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Abstract. Increasing attention has been paid of late to the problem of detect-

ing and explaining “deviant” process instances —i.e. instances diverging from

normal/desired outcomes (e.g., frauds, faults, SLA violations)— based on log

data. Current solutions discriminate between deviant and normal instances by

combining the extraction of (sequence-based) behavioral patterns with standard

classifier-induction methods. However, there is no general consensus on which

kinds of patterns are the most suitable for such a task, while mixing multiple

pattern families together will produce a cumbersome, redundant and sparse rep-

resentation of log data that may well confuse the learner and lead to unreliable

deviance-prediction models. We here propose an ensemble-learning approach to

this process mining tasks, where multiple base learners are trained on different

feature-based views of the given log (obtained each by using a distinguished fam-

ily of patterns). A stacking procedure is then employed to combine the discovered

base models into an overall deviance-oriented classifier, which exploits the pre-

dictions of the former models, hence implicitly reasoning on different structural

features. The induction of such a meta-classifier is performed by using a (scalable

and robust) probabilistic method. This way each prediction is equipped with some

reliable measure of confidence, which can allow for prioritizing suspicious case,

and make the analysis of estimated deviations efficient and feasible even in com-

plex BPM scenarios. Beside possibly taking advantage of all non-structural data

that are typically associated with the traces, the approach employs a resampling

mechanism to deal with situations where the training set contains far less deviant

traces than normal ones. The approach has been implemented as part of a compre-

hensive framework for detecting and analysing business process deviances, which

is also meant to support the analyst in investigating new suspect deviances, and to

provide some feedback on the real nature of new traces, which can help improve

the discovered deviance-prediction models. A series of experiments on a real-life

log proved the validity of the approach, which showed its capability of achieving

compelling performances w.r.t. state-of-the-art methods.

Keywords: Business process intelligence, Classification, Deviation detection.



1 Introduction

Large amounts of log data are continuously gathered in many organizations during the

execution of business processes. Such data are a precious source of information, which

can support ex-post process analysis and auditing tasks, with the help of automated

business intelligence techniques, like those developed in the field of Process Mining.

In particular, increasing attention has been paid to the problem of detecting and ex-

plaining “deviant” process instances in a process log, i.e. instances that diverge from

normal or desirable outcomes (e.g. frauds and other security breaches, faults, SLA vio-

lations, non-compliance to regulatory rules). In fact, the occurrence of such a deviance

often impacts negatively on the performances of a business process, and it may cause

severe damages to an enterprise in terms of extra-costs (e.g., due to the application of

penalties), missed earning opportunities, or even permanent loss of reputation.

Several approaches [21, 24, 3, 20, 25, 19] have been proposed, which all combine the

extraction of (sequence-based) behavioral patterns with standard propositional classifier-

induction methods, in order to induce a model for discriminating between deviant and

normal instances, while using the discovered patterns as summarized behavior-oriented

data features. However, there is no evidence and general consensus on which pattern

family should be preferred when deriving a vector-space representation of the log traces

for deviance mining purposes. This motivates the attempt of exploiting heterogenous

representations mixing up different families of patterns. For example, a combination of

sequence and alphabet patterns was used in [3]. The combination of individual-activity

patterns with both sequential, alphabet and discriminative patterns was analyzed in [21],

as a way to improve the accuracy of a model using the former kind of patterns only.

However, we are afraid that a number of key issues have not been addressed ade-

quately, which arise in many real application scenarios:

I1 First of all, we believe that extracting a deviance-oriented classification model with

the help of different kinds of behavioral patterns can improve the performances of

models discovered by using a single kind of patterns1. However, the pattern gen-

eration phase may produce a very large number of structural patterns, and a sparse

representation of the traces, which exposes the deviance-prediction models to the

“curse of dimensionality” problem. On the other hand, mixing different pattern

families into a feature-based encoding would lead to a redundant representation of

the traces, featuring many mutually correlated features —consider, e.g., the fact

that the presence of a tandem repeat a,b implies the presence of both activities

a and b (viewed as “individual-activity” patterns). Such a combined view of the

dataset, indeed, is likely to confuse most machine learning algorithms, and to lead

to overfitting deviance detection models in the case of a relatively small number

of training traces. The usage of feature selection/reduction methods can alleviate

these problems, but it cannot solve them completely, while the greedy nature of

these methods may even lead to some loss of relevant information.

1 This claim is confirmed by the experimental analysis discussed in this work, showing the

superiority of our multi-view learning approach with respect to current deviance detection

solutions.



I2 In many real-life applications, verifying and auditing a presumably deviant case

is a difficult and expensive task that requires long and careful investigations by

domain experts. In order to make the analysis of estimated deviations efficient and

feasible in complex BPM settings, each prediction should be equipped with some

reliable measure of confidence, which can be used to emphasize and prioritize more

suspicious process instances. In fact, we deem that such a capability can pave the

way to a wider and more flexible adoption of deviance prediction tools within real

BPM systems.

I3 The discovery of deviant instances is often carried out in scenarios where normal

instances are much more than deviant ones. A dataset where one class largely over-

come other one(s) in terms of cardinality is known in the literature as case of “class

imbalance” [17]. Learning a classification model in such a situation is universally

reckoned as a very challenging task for classic approaches, which tend to have un-

satisfactory achievements over minority-class instances. In such a case, indeed, the

typical optimization strategy followed by these approaches (meant to minimize the

global number of misclassification errors or, equivalently, to maximize the over-

all accuracy of the model) is likely to yield a model that cannot recognize deviant

instances adequately.

I4 In certain deviance detection scenarios, the very task of labelling training examples

is time consuming and expensive. This makes it difficult to provide the learning

algorithms with a sufficiently large collection of training data, as well as to keep

the prediction models updated by exploiting new examples of both deviant and

normal instances. In such a setting, it would be important to support the analyst in

the labelling of new traces, by letting her/him focus on a small selected portion of

them, in the spirit of active learning approaches [50, 40, 42, 43, 46–48].

Contribution In order to address the above issues and overcome the limitations of cur-

rent solutions, we propose a novel approach, offering three main kinds of contribution:

C1 a multi-view ensemble-based method for inducing a deviance detection model out

of historical log data;

C2 a comprehensive system architecture (which fully exploits and empower the above-

mentioned induction method) supporting the detection and analysis of deviances in

a Business Process Management scenario; and

C3 an empirical comparative analysis of our deviance detection approach with current

solutions available in the field.

In a nutshell, the proposed induction method founds on the core idea of training mul-

tiple base learners on different feature-based views of the given log, produced each with

the help of a distinguished family of patterns. More specifically, the method extracts an

ensemble of classification models, induced (by applying several learning algorithms)

from different propositional views, say L′
1, . . . ,L

′
n, of the given log, say L. Each of these

views represents a vector-space encoding of the traces stored in L, which combines

both context information and a distinguished set of structural features capturing rele-

vant behavioral patterns (as in [3]). Such a variegate multi-view collection of classifiers

is made undergo a meta-learning scheme that eventually yields a higher-order classifi-

cation model.
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Fig. 1. Conceptual data-processing flow of the proposed approach: original data, transformed

data, and discovered deviation-detection models.

A summarized pictorial representation of the main data processing steps that com-

pose this ensemble learning method is reported in Figure 1. The figure presents, in par-

ticular, the relationship between the original log and different datasets derived from it

through the application of pre-processing (specifically, resampling) and feature extrac-

tion techniques. Two layers of deviation-detection models are eventually discovered: (i)

a collection of base models (learnt by applying k different classifier-induction methods

to one of the n feature-based views derived from the log), and (ii) a meta model, which

integrates the predictions of the base models into a “high-order” deviance forecast.

In order to cope with issue I2, the meta-learning task is accomplished by inducing

a probabilistic classifier (from a view of the input log gathering the predictions of the

discovered base models). This allows us to eventually assign any process instance an

estimate of the probability that it really is a deviance. For the sake of scalability and

robustness, we resort to the approach of one-dependence estimators [34] (specifically,

we leverage the AODE algorithm [37]), which extends the popular Naı̈ve Bayes clas-

sifier by relaxing the assumption of attribute independence (clearly not holding in our

learning setting), without increasing the computation complexity of the training phase.

Notably, the final deviance-prediction model (combining the predictions of all base

models) is capable of implicitly reasoning on heterogeneous kinds of structural features

at a higher level of abstraction, without directly working with them all. This makes our

approach fully address the tricky issue I1 discussed above.

In order to deal with situations where deviant instances are far less than normal ones

(issue I3), the learning method integrates a resampling mechanism, which helps atten-

uating the level of class imbalance by simply replicating the examples of the minority

class.



The proposed learning method has been implemented in a Java prototype system,

playing as the core module of a comprehensive system architecture for the detection

and analysis of business process deviances, which constitute the second contribution

(C2) of our work. This architecture supports, in particular, two kinds of tasks, which

complement the proposed learning method and pave the way to a full exploitation and

improvement of the deviance-detection models discovered with the former: (i) “De-

viance Detection and Investigation”, which amounts to automatically label new traces

with the help of the discovered models, and provide the analyst with tools for both an-

alyzing suspected deviances and for possibly revising their assigned class labels; and

(ii) “Deviance-Detection Model Improvement”, which consists in enforcing the predic-

tive power of a deviance-detection model, by making it take account for new traces,

while allowing the analyst to validate (and possibly revise) the ones associated with

low-probability predictions. The latter feature let us acquire a some feedback from do-

main experts (in a non-invasive way), and to partially address the issue I4 discussed

above.

The third contribution (C3) of our work descends from a series of experiments that

were carried out on a public log concerning the clinical pathways of patients in a real

hospital. The results of this empirical analysis demonstrated the validity of our ap-

proach, and its capability to achieve compelling results, compared with state-of-the-art

methods for the detection of business process deviances.

