

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Building a Semantic Graph Database
for Bioinformatics

A. Messina

Rapporto Tecnico N.:
RT-ICAR-PA-18-05 Maggio 2018

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) –
Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it

Non è possibile visualizzare l'immagine.

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

Building a Semantic Graph Database
for Bioinformatics

A. Messina1

Rapporto Tecnico N.:
RT-ICAR-PA-18-05 Maggio 2018

1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Via Ugo

La Malfa n. 153, 90146 Palermo.

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione
definitiva in altra sede.

Non è possibile visualizzare l'immagine.

Index

1 INTRODUCTION	..	4

2 GRAKN.AI	...	5

2.1 Introduction ... 5

2.2 Grakn ... 5

2.3 Graql .. 6

3 DATA	SOURCES	...	7

3.1 Introduction ... 7

3.2 NCBI Entrez Gene ... 7

3.3 Gene Ontology ... 8

3.4 UniProt .. 8

3.5 Reactome ... 9

3.6 miRBase ... 10

3.7 mirCancer... 10

3.8 mirTarBase ... 11

3.9 HGNC ... 11

4 BUILDING	THE	DATABASE	...	12

4.1 Introduction ... 12

4.2 UNIPROT ETL .. Errore. Il segnalibro non è definito.

4.3 HGNC ETL ... Errore. Il segnalibro non è definito.

4.4 REACTOME ETL... Errore. Il segnalibro non è definito.

5 REFERENCES	...	21

1 Introduction

Nowadays, the amount of biological data available online has proliferated, but this has
been accompanied by enormous challenges arising from the need to integrate and
connect related information from different sources [1].

Common problems include locating resources, differing data formats, ambiguity and
duplication, relationships between data and the sheer volume and granularity of the
information. As yet, there is no standard memorization and query format for this kind
of data, so each resource usually requires a different approach to be properly handled.

Several classes of bio-molecular data, such as transcriptional regulatory networks and
protein-protein interaction networks, interact as complex networks. They can usually
be modeled as graphs, where nodes (and their attributes) model biological entities and
edges contain relationships between these entities. Since query languages play a key
role in the success of databases, in order to allow for efficient queries, these graphs can
be stored either in relational or graph databases [2], where the latter by their nature
seem to be a natural choice.

In this work, we illustrate how to build BioGrakn, a semantic graph database for
bioinformatics [3] based on GRAKN.AI [4], which is a deductive database in the form
of a knowledge graph, allowing complex data modelling, verification, scaling, querying
and analysis.

The database behind GRAKN.AI uses an ontology to facilitate the modelling of
extremely complex datasets, functioning as a data schema constraint to guarantee
information consistency. GRAKN.AI stores data in a way that allows machines to
understand the meaning of information in the complete context of their relationships.
Consequently, the semantic layer of Grakn allows computers to process complex
information more intelligently, with less human intervention.

 	

2 GRAKN.AI

2.1 Introduction

GRAKN.AI	 is	 a	 deductive	 database	 in	 the	 form	of	 a	 knowledge	 graph,	 allowing	
complex	data	modelling,	verification,	scaling,	querying	and	analysis.		

The	 database	 behind	 GRAKN.AI	 uses	 an	 ontology	 to	 facilitate	 the	modelling	 of	
extremely	complex	datasets,	functioning	as	a	data	schema	constraint	to	guarantee	
information	consistency.	GRAKN.AI	stores	data	in	a	way	that	allows	machines	to	
understand	 the	 meaning	 of	 information	 in	 the	 complete	 context	 of	 their	
relationships.	 Consequently,	 the	 semantic	 layer	 of	 Grakn	 allows	 computers	 to	
process	complex	information	more	intelligently,	with	less	human	intervention.		

GRAKN.AI	is	composed	of	two	parts:	Grakn	(the	storage),	and	Graql	(a	declarative	
query	language).		

	

	

2.2 Grakn

Grakn	 is	 built	 using	 several	 graph	 computing	 and	 distributed	 computing	
platforms,	such	as	Apache	TinkerPop	and	Apache	Spark.	Grakn	is	designed	to	be	
sharded	and	replicated	over	a	network	of	distributed	machines.	The	underlying	
data	structure	of	Grakn	is	that	of	a	labelled,	directed	hypergraph.		

