

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Comparing Relational Databases to
a Native Multi-Model Database System

A. Messina

Rapporto Tecnico N.:
RT-ICAR-PA-18-01 Gennaio 2018

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
– Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Non è possibile visualizzare l'immagine.

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Comparing Relational Databases to
a Native Multi-Model Database System

A. Messina1

Rapporto Tecnico N.:
RT-ICAR-PA-18-01 Gennaio 2018

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Via Ugo

La Malfa n. 153, 90146 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Non è possibile visualizzare l'immagine.

Index

1 INTRODUCTION	..	5

2 DATABASE	CONCEPTS	..	6

2.1 Introduction ... 6

2.2 Relational Database System Concepts.. 6

2.2.1 Table and Schema Definition .. 6

2.2.2 Insertion and Identification of Records ... 7

2.2.3 Indexing ... 7

2.2.4 Transactions ... 8

2.3 Concepts in ArangoDB .. 8

2.3.1 JSON Data Types .. 8

2.3.2 Living without a Schema ... 9

2.3.3 Document Keys and Indexes ... 10

2.3.4 Graphs ... 11

2.3.5 Transactions ... 12

2.4 Comparison of Terminology ... 12

3 DATA	MODELING	..	15

3.1 Introduction ... 15

3.2 Data Modeling in Relational Systems ... 15

3.3 Data Modeling in ArangoDB ... 16

3.4 Comparison of Data Models ... 19

4 QUERY	CONCEPTS	...	21

4.1 Introduction ... 21

4.2 SQL ... 21

4.3 AQL .. 23

4.3.1 FOR Loop Construct.. 23

4.3.2 High-Level Operations .. 23

4.3.3 Query Optimization in AQL ... 24

4.3.4 Combine All of the Models ... 24

4.4 Query Language Comparison ... 26

1 Introduction

This	 technical	 report	 compares	 relational	 database	 management	 systems	
(RDBMS)	 to	 native	multi-model	 database	 systems	—	 in	 particular,	MySQL	 and	
ArangoDB.	 It	 describes	 their	 key	 concepts,	 contrasts	 both	 at	 the	 end	 of	 each	
section,	and	concludes	by	explaining	what	sets	ArangoDB	apart.		

This	is	a	high-level	overview	of	features	and	differences.	It	can,	though,	serve	as	a	
starting	point	to	understand	the	mindset	of	both	types	of	systems,	for	a	reader	to	
bridge	the	gap	from	what	they	know	about	databases	like	MySQL,	to	what	they	
may	not	yet	understand	in	ArangoDB.		

This	technical	report	will	also	familiarize	the	reader	with	principles	in	ArangoDB,	
such	as	document	stores	and	graph	databases.	These	are	combined	in	ArangoDB	
in	the	same	database	core,	accessible	with	one	query	 language.	The	goal	of	 this	
document	 is	specially	 to	help	the	reader	appreciate	 the	comparable	ease	of	 the	
transition	to	greater	storage	flexibility	with	multiple	data	models	that	ArangoDB	
provides.		

ArangoDB	is	a	native	multi-model	NoSQL	database.	It	supports	three	popular	data	
models,	namely	key-value,	document	and	graph.	ArangoDB	is	written	in	modern	
C++	and	is	available	as	open-source	version	(Community	Edition)	and	also	comes	
with	 a	 commercial	 version	 including	 additional	 features	 for	 performance	 and	
security	(Enterprise	Edition).		

Moving	relational	data	to	ArangoDB	is	simple:	export	the	stored	data	to	a	format	
such	as	CSV,	 and	 then	use	arangoimp	 to	 import	 the	data	 into	ArangoDB.	Once	
that’s	done,	you	may	continue	working	with	the	same	data	model	that	you	used	
previously	 with	 the	 relational	 database.	 Because	 ArangoDB	 supports	 real	 join	
operations,	there	is	no	need	for	nested	data	to	circumvent	normalization	and	joins.	
Hence,	you	don’t	have	to	rework	the	data	model.		

Still,	there	are	some	differences	between	both	storage	approaches.	This	technical	
report	will	describe	the	difference	between	each	database	concept,	as	well	as	the	
data	modeling	 possibilities	 and	 query	 options	 available	with	 each.	 In	 the	 final	
sections,	this	paper	will	also	introduce	the	cluster	architecture	of	ArangoDB	and	
the	options	that	are	available	for	scaling	horizontally	–	even	with	complex	queries.		

	
	
	

2 Database Concepts

	
	
2.1 Introduction

Before	delving	into	data	modeling	and	more	advanced	concepts,	let’s	start	with	a	
general	examination	of	the	database	concepts	behind	relational	database	systems	
and	contrast	that	with	the	basic	concepts	of	a	database	system	like	ArangoDB.		

	

2.2 Relational Database System Concepts

The	data	model	of	a	relational	database	management	system	(i.e.,	RDBMS)	utilizes	
the	 controlling	metaphor	 of	 a	 table,	much	 like	 ones	 found	 in	 inventory	 ledger	
books	 used	 for	 centuries	 in	 business.	 Records	 are	 stored	 in	 tables,	 with	 each	
record	being	a	row	in	that	table.	The	column	heads	define	the	available	fields	and	
the	values	for	each	of	the	columns	per	record	in	individual	cells.	Such	tables	can	
be	 organized	 in	 databases	 (e.g.,	 for	 multi	 tenancy	 use).	 There	 are	 a	 few	 core	
databases	 that	 contain	 tables	 which	 store	 system	 configuration	 variables	 and	
other	data	for	internal	use	by	the	system.	

Data	 in	 a	 relational	database	 system	can	be	queried	and	 retrieved	 in	a	 tabular	
format.	 It	 can	 be	 full	 rows	 or	 subsets	 of	 columns.	 Behind	 the	 scenes,	 a	 binary	
transport	 protocol	 is	 used	 to	 send	 data.	 Although	 one	 can	 choose	 between	
different	storage	engines	–	InnoDB	is	the	most	popular	–	with	different	features	
and	performance	properties,	how	data	is	actually	stored	is	invisible	to	the	user.	

	

2.2.1 Table and Schema Definition

Before	data	can	be	inserted	into	a	table,	a	developer	must	first	consider	the	data	it	
will	contain,	how	it	will	be	organized	and	the	nature	of	 that	data	–	often	times	
without	having	been	given	more	than	a	small	sample	of	the	data	in	advance.	He	
must	decide	on	the	number	of	columns	and	recognizable	names	for	each	column.	
More	 importantly,	he	must	decide	on	the	data	type	(e.g.,	INT,	CHAR,	DATETIME)	
appropriate	to	the	type	of	data	anticipated.	Unless	he	chooses	to	accept	the	default	
settings	 for	 each	 column,	 he	 may	 want	 to	 set	 some	 restrictions	 on	 the	 data	
accepted	 (e.g.,	NOT NULL).	Plus,	he	may	want	to	 take	a	guess	at	which	 column	
should	be	 indexed	without	any	usage	 information,	and	to	what	extent	an	 index	
should	be	used,	as	in	the	case	of	multi-column	indexes.	