Organization The rest of the paper is organized as follows. After a brief discussion

of relevant related work (Section 2), some preliminary concepts, concerning the kind

of Bayesian model that underly our meta-learning method, are presented in Section 3.

Section 4 describes the structure of both log data and pattern-based log views, while

Section 5 explains how to combine the predictions of multiple base learners into a single

deviance probability score, by using a suitable Bayesian model. The overall learning

problem addressed in this work is formally stated in Section 6, which also illustrates an

algorithm that solves it. Section 7 illustrates the proposed system architecture for the

detection and analysis of process deviances. An empirical analysis of the approach in a

real-life scenario is discussed in Section 8, while a few concluding remarks are drawn

in Section 9.

2 Related Work

Process deviance mining The term “deviance mining” [21] indicates a class of process

mining algorithms meant to discriminate (and possibly explain) log traces featuring

a deviant behavior w.r.t. the normal or legitimate one. As discussed in [21], current

deviance mining solutions adopt two alternative kinds of approaches: (i) model delta

analysis, and (ii) sequence classification.

The former kind of approach consists in applying a process discovery technique to

both normal and deviant traces separately. The two resulting models are then compared

manually with the aim of identifying distinctive patterns for both classes of traces.

By converse, the usage of sequence classification techniques [24, 3, 20, 19] enable for

discriminating deviant traces in an automated way, by learning some kind of classifica-

tion model (e.g. a decision tree), after labeling all log traces as either deviant or normal.



Since current approaches rely on standard classifier-induction algorithm, a critical point

consists in defining a propositional encoding of the given traces, which can effectively

capture relevant (and possibly distinguishing) behavioral patterns.

Three main classes of patterns have been used in the literature, in order to produce

such a feature-based representation of each log trace, where each pattern is used as a

distinguished attribute: activity-based patterns, sequence-based patterns, and discrim-

inative patterns. Activity-based patterns [24] simply correspond to the different activ-

ities appearing in the log; for each trace and each activity, the latter is regarded as an

attribute, whose value is usually set to the number of times it occurs in the trace.

More sophisticated sequence-based patterns were exploited in [3, 23], in order to

capture the occurrence of typical execution schemes, prior to applying classic classi-

fication techniques (namely, decision tree and association rule classifiers). These pat-

terns include tandem repeats, maximal repeats, super-maximal repeats, and near super-

maximal repeats [4], as well as set-oriented abstractions of them, such as alphabet tan-

dem repeats, and alphabet maximal repeats [5].

A special kind of “discriminative patterns” was introduced in [20] for recognizing

failures among the traces of a software system, consisting each of a sequence of atomic

event types. These patterns are (possibly non contiguous) frequent subsequences that

are also correlated with the target class, based on Fisher score.

To date, there is no general consensus on which pattern family (e.g. tandem repeats,

maximal repeats) must be used to derive a vector-space view of the log traces in a

deviation-mining analysis. In fact, the empirical analysis of all the above-mentioned

sequence classification methods presented in [21] showed that, although activity-based

patterns and/or discriminative patterns sometimes perform better than others, all ap-

proaches have difficulty in discriminating and explaining certain deviances. The au-

thors conjectured that some richer encoding of the traces (e.g. exploiting further kinds

of patterns) could help better discriminate deviant cases. However, as noticed in [3],

when increasing the number of patterns, the representation of the traces becomes rather

cumbersome and sparse, and risks undermine the quality of the discovered models, as

a consequence of the “curse of dimensionality” problem. This problem may exacerbate

when mixing different kinds of patterns together (as proposed in [3]), since a redundant

representation of the traces would be produced, which may well confuse the learner,

even when some (greedy) feature selection/reduction mechanism is used.

Ensemble learning Ensemble learning methods [12] represent an effective flexible so-

lution for improving classifier performances. In a nutshell, the core idea of ensemble

approaches is to combine a set of models, all addressing the same mining task, in order

to obtain a better composite global model. Specifically, when applied to a classification

task, the prediction for any new instance is made by suitably combining the predictions

made by all the models in the ensemble. When the learners are trained on different com-

plementary views of the input dataset, the resulting meta-model will work on a space of

high-level features (corresponding to the predictions made by the base models), which

summarize the heterogeneous and large set of raw features that appear in those views.

Each ensemble method is defined in terms of three different elements: (i) the base

induction algorithms (a.k.a. base learners), (ii) an ensemble generation strategy, spec-

ifying how different base models are to be built, by applying some base learner to a



subset of the instances in the original training set, and (iii) a combination strategy,

specifying how the different models in the ensemble are to be eventually integrated.

Three standard combination strategies were defined in literature: bagging, boosting,

and stacking. Basically, in bagging schemes [8], different training datasets are used

to learn the base learners, while the final prediction is performed by either uniformly

averaging or voting over class labels. In the boosting strategy [16] instead, an itera-

tive procedure that modifies the distribution of the training examples is exploited to

focus on examples that are hard to classify correctly. The basic idea is to train, at each

round, a new model meant to compensate the errors made by earlier models. Unlike

bagging, boosting assigns weights to each training example, and the prediction results

from a weighted average approach. used to estimate the best weight function to average

base learners’ predictions. Stacking [28] (a.k.a. “stacked generalization”) adds a further

meta-learning level on the top of the base learners in order to combine their predictions,

where a new model is trained to make a final prediction, which uses all the predictions

made by the base learners as additional features of the data instances. Stacking typically

yields performance better than any single one of the trained models, and than Bayesian

model-averaging [10].

We pinpoint that the usage of ensemble learning techniques for the discovery of de-

viance detection models is novel in itself. Moreover, to the best of our knowledge, the

combination of such an approach with the extraction of multiple views of the log (based

on different sets of behavioral patterns) has never been explored in the literature.

Other multi-view learning approaches Various multi-view learning approaches exist

in the literature that do not follow an ensemble-based scheme. Many of them are con-

nected with the problem of training a predictive model on both labelled and unlabelled

data, according to a semi-supervised learning setting. In general, differently from stan-

dard (single-view) learning methods, these approaches share the idea of training distinct

classifiers out of different view of the data, and then improving all the classifiers by try-

ing to maximize the degree of their mutual agreement. A pioneering approach of this

kind, named co-training [2], takes two distinct views of the data (assumed both to con-

tain “sufficient” information for the prediction task) as input, and alternatively induces

a classifier from one of the views (while exploiting predictions made for unlabelled

instances by the classifier induced from the other view). Several solutions extending

this basic co-training scheme have been appearing in recent years. These include, for

instance, the EM-based method of [49], the approach defined in [51], performing a sort

of combinative label propagation. Notably, the combination of co-training with active

learning was explored in [46–48].

Unfortunately, the performances of all the multi-view learning approaches described

above strongly depend on the (conditional) independence assumption that all data views

are conditionally independent of one another given the label. This assumption does not

hold in the problem setting considered in this work, where the views are produced by

mapping the given log traces onto different families of structural patterns, and hence

tend to exhibit a high degree of redundancy and of inter-dependence. This is the main

reason why we did not adopt an existing co-training approach, and rather resorted to an

ad-hoc ensemble-learning strategy.



3 Preliminaries: SPODE-based Bayesian Classifiers

As discussed before, in a deviance mining setting it is important to quantify how much

confident we are in the fact that a trace really is a deviance. In order to address such

an issue in a scalable way we resort to a simple extension of the popular Naı̈ve Bayes

method, named AODE, which relaxes the strict assumption of attribute independence

(clearly not holding in our learning setting) of the latter. Before presenting the AODE

method in details, let us introduce some preliminary notions on Bayesian classifiers,

and on the Naı̈ve Bayes method. Bayesian classifiers (e.g., Naı̈ve Bayes and more so-

phisticated Bayesian Networks) combine a priori knowledge of the classes with new

evidence gathered from data by virtue of Bayes’s theorem.

Naı̈ve Bayes Let us consider an instance space consisting of m+ 1 nominal attributes

X1, . . . ,Xm,Y , such that m ∈ N
+, with Y encoding class labels (known only for training

examples). Moreover, for any attribute Z ∈{X1, . . . ,Xm,Y}, let dom(Z) be the associated

domain, i.e. the set of all possible value the attribute may take. In particular, for the class

attribute Y , let us assume that dom(Y ) = {c1, . . . ,ck}. Given an instance x= 〈x1, . . . ,xm〉
of m attribute values xi each observed for an attribute variable Xi, the classification task

consists in predicting the class label y ∈ dom(Y ) for it on the base of a training sample

of already classified objects.

Specifically, a bayesian classifier computes P(y|x) for each y ∈ dom(Y ), and assigns

to x the label y achieving the highest probability, i.e., that y for which argmaxy∈dom(Y)

(P(y|x)).
From the definition of conditional probability, we have that P(y|x) = P(y,x)/P(x)

and since P(x) is invariant w.r.t. class labels, it results that: argmaxy∈dom(Y) (P(y|x)) =
argmaxy∈dom(Y) (P(y,x)) where the latter is estimated in place of the former. Since

the Bayes’ rule states that P(y,x) = P(y) ·P(x|y), the classification problem for a new

instance x turns into finding that y ∈ dom(Y ) such that: argmaxy∈dom(Y) (P(y) ·P(x|y)).
Moreover, since P(x) = ∑y∈dom(Y ) P(y,x), one can estimate every class membership

probability as P(y|x)≈P(y,x)/∑y′∈dom(Y ) P(y′,x)=P(y,x)/(∑y′∈dom(Y ) P(y′)·P(x|y′)).
However, if the prior probability P(y) can be easily estimated from the sample frequen-

cies in the training set, it remains the problem to estimate the conditional probability

P(x|y).
The way P(x|y) is computed depends on the bayesian approach employed. For in-

stance, Naı̈ve Bayes (NB) classifiers solve the problem by assuming that attributes are

conditionally independent, given the class label y, i.e. P(x|y) = ∏m
i=1 P(xi|y). This en-

tails that, for each y ∈ dom(Y ), P(y,x) = P(y) ·∏m
i=1 P(xi|y), and, as a consequence, the

instance x is predicting belonging to that class y ∈ dom(Y ) such that argmaxy∈dom(Y)

(P(y) ·∏m
i=1 P(xi|y)).