	

Grakn	exposes	a	high-level	knowledge	model,	allowing	developers	to	represent	
their	 application	 domain	 as	 an	 ontology,	 specifying	 it	 in	 terms	 of	 entities,	
resources,	relations,	and	roles.		

Grakns	ontology	modelling	constructs	 include,	but	are	not	 limited	to,	data	type	
hierarchy,	 relation	 type	 hierarchy,	 bi-directional	 relationships,	 multi-type	
relationships,	N-ary	relationships,	relationships	in	relationships,	and	so	on.	

Therefore,	 Grakn	 can	model	 the	 real	world	 and	 all	 the	 hierarchies	 and	 hyper-
relationships	contained	within	it.		

	

	

2.3 Graql

Graql	 is	 a	 declarative,	 knowledge-oriented	 graph	 query	 language	 that	 uses	
machine	reasoning	to	retrieve	explicitly	stored	and	implicitly	derived	knowledge	
from	Grakn.		

When	using	 legacy	 systems,	database	queries	have	 to	define	explicitly	 the	data	
patterns	 they	 are	 looking	 for.	 Graql,	 on	 the	 other	 hand,	will	 translate	 a	 query	
pattern	into	all	its	logical	equivalents	and	evaluate	them	against	the	database.	This	
includes,	but	is	not	limited	to,	the	inference	of	types,	relation-	ships,	context,	and	
pattern	combination.	This	way,	Graql	can	derive	implicit	information	with	concise	
and	 intuitive	 statements,	 reducing	 the	 complexity	 of	 expressing	 intelligent	
questions.		

In	Graql,	there	are	different	types	of	queries	available:	for	matching	patterns	in	the	
graph,	 inserting	 or	 deleting	 types	 and	 instances,	 and	 for	 computing	 useful	
information	about	the	graph,	such	as	statistics	or	shortest	path	between	nodes.		

Two	inference	mechanisms	are	supported:	type	inference,	based	on	the	semantics	
defined	 in	the	ontology,	and	rule-based	 inference,	 that	 involves	rules	defined	by	
expressions	of	the	form	

when	G1	then	G2	

where	G1	and	G2	are	a	pair	of	Graql	patterns.		

Whenever	 the	 left-hand-side	 (when)	pattern	G1	 is	 found	 in	 the	 data,	 the	 right-
hand-side	(then)	pattern	G2	can	be	assumed	to	exist	and	optionally	materialized	
(inserted).		

3 Data Sources

3.1 Introduction

The	data	sources	selected	for	database	population	allow	us	to	build	an	integrated	
database	containing	resources	related	to	genes,	proteins,	miRNAs,	and	metabolic	
pathways.		

Getting	into	the	details,	we	have	considered	the	following:		

• NCBI	Entrez	Gene	[5]:	provides	a	lot	of	genes	data,	such	as	interactions	with	
other	genes,	genomic	context,	annotated	pathways,	and	so	on.		

• Gene	 Ontology	 (GO)	 [6]:	 provides	 annotations	 for	 gene	 products	 in	
biological	processes,	cellular	components	and	molecular	functions.		

• UniProt	KnowledgeBase	 (UniprotKB)	[7]:	 the	 largest	public	 collection	of	
annotated	functional	information	on	proteins.		

• Reactome	[8]:	contains	validated	metabolic	pathways,	each	annotated	as	a	
set	of	biological	events,	dealing	with	genes	and	proteins.		

• miRBase	[9]:	provides	all	the	known	miRNAs	sequences	and	annotations,	
associated	with	names,	keywords,	genomic	locations,	and	references.		

• mirCancer	 [10]:	 contains	 associations	 between	 miRNAs	 and	 human	
cancers.		

• miRNASNP	 [11]:	 aims	 to	 provide	 a	 resource	 of	 the	 miRNA-related	
mutations	(SNPs)	for	human	and	other	species.		

• mirTarBase	 [12]:	 list	 of	 experimentally	 validated	 miRNA-target	
interactions.		

• HGNC	[13]:	the	HUGO	Gene	Nomenclature	Committee	database	contains,	
for	each	gene	symbol,	a	list	of	synonyms	and	a	list	of	corresponding	entries	
in	the	most	popular	genes	databases.		