The	definition	of	a	table	with	all	of	its	column	settings	is	called	a	schema.	Schemas	

can	be	modified	in	most	relational	database	systems	after	the	initial	definition,	but	
in	some	systems,	especially	with	clusters,	it	can	be	an	expensive	operation	because	
the	 data	 needs	 to	 be	 re-organized	 on	 schema	 changes.	 Although	 a	 skilled	
developer	can	anticipate	potential	table	usage	and	the	needs	of	its	users,	designing	
a	schema	can	be	much	like	a	written	one:	making	changes	later	to	the	organization	
of	the	data	can	be	cumbersome	–	even	when	you	used	a	pencil	instead	of	a	pen.	

	

2.2.2 Insertion and Identification of Records

When	inserting	records	into	a	table,	the	value	of	all	of	the	fields	can	be	provided	
in	the	same	order	of	the	table’s	columns	based	on	its	schema,	or	a	subset	of	the	
columns	 can	 be	 given	with	 the	 name	 and	 values	 of	 each	 field	 given.	 Fields	 not	
included	will	be	set	generally	to	a	NULL	value,	which	expresses	the	absence	of	a	
proper	 value	 –	 unless	 a	 default	 value	 was	 specified	 in	 the	 schema.	 If	 column	
definition	has	no	default	value	and	it	was	defined	as	NOT NULL,	an	error	will	occur	
when	insert	a	row	without	giving	a	value	for	the	column.	Depending	on	the	SQL	
mode	used,	this	will	prevent	the	row	from	being	inserted.	If	it’s	part	of	a	multiple	
row	insert,	it	will	prevent	all	rows	from	being	inserted.	

Each	 row	 in	 a	 table	 can	 usually	 be	 uniquely	 identified	 by	 an	 automatically	
incremented	number.	The	column	for	this	identifier	is	defined	as	the	primary	key.	
It’s	acceptable	to	use	a	different	data	type,	or	forego	a	primary	key	altogether	and	
identify	rows	by	other	means,	even	by	a	combination	of	values	in	certain	columns.	
However,	this	is	not	a	common	practice.	If	a	primary	key	is	referenced	by	another	
table,	it	is	called	a	foreign	key.	

	

2.2.3 Indexing

The	primary	key	index	for	fast	access	of	records	is	usually	a	BTREE,	the	typical	
index	type	used	 in	RDBMS.	There	are	some	idiosyncrasies	related	to	this	 index	
type.	The	primary	key	must	be	unique.	The	user	 can	 create	 secondary	 indexes	
using	one	or	more	fields,	with	settings	like	unique	or	fulltext	indexes.	Data	queries	
executed	 on	 a	 huge	 dataset,	without	using	 indexes	 can	 be	 significantly	 slower.	
Therefore,	 users	 are	 dependent	 on	 the	 database	 designer	 to	 define	 well	 and	
properly	indexes	for	the	best	performance	based	on	the	data	content	and	how	it	
will	be	used.	

	

	

2.2.4 Transactions

A	key	 strength	of	RDBMS	 is	 that	 they	 support	 transactional	 guarantees.	 In	SQL	
queries,	 transactions	 are	 started	with	 explicit	BEGIN	 or	START TRANSACTION	
command.	Following	a	series	of	data	retrieval	or	modification	operations,	an	SQL	
transaction	is	completed	with	a	COMMIT	command,	or	rolled	back	with	a	ROLLBACK	
command	or	 if	 the	 session	 is	 terminated.	There	may	be	 client	 communications	
with	 the	 server	 between	 the	 start	 and	 the	 commitment	 or	 rollback	 of	 an	 SQL	
transaction.	

	

2.3 Concepts in ArangoDB

At	 its	 core	 ArangoDB	 is	 a	 transactional	 document	 store,	 in	 the	 sense	 of	 JSON	
objects	as	documents.	

Internally,	data	is	stored	in	a	binary	form	(VelocyPack),	but	what	is	entered	and	
returned	 from	 the	 system	 is	 typically	 JSON.	 By	 default,	 JSON	 data	 is	 sent	 and	
received	 over	 the	 well-known	 HTTP	 protocol	 by	 the	 server,	 which	 provides	 a	
RESTful	API.	Other	options	are	VelocyPack	over	HTTP	and	VelocyStream,	a	binary	
transport	protocol.	

How	data	is	actually	persisted	is	not	visible	to	the	user.	A	developer	can	choose	
between	 two	 storage	 engines	 with	 different	 characteristics	 according	 to	 the	
particular	use	case:	

	

	

2.3.1 JSON Data Types

JSON	supports	a	few	primitive	and	compound	data	types	that	can	be	combined	to	
complex	 data	 structures.	 The	 primitive	 types	 are:	 null,	 boolean	 (true,	 false),	
number	 (integer	 and	 floating-point	 numbers),	 and	 string.	 These	 are	 fairly	

straightforward	and	the	same	in	any	database	system.	

The	compound	types	are	more	complicated.	They	are	two	types:	array	and	object.	
An	array	is	an	ordered	collection	of	elements,	each	identified	by	an	index	starting	
at	0;	arrays	can	be	multidimensional.	An	object	is	a	hash	map	which	maps	string	
keys	(i.e.,	attribute	keys)	to	values	of	arbitrary	types	(i.e.,	attribute	values).	Objects	
can	contain	primitive	types	or	nested	compound	types,	with	support	for	arbitrary	
deep	nesting,	if	desired.	Each	document	is	essentially	a	JSON	object	at	the	top	level,	
with	arbitrary	named	attributes	that	can	have	primitive	values	or	be	nested	arrays	
and	objects.	

Documents	 are	 stored	 in	 collections.	 Collections	 have	 names,	 which	 ideally	
describe	 what	 kind	 of	 information	 the	 documents	 contain.	 Collections	 can	 be	
organized	in	multiple	databases	(e.g.,	for	multi-tenancy	use).	The	default	database	
in	 ArangoDB	 is	 called	 _system.	 It	 contains	 hidden	 collections	 for	 internal	
purposes,	but	the	user	may	also	add	collections	to	the	database.	

	

2.3.2 Living without a Schema

ArangoDB	is	schema-free.	The	system	does	not	require	you	to	declare	or	define	
field	attributes.	Nor	is	it	necessary	to	specify	in	advance	the	data	types	of	fields.	In	
case	a	schema	validation	is	necessary,	it	can	be	integrated	by	a	JOI	validation	in	a	
ArangoDB	Foxx	microservice.	

