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1 Introduction to Property Graphs

1.1 Introduction

A graph is a data structure composed of vertices (nodes, dots) and edges (arcs,
lines). When modeling a graph in a computer and applying it to modern data sets
and practices, the generic mathematically-oriented, binary graph is extended to
support both labels and key/value properties. This structure is known as a
property graph. More formally, it is a directed, binary, attributed multi-graph.

1.2 Elements of a property graph

A graph’s structure is the topology formed by the explicit references between its
vertices, edges, and properties:

e Avertex has incident edges

e Avertex is adjacent to another vertex if they share an incident edge

e Aproperty is attached to an element and an element has a set of properties
e Aproperty is a key/value pair, where the key is always a character String.

1.3 Apache TinkerPop and Gremlin

Apache TinkerPop [1] is a graph computing framework and top-level project
hosted by the Apache Software Foundation. The project includes the following
main components:

e Gremlin: a graph traversal query language;

e Gremlin Console: an interactive shell for working with local or remote
graphs;

e Gremlin Server: allows hosting of graphs remotely via an
HTTP/WebSocket connection.

Gremlin is composed of three interacting components: a graph, a traversal, and a
set of traversers. The traversers move about the graph according to the
instructions specified in the traversal, where the result of the computation is the
ultimate locations of all halted traversers.

A Gremlin machine can be executed over any supporting graph computing system
such as an OLTP graph database and/or an OLAP graph processor.



Gremlin, as a graph traversal language, is a functional language implemented in
the user’s native programming language and is used to define the traversal of a
Gremlin machine.



2 BioGraph and BioGraphDB

2.1 Introduction

BioGraph [2] is a web application that allows to query, visualize and analyze
biological data belonging to several online available sources. BioGraph is built
upon a previously developed graph database called BioGraphDB [3] [4] [5] [6] [7],
that integrates and stores heterogeneous biological resources and make them
available by means of a common structure and a unique query language. BioGraph
implements state-of-the-art technologies and provides pre-compiled
bioinformatics scenarios, as well as the possibility to perform custom queries and
obtaining an interactive and dynamic visualization of results.

2.2 Graph data model

Graph data modeling is the process in which an arbitrary domain is described as
a connected graph of nodes and relationships.

In our data sources, almost all entities and references are already well identified.
Therefore, it is quite easy to give an abstract representation of BioGraphDB
database, as shown below.

GeneName | / Go
ANNOTATES ANNOTATES
SYNONYM_OF ANNOTATES
Gene CODING > Protein < -CONTAINS Pathway
INTERACTING_GENE | MIRNAsnp | REFERS_TO Cancer
INTERACTING_SNP
CONTAINS
Interaction HAS_SNP ProteinName CANCER2MIRNA
INTERACTING_MIRNA
T~/ MIRNA PRECURSOR_OF | MIRNA
{ — AN \
N /

A simple general rule has been followed: any biological entity has been mapped
into a node with attributes, and a relationship between two biological entities has
been mapped into a relation. According to the nature of the entities, nodes and
relations have been grouped into classes, each identified by a label. For example,



all the genes imported from Entrez Gene become nodes identified by the label
Gene and all the proteins read from the Uniprot Knowledge Base become nodes
identified by the label Protein. At this point, the relation CODING between genes
and proteins can be created using the information on this relationship from HGNC.

The following table summarizes all associations
information and the created graph entities.

between the biological

Graph entity Label

Biological information

Source

vertices Gene genes NCBI Entrez Genes
Go functional annotations Gene Ontology
Protein proteins UniProtkKB
Pathway pathways Reactome
MiRNA miRNA precursors miRBase
MiRNAmature miRNA matures miRBase
MiRNAsnp miRNA SNPs miRNASNP
Cancer cancers mirCancer
ProteinName proteins accessions UniProtKB
GeneName genes symbols HGNC
Interaction miRNA-target interactions mirTarBase, miRanda
edges ANNOTATES links to annotated entities Gene Ontology
CONTAINS links to entities contained in pathways Reactome
PRECURSOR_OF precursors-matures relations miRBase
HAS_SNP miRNAs-mutations relations miRNASNP
SYNONYM_OF symbols-genes relations HGNC
REFERS_TO accessions-proteins relations UniProtKB

INTERACTING_GENE
INTERACTING_MIRNA
INTERACTING_SNP

genes-interactions relations
miRNA-interactions relations
SNPs-interactions relations

mirTarBase, miRanda, miRNASNP
mirTarBase, miRanda
miRNASNP

At present, BioGraphDB contains about 1,450,000 nodes and 2,820,000 relations.