Many	of	the	above	are	supplied	in	tab-separated	values	(TSV)	format,	a	simple	text	
format	for	storing	data	in	a	tabular	structure	where	each	record	in	the	table	is	one	
line	of	the	text	file,	and	each	field	value	of	a	record	is	separated	from	the	next	by	a	
tab	character.	By	contrast,	miRBase,	GO,	and	UniprotKB	are	distributed	as	EMBL	
text	file	format	and	XML	format,	respectively.		

	

3.2 NCBI Entrez Gene

The	NCBI	Entrez	Gene	is	a	searchable	database	of	genes,	focusing	on	genomes	that	
have	been	completely	sequenced	and	that	have	an	active	research	community	to	

contribute	gene-specific	data.		

Information	includes	nomenclature,	chromosomal	localization,	gene	products	and	
their	 attributes	 (e.g.,	 protein	 interactions),	 associated	 markers,	 phenotypes,	
interactions,	and	links	to	citations,	sequences,	variation	details,	maps,	expression	
reports,	homologs,	protein	domain	content,	and	external	databases.		

The	 database	 is	 available	 for	 download	 from	 the	 address	
ftp://ftp.ncbi.nih.gov/gene/	and	it	is	splitted	in	several	compressed	files	updated	
daily	 within	 the	 DATA	 directory.	 In	 this	 work,	 only	 the	 file	 gene_info.gz	 is	
considered.	

	

3.3 Gene Ontology

The	Gene	Ontology	(GO)	is	the	most	complete	and	daily	updated	public	resource	
for	genes	and	proteins	annotation.	It	provides	annotations	for	gene	products	in	
biological	processes,	cellular	components	and	molecular	functions.		

The	 GO	 main	 features	 include	 ontologies,	 definitions	 and	 mappings	 to	 other	
databases,	such	as	UniProtKB,	and	manual	and	automated	generated	annotations.		

	

3.4 UniProt

The	 UniProt	 Knowledgebase	 (UniProtKB)	 is	 the	 largest	 public	 collection	 of	
annotated	functional	information	on	proteins	and	it	is	updated	every	four	weeks.	

It	 stores	 both	 computationally	 analyzed	 and	 manually	 annotated	 records,	
including	 classifications,	 cross-references	 and	 quality	 indications	 available	 to	
scientific	researchers.	

UniProtKB	 is	 actually	 composed	 of	 two	 sections:	 UniProtKB/Swiss-Prot	 and	
UniProtKB/TrEMBL.		

UniProtKB/Swiss-Prot	is	the	reviewed	section	of	the	UniProt	Knowledgebase.		

The	 TrEMBL	 section	 of	 UniProtKB	was	 introduced	 in	 1996	 in	 response	 to	 the	
increased	dataflow	resulting	from	genome	projects.	It	was	already	recognized	at	
that	time	that	the	traditional	time-	and	labour-intensive	manual	curation	process	
which	 is	 the	 hallmark	 of	 Swiss-Prot	 could	 not	 be	 broadened	 to	 encompass	 all	
available	 protein	 sequences.	 UniProtKB/TrEMBL	 contains	 high	 quality	
computationally	analyzed	 records	 that	 are	enriched	with	automatic	 annotation	
and	classification.		

These	 UniProtKB/TrEMBL	 unreviewed	 entries	 are	 kept	 separated	 from	 the	
UniProtKB/Swiss-Prot	manually	reviewed	entries	so	that	the	high-quality	data	of	
the	latter	is	not	diluted	in	any	way.	Automatic	processing	of	the	data	enables	the	
records	to	be	made	available	to	the	public	quickly.	

UniProtKB	 is	 available	 for	 download	 from	 the	 URL	 ftp://ftp.uniprot.org/	
pub/databases/uniprot/current_release/knowledgebase/complete/	 and	 it	 is	
released	in	three	different	file	formats:	XML,	fasta,	and	text.	

Thanks	to	the	availability	of	well	documented	and	powerful	XML	API	in	the	Java	
language,	in	this	work	the	XML	version	of	UniProKB/Swiss-Prot	was	utilized.	It	is	
accompanied	by	an	XML	schema	 file,	which	describes	 the	structure	of	 the	XML	
document.	