Documents	can	have	an	arbitrary	structure	and	can	use	any	supported	data	type.	
In	principle,	each	document	in	a	collection	can	be	structured	differently.	However,	
there	will	usually	be	some	fields	that	all	documents	have	in	common	in	the	sense	
of	attribute	keys.	The	attribute	values	may	use	different	data	types,	nonetheless,	
even	if	the	attribute	keys	match.	

	

There	 is	 no	 such	 thing	 as	 filling	 in	 a	 subset	 of	 fields	 in	 a	 schema-free	 system,	
because	for	every	document,	what	shall	be	persisted	is	defined	by	the	document	
itself.	 It	 is	 self-contained.	 A	 document	 can	 have	 as	 few	 or	 as	 many	 attributes	
including	nested	attributes	as	needed.	Both,	attribute	keys	and	values,	have	to	be	
explicitly	specified	all	the	time.	

	

2.3.3 Document Keys and Indexes

Each	document	requires	a	key	that	uniquely	identifies	it	within	a	collection.	It	can	
be	assigned	by	the	user	upon	creation,	or	ArangoDB	will	generate	one.	The	data	
type	is	always	string.	The	automatically	generated	keys	are	increasing	numbers	
(with	gaps),	but	converted	to	a	non-numeric	character	sequence.	Document	keys	
cannot	 be	 modified	 after	 document	 creation	 (immutable).	 There	 is	 a	 virtual	
attribute	 (i.e.,	 the	 document	 ID)	 which	 is	 comprised	 of	 the	 collection	 name,	 a	
forward	slash	and	the	document	key	to	identify	a	document	within	the	database.	
Document	keys	and	document	 identifiers	are	always	 indexed.	The	 index	on	the	
_key	attribute	is	called	a	primary	index.	It	exists	for	each	collection	and	can’t	be	
removed.	It’s	a	hash	index	with	the	options	non-sparse	and	unique.	This	means	it	
is	always	non-empty	and	that	there	are	no	duplicate	keys	in	the	collection.	

Additional	indexes	can	be	defined	by	the	user	over	one	or	multiple	fields,	as	well	
as	the	individual	elements	of	arrays.	Available	index	types:	

• Hash:	constant	lookup	time	(superfast),	only	applicable	if	an	exact	value	is	
searched	

• Skiplist:	 sorted	 index,	 slower	 than	 hash	 index,	 but	 suitable	 for	 range	
queries	

• Geospatial:	can	index	2D	coordinates	for	fast	retrieval	of	documents	near	
a	reference	point	(i.e.,	closest	distance	first),	full	GeoJSON	support	will	be	
added	in	ArangoDB	3.4	

• Fulltext:	 full	word	and	prefix	matching	 in	strings	with	a	reverse	 lookup	
index	(complete	text	search	and	ranking	engine	including	inverted	indexes	
will	be	integrated	in	ArangoDB	3.4)	

• Persistent:	 	With	MMfiles	storage	engine,	persistent	skiplist	indexes	can	
be	created	via	this	type.	With	RocksDB,	all	indexes	are	persisted.	

ArangoDB	 can	 be	 used	 as	 a	 key-value	 store	 by	 retrieving	 documents	 via	 their	
document	keys	or	IDs.	The	primary	index	is	hash-based	with	a	constant	lookup	
time	and	has	a	selectivity	of	100%	because	each	key	must	be	unique	in	a	collection,	
which	enables	quick	retrieval	via	the	key.	The	document	as	a	whole	is	returned	as	
a	value	in	the	key-value	access	pattern.	

If	secondary	indexes	are	involved,	or	a	document	is	returned	partially	(i.e.,	only	
certain	attributes),	it	is	not	used	strictly	speaking	as	key-value	store.	Instead,	it’s	
used	like	a	document	store.	There	is	no	real	distinction,	however,	between	them	
in	ArangoDB.	

	

	

2.3.4 Graphs

The	third	data	model	supported	by	ArangoDB	is	graphs.	Graphs	are	like	networks	
consisting	of	 nodes	 that	 are	 linked	 together,	which	 can	 express	many-to-many	
relationships.	There	can	be	various	topologies,	 like	a	graph	forming	a	 tree	(e.g.,	
corporate	 hierarchy,	 electricity	 grid)	 rather	 than	 a	 mesh	 (e.g.,	 social	 network,	
fraud	networks).	

There	are	two	types	of	collections	in	ArangoDB:	vertex	and	edge	collections.	Both	
store	documents	as	previously	described.	Documents	in	an	edge	collection	have	
two	additional	attributes,	_from	and	_to.	Both	have	to	be	assigned	document	IDs	
to	link	together	documents.	The	document	that	links	them	is	called	an	edge	and	
the	 linked	documents	are	 called	vertices	 in	 the	graph	model.	Edges	are	always	
directed	 in	ArangoDB.	The	 edge	 is	 leading	 from	 the	 source	 (i.e.,	_from)	 to	 the	
target	(i.e.,	_to).	Edges	do	have	a	direction	in	ArangoDB	but	can	be	ignored	by	the	
ANY	statement.	

Additionally,	 there	 is	 a	 special	 edge	 index	 that	 can	 receive	all	 of	 the	edges	of	 a	
vertex	in	constant	time.	Since	receiving	edges	is	the	most	used	operation	in	any	
graph	query,	 this	 constant	 time	 lookup	 is	 a	 requirement	 for	graph	database	 to	
operate	performantly.	This	index	cannot	be	removed.	Users	may	define	additional	
indexes	for	edge	collections	in	general,	and	indexes	over	the	_from	and	_to	fields	
in	particular,	to	create	vertex-centric	indexes	to	speed	up	certain	graph	queries.	

ArangoDB	can	also	efficiently	handle	other	types	of	data,	such	as	geo-spatial	and	
text.	With	ArangoDB	3.4,	the	data	types	text	and	geo-spatial	will	receive	a	much	
richer	 feature	set	and	new	indexes	to	extend	the	number	of	possible	use	cases.	
These	data	types	are	intentionally	not	called	data	models,	as	the	processing	of	the	
two	is	more	a	matter	of	computation	than	storage.	

2.3.5 Transactions

In	ArangoDB,	a	transaction	is	always	a	server-side	operation.	It	is	executed	on	the	
server	 in	 one	 go,	 without	 any	 client	 interaction.	 All	 operations	 to	 be	 executed	
within	 a	 transaction	 need	 to	 be	 known	 by	 the	 server	when	 the	 transaction	 is	
started.	

