl(W, c) ≤
∑k

i=1
|traces(Li)|·compl(Wi,ci)

|traces(c)| ≤ (1 +

γ) · compl(W, c) and
∑k

i=1
|traces(Li)|·prec(Wi,ci)

|traces(c)| > (1 + γ) · prec(W, c). �

We hence assume that the workflows of c∗’s children clusters model the be-
havior of traces(c∗) better than W (c∗) alone, if they get, in the average, higher
compliance (on their respective sub-clusters) than W (on c∗ as a whole). When
the compliance score keeps unchanged, we still prefer the new schemas if they
are more precise than W (c∗).
The split of c∗ is eventually kept only if the above improvement relationship

holds. In any case, c∗ is removed from the list of candidates for further refinement.
Steps 25-28 just build the list of trace clustering rules, and the list of workflow

schemas, based on the set of trace clusters eventually left in TClust.

5 Experiments

The approach described so far was implemented into a Java prototype system,
and tested on the log 2 of a real problem management system, encompassing
1487 traces recorded from January 2006 to May 2012. As explained in Ex-
ample 1, each log event stores eight data attributes (i.e., status, substatus,
resource, res country, functional division, org line, support team, and
org country). For each problem case p, two attributes are associated with p’s
trace: p’s impact (medium, low, or high), and the product affected by p.
We enriched each trace τ with further context-oriented attributes: (i) firstOrg,

indicating the team associated with τ ’s first event; (ii) workload, quantitying
the number of problems open on the time, say tτ , when τ started; (iii) several
time dimensions (namely, week-day, month and year) derived from tτ .
In all the tests discussed next, we ran HLPM-mine with minCov = 0.01, and

γ = 0.1, while using plugin FHM [14] to instantiate function mineWF.

2 Available at http://www.win.tue.nl/bpi/2013/challenge
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Table 1. Results (avg±stdDev) obtained with the event clustering method (no trace
clustering) and manual abstraction criteria. The best value of each column is in bold.

Event Clustering Method Fitness BehPrec #nodes #edges #edgesPerNode

status 0.676±0.010 0.543±0.004 6.0±0.0 9.0±0.0 3.0±0.0

substatus 0.715±0.057 0.546±0.003 9.0±0.0 18.0±0.0 4.0±0.0
all 0.723±0.032 0.921±0.005 1464.2±18.5 2224.6±23.9 3.0±0.0
HLPM-mine(m=1) 0.815±0.024 0.736±0.017 17.0±0.0 32.2±0.8 3.8±0.1

Table 2. Results (avg±stdDev) yielded by different trace clustering methods, after
abstracting events with the clusters found by HLPM-mine(m=1). Best scores are in bold.

Trace Clustering Method Fitness BehPrec #nodes #edges #edgesPerNode

ACTITRAC[8] 0.690±0.027 0.796±0.012 12.6±0.1 20.0±0.4 3.1±0.0
TRMR[4] 0.571±0.075 0.751±0.021 10.3±0.2 17.0±0.4 3.3±0.0
A-TRMR[4] 0.706±0.015 0.764±0.007 11.6±0.2 18.1±0.4 3.1±0.0
KGRAM[5] 0.663±0.023 0.725±0.008 10.7±0.2 16.7±0.4 3.1±0.0
HLPM-mine(m=∞) 0.851±0.013 0.742±0.007 10.0±0.2 13.8±0.3 2.6±0.0

Evaluation Metrics Different kinds of metrics (fitness, precision, generalization)
exist for evaluating the quality of a workflow schema. In particular, fitness met-
rics quantify the capability to replay a given log, and represent the main evalu-
ation criterion [7], while the other metrics serve finer-grain comparisons.
In our tests, we measured the fitness of each discovered heuristics-net accord-

ing to the Improved Continuous Semantics Fitness (named Fitness hereinafter)
defined in [12]. Basically, the fitness of a schema W w.r.t. a log L (denoted by
Fitness(W,L)) is the fraction of L’s events that W can parse exactly, with a
special punishment factor for benefitting the schemas that yield fewer replay
errors in fewer traces.
Moreover, the behavioral precision of schema W w.r.t. log L, denoted by

BehPrec(W,L), was simply measured as the average fraction of activities that
are not enabled by a replay of L in W .
As to schema’s complexity, we considered: the numbers of nodes (#nodes) and

of edges (#edges), and the average number of edges per node (#edgePerNode).