The	XML	Schema	language	is	also	referred	to	as	XML	Schema	Definition	(XSD).	The	
purpose	 of	 an	 XML	 Schema	 is	 to	 define	 the	 legal	 building	 blocks	 of	 an	 XML	
document:	

• the	elements	and	attributes	that	can	appear	in	a	document	
• the	number	of	(and	order	of)	child	elements	
• data	types	for	elements	and	attributes	
• default	and	fixed	values	for	elements	and	attributes			

	

3.5 Reactome

Reactome	 is	 a	 database	 containing	 validated	 metabolic	 pathways	 in	 human	
biology	and	computationally	inferred	pathways	for	20	non-human	species.		

Each	pathway	is	annotated	as	a	set	of	biological	events,	dealing	with	genes	and	
proteins.		

In	order	to	support	the	scientific	community,	it	provides	a	mapping	among	these	
entities	and	the	main	source	database	identifiers,	such	as	UniprotKB	and	miRBase.		

The	 download	 section	 of	 Reactome	 site	 at	 the	 URL	 http://www.reactome.org/	
pages/download-data/	contains	many	downloadable	resources,	such	as:		

• Identifier	mapping	 files,	which	 link	 the	 source	database	 identifier	 to	 the	
lowest	level	pathway	diagram	or	subset	of	the	pathway	or	to	all	levels	of	
the	pathway	hierarchy;	

• Pathway	information,	that	is	the	complete	list	of	pathways	and	the	pathway	
hierarchy	relationship;	

• Interactions	derived	from	Reactome	pathways,	such	as	the	human	protein-

protein	interaction	pairs	in	tab-delimited	format;	
• MySQL	dumps	of	Reactome	database.	

By	 executing	 some	 specifically	 custom	 SQL	 views,	 data	 of	 interest	 have	 been	
directly	extracted	 from	 the	SQL	dumps	of	 the	database,	which	were	previously	
imported	 into	 a	 dedicated	MySQL	 server	 instance.	 Examples	 of	 such	 data	 are:	
pathway	to	disease	relations,	pathways	summations,	literature	references.	

	

3.6 miRBase

The	miRBase	database	 is	a	searchable	database	of	published	miRNA	sequences	
and	annotation.		

Each	 entry	 in	 the	 miRBase	 Sequence	 database	 represents	 a	 predicted	 hairpin	
portion	of	a	miRNA	transcript	(termed	mir	in	the	database),	with	information	on	
the	location	and	sequence	of	the	mature	miRNA	sequence	(termed	miR).		

Both	hairpin	and	mature	sequences	are	available	for	searching	and	browsing,	and	
entries	can	also	be	retrieved	by	name,	keyword,	references	and	annotation.		

The	 file	 at	 the	 URL	 ftp://mirbase.org/pub/mirbase/CURRENT/miRNA.dat.gz	
contains	all	the	current	published	miRNA	data	in	EMBL	format.		

Latest	available	database	is	version	21	released	on	June	2014.		

	

3.7 mirCancer

miRCancer	provides	comprehensive	collection	of	microRNA	(miRNA)	expression	
profiles	 in	 various	 human	 cancers	 which	 are	 automatically	 extracted	 from	
published	literatures	in	PubMed.	It	utilizes	text	mining	techniques	for	information	
collection.	 Manual	 revision	 is	 applied	 after	 auto-extraction	 to	 provide	 100%	
precision.		

User	can	search	the	database	by	miRNA	and/or	cancer	names	in	the	miRCancer	
Search	page.		

The	website	also	provides	two	sequence	analysis	tools:	clustering	and	chi-square	
analysis	which	can	perform	analysis	on	all	or	selected	pool	of	miRNA	sequences.	

The	latest	miRCancer	database	is	usually	available	for	download	upon	request.	At	
time	of	writing,	the	latest	was	updated	on	Dec.	3rd,	2015.	In	this	work,	the	version	
http://mircancer.ecu.edu/downloads/miRCancerSeptember2015.txt	was	used.		

3.8 mirTarBase

This	 resource	 is	 a	 collection	 of	 publicly	 available	 miRNA-target	 interactions	
databases	and	contains	experimentally	validated	interactions,	which	are	collected	
by	 manually	 surveying	 pertinent	 literature	 after	 data	 mining	 of	 the	 text	
systematically	to	filter	research	articles	related	to	functional	studies	of	miRNAs.		