There	are	no	 individual	BEGIN,	COMMIT	or	ROLLBACK	statements	 in	ArangoDB's	
query	language	AQL.	Instead,	a	transaction	in	ArangoDB	is	started	by	providing	a	
description	of	 the	 transaction	written	as	 JavaScript	 function.	This	 function	will	
then	 automatically	 start	 a	 transaction,	 execute	 all	 required	 retrieval	 and	
modification	operations,	and	automatically	commit	transactions	at	the	end.	If	an	
error	occurs	during	the	execution	of	a	transaction,	the	transaction	is	automatically	
aborted,	and	all	changes	are	rolled	back.	

Transactions	 in	 ArangoDB	 can	 be	 multi-document	 and	 multi-collection	
transactions	 in	 a	 single	 instance.	 For	 cluster	 scenarios,	 ArangoDB	 already	
supports	atomic	operations.	In	every	document,	ArangoDB	stores	automatically	
the	 so-called	 revision	 key,	_rev	 in	 all	documents.	 For	 a	 single	 instance,	 this	 is	
being	used	 to	support	 full	Multi	Version	Concurrency	Control	 (MVCC,	RocksDB	
storage	 engine)	 and	 in	 a	 cluster	 setting	 to	 support	 atomic	 operations	 like	
Compare-and-Swap.	ArangoDB	will	soon	support	more	options	for	transactional	
guarantees	in	cluster	settings	on	our	path	to	cluster-wide	MVCC.	

	

2.4 Comparison of Terminology

Having	examined	and	compared	the	key	concepts	and	methods	of	both	RDBMS	
and	ArangoDB,	let’s	consider	and	compare	the	terminology.	There	are	some	terms	
used	 in	 an	 RDBMS	 that	 are	 identical	 to	 its	 counterpart	 in	 ArangoDB,	 although	
viewed	a	little	differently.	There	are	others,	though,	for	which	a	different	term	is	
used	to	reflect	more	clearly	the	different	perspective	of	ArangoDB.	Below	is	a	list	
of	these	key	terms	for	both	systems:	

	

In	an	RDBMS,	entities	of	the	same	type	are	stored	in	tables.	Collections	are	roughly	
the	equivalent	of	 tables	 in	document	 stores,	 as	 they	usually	hold	documents	of	
similar	entities.	There	normally	will	be	some	or	many	common	attributes.	Because	
of	this	varying	nature	of	data	structures,	collection	as	is	a	more	accurate	term	than	
table,	 which	 has	 a	 fixed	 structure.	 Documents	 are	 also	 not	 tabular,	 because	
unneeded	 attributes	 (i.e.,	 fields)	 can	 be	 omitted	 and	 it’s	 possible	 to	 nest	 data,	
which	allows	for	a	tree-like	structure.	

The	 document	 structure	 can	 differ	 between	 any	 two	 documents	 in	 a	 single	
collection.	 For	 example,	 as	 new	 features	 are	 added	 to	 a	 product	 that	 uses	
ArangoDB	as	a	backend,	additional	attributes	may	become	necessary.	They	can	be	
added	progressively	on-the-fly	for	newly	created	documents,	without	the	need	to	
update	all	previously	existing	documents.	In	SQL,	the	table	structure	(i.e.,	schema)	
would	need	to	be	updated	with	additional	columns.	This	 is	can	be	a	significant	
operation	in	some	systems	and	requires	planning.	

While	 there	 are	 a	 few	 primitive	 data	 types	 in	 ArangoDB,	 the	 system	does	 not	
impose	any	restrictions	such	as	having	to	define	what	data	types	must	be	used	for	
which	attributes	—	it	is	schema-free.	If	you	wish	to	validate	document	structures	
on	the	server-side,	ArangoDB	provides	JOI	object	schema	validation	via	Foxx.	

There	 are	 many	 more	 primitive	 data	 types	 in	 relational	 database	 systems.	 In	
ArangoDB,	there	is	only	a	single	primitive	type	for	numbers,	which	covers	integers	
as	well	as	floating	point	numbers.	There's	also	only	one	data	type	for	character	
sequences.	There	are	no	limits	to	the	length	of	strings	and	strings	are	stored	in	
normalized	UTF-8	encoding.	There	aren’t	data	types	such	as	enums	or	sets,	which	
require	the	defining	acceptable	values.	Sets	can	be	emulated	by	using	a	function	to	
restrict	an	array	to	unique	elements.	A	missing	or	unavailable	value	in	an	RDBMS	
is	be	represented	by	NULL.	ArangoDB	also	has	a	null	value,	but	it’s	rarely	needed.	
The	absence	of	a	value	can	simply	be	expressed	by	the	lack	of	the	attribute.	

The	 way	 ArangoDB	 implements	 graphs	 is	 different	 from	 many	 other	 graph	
databases,	which	use	“index-free	adjacency”.	Edges	stored	in	a	separate	collection	

with	a	special	index	on	the	_from	and	_to	attributes	are	not	too	different	from	
cross	 tables	 for	 storing	 many-to-many	 relationships	 in	 an	 RDBMS.	 The	
performance	guarantees	for	traversals	are,	nonetheless,	on	par	with	other	graph	
databases,	 but	 there	 is	 more	 potential	 to	 scale	 graphs.	 Combined	 with	 the	
Enterprise	 Edition	 features	 (i.e.,	 SmartGraphs	 and	 SatelliteCollections),	 graph	
performance	can	be	further	improved.	

	

	

3 Data Modeling

3.1 Introduction

Modeling	data	for	a	database	system	starts	with	defining	what	data	needs	to	be	
stored	to	solve	the	problem.	This	usually	requires	being	clear	about	the	questions	
which	should	be	answered,	what	entities	 there	are	needed,	 and	what	are	 their	
relationships	to	create	a	 logical	model.	This	model	can	be	 iterated	upon	until	 it	
addresses	the	entire	problem.	The	model	needs	to	be	translated	to	a	design	that	
the	chosen	database	systems	allows	and	 ideally	supports	 in	an	easy	to	use	and	
performant	way.	

	

3.2 Data Modeling in Relational Systems

The	first	step	in	creating	a	logical	model	is	to	determine	the	entities.	For	example,	
consider	a	 simple	database	about	music.	 Suppose	we	chose	 to	store	 songs	and	
albums	by	artist	together	with	genres.	

The	next	step	is	to	define	the	properties	of	these	entities	and	their	relationships.	
An	entity-relationship-model	(ERM)	is	the	standard	way	of	representing	all	of	this.	

	

It's	easy	to	cast	this	into	a	relational	database	model.	For	every	type	of	entity,	one	
table	is	defined	with	the	entity	properties	translated	to	the	columns.	