2.2.1 Nodes labels and their properties

The following table summarizes the names and types of all properties of the nodes
in BioGraphDB, grouped by the node label:

Nodes Properties Type

Gene geneld String
locusTag String
chromosome String
mapLocation String
description String
type String
nomenclatureAuthoritySymbol String
nomenclatureAuthorityFullName String
nomenclatureStatus String
otherDesignations String

GeneName symbol String




Go

Protein

ProteinName

Pathway

Cancer

MiRNA

MiRNAmature

MiRNASNP

Interaction

gold

name
namespace
definition
obsolete
comment

name
fullName
alternativeName
gene

sequence
sequenceLenght
sequenceMass

name

pathwayld
name
summation

name

accession
name
description
comment
sequence

accession
name
description
comment
location
sequence

SNPid
miRNA
chr
miRstart
miRend
lostNum
gainNum

transcriptld
extTranscriptld
mirAlignment
alignment
geneAlignment
mirStart
mirEnd
geneStart

String
String
String
String
String
String

String
String
String
String
String
Int

Int

String

String
String
String

String

String
String
String
String
String

String
String
String
String
String
String

String
String
String
Int
Int
Int
Int

String
String
String
String
String
Int
Int
Int



geneEnd Int
genomeCoordinates String
conservation Double
alignScore Int
seedCat Int
energy Double
mirSvrScore String
mirTarBaseld String
experiments String
supportType String
snpEnergy Double
basePair String
geneAve Double
mirnaAve Double
database String

2.2.2 Edges labels and their properties

The following table summarizes the names and types of all properties of the edges
in BioGraphDB, grouped by the edge label:

Edges Properties Type
ANNOTATES evidence String
qualifier String
category String
SYNONYM_OF - -
CODING - -
CONTAINS - -
REFERS_TO - -
CANCER2MIRNA profile String

PRECURSOR_OF = =

HAS_SNP - -

INTERACTING_GENE = =

INTERACTING_MIRNA - -

INTERACTING_SNP = =




2.3 Templates and Scenarios in BioGraph

The web user interface of BioGraph contains two useful tabs the user can select to
query the graph database and to analyze the results:

e Templates proposes a set of simple predefined queries, grouped by the
following categories: Functions, Genes, Proteins, and miRNAs. Each template
accepts one or more parameters and the Execute button sends the related
query to the Gremlin Workbench for execution.

EB L BioGraph - An online service and a graph database for bioinformatics m

Transatons Boncmatcs Laboratay

Home DB Schema Templates Scenarios Gremlin Workbench Data Sources Contact Us

Templates

Templates are predefined queries, each with a simple form and a description, grouped by category.
After setting parameters, the ready-to-run query is sent to the Gremlin Workbench page for execution.

4 Functions
GO Term = Genes GO Term = Genes
Pathways =» Protein
Pathway =» Genes Search for Genes that are associated with a particular Gene Ontology (GO) annotation.
4 Genes
Gene = GO Term
Gene = Pathway g.V().hasLabel('Go").has('name', goTerm ).
4 Proteins out('ANNOTATES').hasLabel('Gene').order().by('description')
Protein = GO Term
4 miRNAs
miRNA =» Cancer goTerm 3'-5' DNA helicase activity
miRNA mature =» Genes

e Scenarios contains, at present, four predefined complex queries, proposed as
example of how BioGraph and Gremlin can help in the analysis of specific non-
trivial problems. The available scenarios are shown in the following figure:

EB L BioGraph - An online service and a graph database for bioinformatics w
Home DB Schema Templates Scenarios Gremlin Workbench Data Sources Contact Us
Scenarios
Scenarios are predefined complex queries, prop: as of how Bi and Gremlin can help us in the analysis of specifics non-trivial problems.

After setting parameters, the ready-to-run query is sent to the Gremlin Workbench page for execution.

miRNA functional analysis in cancer miRNA functional analysis in cancer

miRNA-SNP functional analysis in

cancer The query investigates the functional role of mIRNAS in cancer pathology.
Wild-type differentially expressed (DE) miRNAS in a specific cancer disease are investigated as regulative elements of gene targets through interaction
Cancer involved miRNAs by pathway analysis. At this point an energy filter is applied according to the free energy score of the binding site predicted by miRanda. This allows to highlight only
miRNA-target interactions that are strongly bound.
Common pathways between genes The targets evidenced are then analyzed through GO enrichment, to see the functional annotations that link these molecules to the selected cancer disease.

g.V().hasLabel('Cancer').has("'name’, cancerName ).
out ('CANCER2MIRNA').dedup().out('PRECURSOR_OF').in('INTERACTING_MIRNA').
has('database’, 'miRanda').has('energy', 1t( energy )).
out (" INTERACTING_GENE').dedup().in("'ANNOTATES').dedup()

cancerName colorectal cancer

energy -34




3 Basic Traversals

3.1 Introduction

A graph query is often referred to as a traversal [8] as that is what we are in fact
doing. We are traversing the graph from a starting point to an ending point.
Traversals consist of one or more steps (essentially methods) that are chained
together.

As we start to look at some simple traversals here are a few steps that you will see
used a lot. Firstly, you will notice that almost all traversals start with either a g.V()

orag.E().

The V step returns vertices and the E step returns edges. You can also use a V step
in the middle of a traversal as well as at the start but we will examine those uses a
little later. The V and E steps can also take parameters indicating which set of
vertices or edges we are interested in.

The other steps we need to introduce are the has and hasLabel steps. They can be
used to test for a certain label or property having a certain value.

3.2 Finding vertices

Below are some simple queries against the BioGraphDB graph to get us started.
The query below will return any vertices (nodes) that have the gene label.