Generally,	 the	 collected	 MTIs	 are	 validated	 experimentally	 by	 reporter	 assay,	
western	 blot,	 microarray	 and	 next-generation	 sequencing	 experiments.	 While	
containing	the	largest	amount	of	validated	MTIs,	miRTarBase	provides	the	most	
updated	 collection	 by	 comparing	 with	 other	 similar,	 previously	 developed	
databases.	

The	 URL	 http://mirtarbase.mbc.nctu.edu.tw/php/download.php	 provides	 all	
published	miRNA	target	interaction	data	in	Excel	format.	

	

3.9 HGNC

The	HUGO	Gene	Nomenclature	Committee	(HGNC)	is	the	authority	responsible	for	
the	gene	nomenclatures	(also	known	as	gene	symbols)	for	the	human	species.		

This	 authority	 also	 provides	 the	 HGNC	 database,	 that	 contains,	 for	 each	 gene	
symbol,	a	list	of	synonyms	and	a	list	of	corresponding	entries	in	the	most	popular	
gene	databases.	

The	web	page	at	URL	http://www.genenames.org/cgi-bin/statistics	shows	a	table	
that	contains	the	number	of	genes	associated	to	locus	groups	and	types.	Within	
the	table	there	also	are	links	to	download	the	data	for	each	locus	group	or	type.	
The	first	source	data	file	used	in	this	work	has	been	downloaded	from	the	URL	
ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/locus_groups/protein-
coding_gene.txt	and	it	has	been	used	to	load	all	the	symbol	synonyms	of	a	given	
gene	 and	 to	 create	 associations	 of	 type	 coding	 between	 genes	 and	 proteins.	
Another	 data	 file,	 found	 at	 the	 URL	 ftp://ftp.ebi.ac.uk/pub/databases/	
genenames/new/tsv/locus_groups/non-coding_RNA.txt,	 has	 been	 instead	 used	
only	to	load	other	symbol	synonyms	for	genes.	

	

	

4 Building the database

	

4.1 Introduction

To	efficiently	manage	the	complexity	and	the	extreme	abundance	of	available	data	
and	external	references,	a	modular	Extract-Transform-Load	(ETL)	tool	processes	
source	data.	A	precise	order	of	execution	of	ETLs	sub-modules,	derived	from	the	
ones	 developed	 in	 [14]	 [15],	 guarantees	 data	 consistency	 and	 proper	 relations	
between	entities.	This	way,	when	a	data	source	which	refers	to	others	is	imported,	
the	database	already	contains	all	the	depending	resources.	

You	can	find	a	ready-to-use	binary	version	of	the	software	at	the	URL:	

https://github.com/xMAnton/BioGrakn/releases/tag/v1.2.0	

Choose	a	work	directory	and	be	sure	to	download	the	.jar	and	the	two	.gql	files	
containing	the	ontology	and	the	inference	rules.	

	

4.2 Notes on the ETL tool

Many	of	the	data	files	are	supplied	in	textual	tab-separated	values	format,	where	
each	line	of	the	text	file	is	a	record,	and	each	field	value	of	a	record	is	separated	
from	the	next	by	a	tab	character.		

It	is	almost	trivial	to	develop	sub-modules	to	handle	such	files.	For	example,	the	
main	code	to	import	NCBI	Entrez	Gene	is	something	like	this:	

…
System.out.print("Importing NCBI Gene ");

while ((line = reader.readLine()) != null) {
 String datavalue[] = line.split("\t");

 if (!datavalue[0].equals("9606"))
 continue;

 String symbol = datavalue[10].equals("-") ? datavalue[2]: datavalue[10];

 InsertQuery gene = insert(
 var("g")
 .isa("gene")
 .has("geneId", datavalue[1])
 .has("locusTag", datavalue[3])
 .has("chromosome", datavalue[6])
 .has("location", datavalue[7])
 .has("description", datavalue[8])
 .has("type", datavalue[9])

 .has("symbol", symbol)
 .has("fullName", datavalue[11])
);

 loader.add(gene, keyspace);

 entryCounter++;

 if (entryCounter % 2500 == 0) {
 System.out.print(".");
 }

}

System.out.println(" done");
…

By	contrast,	miRBase,	GO,	and	UniprotKB	are	available	in	EMBL	text	file	format	
[16]	and	XML	format,	therefore	different	approaches	are	needed.	