Relationships	between	records	can	be	expressed	with	matching	values	between	

tables.	They	can	be	one-to-one	relations	(i.e.,	1:1),	in	which	each	record	in	table	A	
matches	one	record	in	table	B.	That	is	to	say,	a	field	in	A	and	another	in	B	have	the	
same	 value	 —	 usually	 by	 way	 of	 a	 primary	 key.	 Not	 every	 record	 needs	 a	
counterpart;	there	may	also	be	one-to-zero	relations,	but	there	can’t	be	more	than	
one	record	on	either	side.	It’s	common	to	integrate	the	fields	of	table	B	into	table	
A	in	such	a	situation,	unless	there	are	special	considerations	to	hold	the	data	in	
different	tables	(e.g.,	access	permission).	

In	case	of	one-to-many	relations	(i.e.,	1:n),	each	record	in	table	A	matches	with	one	
or	 more	 records	 in	 table	 B.	 Applying	 this	 to	 our	 example,	 albums	 and	 their	
respective	songs	would	be	stored	separately	in	this	model.	Each	song	record	can	
only	be	linked	to	one	album	in	this	simple	model.	In	a	reality,	one	would	probably	
allow	the	same	songs	to	be	linked	to	multiple	releases.	

The	relationship	between	albums	and	genres	is	different:	a	many-to-many	relation	
(i.e.,	n:m).	A	single	album	can	have	multiple	genres,	and	multiple	albums	can	have	
the	same	genre.	Albums	and	genres	can	be	stored	in	two	tables,	and	a	third	table	
known	as	a	cross	table	be	introduced	to	link	the	records	of	the	two	former	tables.	
A	record	in	the	cross	table	stores	its	own	primary	key,	and	one	album	ID	and	one	
genre	ID,	a	foreign	key.	

To	make	use	of	 stored	 relations,	 to	resolve	 foreign	keys	 to	 fields	 from	another	
table,	the	tables	—	or	rather	subsets	of	their	records	—	are	joined	on	the	fields	
which	hold	the	record	keys.	These	fields	should	be	indexed,	as	there	can	be	a	high	
computational	complexity	if	all	of	the	combinations	of	records	need	to	be	checked.	
The	 result	 is	often	a	database	with	many	 tables	and	many	cross	 tables,	 always	
requiring	joins	to	query	the	data,	thus	impacting	performance.	

	

3.3 Data Modeling in ArangoDB

As	described	 in	the	Database	Concepts	section	above,	ArangoDB	is	a	document	
store	 at	 its	 core.	 A	 JSON	document	 containing	multiple	 entities	 embedded	 in	 a	
single	document	could	look	like	the	example	on	the	right.	

Curly	brackets	surround	JSON	objects,	which	can	contain	attributes.	Attributes	are	
given	 in	 pairs,	 key/value	 pairs.	 Each	 key	 and	 value	 are	 separated	 by	 a	 colon.	

Attribute	pairs	are	separated	by	commas.		

Attribute	 keys	 are	 enclosed	 in	 double	 quote	 marks,	
which	 signifies	 a	 string.	 Keys	 are	 always	 string	 data	
types	in	JSON.	They	are	depicted	in	teal	blue	here.	

The	 values	 can	 be	 of	 any	 type.	 In	 the	 example	 here,	
name,	 country	 and	 other	 nested	 attribute	 values	 are	
also	strings,	colored	in	green.	The	album	year	and	song	
duration	values	are	numbers	and	highlighted	in	blue.	

Square	brackets	surround	value	lists.	In	this	example,	
albums,	 genres	and	songs	are	 such	arrays.	Regarding	
genres,	the	arrays	contain	multiple	strings	with	genre	
names.	

The	array	for	albums	contains	two	nested	objects,	one	
per	album.	Each	object	has	four	attributes:	Title,	Year,	
Genres	 and	 Songs.	 The	 Songs	 array	 holds	 even	more	
objects,	one	per	track	of	each	album.	Each	object	has	a	
title	and	a	duration	attribute.	By	the	way,	 the	dashed	
lines	denote	omissions,	to	fit	the	example	document	on	
this	page.	

This	is	a	contrived	example	with	all	of	the	data	about	
an	artist	in	a	single	document,	to	demonstrate	information	nesting.	

Using	multiple	levels	of	nesting	can	be	very	powerful,	but	it’s	not	the	only	way	to	
structure	 data.	 Based	 on	 the	 data	 model	 draft	 and	 ERM	 diagram	 from	 the	
beginning	of	this	chapter,	there	are	four	entities	in	the	normalized	model:	Artist;	
Album;	Song;	and	Genre.	

Each	type	of	entity	can	be	stored	in	a	collection:	all	of	the	artist	documents	can	be	
stored	 in	an	Artist	collection;	and	album	documents	can	be	stored	 in	an	Album	
collection.	Entities	or	documents	can	then	be	linked	in	multiple	ways.	

An	additional	collection	could	be	created,	to	store	an	album	document	key	and	a	
song	 document	 key,	 similar	 to	 a	 cross	 table,	 to	 be	 joined	 in	 a	 query	 based	 on	
matching	 keys.	 It’s	 a	 permitted	 method,	 but	 not	 recommended.	 Instead,	 cross	
tables	 can	 be	 translated	 to	 edge	 collections	 almost	 unedited.	 Instead	 of	
establishing	a	connection	with	a	pair	of	foreign	keys,	the	_from	and	_to	attributes	
of	an	edge	can	be	used	to	express	the	relation	and	open	the	possibility	for	graph	
traversals.	

It’s	not	necessary	to	use	the	graph	model	for	everything.	It	may	not	be	the	ideal	
solution	related	to	performance	to	do	this	for	very	limited,	fixed	depth	traversals	
—	especially	a	one-step	traversal	as	we	would	here	for	albums	and	the	associated	
genres.	

	

Embedding	genre	data	 into	 the	album	documents	 is	 a	possible	 solution.	Only	a	
single	 document	 read	 would	 be	 needed	 to	 retrieve	 the	 album	 information,	
including	the	genre	data.	On	the	other	hand,	 it	becomes	harder	to	maintain	the	
data.	For	example,	renaming	a	genre	without	introducing	inconsistencies	would	
be	tedious.	All	album	documents	containing	a	to-be-renamed	genre	would	need	to	
be	modified.	Furthermore,	there	wouldn't	be	an	efficient	way	to	retrieve	a	list	of	
all	genres.		

A	viable	middle	way	is	to	have	two	collections,	one	for	albums	and	one	for	genres,	
and	store	an	array	of	genre	document	keys	in	the	album	documents	for	many-to-
many	relations.	This	way	there	is	a	central	place	to	retrieve	all	available	genres	
and	an	individual	genre.	There	would	be	only	a	single	document	to	maintain	all	of	
the	 information	 related	 to	 a	 genre	 in	 the	 Genre	 collection.	 The	 link	 between	

albums	 and	 genres	 is	 established	 via	 the	 genreKeys	 attribute	 in	 each	 Album	
document	and	can	be	easily	resolved	in	a	query,	without	an	additional	collection.	
A	lookup	or	collection	join	of	genres	leads	to	the	same	results	as	with	the	graph	
model,	but	performs	better	 than	a	 full	 graph	 traversal.	 If	performance	 is	 less	a	
concern,	though,	you	may	as	well	use	the	graph	approach	since	it	resembles	more	
closely	the	way	we	think	of	relations.	