NB classifiers are widely recognized as simple, efficient and effective approach in a

wide range of applications [31–33]. However, in certain application settings (like the

one considered in this work), the attribute independence assumption is likely to lead to

unsatisfactory accuracy results.

SPODE-based models and the AODE method To address this limitation, a lot of efforts

were recently made in order to relax such an assumption, without renouncing to the sim-



plicity and efficiency of NB classifiers. Among others, a particular attention has been re-

cently payed to a variant of NBs named one-dependence estimators (ODEs) [34]. Essen-

tially, ODEs generalize NBs by allowing that each attribute can depend on (at most) one

other attribute in addition to the class. More specifically, a subclass of ODEs, namely

SPODEs [35, 36], achieved a remarkable notoriety because of their capability to pro-

vide efficiency along with a high classification accuracy. SPODEs relax NB’s attribute

independence assumption by allowing all attributes to depend on one common attribute,

the super-parent, in addition to the class. This means that a SPODE with super-parent

Xp computes P(y,x) as: P(y,x) = P(y,xp) ·P(x|y,xp) = P(y,xp) ·∏m
i=1 P(xi|y,xp).

Typically, SPODEs are used with a sort of ensemble scheme, since it was proved that

combining multiple SPODEs decrease the variance of a single SPODE classifier and

improve the overall classification accuracy without disrupting time constraints [37, 38].

If instances in the training data set have m attributes, up to m different SPODEs –

each using a different attribute as its super-parent – can be combined. Then, a SPODE

ensemble can be obtained by linearly combining each single SPODE probability esti-

mate. In this way, the probability P(y,x) is computed as in the following:

P(y,x) =
m

∑
j=1

w j ·Pj(y,x) =
m

∑
j=1

w j ·P(y,x j) ·
m

∏
i=1

P(xi|y,x j)

where Pj(y,x) is the estimate of jth SPODE for x, and w j is the weight assigned to it in

the ensemble. Clearly, different ensemble strategies can be envisaged by changing how

SPODE’s models are selected, as well as their associated weights.

The Averaged One-Dependence Estimators (AODE) [37] method adopts a simple,

yet effective, SPODE combination strategy, where only the super-parents appearing in

the training dataset more than a minimum support threshold h ∈ N are considered2,

while weighting the estimates of the corresponding SPODEs in a uniform way. More

precisely, according to this strategy, P(y,x) is evaluated as follows:

P(y,x) =
∑ j∈S P(y,x j) ·∏m

i=1 P(xi|y,x j)

|S | (1)

where S = {1≤ j ≤m∧σ(x j)≥ h}. As the denominator does not vary over the classes,

when trying to estimate the class membership for a new instance x, one can choose its

class label y as shown below:

y = argmaxy′∈dom(Y)

(

∑
j∈S

P(y′,x j) ·
m

∏
i=1

P(xi|y′,x j)

)

(2)

In order to estimate, for each tuple x ∈ X and each possible class label y ∈ dom(Y ),
the probability P(y|x), one can simply normalize the numerator in Eq. 1 across all

classes as follows:

2 For the sake of conciseness, hereinafter it is simply assumed h = 1. This choice was also made

in all the experiments described in Section 8, even though different settings of h might have

ensured better deviance prediction results. Indeed, we believe that the problem of optimally

setting this parameter, and (more generally) of optimally selecting and weighting different

SPODEs is beyond the scope of this work.



P(y|x) = P(y,x)

∑y′∈Y P(y′,x)
=

∑ j∈S P(y,x j) ·∏m
i=1 P(xi|y,x j)

∑y′∈Y ∑ j∈S P(y′,x j) ·∏m
i=1 P(xi|y′,x j)

(3)

4 Log data and pattern-based log views

4.1 Log data and deviance labels

Whenever a process is enacted, a trace is recorded for each process instance (a.k.a

“case”), which stores the sequence of events that happened along the execution of the

instance. Let E and T denote the universes of all possible events and traces for the

process under analysis, respectively.

For each trace τ ∈ T , let τ[i] be the i-th event of τ, for i ∈ {1, . . . , len(τ)}, where

len(τ) denotes the number of events in τ. Let also prop(τ) be a tuple storing a number

of data properties associated with τ (e.g. case attributes or environmental variables).

Moreover, let PROP(T ) be the relation consisting of all the data attributes associated

with T ’s traces, so that prop(τ) for any τ∈ T . Focusing on the list of data values stored

in these tuples, we will sometimes regard prop(τ) and PROP(T ) as a vector and a vec-

tor space, respectively. Since certain learning algorithms works only (or better) over a

space of discrete input features, let us consider a discretized version of prop(τ) (for any

τ ∈ T ) and of relation PROP(T ), and denote them by prop(τ) and PROP(T ), respec-

tively. Such transformation can be accomplished with various supervised discretization

techniques, such as the well-known Fayyad and Irani’s MDL method [14] — which is

indeed the one actually used in the current implementation of our approach. Clearly, in

the case none of the data properties associated with the log traces is continuous, it is

prop(τ) = prop(τ) and PROP(T ) = PROP(T ).
Usually, any event e ∈ E can be viewed as a tuple referring to a single process in-

stance, and containing at least a timestamp, an activity identifier, and a resource identi-

fier (i.e. the identifier of the agent that performed the activity).

In particular, let us assume that a function α exists that maps each event e to the

corresponding activity identifier α(e). In general, such a function plays a key role in

process mining settings, since it allows to bring the analyzed log to a suitable level of

abstraction. Indeed, by abstracting each event e of a given trace into its corresponding

activity label α(e), we can obtain an abstract representation of the whole trace. More

precisely, for each trace τ ∈ T , let α(τ) be the sequence obtained by replacing each

event in τ with its abstract representation: α(τ) = 〈α(τ[1]), . . . ,α(τ[len(τ)])〉.
A log L (over T ) is a multiset containing a finite number of traces from T . We will

denote as events(L) the multiset of events that feature in (some trace of) L.

Let µ : T →{0,1} be a (unknown) function, allowing for discriminating all possible

deviant cases from normal ones, that assigns a class label µ(τ) to each τ ∈ L, such that

µ(τ) = 1 if τ is deviant, and µ(τ) = 0 otherwise.

Our ultimate aim is to obtain a deviance detection model (DDM), i.e. a classification

model estimating the (deviance-related) class label of any (unseen) process instance.

Such a model can be represented as a function µ̃ : T → {0,1} approximating µ over

the whole trace universe. Discovering a DDM is an induction problem, where the log



L is the collection of training instances, and the function µ is known for each trace

τ ∈ L. In the following, we will only consider DDMs that work with a propositional

representation of the traces, hence requiring a preliminary mapping of the latter onto

some suitable space of features.

4.2 Pattern-based Log views

Once log traces have been turned into symbolic sequences, a wide range of sequence

classification techniques could be applied in order to discover a deviance-oriented clas-

sification model. However, in general, this is not a valid solution for analyzing the logs

produced by many business processes, due to the peculiar nature of these processes,

where complex control-flow logics (e.g., loops, parallel execution, synchronization, ex-

clusive choices, etc.) usually govern the execution of the activities, and impact on the

possible sequences that can be stored in the log.

A consolidated approach to the analysis of process logs relies on extracting behav-

ioral patterns that can capture the occurrence of typical execution schemes [3, 23].

These patterns can be then used as high-level behavioral features for producing a vector-

space representation of the original traces, where each trace is converted into a tuple

registering a sort of correlation between the trace and one of the discovered patterns. At

this point, whatever standard classification algorithm (such as the decision tree and as-

sociation rule classifiers used in [3, 23]) can be exploited to extract a deviance-detection

model µ̃ out of this propositional view of the log.

Various kinds patterns have been used in the literature to capture common subse-

quences of activities that recur in a log (within a single trace or across multiple ones).

These patterns can be grouped into four main pattern families: individual activities [24],

sequence patterns (including tandem repeats, maximal repeats, super-maximal repeats,

and near super-maximal repeats) [4], alphabet patterns (including alphabet tandem re-

peats, and alphabet maximal repeats) [5], and discriminative patterns [20]. Individual

activities are enough when the occurrence of a particular activity in a trace really helps

identify deviant cases. However, reckoning deviant behaviors may require the usage of

more complex patterns, providing a hint for the control-flow structure of the process.

In these cases both sequence and alphabet patterns can be exploited. In particular, the

latter kind of patterns is derived from sequence ones by simply relaxing the ordering

of events (in order to unify different interleaving of parallel activities). Discriminative

patterns represent frequent (possibly non contiguous) subsequences of activities having

a discriminative power (measured via Fisher score in [20]) w.r.t. the target class.

Given a set P of patterns of the kinds described above, a vector-space representation

of each trace τ can be built by projecting τ onto the space of the patterns in P. As a

result, a propositional representation of τ is obtained that summarizes the sequence of

events appearing in τ. Such representation of the structure of a trace (i.e. of its associated

sequence of events) can be extended with non-structural data, when learning a DDM via

standard classifier-induction methods. More formally:

Definition 1 (f-View). Let τ ∈ T be a trace, α the (event abstraction) function map-

ping each event to the respective process activity, and P = [p1, . . . , pq] be a list of (be-

havioral) patterns defined over the activity labels produced by α. Then, the feature-

based view (f-View) of τ w.r.t. P, denoted by f-View(τ,P), is a tuple in R
q such that:



f-View(τ,P) = prop(τ)⊕〈val(τ, p1), . . . ,val(τ, pq)〉, where ⊕ stands for tuple concate-

nation and val(τ, pi), for i ∈ {1, . . . ,q}, is some function for computing the value that

the feature (corresponding to the pattern) pi takes on τ. �

Function val(τ, pi) can be defined in different ways, depending on the application con-

text. In general, two common criteria are used by current approaches to quantify the

correlation between a trace τ and a pattern pi: counting the number of times that pi

occurs in (the abstract representation of) τ, or simply registering the presence of pi in

(or the absence of pi from) τ by way of a boolean flag. In the current implementation

of our approach, the former option is used for individual-activity patterns, and the latter

for any other kinds of patterns. As an example, let a and b be two activity labels pro-

duced by α on the given log, say L, and let a,b a tandem-repeat pattern extracted from

L. Then, in our vectorial representation of any L’s trace, say τ, a and b are considered as

two boolean attributes (indicating whether τ contains a and b, respectively), while the

pattern a,b gives rise to an integer attribute (storing how many times a and b occur one

after the other within τ).