// Find vertices that are genes
gremlin> g.V() .hasLabel ('Gene')

This query will return the vertex that represents the “thioredoxin 2 (TXN2)” gene.

// Find the TXN2 vertex
gremlin> g.V() .has ('nomenclatureAuthoritySymbol', 'TXN2')

The next two queries combine the previous two into a single query.

The first one just chains the queries together. The second shows a form of the has
step that we have not looked at before that takes an additional label value as its
first parameter.



// Combining those two previous queries (two ways that are equivalent)
gremlin> g.V() .hasLabel ('Gene') .has('nomenclatureAuthoritySymbol', 'TXN2')

gremlin> g.V() .has('Gene', 'nomenclatureAuthoritySymbol', 'TXN2')

3.3 Returning property values

There are several different ways of working with vertex properties. We can add,
delete and query properties for any vertex or edge in the graph. Initially, let’s look
at a couple of simple ways that we can look up the property values of a given
vertex.

// What property values are stored in the TXN2 vertex?
gremlin> g.V() .has('Gene', 'nomenclatureAuthoritySymbol', 'TXN2') .values ()

Here is the output that the query returns. Note that we just get back the values of
the properties when using the values step, we do not get back the associated keys.

==>thioredoxin 2

==>22

==>22ql3.1

==>TXN2

==>25828

==>mitochondrial thioredoxin|thioredoxin-2
==>-

==>thioredoxin 2

==>protein-coding

The values step can take parameters that tell it to only return the values for the
provided key names. The queries below return the values of some specific
properties.

// Return just the description property
g.V() .has ('Gene', 'nomenclatureAuthoritySymbol', 'TXN2') .values ('description')

==>thioredoxin 2

// Return the 'chromosome' and 'type' property values.
g.V() .has ('Gene', 'nomenclatureAuthoritySymbol', 'TXN2') .values ('chromosome', 'type')

==>22
==>protein-coding




3.4 Counting

A common need when working with graphs is to be able to count how "many of
something" there are in the graph. First of all, let’s find out how many vertices in
the graph represent genes.

// How many genes are there in the graph?
gremlin> g.V() .hasLabel ('Gene') .count()

==>59839

Now, looking at edges that have a CODING label, let’s find out how many proteins
are encoded by genes in the graph. Note that the outE step looks at outgoing edges.
In this case we could also have used the out step instead.

// How many encoded proteins are there?
gremlin> g.V() .hasLabel('Gene') .outE('CODING') .count ()

==>19089

You could shorten the above a little as follows but this would cause more edges to
get looked as we do not first filter out all vertices that are not genes.

// How many encoded proteins are there?
gremlin> g.V() .outE ('CODING') .count()

==>19089

You could also do it this way but generally starting by looking at all the edges in
the graph is considered bad form as property graphs tend to have a lot more edges
than vertices.

// How many encoded proteins are there?
gremlin> g.E() .hasLabel ('CODING') .count ()

==>19089

3.5 Counting groups of things

Sometimes it is useful to count how many of each type (or group) of things there
are in the graph. This can be done using the group and groupCount steps.

While for a very large graph it is not recommended to run queries that look at all



of the vertices or all of the edges in a graph, for smaller graphs this can be quite
useful. For the BioGraphDB graph, we could easily count the number of different
vertex and edge types in the graph as follows.

// How many of each type of vertex are there?
gremlin> g.V() .groupCount () .by (label)

If we were to run the query we would get back a map where the keys are label
names and the values are the counts for the occurrence of each label in the graph.

==>{MiRNAmature=38558, GeneName=115027, Gene=59839, Pathway=1920, Interaction=913285,
MiRNA=28645, Go=43969, ProteinName=219132, MiRNAsnp=236, Pubmed=76719, Protein=20193,
Cancer=107}

There are other ways we could write the query above that will yield the same
result. One such example is shown below.

// How many of each type of vertex are there?
gremlin> g.V() .label () .groupCount ()

==>{MiRNAmature=38558, GeneName=115027, Gene=59839, Pathway=1920, Interaction=913285,
MiRNA=28645, Go=43969, ProteinName=219132, MiRNAsnp=236, Pubmed=76719, Protein=20193,
Cancer=107}

We can also run a similar query to find out the distribution of edge labels in the
graph. An example of the type of result we would get back is also shown.

// How many of each type of edge are there?
gremlin> g.E() .groupCount () .by (label)

==>{PRECURSOR_OF=38558, POSITIVELY REGULATES=2619, INTERACTING GENE=913285,
CODING=19089, ANNOTATES=514528, NEGATIVELY REGULATES=2632, PART OF=7447,
MIRNA2PATHWAY=136, CANCER2MIRNA=2668, CONTAINS=99979, IS_A=72124, CITED_IN=631543,
INTERACTING_ SNP=255381, INTERACTING MIRNA=657904, HAS SNP=236, REGULATES=3053,

SYNONYM OF=115027, REFERS_T0=219132}

As before we could rewrite the query as follows.