Another	 consideration	 should	 be	 the	 amount	 of	 links	 between	 documents.	
Chances	are	that	at	least	some	of	the	genres	will	be	referenced	by	thousands	or	
even	millions	of	albums.	Using	a	graph	model	would	result	in	some	genre	vertices,	
having	 a	 huge	 amount	 of	 edges	 connected	 to	 it.	 Such	 vertices	 are	 called	 super	
nodes.		They	should	be	avoided.	Traversals	running	into	super	nodes	will	have	to	
follow	all	of	these	edges.	The	collection	join	model	scales	much	better.	The	desired	
approach,	though,	can	be	chosen	by	the	user,	depending	on	the	use	case.	

	

3.4 Comparison of Data Models

Data	 is	modeled	as	 tables	 for	an	RDBMS.	 It’s	 common	practice	 to	normalize	an	
initial	model	so	 that	one	arrives	at	 a	model	without	 redundancies	with	atomic	
values,	 in	 the	 sense	 that	 pieces	 of	 information	 aren’t	 being	 split	 into	 separate	
tables	and	columns.	For	example,	you	wouldn’t	have	a	single	field	containing	"Toys	
in	the	Attic	(1975)",	with	both	an	album	title	and	the	release	year.	 Instead,	you	
would	have	two	fields,	one	containing	the	title	and	the	other	the	year.	You	would	
also	have	distinct	tables	for	each	entity	type.	The	normalization	process	involves	
the	addition	of	cross	tables	to	store	relations	between	records.	

While	there	is	a	plethora	of	data	types	from	which	to	choose	before	storing	data	
in	relational	systems,	there	are	only	a	few	basic	data	types	in	ArangoDB	that	can	
be	combined	to	structure	data	in	many	ways.	They	allow	for	simple	and	complex	
alike,	independent	for	each	document.	Everything	expressible	with	tables	can	be	
translated	 to	 JSON	 documents,	 without	 the	 need	 to	 specify	 in	 advance	 the	
structure	of	documents.	

A	 direct	 conversion	 of	 relational	 records	 to	 documents	 would	 result	 in	 JSON	
documents	with	top-level	attributes	only	(i.e.,	no	nested	objects).	The	possibility	

of	 having	 sub-attributes	 and	 arrays,	 however,	 enables	 quite	 a	 different	 data	
modeling	approach.	This	approach	permits	the	embedding	of	data	in	documents	
and	eliminates	some	extra	tables	or	collections.	Translating	cross	tables	to	edge	
collections	 is	a	great	way	to	store	many-to-many	relationships	 in	ArangoDB,	 to	
gain	 graph	 features	 such	 as	 shortest	 path	 computation	 and	 graph	 traversal.		
Distributed	 graph	 processing	 based	 on	 the	 Pregel	 computing	 model	 is	 also	
available	 starting	 in	version	3.2	of	ArangoDB.	 If	 you	don't	have	a	need	 for	 real	
graph,	a	model	with	collection	joins	can	be	chosen	instead.	Multiple	models	can	be	
combined	freely.	ArangoDB	provides	flexibility,	allowing	the	developer	to	strike	a	
balance	 between	 an	 understandable	 data	 model,	 fast	 development	 iterations,	
needed	features	and	performance.	

	 	

4 Query Concepts

	

4.1 Introduction

Storing	data	is	only	part	of	the	function	of	a	database	system.	The	ability	to	retrieve	
data	 in	 various	ways	 from	 a	 database	 is	where	 an	 electronic	 database	 is	most	
useful.	 Otherwise,	 you	may	 use	 a	 paper-based	 system	 as	well.	 To	 facilitate	 the	
retrieval	of	data,	a	query	language	is	provided.	Relational	database	systems	like	
MySQL	 use	 a	 Structured	Query	 Language	 (i.e.,	 SQL),	 while	 ArangoDB	 provides	
Arango	Query	Language	(i.e.,	AQL).	

	

4.2 SQL

SQL	can	not	only	 retrieve	 records	 from	 the	database	 system,	 it	 can	also	 insert,	
update	 and	 delete	 records.	 Tables	 and	 databases	 can	 be	 created,	 altered	 and	
dropped,	and	user	permissions	can	be	managed	with	SQL	statements.	These	uses	
are	grouped	and	classified	based	on	 their	similarities:	data	 retrieval	queries	as	
DQL	(i.e.,	data	query	language);	inserting,	updating	and	deleting	data	as	DML	(i.e.,	
data	manipulation	language),	structure	and	schema	statement	as	DDL	(i.e.,	data	
definition	language);	and	creating	users	and	setting	permissions	as	DCL	(i.e.,	data	
control	 language).	 There	 are	 also	 procedural	 elements	 in	 the	 form	 of	 stored	
procedures	for	more	complex	logic.	

SQL	became	a	standard	in	1986,	with	several	revisions	over	the	years	up	to	the	
current	SQL:2016	standard.	Most	RDBMS	implement	a	subset	of	these	standards	
or	a	variant	with	additional	vendor-specific	 features	with	a	dialect	of	 the	query	
language.	Thus,	other	than	the	most	basic	SQL	statements,	SQL	code	that	works	in	
one	system	may	not	work	 in	another	system,	without	modifications	because	of	
syntax	and	feature	differences.	

SQL	 comes	 with	 several	 language	 constructs	 to	 interact	 with	 databases.	 Each	
construct	or	SQL	statement,	reads	like	an	English	sentence	with	a	fixed	order	of	
clauses.	Many	clauses	are	optional.	A	clause	is	started	by	a	keyword,	followed	by	
an	 expression.	 For	 example,	 to	 retrieve	 records	 from	 a	 database,	 a	 SELECT	
statement	is	used	and	specifies	what	to	return:	

	

Each	clause	must	appear	in	the	designated	place	if	it	is	used.	For	example,	it	would	
be	a	 syntax	error	 if	 the	WHERE	 clause	was	entered	before	 the	FROM	 clause.	The	
WHERE	 clause	 can	 be	omitted	 to	 return	 unconditionally	 the	desired	 fields	 of	 all	
records.	HAVING	allows	more	conditions	to	be	added,	but	can	only	be	used	after	
GROUP BY	as	a	post-filter.	The	WHERE	 clause	describes	 filter	conditions	applied	
before	the	aggregation	in	the	combination	of	both.	The	ORDER BY	clause	is	used	to	
sort	the	matching	records	by	one	or	more	fields	in	ascending	or	descending	order.	