The vector-space representation of log traces defined above can be given as input to

any standard classifier-induction method, in order to eventually discover a deviance-

detection model (DDM). Indeed, any given labeled log L (i.e. a log where each instance

is labelled as normal or deviant) can be turned into a propositional training set, denoted

by f-View(L,P), where each tuple encodes both the structure and the data associated

with a trace of L, in addition to its class label. More precisely, f-View(L,P) is a multiset

that contains, for each trace τ ∈ L, a tuple f-View(τ,P)⊕〈µ(τ)〉 with the same multi-

plicity of τ. Clearly, the last value in each of the tuples appearing in f-View(L,P) is the

(known) class label of the corresponding trace, which represents the target of predic-

tion; all the remaining values will play as input/descriptive features, which the learner

can use to predict the class of any (possibly novel) trace.

5 Probabilistically Combining Different base DDMs

Any single pattern-based log view, like the one described in the previous section, could

be used in its own to discover a deviance detection model. By converse, we want to

effectively and efficiently exploit information provided by a collection of such views,

by devising an ensemble learning approach that combines the prediction of single-view

models (trained each on one of these views).

However, combining these models is a tricky task, mainly because the different data

views used to train the models are not orthogonal to (and independent of) one another.

Indeed, the different pattern-based log views try to summarize the behavior of the input

log traces (essentially regarded as sequences of activity identifiers) by way of different

kinds of structural patterns. Consequently, the resulting base models —yet enjoying a

certain degree of variety and the potentiality of collectively discriminating deviance-

related behaviors better than each single model in the ensemble — are likely to exhibit

a certain level of mutual dependence. This discourages the usage of simple combina-

tion strategies, such as the popular one based on majority voting. In order to devise a

more effective and robust scheme for combining the prediction of multiple (and non-

independent) base DDMs, we formulate a second-level inductive (meta-) learning task.



This task consists in training a probabilistic (AODE-based) classifier over a proposi-

tional view of the given log, where the predictions made by the base learners for each

trace of the log are used as high-level features of the trace —according to the strat-

egy of stacking approaches [28]— in addition to intrinsic data properties of the trace.

For the sake of simplicity and scalability, we consider the original formulation of the

AODE model (as reported in Section 3), where all input attributes of the training tuples

are discrete. Consequently, we assume that every numeric attribute appearing in the

space PROP(T ) of tuples’ properties is suitably transformed into a discretized space

PROP(T ).
A formal description of the stacked representation of log traces is reported next.

Definition 2 (s-View). Let τ ∈ T be a trace, CL = [c1, . . . ,ck] be a list of DDMs, and

PL = [P1, . . . ,Pk] be a list of pattern lists, such that Pi is the specific list of patterns

used to train model ci, for i ∈ {1, . . . ,k}. Let us represent each DDM as a function

ci : PROP(T )×R
|Pi| → {0,1} that maps the feature-based representation f-View(τ)

of any trace τ ∈ T to a class label —where |Pi| stands for the number of patterns in

the list Pi. Then, the stacking-oriented view (s-View) of τ w.r.t. CL and PL, denoted

by s-View(τ,CL,PL), is a tuple in PROP(T )×{0,1}k such that: s-View(τ,CL,PL) =
prop(τ)⊕〈c1(f-View(τ,P1)), . . . ,ck(f-View(τ,Pk))〉, where ⊕ denotes tuple concatena-

tion and ci(f-View(τ)) is the boolean label assigned by model ci to (the feature-based

representation of) τ, for i ∈ {1, . . . ,k}. �

Given a log L, a list CL of DDMs and a list PL of associated pattern lists, a combined

DDM can be learnt by applying another classifier-induction method to a propositional

view of L. This view, denoted as s-View(L,CL,PL), is a multiset containing, for each

trace τ ∈ L, a tuple sView(τ,CL,PL)⊕〈µ(τ)〉 with the same multiplicity of τ. The last

value of each tuple in s-View(L,CL,PL) plays as the (deviance-oriented) class label,

while the remaining values are used as input/descriptive features to predict the class.

A probabilistic meta-model: AODE combiner As discussed before, our approach to

combining multiple base DMMs relies on exploiting an AODE classifier as a flexible

and scalable meta-learning method for extracting a probabilistic DDM out of a stacked

log view of the form specified in Def. 5.1

Definition 3 (AODE Combiner). Let X=PROP(T )×{0,1}k be the space of all the in-

put attributes in the stacked view s-View(L,CL,PL), and Y be the class attribute, storing

the value of the binary3 target function µ. An AODE combiner for X is a probabilistic

(meta) classifier ĉ : X → [0,1] that maps any “stacked” tuple x ∈ X to an estimate ĉ(x)
of x’s deviance probability (i.e. ĉ(x)≈ P(Y = 1|x)) according to Eq. 3. The estimate is

computed on the basis of the following counters, derived from s-View(L,CL,PL) for all

i, j ∈ {1, . . . ,m}, xi ∈ dom(Xi), and x j ∈ dom(X j):

– D j(x j) (resp., N j(x j)) is the number of deviant (resp., normal) tuples in s-View(L,CL,PL)
that feature the value x j,

3 Clearly, in our setting dom(Y ) = {0,1}, with label 1 corresponding to deviances and label 0 to

normal cases.



– D ji(x j,xi) (resp., N ji(x j,xi)) is the number of deviant (resp., normal) tuples in

s-View(L,CL,PL) that feature both values x j and xi,

– K is the number of tuples in s-View(L,CL,PL) (all having a known value of the

deviance label),

– K j is the number of tuples in s-View(L,CL,PL) for which the value of attribute X j

is known,

– K ji is the number of tuples in s-View(L,CL,PL) for which the values of both at-

tributes Xi and X j are known. �

Notice that the counters above are sufficient to estimate every base probability of the

form P(y,x j) and P(y,x j,xi) —which, in their turn, can be exploited to estimate ev-

ery probability of the form P(xi|y,x j)— for each value x j and xi of the attributes X j

and Xi (with the former playing as super-parent), for i, j ∈ {1, . . . ,m} and y ∈ {0,1}.

For the sake of robustness, the computation of all these base probabilities is carried

out according to the Laplace estimation method [37], as specified in what follows:

P(Y = 1,x j) =
D j(x j)+1

K j+2·n j
; P(Y = 0,x j,xi) =

D ji(x j ,xi)+1

K ji+2·ni·n j
; P(Y = 0,x j) =

N j(x j)+1

K j+2·n j
; P(Y =

0,x j,xi) =
N ji(x j ,xi)+1

K ji+2·ni·n j
; P(Y = 1|x j,xi) = P(Y = 1,x j,xi)/P(x j,xi); P(Y = 0|x j,xi) =

P(Y = 0,x j,xi)/P(x j,xi).
4

6 Discovering a High-Order DDM

The remainder of this section illustrates, in two separate subsections, the specific kind

of prediction model that we want to eventually induce from a log, and our discovery

approach in algorithmic form, respectively.

6.1 Target deviance-detection model (HO-DDM)

Our ensemble-based learning approach relies on inducing multiple classification mod-

els from different propositional views of the input log (based on different kinds of pat-

terns). Specifically, each of these views is obtained by mapping the original traces onto

a distinguished set of sequence-based behavioral patterns (according to the encoding

scheme in Def. 4.1), extracted from the log while regarding each of its traces as a se-

quence of process activities. As discussed before, the different base models induced

from all of these views are combined by learning an AODE-based meta-classifier out of

a suitable stacked view. The ultimate result of our approach is a novel multi-view (and

multi-level) kind of deviance detection model, named High-Order Deviation Detection

Model (HO-DDM), which is formally defined next.

Definition 4 (HO-DDM). Let L be a log over some proper trace universe T and event

universe E, F be a set of pattern families, and M be a set of (base) classifier-induction

4 Clearly enough, P(1,x j), P(0,x j,xi), P(0,x j), P(0,x j,xi), P(1|x j,xi), P(0|x j,xi), P(x j,xi) here

stand for P(Y = 1,X j = x j), P(Y = 0,X j = x j,Xi = xi), P(Y = 0,X j = x j), P(Y = 0,X j =
x j,Xi = xi), P(Y = 1|X j = x j,Xi = xi), P(X j = x j,Xi = xi), P(Y = 0|X j = x j,Xi = xi), P(X j =
x j,Xi = xi), respectively.



method. Then a High-Order Deviance Detection Model (HO-DDM) for L, w.r.t. F and

M anis a triple of the form H = 〈CL,PL, ĉ〉, where: (i) PL = [P1, P2, . . . ,Pk] is a list

of pattern lists; (ii) CL = [c1, c2, . . . ,ck] is a list of base DDMs such that, for each

i ∈ {1, . . . ,k}, the model ci : PROP(T )×R
|Pi| → {0,1} (learnt by using f-View(L,Pi)

as training set) maps the propositional representation f-View(τ,Pi) of any trace τ ∈ T

to a class label in {0,1}; and (iii) ĉ : PROP(T )×{0,1}k → [0,1] is an AODE com-

biner for the space PROP(T )×R
|Pi| (of all the input attributes in the “stacked” view

s-View(T ,CL,PL)) such that the base counters of ĉ reflect the data distribution of the

latter. For any trace τ ∈ T , model H provides an estimate, denoted by devProbH(τ),
for the probability that τ be a deviance (i.e. P(µ(τ) = 1), which is computed as follows:

devProbH(τ) = ĉ(prop(τ)⊕〈c1(f-View(τ,P1)), . . . ,ck(f-View(τ,Pk))〉). �

This model encodes a sort of high-order deviance detector, where the predictions of

all the discovered base classifiers are combined with the help of a second-level clas-

sifier (discovered through a stacking-based meta-learning strategy). Clearly, the model

is meant to be possibly predict whether any unseen trace τ is deviant or not. To this

purpose, each base model ci in the ensemble is applied to the vector-space representa-

tion f-View(τ,Pi) of τ produced according to the list Pi of patterns ci is associated with,

as specified in Def. 4.1. The predictions made by all the base models in CL are then

combined into a single probabilistic prediction by the meta-model ĉ. The latter model

takes as input a propositional view of τ mixing (a discretized version of) the original

data properties of τ (i.e. prop(τ)) with the class labels assigned to τ by the base models.