// How many of each type of edge are there?
gremlin> g.E() .label () .groupCount ()

==>{PRECURSOR_OF=38558, POSITIVELY REGULATES=2619, INTERACTING GENE=913285,
CODING=19089, ANNOTATES=514528, NEGATIVELY REGULATES=2632, PART OF=7447,
MIRNA2PATHWAY=136, CANCER2MIRNA=2668, CONTAINS=99979, IS_A=72124, CITED_IN=631543,
INTERACTING_ SNP=255381, INTERACTING MIRNA=657904, HAS SNP=236, REGULATES=3053,

SYNONYM OF=115027, REFERS_T0=219132}




By way of a side note, the examples above are shorthand ways of writing
something like this example which also counts vertices by label.

// As above but using group ()
gremlin> g.V() .group() .by(label) .by (count())

==>{MiRNAmature=38558, GeneName=115027, Gene=59839, Pathway=1920, Interaction=913285,
MiRNA=28645, Go=43969, ProteinName=219132, MiRNAsnp=236, Pubmed=76719, Protein=20193,
Cancer=107}

3.6 Walking the graph

We have mostly just explored queries that look at properties on a vertex or count
how many things we can find of a certain type.

Where the power of a graph really comes into play is when we start to walk or
traverse the graph by looking at the connections (edges) between vertices.

The term walking the graph is used to describe moving from one vertex to another
vertex via an edge.

Typically, when using the phrase walking a graph the intent is to describe starting
at a vertex traversing one or more vertices and edges and ending up at a different
vertex or sometimes, back where you started in the case of a circular walk.

It is very easy to traverse a graph in this way using Gremlin. The journey we took
while on our walk is often referred to as our path.

There are also cases when all you want to do is return edges or some combination
of vertices and edges as the result of a query and Gremlin allows this as well.

The table below gives a brief summary of all the steps that can be used to walk or
traverse a graph using Gremlin. You will find all of these steps used in various ways
throughout the book.

Think of a graph traversal as moving through the graph from one place to one or
more other places. These steps tell Gremlin which places to move to next as it
traverses a graph for you.

In order to better understand these steps, it is worth defining some terminology.
One vertex is considered to be adjacent to another vertex if there is an edge
connecting them. A vertex and an edge are considered incident if they are
connected to each other.



out

in

both

outE

inE

bothE

outV

inV

otherV

outgoing adjacent vertices

incoming adjacent vertices

both incoming and outgoing adjacent vertices
outgoing incident edges

incoming incident edges

both outgoing and incoming incident edges
outgoing vertex

incoming vertex

the vertex that was not the vertex we came from

Note that the steps labelled with an * can optionally take the name of one or more
edge labels as a parameter. If omitted, all relevant edges will be traversed.

3.7 Testing values and ranges of values

Gremlin provides a number of different predicates that we can use to do range
testing. The list below provides a summary of the available predicates.

eq
neq
gt
gte
It
Ite
inside
outside
between
within

without

equal to

not equal to

greater than

greater than or equal to

less than

less than or equal to

inside a lower and upper bound (bounds excluded)
outside a lower and upper bound (bounds excluded)
between two values (upper bound excluded)

must match at least one of the values provided

must not match any of the values provided



3.8 Other useful Gremlin steps

In previous sections, we have presented some essential Gremlin steps. However,
those steps are not enough to productively query any non-trivial graph. Therefore,
in the following subsections, other useful steps are presented, in order to fully
understand the Template and Scenarios section of BioGraph.

3.8.1 dedup()

It is often desirable to remove duplicate values from query results. The dedup step
allows us to do this. In the example below, the name of cancers associated to a
given miRNA is queried. Note that in the returned results there are some duplicate
values.

gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name')

==>cholangiocarcinoma
==>breast carcinoma
==>breast cancer

==>b-cell lymphoma
==>colorectal carcinoma
==>colorectal cancer
==>colorectal cancer
==>cholangiocarcinoma
==>acute myeloid leukemia
==>malignant melanoma
==>malignant melanoma
==>lung cancer

==>lung cancer
==>nasopharyngeal cancer
==>osteosarcoma

==>mantle cell lymphoma
==>medulloblastoma
==>gastric cancer
==>gastric cancer
==>esophageal squamous cell carcinoma
==>gastric cancer
==>hepatocellular carcinoma
==>lung cancer

==>glioma

==>glioma

==>t-cell lymphoblastic lymphoma

If we only wanted a set of unique values in the result we could rewrite the query
to include a dedup step. This time the query results only include one of each value.

// As above but using dedup ()
gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name') .dedup ()

==>cholangiocarcinoma




==>breast carcinoma

==>breast cancer

==>b-cell lymphoma
==>colorectal carcinoma
==>colorectal cancer

==>acute myeloid leukemia
==>malignant melanoma

==>lung cancer

==>nasopharyngeal cancer
==>osteosarcoma

==>mantle cell lymphoma
==>medulloblastoma

==>gastric cancer

==>esophageal squamous cell carcinoma
==>hepatocellular carcinoma
==>glioma

==>t-cell lymphoblastic lymphoma

3.8.2 fold()

There are situations when the traversal stream needs a "barrier” to aggregate all
the objects and emit a computation that is a function of the aggregate. The fold()
step is one particular instance of this. A parameter-less fold() will aggregate all the
objects into alist and then emit the list. Applied to the previous example, we obtain
the following results:

gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name') .dedup () . fold()

==>[cholangiocarcinoma, breast carcinoma, breast cancer, b-cell lymphoma, colorectal
carcinoma, colorectal cancer, acute myeloid leukemia, malignant melanoma, lung cancer,
nasopharyngeal cancer, osteosarcoma, mantle cell lymphoma, medulloblastoma, gastric
cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, glioma, t-cell
lymphoblastic lymphoma]

fold() can also be provided two arguments: a seed value and a reduce bi-function.
The seed is the value to provide as the first argument to the reduce function. The
reduce function is the function to fold by where the first argument is the seed or
the value returned from subsequent calls and the second argument is the value
from the stream.