Test bed As no current approach mixes automated event abstraction and trace
clustering, we tested these two facets incrementally, for the sake of comparison.
First, we assessed the ability of our event abstraction method to help discover

higher-quality workflow schemas. To this end, we evaluated the workflow schemas
extracted by algorithm FHM to an abstract version of the log, obtained by
replacing the original events with the event clusters found by HLPM-mine, ran
without any trace clustering (i.e. by setting m = 1). As a term of comparison,
we considered three “manual” event abstraction criteria: (i) replacing each event
with the associated value of status, or (ii) of substatus, and (iii) using each
distinct event 8-ple as an activity type (all).
As to trace clustering, we considered four competitors: algorithm Actitrac [8];

the sequence-based and alphabet-based versions of the approach in [4] (TRMR and
A-TRMR, resp.); and the approach in [5] (KGRAM), exploiting a k-gram represen-
tation. Since all of these competitors lack any mechanisms for abstracting log
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cluster rule

e1

substatus=assigned ∧ org line=G199 3rd

∧ org country=us ∧ resource country=usa

e3

substatus=in progress ∧ org line=G199 3rd

∧ org country=us ∧ resource country=usa

e4

substatus=in progress ∧ org line=G199 3rd

∧ org country=us ∧ resource country=poland

e5

substatus=closed ∧ org line=G199 3rd

∧ resource country=poland

e7

substatus=awaiting assignment

∧ org line=G199 3rd ∧ org country=us

cluster rule

t1 ¬ e4 ∧ ¬ e9 ∧ ¬ e13

t2 ¬ e4 ∧ e9

t3 ¬ e4 ∧ ¬ e9 ∧ e13

t4 e4 ∧ e2 ∧ month ≤ 5

t5 e4 ∧ e2 ∧ month > 5 ∧ workload ≤ 355

t6 e4 ∧ e2 ∧ month > 5 ∧ workload > 355

t7 e4 ∧ ¬ e2 ∧ product ∈ {PROD98,PROD96}

t8 e4 ∧ ¬ e2 ∧ product ∈ {PROD428,PROD97}

Fig. 3. Some event clusters (left) and trace clusters (right) found by HLPM-mine.

events and for selecting the number of clusters, we provided each of them with
the abstraction function and the number of trace clusters found by our approach.

Quantitative Results Table 1 reports the quality scores obtained by our event
clustering approach (without trace clustering), here viewed as an enhanced data-
driven event-abstraction criterion, compared with the “manual” basic ones de-
scribed before. To this end, we first partitioned all log events via the Steps 1-3 of
algorithm HLPM-mine, and then replaced each event with the label of its respec-
tive cluster. All measures were computed by averaging the results of 10 trials,
performed each in 10-fold cross-validation.
Interestingly, our event abstraction method gets the best fitness outcome