The deviance probability score devProbH(τ), returned by the model for any trace τ,

can be used to eventually decide its label µ(τ). A straightforward approach consists in

fixing µ(τ) = 1 iff devProbH(τ)> 0.5. However, for the sake of flexibility, one can leave

to the analyst the freedom of setting a suitable probability threshold γ ∈ (0,1), so that

µ(τ) = 1 iff devProbH(τ) > γ. The possibility to tune such a decision boundary (and

an associated uncertainty margin) is discussed in more details in the deviance detection

framework presented in Section 7.

6.2 Algorithm HO-DDM-mine

Our approach to the discovery of a HO-DDM from a given log L is summarized in

Figure 2 in the form of an algorithm, named HO-DDM-mine.

The algorithm follows a two-phase computation strategy. In the first phase (Steps 2-

10), a number of base classifiers are discovered by applying a given set (specified via

the input parameter M ) of inductive learning methods to different views of L, obtained

each by projecting the traces in L onto a different space of features. In the second phase

(Steps 11-12), all of these base classifiers are combined into a single DDM, based on a

meta-learning (stacking) procedure.

In more detail, the different views of L are produced according to a given set F of

pattern families (specified by the analyst as one of the input parameters of the algo-

rithm): for each pattern family, a list P of relevant patterns of that family are extracted

from the log L, by using function minePatterns (Step 3). The second parameter of the

function is right the reference family of patterns, while the third is the maximum num-

ber of patterns that can be generated for each family. In the current implementation of



Input: A log L, over event universe E and trace universe T ;

Params: A set F = {F1, . . . ,Fn} of pattern families, resampleMode ∈ {NONE,OS},

resampleFactor ∈ N, a set M = {M1, . . . ,Mn} of classifier-induction methods,

and the maximal number q of patterns per family;

Output: An HO-DDM for L w.r.t. F and M ;

1. CL := [ ]; PL := [ ]; // initialize both lists CL and PL as empty

2. for i = 1, . . . , |F | do

3. P := minePatterns(L,Fi,q); // extract a list P of patterns of family Fi

4. Compute T S = f-View(L,P); // cf. Def. 4.1

5. if sMode = OS then reBalance(T S,resampleFactor);
6. for j = 1, .., |M | do

7. Induce a DSM c by applying method M j to T S;

8. append(CL,c); append(PL,P);
9. end

10. end

11. Compute SS = s-View(L,CL,PL); // cf. Def. 5.1

12. ĉ := MineCombiner(SS);
13. return 〈CL,PL, ĉ〉.

Function MineCombiner (SS: propositional dataset): an AODE combiner;

F1. Let ĉ an “empty” AODE model such that all its internal counter are set to 0;

F2. DiscretizeNumericAttributes(SS);

F3. UpdateCombinerCounts(ĉ,SS);

F4. return ĉ;

Fig. 2. Algorithm HO-DDM-mine

the approach, the selection of the q-top patterns is based on their frequency: the patterns

with the highest q values of support in the log are kept, and returned as output.

Based on the list P of patterns extracted, a propositional view T S of L is produced,

where each trace τ of L is turned into a tuple f-View(τ,P) —mixing both the data prop-

erties of τ and its representation over the space of P’s patterns (Step 4), as described in

Def. 4.1— and labelled with its associated class (i.e. either deviant or normal).

Before the classifier-induction methods specified in the input list M are applied to

T S, in order to generate different base classifiers (Steps 6-9), the log can be further

preprocessed in a way that reduces the imbalance of the two classes (namely, deviant

instances vs. normal ones). Specifically, when the analyst decides to set the input param-

eter sMode to OS, an oversampling procedure is applied to T S with the help of function

reBalance, which alters the classes’ distribution by simply repeating each deviant trace

in the training log a number resampleFactor of times (Step 5). No rebalancing is done

instead when sMode = NONE.

Once all base classifiers have been induced, and stored in the list CL, they are com-

bined into a single overall meta-classifier according to a stacking strategy. To this pur-

pose, first an s-View SS of L is computed (Step 11) according to Def. 5.1; then an

AODE-based meta-classifier ĉ is induced from SS, by way of function mineCombiner,

described in more details later on.



The last step of the algorithm simply combines the discovered base classifiers (with

their associated pattern lists) and the meta classifier into an overall HO-DDM.

Function mineCombiner This function is meant to construct an AODE-combiner

model (as specified in Def. 5.2, using, as training set, a propositional dataset SS —as

discussed before, this dataset represents a (labelled) stacked view of the log, where

the input attributes include both the data properties of the given log’s traces and the

predictions made by a number of base DDMs, discovered from different pattern-based

views of the traces. After initializing all the internal counters 5 of the AODE com-

biner, the mineCombiner possibly manipulates SS by using the auxiliary procedure

DiscretizeNumericAttributes. More specifically, the latter procedure first com-

putes a binning scheme for each numeric attribute, say Xq, that appears in SS, and

then converts each of the values that Xq takes within (a tuple of) SS according to that

scheme. Obviously, in case there are no numeric attributes in PROP(T ), the transforma-

tion made by DiscretizeNumericAttributes is immaterial, and SS is left unchanged.

Finally, all the internal counters of the AODE combiner are updated as to reflect the way

the values of the attributes and of the classes actually appear in SS. The current imple-

mentation of the function leverage the A1DE plugin of the popular Weka library [15],

while exploiting the MDL-based method proposed in [14] for the discretization of nu-

meric attributes.

7 System Architecture for Process Deviances’ Detection and

Analysis

This section illustrates the conceptual architecture, depicted in Figure 7, of a system

supporting the detection and analysis of deviant execution instances, produced by the

enactment of real business processes. The system —which is still under development—

hinges upon a full Java implementation of the learning approach described in the pre-

vious section, and it is meant to enable for fully exploiting and improving the deviance

detection models discovered with our approach.

In more details, the system combines different functionalities, organized in four main

blocks: (a) a HO-DDM Learning block, supporting the induction of HO-DDMs from

the training set; (b) a HO-DDM Evaluation block, allowing the analyst to test the effec-

tiveness of a HO-DDM according to several quality metrics; (c) a Deviance Detection

and Investigation block, responsible for both applying the HO-DDMs to new traces and

providing the analyst with tools for analyzing (and possibly revising) the assignment of

traces to classes (deviant vs. normal); and finally (d) a HO-DDM Improvement block,

which tries to acquire knowledge, from the analyst, about a reduced number of cases

(in a semi-supervised fashion, and in the spirit of active-learning approaches), in order

to improve the capability of a discovered HO-DDM to correctly discriminate deviant

from normal traces.

Before describing each single block in the architecture in details, let us introduce, for

the sake of clarity, two real thresholds γ and δ, which can be tuned by the analyst, in

5 of the form D j(x j), N j(x j), D ji(x j,xi), N ji(x j,xi), K j , K ji, where i, j ∈ {1, . . . ,m}, xi ∈
dom(Xi), Xi is the i-th input attribute in the stacked view SS



order to control the way every deviance probability score devProbH(τ) (i.e. the proba-

bility that a trace τ is a deviance based on some discovered HO-DDM model H) will be

used in practice for deviances’ detection and analysis purposes. Specifically, γ ∈ (0,1)
is the “deviance border” threshold such that any trace τ is eventually predicted to be

deviant (resp. normal) iff devProbH(τ) > γ (resp. devProbH(τ) ≤ γ). The latter “un-

certainty” threshold δ ∈ (0,1) can be used to define an “uncertainty” range around γ,

so that every trace τ falling in the range —i.e. such that |devProbH(τ)− γ| ≤ δ, τ— is

considered as uncertain. By converse, τ is deemed as a high-confidence deviance (HC-

deviance) if devProbH(τ) > γ+ δ), and a high-confidence normal case (HC-normal) if

devProbH(τ) < γ− δ).

Let us now turn to describing the main components of the prospected system archi-

tecture. The HO-DDM Learning block is in charge of inducing a HO-DDM model from

a set of traces, generated by the enactment of a some business process in the BPM En-

actment Platform and saved into a log. A sample of these traces is labeled by domain

expert, as a result of suitable inspection and analysis tasks. The labeled traces are then

imported, through the Log Gateway block, into the (Labeled) Example Traces repos-

itory, acting as quickly accessible source of reliable data for the HO-DDM Learning

block.

The steps toward the induction of a HO-DDM (cf. Algorithm 2) are performed by

three different modules: (i) the Pattern Extraction module; (ii) the Data Transforma-

tion module, and (iii) the Classifier Induction module. Specifically, the Pattern Extrac-

tion module extracts and uses four different types of structural patterns defined in [4, 5],

by leveraging the plugin Signature Discovery available in the ProM framework [1]: tan-

dem repeats, alphabet tandem repeats, maximal repeats, and alphabet maximal repeats.