3.8.3 order()

You can use order() to sort things in either ascending (the default) or descending
order. Note that the sort does not have to be the last step of a query. Also, it is
perfectly ok to sort things in the middle of a query before moving on to a further
step. The last sample query is rewritten as follow:




gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name') .dedup () .order () . fold()

==>[acute myeloid leukemia, b-cell 1lymphoma, breast cancer, breast carcinoma,
cholangiocarcinoma, colorectal cancer, colorectal carcinoma, esophageal squamous cell
carcinoma, gastric cancer, glioma, hepatocellular carcinoma, lung cancer, malignant
melanoma, mantle cell lymphoma, medulloblastoma, nasopharyngeal cancer, osteosarcoma,
t-cell lymphoblastic lymphoma]

By default, a sort performed using order() is performed in ascending order. If we
wanted to sort in descending order instead we can specify decr as a parameter to
order(). We can also specify incrif we want to be clear that we intend an ascending
order sort.

gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name') .dedup () .order () .by (decr) . fold()

==>[t-cell lymphoblastic lymphoma, osteosarcoma, nasopharyngeal cancer,
medulloblastoma, mantle cell lymphoma, malignant melanoma, lung cancer, hepatocellular
carcinoma, glioma, gastric cancer, esophageal squamous cell carcinoma, colorectal
carcinoma, colorectal cancer, cholangiocarcinoma, breast carcinoma, breast cancer, b-
cell lymphoma, acute myeloid leukemia]

You can also sort things into a random order using shuffle. Take a look at the
example below and the output it produces.

gremlin> g.V() .hasLabel ('MiRNA') .has('name', 'hsa-mir-17").
in ('CANCER2MIRNA') .values ('name') .dedup () .order () .by (shuffle) . fold ()

==>[osteosarcoma, lung cancer, hepatocellular carcinoma, mantle cell lymphoma, breast
cancer, malignant melanoma, breast carcinoma, t-cell lymphoblastic lymphoma,
nasopharyngeal cancer, colorectal carcinoma, gastric cancer, glioma, colorectal
cancer, cholangiocarcinoma, b-cell lymphoma, esophageal squamous cell carcinoma, acute
myeloid leukemia, medulloblastoma]

3.8.4 group() and cap()

As traversers propagate across a graph as defined by a traversal, “side effect”
computations are sometimes required. That is, the actual path taken or the current
location of a traverser is not the ultimate output of the computation, but some
other representation of the traversal. The group() step is one such side effect that
organizes the objects according to some function of the object. Then, if required,
that organization (alist) is reduced. Note that, when you’re doing group(), the map
structure is not closed and not fully available for reading because we may
accumulate more data into it later in the traversal. The cap() step iterates the
traversal up to itself and emits the side effect referenced by the provided key.



4 Solving scenarios

4.1 Introduction

In this chapter, the queries from the Templates section and the Scenarios section
of BioGraph are presented and explained. They are showed starting from the
simplest and then progressing with those gradually more complex.

4.2 Genes associated to a GO annotation

As first example, let’s see how to search for Genes that are associated with a
particular Gene Ontology (GO) annotation, e.g., the 3'-5' DNA helicase activity.
Starting from the GO node, we simply have to traverse the ANNOTATES edges
linked to all the outgoing adjacent Gene nodes.

g.V() .hasLabel ("Go") .has ("name" ,"3'-5' DNA helicase activity").
out ("ANNOTATES") .
hasLabel ("Gene") .dedup () .values ("nomenclatureAuthoritySymbol") . fold ()

==>[FBX018, GINS4, GINS2, GINS1l, WRN, CDC45, ERCC3]

4.3 Proteins in a pathway

Now, let’s look for all proteins contained in a given pathway, e.g., the Gap-filling
DNA repair synthesis and ligation in TC-NER. Starting from the Pathway node, we
simply traverse the CONTAINS edges. Proteins names are presented in alphabetic
order.

g.V() .hasLabel ('Pathway') .
has('name', 'Gap-filling DNA repair synthesis and ligation in TC-NER').
out ('CONTAINS') .
values ('name') .order () .fold()

==>[AQR HUMAN, CCNH HUMAN, CDK7_HUMAN, CUL4A HUMAN, CUL4B_HUMAN, DDBl_HUMAN,

DNLI1 HUMAN, DNLI3 HUMAN, DPOD1_HUMAN, DPOD2_HUMAN, DPOD3_HUMAN, DPOD4_HUMAN,
DPOE1l_HUMAN, DPOE2_ HUMAN, EP300 HUMAN, ERCC2 HUMAN, ERCC3 HUMAN, ERCC6_HUMAN,