We	did	not	include	a	LIMIT	clause	in	this	generic	example	to	define	an	optional	
offset	and	a	maximum	number	of	records	to	return.	The	LIMIT	clause	is	commonly	
used	with	MySQL,	 but	 it’s	 actually	 non-standard.	 TSQL,	 used	 in	Microsoft	 SQL,	
supports	 the	 syntax	 SELECT TOP 10,	 for	 instance.	 There	 are	 many	 more	
variations	 and	 some	 support	 for	 multiple	 syntaxes	 in	 various	 systems.	 The	
SQL:2008	standard	provides	 for	a	FETCH	 clause	(e.g.,	FETCH FIRST 10 ROWS
ONLY),	with	varying	support	across	systems.	

The	most	 common	 joining	of	 tables	 in	SQL	 is	 the	 inner	 join,	which	 returns	 the	
intersection	of	two	sets.	A	column	of	the	first	set	is	used	to	match	the	values	of	a	
table	with	 a	 specified	 column	of	 another	 table,	 the	 second	 set.	 For	 instance,	 if	
there's	a	record	with	a	specific	value	 in	a	particular	column	in	one	table,	and	a	
record	with	 the	 same	 value	 in	 a	 corresponding	 column	 in	 another	 table,	 those	
records	with	the	selected	columns	are	returned.	

	

Unless	emp_id	 is	defined	so	as	to	allow	only	unique	values,	the	same	employee	
identification	number	may	occur	multiple	times	in	either	table.	This	will	produce	
additional	results	in	SELECT	statements.	A	JOIN	is	used	to	express	the	other	table	
you	want	to	join.	An	INNER JOIN	says	only	to	return	records	in	which	the	values	
in	the	given	columns	are	equal.	It	can	also	be	expressed	like	this:	

	

If	 you	 want	 all	 of	 the	 records	 from	 the	 employees	 table	 are	 supposed	 to	 be	
returned,	regardless	of	a	match	in	the	emp_contact_info	table,	a	left	join	can	be	
used	like	so:	

	

Basically,	the	table	being	selected	is	the	table	on	the	left,	and	the	one	being	joined	
the	 table	 on	 the	 right.	 A	 left	 join	 will	 return	 every	 row	 in	 the	 left	 table	 (i.e.,	
employees	here)	that	meet	the	conditions	of	the	WHERE	clause,	if	there	were	one,	
as	well	as	the	matching	data	in	the	right	table.	However,	if	there	isn’t	a	matching	
row	in	the	right	table,	NULL	values	are	displayed	for	fields	related	to	it.	

	

4.3 AQL

AQL	is	classified	as	DQL	and	DML,	which	means	 it	can	create,	read,	update	and	
delete	documents.	It	cannot	be	used	to	create	collections	and	databases,	manage	
permissions	or	define	schemas.	As	such,	AQL	has	some	similarities	to	SQL,	but	also	
distinct	differences,	mainly	because	it’s	designed	for	combining	multiple	models	
and	graph	traversals	in	particular.	

AQL	 was	 invented	 because	 when	 ArangoDB	 was	 created,	 there	 was	 no	 SQL	
standard	which	 covered	 its	multi-model	 needs.	 A	 standard	 does	 still	 not	 exist	
which	covers	all	that	is	ArangoDB,	in	particular	graphs.	This	is	probably	because	
NoSQL	systems	 involve	a	wide	range	of	data	concepts	and	practical	goals,	with	
vastly	 different	 technological	 approaches.	 ArangoDB	 supports	 multiple	 data	
models	with	its	single	query	language,	AQL.	It’s	a	custom-tailored	fit.	Because	it's	
not	 led	 by	 a	 standard,	 it	 can	 improve	 quickly	and	 freely,	 based	 on	market	 and	
developer	needs.	

	

4.3.1 FOR Loop Construct

AQL	has	a	language	construct	for	looping	through	data,	typical	in	programming	
languages	more	than	database	query	 languages.	This	allows	developers	to	both	
query	and	program	in	one	versatile	language,	rather	than	have	to	learn	and	use	
two.	It’s	the	central	building	block	for	document	retrieval.	The	most	common	form	
is	the	FOR	loop	used	with	a	collection	of	documents,	much	like	SELECT	in	SQL.	It	
can	 also	 be	 used	 to	 iterate	 through	 arrays,	 such	 as	 an	 array	 attribute,	 for	
intermediate	results	from	a	subquery	or	a	variable	defined	inline.	

	

4.3.2 High-Level Operations

Other	essential	high-level	operations	are	FILTER,	SORT	and	LIMIT.	They	can	be	
entered	in	different	locations,	usually	with	varying	results	based	on	the	processing	
order	described	 by	 the	 query.	You	 can	 define	what	 a	 query	 should	 return	 in	 a	
RETURN	statement.	One	can	choose	which	parts	of	a	document	to	return,	or	 the	

document	as	a	whole,	optionally	with	additional	or	altered	attributes	computed.	

Data	modification	queries	(i.e.,	INSERT,	UPDATE,	REPLACE,	DELETE)	don’t	require	
a	RETURN	 statement.	 It’s	mandatory	only	 in	data	access	queries.	 It	 can	be	used	
nonetheless	 in	modification	 queries,	 such	 as	 for	 returning	 old	 or	 new	 state	 of	
documents.	 Modification	 queries	 come	 in	 a	 few	 syntax	 variants,	 but	 the	
predominant	forms	are	like	the	following:	

	

The	difference	between	UPDATE	 and	REPLACE	 is	 that	UPDATE	 allows	 for	partial	
modifications,	such	as	changing	existing	attributes	or	adding	new	ones,	whereas	
REPLACE	retains	only	the	document	key,	and	switches	the	rest	of	the	document	
with	the	provided	new	content.	

	

4.3.3 Query Optimization in AQL

In	 order	 to	 execute	 the	 above	 described	 queries,	 ArangoDB	 uses	 a	 two-phase	
query	 optimization	 technique.	 In	 the	 first	 phase,	 the	 query	 is	 parsed	 and	
transformed	 into	an	 internal	 representation,	 an	abstract	 syntax	 tree	 (i.e.,	AST).	
Then	optimizer	rules	transform	the	AST	without	changing	the	result.	For	instance,	
the	optimizer	will	try	to	use	indexes	wherever	possible.	

There	are	often	several	possible	ways	to	execute	the	same	query.	For	example,	in	
a	 join	 it	could	start	 the	search	 in	any	of	 the	 involved	collections.	The	optimizer	
estimates	 what’s	 required	 to	 solve	 the	 query	 for	 each	 way	 possible,	 and	 will	
execute	the	one	that	requires	the	lowest	amount	of	operations.	If	you	are	curious	
to	see	what	ArangoDB	creates	from	your	query	you	can	check	the	explain	output.	
This	tool	can	help	to	improve	query	performance.	