These extracted patterns are then used by the Data Transformation module to support

the derivation of all the kinds of log views (namely, f-View and s-View) employed by

our approach. Roughly, it produces a boolean vector-space representation of the given

traces, where each pattern is regarded as a distinguished attribute, taking a value of 1

iff the pattern occurs in the trace. The latter module also supports the derivation of a

bag-of-activity representation of the traces. The Classifier Induction module induces a

HO-DDM by leveraging the plugin A1DE available in the Weka library [15]. The in-

duced HO-DDM model is then saved into the HO-DDM Repository for being further

exploited to classify novel traces.

The HO-DDM Evaluation block supports the testing of discovered HO-DDMs. Specif-

ically, the Metrics Computation module provides the analyst with several quality met-

rics (e.g., AUC, G-mean, Recall, and Precision), precisely tailored to our deviance de-

tection setting, and described in detail in the experimental section. In addition, the ROC

Analysis module, by supplying the analyst with visual tools like ROC curves, helps

him/her choice an effective deviance-prediction scheme, by suggesting, in particular,

which setting of deviance-border threshold γ can maximize the model’s predictiveness.

The Deviance Detection and Investigation module allows to apply any discovered

HO-DDM model to new log traces, as well as to help the analyst to efficiently investi-

gate whether they actually represent deviant instances or not. In particular, each time a

new trace is provided to the HO-DDM Application module, the HO-DDM model of the

corresponding process (stored in the HO-DDM Repository) is applied in order to obtain
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Fig. 3. System architecture for HO-DDM-mine.

a reliable classification for it. As soon as an instance is deemed as a HC-deviance, the

Alert Notifications module immediately notify the analyst (and/or managers), in order

to start investigation and possibly undertake suitable counter-measures. In any case,

all predictions (either deviant or normal ones), along with their probability scores, are

stored into the Prediction Repository for further inspections and analyses. To simplify

the inspection of the most critical deviant traces, the Deviance Investigation module

provides (either on-demand or periodically) the analyst with a probability-ranked list of

deviations —the greater the devProbH(τ), the higher the rank. By looking at such de-

viant traces, and by leveraging her/his domain expertise, the analyst may autonomously

decide to change the predicted class label of one (or more) instances at a time. All the

instances whose class labels have been manually changed by the analyst are marked

with a flag (emphasizing their expert-driven validation status), and loaded into the Pre-

diction Repository. Clearly, the presence of such misclassified traces reveals a certain

degree of impreciseness of the current HO-DDM model. This could be due to different

factors such as noise (i.e. errors) in the log, the lack of an adequate amount of deviance

examples for training an accurate predictor, or even concept-drift phenomena that made

the current HO-DDM model unable to reflect profound changes in the nature of both

normal and deviant behaviors.



In order to improve the capability of a discovered HO-DDM to better discriminate de-

viant traces from normal ones, the HO-DDM Improvement block exploits information

on new process instances (different from those initially used to train the model) and on

the labels they have been assigned (by the model, or by the analyst). In order to possibly

get a limited amount of feedback from the analyst, the block allows her/him to inspect

a number of uncertain predictions (i.e. any new trace τ such that |ProbH(τ)− γ| < δ),

and to confirm/revise the class label predicted for them. In case the class label of an un-

certain trace is changed by the analyst, it is flagged again as “manually modified” in the

Prediction Repository. Therefore, at any time, the Prediction Repository will store both

“optimistically trusted” traces (i.e. traces whose prediction has been consolidated im-

plicitly over a long enough timespan, for it was not re-labeled manually by the analyst)

and re-labeled ones (i.e, trace flagged as manually-modified). The latter category of

traces, in its turn, primarily includes uncertain instances that have been disambiguated

by the analyst, but it may possibly contain a number of HC-deviances (i.e. traces auto-

matically labelled as deviances with a sufficiently high degree of confidence) that were

manually revised by the analyst after inspection. When the number of manually revised

instances exceeds a certain value, the analyst can decide to trigger a new learning pro-

cess, in order to obtain an updated version of the HO-DDM model taking advantage

of such newly generated training instances. Two options are available: (1) to incremen-

tally update the AODE combiner (i.e., the meta-classification layer in the HO-DDM)

only, by simply applying function updateCombiner on these new (implicitly or explic-

itly) validated examples, or (2) training a completely new HO-DDM by launching again

algorithm HO-DDM-mine over all the process traces in the Prediction Repository.

8 Experiments

In order to assess the capability our approach of effectively recognizing deviant behav-

iors, we conducted a series of tests on a real-life log, storing information on the clinical

pathways of gynecologic cancer patients within a Dutch hospital, and made available

as a benchmark dataset for the 2011 BPI Challenge [13].

8.1 Dataset

Basically, the log registers information concerning the activities (mainly corresponding

to the application of treatments) performed on patients suffering from common types of

cancers to the genital tract. The raw event log contains 150,291 events, referring to 624

distinct activities, and 1,142 cases, corresponding each to a distinguished patient.

A number of attributes are stored for each case, which include the age of the re-

spective patient, and two categories of attributes that concern the kinds of illness the

patient was diagnosed with: “diagnosis code” and “diagnosis”. Precisely, a case may

be associated with up to 16 alpha-numeric diagnosis codes (e.g., M13, M12, 106), stored

into different attributes of the form Diagnosis code, Diagnosis code:1, . . . , Diagnosis

code:15, each referring to a distinguished type of cancer at a certain stage of malig-

nancy. For example, code M13 identifies a kind of cervix cancer. Similarly, each case

contains 16 attributes of category “diagnosis” —namely, Diagnosis, Diagnosis:1, . . . ,



Diagnosis:15— that can store each a short description of an illnesses (e.g. “maligniteit

ovarium’, “maligne neoplasma cervix uteri”) diagnosed to the patient.

The main event attributes stored in the log are: concept:name (resp., Activity code),

storing the name (resp., code) of the activity performed; Specialism code, storing the

code of the medical specialism related to the activity; org:group and Producer code,

which both represent the activity’s executor, but at different granularity levels. Specifi-

cally, attribute org:group indicates the department/lab where the activity was performed,

while the latter attribute stores an identifier of the person who performed the activity.

Since the traces in the log have no predefined class label, in order to make them

suitable for a deviance mining task, we firstly marked each of them as either “normal”

(label = 0) or “deviant” (label=1), by adopting one of the deviance criteria (namely, the

one referred to as BPIC11CC) introduced in [21]. Specifically, we labeled as deviant all

the traces referring to patients diagnosed with a cervix cancer, i.e. all the traces where

attribute Diagnosis evaluates “cervix cancer”. Notably, we choose this particular defi-

nition of “deviant” clinical cases because it corresponds to the highest class imbalance

ratio, among all those explored in [21]: 225 deviant cases (less than 20% of all traces)

vs. 917 normal ones.

For the sake of fairness, we preprocessed the log by removing all the attributes (in-

cluding those of categories “diagnosis code”, “diagnosis”, and “treatment code”) di-

rectly linked to the class label, which would make trivial the deviance detection task.

8.2 Evaluation Metrics

Different evaluation metrics exist in the literature for testing the effectiveness of classi-

fication models in the presence of a rare class. Indeed, the usage of metrics that do not

adequately accounts for the rarity of such a minority class may lead to overestimating

the real capability of a classifier to correctly recognize the instances of that class. In the

following we only concentrate on a binary imbalanced classification problem (as our

deviance detection problem is), where the “positive” class label (namely 1) is assigned

to deviant (typically rare) instances, while the “negative” class (namely 0) is assigned

to the remaining (normal) ones.

Some core count-based statistics (usually shown in the form of a “confusion” matrix)

for evaluating a classifier are: (i) True Positives (T P), i.e. the number of positive cases

correctly classified as such; (ii) False Positives (FP), i.e. the number of negative cases

incorrectly classified as positive; (iii) False Negatives, i.e. the number of positive cases

incorrectly classified as negative; and (iv) True Negatives, i.e. the number of negative

cases correctly classified as such.

Classification accuracy is the fraction of cases classified correctly: (T P+TN)/(T P+
FP+FN +T N). Despite this is a widespread evaluation metric, it is not appropriate

when the classes are imbalanced. For instance, in a log where only 1% of traces are

deviant, a simple model that predicts every trace as normal would have an accuracy of

99%, although it does bot recognize any deviant instance.

A popular metrics that can be safely used over imbalanced data is the area under the

ROC curve (AUC) [7]. Essentially, ROC curves are a visual tool for comparing the per-

formances of different classifier induction methods, over a Cartesian plane where the

vertical an horizontal axes represent the true positive rate (TPR = TP/(T P+FN)) and



false positive rate (FPR = FP/(T N +FP)), respectively. A ROC curve of an induc-

tion method is drawn by plotting the score pairs (T PR,FPR) of different classification

models discovered with the method. This curve essentially shows to what extent the

“accuracy” (measured via the TPR score) on positive examples tends to drop when re-

ducing the error rate (measured via the FPR score) on negative examples. AUC is a

compact average measure for the performances of a classifier (the higher the AUC, the

better the classifier), which let us to quantify its classification potential.

The geometric mean
√

TPR ·TNR, namely G-mean, was introduced in [18] as an-

other performance metrics suitable for the case of imbalanced classes. The best classi-

fier according to this metrics is the one that maximizes the accuracies on both classes,

while keeping them balanced.

We also evaluated the standard Precision (P) and Recall (R) [9] measures on the class

of deviant instances, in order to support fine grain analyses on the misclassification

errors made over those instances: P = T P/(TP+FP) and R = T P/(TP+FN).

8.3 Parameter Settings

Two key ingredient of our approach are: (i) the kind of patterns used to project the log

traces onto a vector space, and (ii) the classifier-induction methods employed to derive,

from such a feature-based representation of the traces, the base and combined models

that compose the overall HO-DDM returned by the approach.