ERCC8 HUMAN, HMGN1 HUMAN, ISYl HUMAN, MAT1 HUMAN, PCNA HUMAN, POLK HUMAN,
PPIE_HUMAN, PRP19 HUMAN, RBX1 HUMAN, RFA1 HUMAN, RFA2 HUMAN, RFA3 HUMAN, RFC1_ HUMAN,
RFC2_HUMAN, RFC3 HUMAN, RFC4 HUMAN, RFC5 HUMAN, RL40_HUMAN, RPAB1_ HUMAN,

RPAB2 HUMAN, RPAB3 HUMAN, RPAB4 HUMAN, RPAB5 HUMAN, RPB11l HUMAN, RPB1_HUMAN,
RPB2_HUMAN, RPB3 HUMAN, RPB4 HUMAN, RPB7_HUMAN, RPB9 HUMAN, RS27A HUMAN, SYF1l HUMAN,
TCEA1l_HUMAN, TF2H1 HUMAN, TF2H2 HUMAN, TF2H3 HUMAN, TF2H4 HUMAN, TF2HS_ HUMAN,
UBB_HUMAN, UBC_HUMAN, UBP7_HUMAN, UVSSA HUMAN, XRCC1l HUMAN, ZN830_ HUMAN]




4.4 Genes associated to a pathway

Genes are linked to pathways indirectly, because we have to traverse proteins
nodes first. Therefore, the Gremlin query will contain an extra step to traverse the
CODING edges:

g.V() .hasLabel ('Pathway') .
has('name', 'Gap-filling DNA repair synthesis and ligation in TC-NER').
out ('CONTAINS') .
in('CODING') .
values ('nomenclatureAuthoritySymbol') .order () . fold()

==>[AQR, CCNH, CDK7, CUL4A, CUL4B, DDB1l, EP300, ERCC2, ERCC3, ERCC6, ERCC8, GTF2H1,
GTF2H2, GTF2H3, GTF2H4, GTF2H5, HMGN1l, ISYl, LIGl, LIG3, MNAT1, PCNA, POLD1l, POLD2,
POLD3, POLD4, POLE, POLE2, POLK, POLR2A, POLR2B, POLR2C, POLR2D, POLR2E, POLR2F,
POLR2G, POLR2H, POLR2I, POLR2J, POLR2K, POLR2L, PPIE, PRPF19, RBX1l, RFCl, RFC2,
RFC3, RFC4, RFC5, RPAl, RPA2, RPA3, RPS27A, TCEAl, UBA52, UBB, UBC, USP7, UVSSA,
XAB2, XRCCl, ZNF830]

4.5 GO annotations for a gene

Let's proceed in reverse order from Par. 4.2: given a gene, let's look for its
functional annotations.

g.V() .hasLabel('Gene') .
has ('nomenclatureAuthoritySymbol', 'PPARG') .
in ('ANNOTATES') .
values ('goId') .order () .fold()

==>[G0:0000122, GO:0000122, GO:0001012, GO:0001046, GO:0001228, GO:0001890,
G0:0002024, GO:0002674, GO:0003677, GO:0003677, GO:0003682, GO:0003700, GO:0003700,
G0:0003707, GO:0004879, GO:0004955, GO:0005515, GO:0005634, GO:0005654, GO:0005794,
G0:0005829, GO:0006367, GO:0006629, GO:0006919, GO:0007165, GO:0007186, GO:0007507,
G0:0007584, GO:0008144, GO:0008217, GO:0008270, GO:0009409, GO:0009612, GO:0010467,
G0:0010745, GO:0010745, GO:0010871, GO:0010887, GO:0010891, GO:0015909, GO:0019395,
G0:0019899, GO:0019903, GO:0030224, GO:0030308, GO:0030331, GO:0030374, GO:0030855,
G0:0031000, GO:0031100, GO:0032526, GO:0032869, GO:0032966, GO:0033189, GO:0033613,
G0:0033993, GO:0035357, GO:0035902, GO:0036270, GO:0042593, GO:0042594, GO:0042752,
G0:0042802, GO:0042953, GO:0043231, GO:0043401, GO:0043565, GO:0043627, GO:0044212,
G0:0044212, GO:0045087, GO:0045165, GO:0045600, GO:0045713, GO:0045892, GO:0045893,
G0O:0045944, GO:0045944, GO:0046321, GO:0046965, GO:0048469, GO:0048471, GO:0048511,
G0:0048662, GO:0048714, GO:0050544, GO:0050872, GO:0050872, GO:0050873, GO:0051091,
G0:0051393, GO:0051974, GO:0055088, GO:0055098, GO:0060100, GO:0060336, GO:0060694,
G0:0060850, GO:0071285, GO:0071300, GO:0071306, GO:0071380, GO:0071455, GO:0090575,
G0:1901558, G0:2000230]




4.6 Pathways associated to a gene

Again, we proceed in reverse order from Par. 4.4: given a gene, we look for

(indirect) associated pathways.

g.V() .hasLabel('Gene') .
has ('nomenclatureAuthoritySymbol', 'PPARG') .
out ('CODING') .
in ('CONTAINS') .values('name') .order ()