(0.815), and a satisfactory precision score, at the cost of little increase in struc-
tural complexity (8 more nodes and 14 more edges) w.r.t. the substatus ab-
straction, which is the most effective among all 1-attribute abstractions. By the
way, only the dummy abstraction all gets higher precision, but it returns overly
complex and overfitting workflows.
The benefit of clustering log traces is made clear by Table 2, which reports the

quality results obtained by our approach and by the competitors. More precisely,
in each clustering test, we computed an overall Fitness (resp., BehPrec) measure
for each method, as the weighted average (with cluster sizes as weights) of the
Fitness (resp., BehPrec) scores received by the workflow schemas induced (with
FHM) from all the trace clusters discovered in the test. As all cross-validation
trials HLPM-mine (ran with m=∞) yielded 8 trace clusters, the same number of
clusters was given as input to the competitors.
Notably, HLPM-mine managed to neatly improve the average fitness (0.851)

w.r.t. the case where no trace clustering was performed (0.815), and surprisingly
outperformed all competitors on this fundamental metrics, despite it can only
split the log by way of boolean formulas over trace properties. HLPM-mine also
managed to achieve good precision (0.742), compared to its competitors, and to
find quite readable workflow schemas —exhibiting, indeed, the lowest average
numbers of nodes (10), edges (14) and edges per node (2.6).

Qualitative Results In order to give a more concrete idea of the models that our
approach can extract, we ran algorithm HLPM-mine on the entire log (without
cross validation), while still setting m=∞. As a result, 8 trace clusters were
found, and equipped with separate workflow schemas, each describing a distinct
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Fig. 4. Workflow schemas induced from trace clusters t7 (top), and t8 (bottom).

problem-management scenario. For instance, Figure 4 shows the models of two
trace clusters —notice that each node is labelled with the identifier of an event
cluster, whose clustering rule can be found in Figure 3 (left).
Besides being more compact than the models discovered without trace clus-

tering (see the last row in Table 1), these schemas help us reckon that problem
cases follow different execution scenarios. Specifically, the schema of cluster t8
captures a particular scenario, where two activities (i.e. event clusters e4 and
e5) are executed in sequence. Moreover, the trace clustering rules on the right
of Figure 3 let us reckon that these scenarios differ both for the value of context
factors, and for the occurrence of certain activity types (i.e. event clusters).

6 Discussion and future work

We have presented a clustering-based process discovery method for low-level
multi-dimensional logs, where event and trace clusters are used to capture dif-
ferent activity types and process variants, respectively. Tests on a real-life log
showed that the approach is able to find high-quality readable workflow models.

Novelty points Several features distinguish our proposal from current process
mining solutions, in addition to the very idea of combining activity abstraction
and trace clustering — which has only be explored in [4] so far. Fist of all, each
event/trace clustering function discovered by our approach is natively encoded
in terms of logical rules, which the analyst can easily interpret, to distillate a
semantical view of process behavior and of its dependence on relevant proper-
ties of process events/cases (and on other context-related factors). Moreover,
we removed the common assumption that each log event explicitly refers (or
can be easily mapped) to some predefined process activity. In fact, even most
current activity abstraction methods [10, 6] rely on the presence of activity la-
bels (possibly defined at a high level of granularity) associated with log events,
when trying to aggregate them into higher-level activities (or sub-processes). We
pinpoint that no high-level activity types are assumed to be known in advance,
differently from [2], where a method was proposed to map log events to a-priori
given activity types. The problem faced here is, in fact, more challenging, in that
event types are to be learnt inductively from scratch.
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Owing to the predictive nature of our models, they can help implement ad-
vanced run-time services, beside serving descriptive analyses. For example, one
can dynamically assign any novel process case, say c, to one of the discovered
process variants (i.e., trace clusters). The workflow schema associated with that
cluster can be then presented as a customized (context-adaptive) process map,
showing how c could proceed. Moreover, by continuously evaluating the degree
of compliance between c and its reference schema deviating can be detected.

Future work Implementing the advanced run-time services above (useful in flexi-
ble BPM settings) is left for future work. Inspired by the proposal in [11], we will
also try to extend our approach to deal with interleaved logs, which mix traces of
different processes without keeping information on which process generated each
of them. This would let us release another common assumption —orthogonal to
that considered in our work, on the existence of a-priori knowledge on the map-
ping of log events to process activities— of most process mining approaches.
Finally, we plan to test our approach on a wider range of logs.
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