	

4.3.4 Combine All of the Models

Now	let’s	see	where	we	can	make	use	of	the	multi-model	approach	and	combine	a	
graph	search	with	joins.	Let’s	assume	that	we	have	a	very	large	dataset	of	songs	
from	several	years	and	several	genres.	In	this	case,	some	genres	will	most	likely	
be	super-nodes,	vertices	with	many	connected	edges	(e.g.,	“Pop”).	It’s	always	a	bad	
idea	related	to	performance	to	iterate	through	them	within	a	query.	

Consider	the	follower	user	request:	“I	just	listened	to	a	song	called,	Tribute	and	I	

liked	it	very	much.	I	suspect	that	there	may	be	other	songs	of	the	same	genre	as	
this	song	that	I	might	enjoy.	So,	I	want	to	find	all	of	the	albums	of	the	same	genre	
that	were	released	in	the	same	year”.	

Let’s	 break	 this	 into	 logical	 steps,	 utilizing	 the	 names	 we	 have	 assigned	 to	
components	of	our	database.	We’ll	do	this	in	the	pure	graph	way,	in	this	order:	

1. Start	with	Song,	‘Tribute’	
2. One	step	(PartOf)	to	find	the	Album	
3. One	step	(Has)	to	find	the	Genre	
4. One	step	back	(Has)	to	find	all	otherAlbum’s	of	this	Genre	
5. Year	of	otherAlbum	is	identical	to	year	of	Album	

Written	in	AQL,	the	query	would	look	like	this:	

	

This	 query	 is	 straightforward	 and	 will	 find	 the	 solution.	 However,	 it	 has	 the	
drawback	that	is	most-likely	traversing	over	a	super-node	in	Genre.	Also,	the	list	
of	genres	is	unlikely	to	grow	rapidly.	Although	we	may	add	many	new	songs,	we	
seldomly	add	new	genres.	Therefore,	it	would	be	better	first	to	select	all	Albums	
of	the	same	year	and	then	validate	that	the	genre	is	identical.	This	way	we	get	a	
limited	set	of	Albums,	and	each	has	only	one	genre.	That	query	would	be	resilient	
to	data	growth.	

So,	let	us	modify	our	query	to	the	following:	

1. Start	with	Song,	‘Tribute’	
2. One	step	(PartOf)	to	find	the	Album	
3. One	Step	(Has)	to	find	the	Genre	
4. Join	all	Albums	with	identical	Year	
5. For	each	otherAlbum,	one	step	to	find	its	genre	
6. Filter	all	otherAlbum	where	the	genre	is	different	

These	steps	can	be	written	in	AQL	like	this:	

	

	

4.4 Query Language Comparison

At	the	core,	SQL	and	AQL	are	both	declarative	languages,	with	functions	that	can	
be	called	for	additional	operations.	The	key	difference	between	SQL	and	AQL	is	
that	in	SQL	you	describe	the	result	you	want,	and	in	AQL	you	describe	the	process	
to	get	there.	The	concept	behind	AQL	is	closer	to	coding,	and	therefore	easier	than	
switching	between	a	coding	language	and	querying	language.	

SQL	syntax	has	a	fixed	structure,	whereas	high	level	operations	in	AQL,	such	as	
filters,	can	be	put	in	various	places	for	different	purposes	and	results.	The	flow	is	
more	logical	than	adhering	to	SQL	statement	order.	Plus,	high-level	operations	like	
FILTER	and	SORT	are	more	versatile.	FILTER	equals	WHERE	and	HAVING	 in	SQL,	
depending	on	where	it	appears.	SORT	is	a	direct	equivalent	of	ORDER BY	in	SQL.	
LIMIT	 is	 the	 same	 as	 in	 MySQL,	 although	 there	 are	 some	 things	 to	 consider	
regarding	scope	in	conjunction	with	subqueries.	RETURN	doesn’t	exist	in	SQL,	but	
you	can	specify	which	fields	to	return	in	SELECT.	In	SQL	what	is	to	be	returned	is	
given	early	 in	 the	statement,	whereas	 in	AQL,	RETURN	 is	placed	at	 the	end	of	 a	
query	and	of	subqueries.	

Aggregation	with	COLLECT	 isn’t	 too	 different	 from	GROUP BY	 in	 SQL,	 but	 the	
existence	of	compound	types	in	AQL	makes	it	very	different.	While	in	AQL	there	is	
a	direct	alternative	to	the	construct	of	a	GROUP BY	clause	in	SQL,	with	AQL	there	
are	many	more	twists	and	ways	to	aggregate	data.	For	example,	all	documents	that	
fall	into	a	group	based	on	the	grouping	criteria	can	be	kept	and	further	processed.	
With	 the	 COLLECT AGGREGATE	 clause,	 you	 can	 efficiently	 compute	 statistical	
figures	while	the	data	is	being	grouped.	Grouping	is	fast	even	without	an	index,	
using	a	hash-based	approach.	

FOR	loops	in	all	their	variants	are	a	key	concept	of	AQL.	They	make	AQL	feel	more	

like	a	programming	language	than	a	query	language.	It’s	a	major	building	block	
and	adds	a	sense	of	flow	to	queries.	

Joins,	which	are	heavily	used	in	most	applications	based	on	an	RDBMS,	are	also	
possible	 in	 AQL.	 Joins	 are	 expressed	 with	 nested	 FOR	 loops	 combined	 with	
FILTER,	instead	of	a	separate	syntax	for	each	JOIN.	It’s	quite	similar	to	the	syntax	
for	inner	joins	in	SQL,	but	without	a	JOIN	statement.	Multiple	types	of	joins	can	be	
carried	 out	with	 AQL,	 although	 it	may	 not	 be	 necessary	 to	 do	 so.	 An	 array	 of	
document	keys	together	with	the	DOCUMENT()	function	is	a	viable	alternative	to	
resolve	one-to-many	relationships.	

Recursion	 is	 not	 possible	 in	 SQL,	 except	 with	 a	 stored	 procedure	—	which	 is	
basically	procedural	programming	and	not	strictly	part	of	the	SQL	standards;	they	
are	 largely	 vendor-specific.	 Using	 nested	 FOR	 loops	 in	 AQL	 allows	 for	 the	
traversing	of	multiple	levels	of	attributes	within	a	document.	The	graph	traversal	
variant	 of	 the	 FOR	 loops	 allows	 a	 query	 to	 traverse	 a	 graph	 with	 a	 definable	
minimum	and	maximum	depth	with	a	 few	simple	 lines	of	code.	This	same	task	
would	 be	 extremely	 complex	 in	 a	 relational	 database	 system	 with	 a	 stored	
procedure.	

	