==>Developmental Biology

==>Fatty acid, triacylglycerol, and ketone body metabolism
==>Gene Expression
==>Generic Transcription Pathway
==>Metabolism
==>Metabolism of lipids and lipoproteins
==>Nuclear Receptor transcription pathway
==>PPARA activates gene expression
==>Regulation of lipid metabolism by Peroxisome proliferator-activated receptor
alpha (PPARalpha)
==>Transcriptional regulation of white adipocyte differentiation

4.7 GO annotations for a protein

This is a modification of Par. 4.5: given a protein, we look for its functional
annotations.
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4.8

For

cancers from miRCancer:

Cancers associated to a miRNA

a given miRNA, e.g., has-mir-17, the following query returns the associated




gremlin> g.V() .hasLabel ('"MiRNA') .
has('name', '"hsa-mir-17"').
in ('CANCER2MIRNA') .dedup () .values ('name') .order ()

==>acute myeloid leukemia
==>b-cell lymphoma

==>breast cancer

==>breast carcinoma
==>cholangiocarcinoma
==>colorectal cancer
==>colorectal carcinoma
==>esophageal squamous cell carcinoma
==>gastric cancer

==>glioma

==>hepatocellular carcinoma
==>lung cancer

==>malignant melanoma

==>mantle cell lymphoma
==>medulloblastoma
==>nasopharyngeal cancer
==>osteosarcoma

==>t-cell lymphoblastic lymphoma

4.9 Validated interactions miRNA-Genes

For a given miRNA mature, e.g., has-miR-148a-3p, the following query walks on
validated interaction from miRTarBase and returns the interacting genes:

gremlin> g.V() .hasLabel ('MiRNAmature').
has ('product', 'hsa-miR-148a-3p').
in ('INTERACTING MIRNA') .has('database', 'miRTarBase').
out (' INTERACTING_GENE') .dedup () .
values ('nomenclatureAuthoritySymbol') . fold()

==>[ABLIM1, ACVR1, ADARB1, AGO2, AGO3, AKAP17A, AMELX, ANP32A, AP5B1, APC, APPBP2,
ARID3A, ARLSB, ARRDC3, ASB6, AURKB, B4GALT7, BAZ2B, BCL2, BCL2L11l, BMP3, BTBD3,
CBX3, CCKBR, CCNA2, CCNI, CCT6A, CDC25B, CDK19, CDKN1B, CEBPG, CEP55, CHRFAM7A,
CNOT4, COLEC12, CYCS, DCUN1D3, DDX6, DENR, DICER1, DNAJB4, DNMT1, DNMT3B, DSTYK,
DTX4, DYNLL2, DYRK1A, EOGT, ERRFI1, ETV7, FAM104A, FAM212B, FOXP1l, F2ZD5, GAS1,
GLRX5, GNB5, GOLIM4, GPATCH8, GPRC5A, HCCS, HLA-A, HLA-C, HLA-G, HMGB1l, HOXCS,
HSP90AA1l, HSP90B1, HSPA4, IGFBP5, IL23R, IRS1, ITGA5, ITGBS, JARID2, KANSLI,
KIAA0907, KIAA1549, KIF2C, KLF6, KPNA4, LBR, LNPEP, LYSMD1, MAFB, MAP3K4, MAP3K9,
MET, MLEC, MMP7, MPP5, MRPL45, MRPS27, MSL3, MTMR9, MYC, MYCBP2, MYO3A, NDRGl, NONO,
NPTX1, NR1I2, OR2C3, OTUD4, OVOLl, PAN3, PAPD4, PATL1, PBXIP1, PDIKIL, PHACTR2,
PLA2G12A, POCl1A, POFUT1, PPP6R1, PRNP, PSMD9, PTPN23, PTPN4, RAB10, RAB12, RAB14,
RAB1B, RAB34, RASSF8, RBM23, RBM38, RCC2, RFT1, RNF219, ROCK1, RPS17, RPS6KA4,
RPS6KA5, RUNX3, S1PR1, S1PR2, SECISBP2L, SERPINE1, SESN3, SESTD1, SH3PXD2A, SIKI1,
SLC12A7, SLC25A3, SLC2A3, SLC38A2, SMAD2, SNAPIN, SORD, SOS2, SPRY2, STARD13, STX16,
STX6, TGIF2, TMED7, TMEM14A, TMEM9B, TNRC6A, TNRC6B, TRIM59, TTLL1, TXNIP, UBE2D3,
UNKL, UQCRQ, USP38, USP4, VAV2, VGLL2, VPS37A, VPS37B, VPS41, WASL, WDTCl, WNT10B,
WNT2B, YPEL1, YWHAB, ZDHHC6, ZFYVE26, ZIC5, ZNF490, ZNF92]




4.10 miRNA functional analysis in cancer
The query investigates the functional role of miRNAs in cancer pathology.

Wild-type differentially expressed (DE) miRNAs in a specific cancer disease are
investigated as regulative elements of gene targets through interaction analysis.
At this point an energy filter is applied according to the free energy score of the
binding site predicted by miRanda. This allows to highlight only miRNA-target
interactions that are strongly bound.