As concerns the former point, as a first family of behavioral patterns, denoted by

IA (i.e. individual activities), we simply considered all the process activities in their

own. In this case, for any trace, we regard each activity, say a, as an additional (pattern-

oriented) feature of the trace, storing the number of times that a occurs in the trace.

In order to produce more sophisticated representations of traces’ behaviors, we consid-

ered (as also done in [3, 21]) all the sequence-based patterns described in Section 7,

possibly capturing control-flow constructs (e.g., subprocesses, loops, and parallelism)

ruling the behavior of the analyzed process: tandem repeats (TR), alphabet tandem re-

peats (ATR), maximal repeats (MR), and alphabet maximal repeats (AMR). As mentioned

previously, all patterns but AI ones, were used as boolean attributes when computing

the f-View of each trace, taking a value of 1 iff the pattern occurs in the trace. Similarly

to [21], we considered the following heterogenous families of patterns: (i) {IA}, i.e.

individual activities used alone (producing a bag-of-activity representation of traces’

structure); (ii) {IA,TR}, i.e. the combination of individual activities and of tandem re-

peats; (iii) {IA,ATR}, i.e. individual activities combined with alphabet tandem repeats;

(iv) {IA,MR}, i.e. individual activities plus maximal repeats; (v) {IA,AMR}, i.e. individ-

ual activities plus alphabet maximal repeats.6

These pattern families were provided as input to algorithm HO-DDM-mine (via pa-

rameter F ), in order to make it build 5 different views of the given log.

A fixed setting was used in all the tests for the parameters q and resampleFactor.

The former was always set to 250 as in [21], while parameter resampleFactor (really

used by algorithm HO-DDM-mine only when resampleMode = OS) was kept fixed to

6 Notice that, differently from [21], we have not considered the usage of discriminative pat-

terns [20], for we were not not able to obtain the source code for computing them.



2. This way, all the deviant (i.e. positive) traces in the log were duplicated, thus raising

the ratio between deviant and normal traces from 1:4 to about 1:2.

As to the induction of the base classifiers, we resorted to the following methods cur-

rently implemented in our prototype system, as described in Section 7: the decision-tree

learning method J48 [22]; the k-NN procedure IBk (with k fixed to 10); the multi-layer

perceptron method (denoted hereinafter as ANN) [29]; the LibSVM Support-Vector-

Machines classifier [11] with an RDF kernel; and the rule-base classifier JRip [27].

8.4 Experimental Findings

In order to assess the validity our approach, we conducted a series of tests on the real

log described before. To this regard, Table 2 summarizes the results obtained by algo-

rithm HO-DDM-mine, compared with those of the deviance mining approach proposed

in [21].

For the sake of comparison, as discussed in details in the previous subsection, we

used the same families of patterns (apart from discriminative patterns), and the same

(or a slightly enlarged) collection of classifier-induction methods as in [21]. However,

our approach neatly differs from the one in [21] in two respects: (i) the possibility to

exploit an oversampling mechanism, and (ii) the usage of an automated ensemble-based

strategy, which intelligently integrates the models discovered by applying those differ-

ent learning methods to different pattern-based views of the log —each of these models

is used instead in [21] as an alternative “isolated” solution to the deviance detection

problem.

In order to make a fair comparison, we turned the probabilistic predictions provided

by our HO-DDMs into deterministic ones, by simply assigning each test trace to the

class with maximum probability —this corresponds to using a fixed deviance boundary

threshold γ = 0.5— without exploiting any kind of feedback from the analyst.

A first look a the competitor’s results Since the approach in [21] consists in applying

each learning method to each distinct view of the log (generated according to one of

the pattern families described in the previous subsection), it produces the 15 indepen-

dent DDM models shown in Table 1 —namely, J48{IA}, . . ., J48{IA+AMR}, IBk{IA}, . . .,
IBk{IA+AMR}, ANN{IA}, . . ., ANN{IA+AMR}—which should be compared with the ones

discovered by our approach. However, it is easy to notice that the outcomes in Table 1

are almost all very close to one another, and no one single DDM can be clearly declared

winning over its competitors in all the quality metrics simultaneously. For instance,

the AUC value for the IBK{IA} model is 0.798, while that for ANN{IA+T R} is 0.795

—this difference of less than 5% in their values reveals that they are practically equiv-

alents to one another in terms of AUC performances. The same holds for the G-Mean

of J48{IA+MR} (0.599), which is very close again to that of IBk{IA} (0.597). Similar

considerations can be easily spotted as well for the remaining metrics. In such a sit-

uation, choosing the most suitable competitor to run against HO-DDM-mine is not a

straightforward task.

Summarizing the competitor’s achievements In order to enable an easier comparison

of our approach to the alternative settings of the competitor approach presented above,



Table 1. Prediction results on the BPIC11CC log by base classifiers for different patterns. All

the values were computed by averaging the results of 5 trials, performed according to a 5 fold

cross-validation scheme. For each metrics, the best outcome is reported in bold.

Alg. Patterns AUC G-Mean R P AvgRank AvgRank 5%

IBk

{IA.AMR} 0.771±0.019 0.538±0.049 0.321±0.062 0.458±0.106 9.00 2.75

{IA.ATR} 0.782±0.024 0.566±0.062 0.362±0.092 0.476±0.108 4.25 1.50

{IA.MR} 0.779±0.020 0.538±0.050 0.321±0.062 0.456±0.097 8.25 2.75

{IA.TR} 0.772±0.028 0.545±0.111 0.351±0.151 0.411±0.076 9.00 2.25

{IA} 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084 1.75 1.00

ANN

{IA.AMR} 0.787±0.023 0.451±0.066 0.222±0.076 0.468±0.146 8.75 3.75

{IA.ATR} 0.780±0.020 0.470±0.124 0.261±0.172 0.409±0.144 10.50 3.50

{IA.MR} 0.777±0.026 0.523±0.201 0.360±0.271 0.412±0.082 8.75 2.25

{IA.TR} 0.795±0.038 0.512±0.182 0.339±0.227 0.417±0.049 8.00 2.75

{IA} 0.779±0.037 0.426±0.032 0.198±0.028 0.359±0.107 12.75 4.75

J48

{IA.AMR} 0.740±0.066 0.587±0.099 0.397±0.139 0.459±0.082 6.50 1.50

{IA.ATR} 0.768±0.019 0.570±0.098 0.378±0.134 0.425±0.070 7.00 1.75

{IA.MR} 0.746±0.069 0.599±0.090 0.412±0.128 0.459±0.086 5.00 1.50

{IA.TR} 0.706±0.062 0.458±0.100 0.244±0.105 0.370±0.091 13.75 4.50

{IA} 0.757±0.044 0.561±0.103 0.359±0.138 0.496±0.042 6.50 2.00

MAX 0.798±0.034 0.599±0.090 0.412±0.128 0.496±0.042 1.75 1.00

we devised a method for summarizing the performances of the latter. More precisely,

we defined three different criteria for choosing the best achievement of the competitor

approach: (i) BEST OF BEST, (ii) BEST AVG RANK, and (iii) BEST AVG RANK 5%.

As to the BEST OF BEST row, it simply reports, for each evaluation method, the best

value (i.e. the maximum) obtained by all of the different configurations of the approach

in [21] in each single metric. To make clear which values are chosen, the best outcome

in each column (i.e. performance metric) of Table 1 have been marked in bold. For

the reader’ convenience, these values are also explicitly reported in the row with the

MAX label at the bottom of the same table. Clearly, it is important to point out that this

row provides an overestimated evaluation of the competitor approach, which may not

correspond to any actual configuration of it. In a sense, this row is a sort of upper bound

for the performance of all the considered configurations of the competitor.

Therefore, in order to provide a more realistic (yet concise) term of comparison,

we defined a second criterion for a further competitor, denoted by BEST AVG RANK,

aiming at meaningfully aggregating all the results obtained with the approach of [21]

and reported in Table 1. The way this competitor is actually determined is explained in

the following.

Let C be the set of all DDM models discovered by the tested methods, and M =
{AUC,G-Mean,R,P} be the set of metrics considered in our evaluation setting. For any

model c ∈C and any metrics m ∈ M, let score(c,m) be the value returned by evaluating

m against c. Based on these values, we ranked the models in C over each metrics. More

clearly, rank(c,m) = 1 (resp., rank(c,m) = k) iff c is the best (k-th best) performer

according to metrics m. Considering all metrics equally important for assessing the

quality of a DDM, we computed an overall average ranking score for each model c ∈C

as follows:

AvgRank(c) = .25× (rank(c,AUC)+ rank(c,G-Mean)+ rank(c,R)+ rank(c,P))



The BEST AVG RANK model, selected among all the other models discovered by (using

different configurations of) the approach of [21], is the one reaching the highest value

of the overall ranking score AvgRank.

Example 1. Let us consider the the model IBK{IA}, discovered with method IBk on

individual-activities features (i.e., by using only the family IA of patterns) Accord-

ing to the values in Table 1, it can be easily noted that rank(IBK{IA},AUC) = 1 since

IBK{IA} is scored higher than any other model on the AUC metric (i.e. it achieved the

maximum score over the AUC column). By converse, rank(IBK{IA},G-Mean) = 2 –the

same holds also for the metrics R and P– since IBK{IA} is the second best performer

according to the G-Mean metric. As a final result, we obtain the overall rank-oriented

score AvgRank(IBK{IA}) = .25× (1+ 2+ 2+ 2) = 0.25× 7 = 1.75. According to this

ranking criterion, the model returned by IBk on the IA-based log view is deemed as the

best result of the approach in [21], namely BEST AVG RANK, with an average rank of

1.75. �

For the sake of comparison, the row of Table 2 marked as BEST AVG RANK reports

the quality measures received by this model, as a second term of comparison for our

approach.