The evidenced targets are then analyzed through GO enrichment, to show the
functional annotations that link these molecules to the selected cancer disease.

gremlin> g.V() .hasLabel ('Cancer').
has('name', 'colorectal cancer').
out ('CANCER2MIRNA') .dedup () .
out (' PRECURSOR OF') .
in ('INTERACTING MIRNA') .has('database',6 'miRanda') .has('energy',61t(-34)).
out (' INTERACTING_GENE') .dedup () .
group('genes').
by ('nomenclatureAuthoritySymbol') .
by(__ .in('ANNOTATES') .dedup () .values('goId') .fold()) .
cap('genes')

==>{CSF1R=[G0:0001934, GO:1990682, GO:0019955, GO:0071345, GO:0090197, GO:0045217,
G0:0045087, GO:0048015, GO:0008284, GO:0008283, GO:0008285, GO:0005524, GO:0031529,
G0:0007519, GO:0006954, GO:0071902, GO:0036006, GO:0005011, GO:0045124, GO:0038145,
G0:0030316, GO:0061098, GO:0021879, GO:0009986, GO:0007411, GO:0045672, GO:0070374,
G0:0007275, GO:0030335, GO:0021772, GO:0046488, GO:0060603, GO:0046777, GO:0008360,
G0:2000249, GO:0005886, GO:0030224, GO:0005887, GO:0030225, GO:0007165, GO:0019903,
G0:0019221, GO:0042517, GO:0030097, GO:0007169, GO:0018108, GO:0043066, GO:0005622,
G0:0042803, GO:2000147], SUFU=[GO:0003714, GO:0003281, GO:0035904, GO:0043588,
G0:0060976, GO:0007275, GO:0008134, GO:0006355, GO:0001947, GO:0005654, GO:0006508,
G0:0005515, GO:0021776, GO:0021775, GO:0005737, GO:1901621, GO:2000059, GO:0008013,
G0:0019901, GO:0007165, GO:0042992, GO:0000122, GO:0042994, GO:0001843, GO:0005829,
G0:0043433, GO:0004871, GO:0001501, GO:0097542, GO:0045879, GO:0045668, GO:0072372,
G0O:0097546, GO:0005634], TNFSF12=[GO:0048471, GO:0005576, GO:0001938, GO:0006915,
G0:0005125, GO:0006955, GO:0005615, GO:0001525, GO:0005164, GO:0005515, GO:0033209,
G0:2001238, GO:0005102, GO:0045732, GO:0045766, GO:0030154, GO:0097190, GO:0043542,
G0:0005886, GO:0097191, GO:0005887, GO:0007165], ATP13A3=[GO:0006874, GO:0043231,
G0O:0005524, GO:0016020, GO:0098655, GO:0019829, GO:0005887, GO:0008152, GO:0046872],
VWA5B1=[GO:0005576] }

4.11 miRNA-SNP functional analysis in cancer

The query allows to evidence the functional significance of miRNA single
nucleotide polymorphisms (SNPs) in cancer pathology.

Starting from a specific cancer type, miRNA SNPs linked to the cancer disease are
selected and used in miRNA-target interactions DB (a free energy score is applied).



The result shows the functional annotations that link evidenced targets to the
selected cancer disease.

gremlin> g.V() .hasLabel ('Cancer').
has('name', 'colorectal cancer').
out ('CANCER2MIRNA') .dedup () .
out (' PRECURSOR OF') .
out ('HAS_SNP') .
in ('INTERACTING_SNP') .has('snpEnergy',6 1t (-34)).
out (' INTERACTING_GENE') .dedup () .
group('genes').
by ('nomenclatureAuthoritySymbol') .
by(__ .in('ANNOTATES') .dedup () .values('goId').fold()) .
cap('genes')

==>{PTP4A2=[G0:0035335, G0O:0005769, GO:0005737, GO:0005886, GO:0004727, GO:0005634,
G0:0070062] }

4.12 Cancer involved miRNAs by pathway

Starting from a specific pathway, the following query finds the up-regulated
miRNAs involved in a specific cancer scenario.

gremlin> g.V () .hasLabel ('Pathway') .
has('name', 'Cell Cycle').
out ('CONTAINS') .
in ('CODING') .
in ('INTERACTING GENE') .has('database',6 'miRanda') .has('energy',1t(-30)).
out ('INTERACTING MIRNA') .dedup() .
in ('PRECURSOR OF') .
group('mirnas') .
by ('accession') .
by(__ .inE ('CANCER2MIRNA') .has('profile', 'up').
outV () .dedup () .values('name') .fold()) .
cap('mirnas')

==>{MI0000268=[papillary thyroid carcinoma, squamous carcinoma, clear cell renal
cell cancer, pancreatic ductal adenocarcinoma, rectal cancer, gastric cancer, non-
small cell lung cancer], MI0000239=[lung cancer, follicular thyroid carcinoma,
breast cancer], MI0000095=[esophageal squamous cell carcinoma, colorectal cancer,
nasopharyngeal carcinoma, osteosarcoma, laryngeal squamous cell carcinoma, glioma,
head and neck squamous cell carcinoma, endometrial cancer, non-small cell lung
cancer]}
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