The way the BEST AVG RANK competitor has been computed might be susceptible to

criticisms due to numeric approximation problems possibly plaguing very close val-

ues. Indeed, it may happen that two models have performance scores so much close

among them (i.e. under a certain approximation threshold z) that could be retained un-

fair assigning them different ranks. In order to preventively cope with such potential

concerns, we considered a third evaluation strategy accounting as equivalent two mod-

els c1,c2 ∈ C w.r.t. a given metric m ∈ M if the difference between their values falls

below a specified threshold z. More formally, this can be stated as in the following:

rank(c1,m) = rank(c2,m) iff |m(c1)−m(c2)| ≤ z×min(m(c1),m(c2))

As a consequence of the definition above, a new rank AvgRank z% can be easily de-

fined. Specifically, in our setting we considered as a reasonable approximation a thresh-

old of 5% (i.e. z = .05), and then we selected the competitor BEST AVG RANK 5% (cf.

last row of Table 2) according to the index AvgRank 5%.

Example 2. Let us focus again on the IBkIA model, and let z = .05 be the thresh-

old value used for alleviating the numeric approximation problem in our calculus.

Based on Table 1, it results that rank(IBK{IA},AUC) = 1, as IBK{IA} performs bet-

ter than any other approach over the metric AUC. However, under this new threshold-

based setting, rank(IBK{IA},G-Mean) = 1, although the best performer w.r.t. the met-

ric G-Mean is J48{IA,MR}. Indeed, IBK{IA} and J48{IA,MR} are ranked equally due to

the fact that |G-Mean(IBK{IA})−G-Mean(J48{IA,MR})| = |0.597− 0.599| = .002 ≤
.05 ×min(0.597,0.599) = .05× 0.597 = .03. Similar considerations apply for met-

rics R and P. Therefore, we have that AvgRank 5%(IBK{IA}) = .25× (1+ 1+ 1+ 1) =

0.25×4 = 1.00. As a consequence, IBK{IA} is the best performer according to criterion

AvgRank 5%, i.e. the BEST AVG RANK 5% model. Please, notice that, by pure chance, it

incidentally coincides with the BEST AVG RANK model. �



Table 2. Prediction results on the BPIC11CC log by HO-DDM-mine and the competitor methods

(proposed in Nguyen et al.) All the values were computed by averaging the results of 5 trials,

performed according to a 5 fold cross-validation scheme. For each metrics, the best outcome is

reported in bold.

Methods AUC G-Mean R P

HO-DDM-mine (RESAMPLING + MORE CLASSIFIERS) 0.853±0.053 0.736±0.022 0.598±0.042 0.742±0.049

HO-DDM-mine (RESAMPLING) 0.819±0.044 0.722±0.047 0.584±0.080 0.715±0.047

HO-DDM-mine (NO RESAMPLING) 0.813±0.026 0.648±0.039 0.469±0.056 0.502±0.082

Nguyen et al.[21] (BEST OF BEST) 0.798±0.034 0.599±0.090 0.412±0.128 0.496±0.042

Nguyen et al.[21] (BEST AVG RANK) 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084

Nguyen et al.[21] (BEST AVG RANK 5%) 0.798±0.034 0.597±0.043 0.397±0.072 0.493±0.084

Clearly, by the way it is computed, the performances of our competitor in its BEST OF BEST

setting are always better than that in both the BEST AVG RANK and BEST AVG RANK 5%

ones. Therefore, the comparative analysis carried out in the following is focused on the

(“optimistic” for the competitor) BEST OF BEST scenario.

Comparing HO-DDM-mine’s results with the best ones of the competitor approach

Table 2 reports the quality scores obtained by the models discovered with three dif-

ferent configurations of algorithm HO-DDM-mine: (1) NO RESAMPLING, where no re-

sampling procedure (i.e. resampleMode =NONE) is applied to the transformed log (in

order to reduce the class imbalance ratio), and the same set of (base) inductive learn-

ing methods as in [21], i.e. M = {J48, IBk,ANN} is used; (2) RESAMPLING, using

our basic oversampling scheme (i.e. resampleMode = OS and resampleFactor = 2),

along with the same battery of base classifiers as in the previous configuration (and

in [21]); (3) RESAMPLING + MORE CLASSIFIERS, which uses the same oversampling

setting as in configuration 2 (i.e. resampleMode = OS and resampleFactor = 2) while

exploiting all the classifier-induction methods provided by our prototype system (i.e.

M = {J48, IBk,ANN,LibSVM,JRip}).

The three bottommost rows in the same table report, as a term of comparison, the

best scores obtained by all the settings of the competitor approach illustrated above,

and computed according to the three criteria (namely, BEST OF BEST, BEST AVG RANK,

and BEST AVG RANK 5%) explained in the previous paragraph.

From the figures in this table, we can draw several interesting observations. First,

the proposed approach, even in the basic NO OVERSAMPLING configuration, performs al-

ways better (over all the quality metrics) than the competitor, whatever configuration is

used for the latter. This confirms the validity of using an ensemble-learning approach to

the deviance detection problem, which seems to take the best of different data transfor-

mation and data mining schemes, and improve the performances of them all.

The gain w.r.t. the approach in [21] becomes more marked when using our (basic)

oversampling procedure (i.e. configuration OVERSAMPLING). In more detail, even though

the increment in terms of AUC is moderate (2.62%), we can observe a significant gain

for the metric G-Mean (20.53%), and a noticeable 44.15% (resp. 41.74%) achievement

in terms of precision (resp. recall).

Further improvement is obtained by our approach when letting it use a broader range

of base classifiers —actually, we only extended the learning methods used by our com-



Table 3. Prediction results on the BPIC11CC log by HO-DDM-mine when using different

learning algorithms (as an alternative to our AODE-based method) to implement the function

mineCombiner (see Figure 2). All the values were computed by averaging the results of 5 tri-

als, performed according to a 5 fold cross-validation scheme. For each metrics, the best outcome

is reported in bold.

Meta-algorithm AUC G-Mean R P

AODE (default) 0.853±0.053 0.736±0.022 0.598±0.042 0.742±0.049

AdaBoostM1 0.811±0.056 0.719±0.039 0.579±0.057 0.710±0.070

J48 0.748±0.057 0.724±0.048 0.584±0.065 0.718±0.071

JRip 0.715±0.029 0.693±0.033 0.543±0.040 0.676±0.061

Logistic 0.789±0.052 0.712±0.033 0.570±0.049 0.696±0.042

petitor with the insertion of LibSVM and JRip. Indeed, in this case, a gain of 6.89%

(resp., 22.87%, 49.59%, 45.14%) is obtained in terms of AUC (resp., G-Mean, preci-

sion, recall) w.r.t. the overestimated BEST OF BEST configuration.

In summary, it seems that the combination of an oversampling method with our

ensemble-learning strategy helps obtain higher improvements (w.r.t. the competitor su-

pervised deviance-detection approach) than exploiting a wider range of base classifiers.

Before leaving this section, it is worth noticing that HO-DDM-mine took an average

time of 25.13 seconds to compute a HO-DDM in the tests described so far. This corre-

sponds to less than a 1% increase w.r.t. the time that would be spent by launching all

the considered configurations of the approach of [21] (using different sets of behavioral

patterns and different classifier-induction algorithms), in order to eventually select the

best among the models discovered by them. Notably, a great fraction (namely, 98%) of

the computation time was spent in the extraction of the behavioral patterns, which was

particularly expensive for the case of tandem repeats and maximal repeats. This sug-

gests that higher scalability could be obtained by using some more aggressive strategy

for pruning the search space when computing such patterns, rather than simply using an

extract-and-filter strategy (like that used in the current implementation of our approach).

Evidence for the benefits of using an AODE combiner as meta-learner In a further series

of tests, we considered a series of variants of algorithm HO-DDM-mine, differing only

in the meta-classifier method, used for inducing a combined deviance detection model,

out of the stacked view produced (with the help of the discovered base classifiers) in

the former 11 steps of the algorithm. More precisely, we replaced the AODE-based

procedure described in the algorithm with the following Weka plugins: AdaBoostM1,

J48, JRip, Logistic. The results of this experimentation are reported in Table 3. It

is clear that our AODE-based approach ensures superior performances over all metrics

when compared with all of these meta-classifiers, likely due to its capability of obtaining

accurate and robust estimates of the class membership probability, despite the high

degree of dependence between the attributes in the stacked view given as input to it.

9 Conclusion and Future Work

We proposed a framework for the detection and analysis of deviances in the executions

of a business process, consisting of a supervised method for inducing flexible and ro-

bust deviance detection models, and of a comprehensive system architecture that fully



exploits and empower the discovered models. The induction method adopts a novel

multi-view ensemble learning scheme, where different base learners are trained against

different pattern-based views of a given log, each of which corresponds to a vector-

space encoding of the traces, combining both context data and structural features. This

collection of base models is eventually made undergo a (scalable and robust) prob-

abilistic meta-learning procedure, which produces an integrated high-order deviance

detection model as an ultimate result. A basic resampling technique is exploited to deal

with situations where the classes are highly unbalanced. Preliminary tests performed

on a real-life log proved that the approach can achieve compelling performances w.r.t.

a recent deviance mining method.

As concerns future work, beside trying to improve the scalability of our approach (by

resorting to a parallel/distributed implementation of computationally-intensive model

induction tasks), we plan to purse a number of extension lines, summarized below.

First of all, we will try to combine the extraction of structural patterns with suitable

event abstraction mechanisms, in order to automatically extract high-level activity con-

cepts from raw log events (in the spirit of [6]), and remove the assumption (made by

most process mining approaches, but not holding in many real-world applications) that

each log event explicitly conveys an activity label.

Moreover, we will investigate on integrating the approach with cost-sensitive learning

methods, as a more sophisticated and tunable solution for dealing with the need of

minimizing a certain kind of misclassification errors over the class of deviant traces.

In order to avoid the materialization of high-dimensional pattern-based views, we

will also try to take advantage of suitable kernel learning methods. Particular attention

will be payed to multiple kernel learning approaches [45], which appear to potentially

fit well our multi-view setting.
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