	

4.2.1 miRBase and GO

The	entries	 in	a	database	 in	EMBL	 format	are	structured	so	as	 to	be	usable	by	
human	readers	as	well	as	by	computer	programs.	The	explanations,	descriptions,	
classifications	and	other	comments	are	in	ordinary	English,	and	the	symbols	and	
formatting	 employed	 for	 the	 base	 sequences	 themselves	 have	 been	 chosen	 for	
readability.	 Wherever	 possible,	 symbols	 familiar	 to	 molecular	 biologists	 have	
been	used.	At	the	same	time,	the	structure	is	systematic	enough	to	allow	computer	
programs	 easily	 to	 read,	 identify,	 and	 manipulate	 the	 various	 types	 of	 data	
included.	

Each entry in the database is composed of lines. Different types of lines, each with its
own format, are used to record the various types of data which make up the entry. In
general, fixed format items have been kept to a minimum, and a more syntax-oriented
structure adopted for the lines.

Each line begins with a two-character line code, which indicates the type of information
contained in the line. The currently used line types, along with their respective line
codes, are listed below:

 ID - identification (begins each entry; 1 per entry)
 AC - accession number (>=1 per entry)
 PR - project identifier (0 or 1 per entry)
 DT - date (2 per entry)
 DE - description (>=1 per entry)
 KW - keyword (>=1 per entry)
 OS - organism species (>=1 per entry)
 OC - organism classification (>=1 per entry)
 OG - organelle (0 or 1 per entry)
 RN - reference number (>=1 per entry)
 RC - reference comment (>=0 per entry)
 RP - reference positions (>=1 per entry)

 RX - reference cross-reference (>=0 per entry)
 RG - reference group (>=0 per entry)
 RA - reference author(s) (>=0 per entry)
 RT - reference title (>=1 per entry)
 RL - reference location (>=1 per entry)
 DR - database cross-reference (>=0 per entry)
 CC - comments or notes (>=0 per entry)
 AH - assembly header (0 or 1 per entry)
 AS - assembly information (0 or >=1 per entry)
 FH - feature table header (2 per entry)
 FT - feature table data (>=2 per entry)
 XX - spacer line (many per entry)
 SQ - sequence header (1 per entry)
 CO - contig/construct line (0 or >=1 per entry)
 bb - (blanks) sequence data (>=1 per entry)
 // - termination line (ends each entry; 1 per entry)

Details on line types cited above can be found in [16] and [14].

The	 processing	 of	 biological	 data	 in	 EMBL	 format	 has	 been	 developed	 using	
BioJava	 [17],	 an	 open-source	 framework	 that	 enables	 rapid	 bioinformatics	
application	 development	 in	 the	 Java	 programming	 language.	 BioJava	 contains	
powerful	analysis	and	statistical	routines,	tools	for	parsing	common	file	formats	
and	packages	for	manipulating	sequences	and	3D	structures.	

Let’s	 consider	 miRBase’s	 ETL.	 Its	 structure	 is	 similar	 to	 the	 one	 used	 to	 read	
textual	tab-delimited	files,	but	now	the	main	loop	iterates	through	the	sequences	
found	in	the	source	file.		

For	each	miRNA,	the	ETL	extracts	all	the	data	and,	by	the	reading	of	the	features,	
it	also	extracts	all	the	related	mature	miRNAs.	This	way,	it	gives	values	to	two	class	
of	 vertices,	 miRNA	 and	 miRNAmature,	 and	 creates	 edges	 of	 type	 precursorOf	
between	them.	

…
BufferedReader br = new BufferedReader(new FileReader(fileName));
Namespace ns = RichObjectFactory.getDefaultNamespace();
RichSequenceIterator seqs = RichSequence.IOTools.readEMBLRNA(br, ns);

System.out.print("Importing miRBase ");

while (seqs.hasNext()) {
 RichSequence entry = seqs.nextRichSequence();

 String accession = entry.getAccession();
 String name = entry.getName();
 String description = entry.getDescription();
 Vector<String> comments = new Vector<String>();

 for (Comment comment : entry.getComments()) {
 String cmt = comment.getComment().replaceAll("\n", " ");
 comments.add(cmt);
 }
 String comment = "";
 if (comments.size() > 0)
 comment = comments.get(0);

 String sequence = entry.getInternalSymbolList().seqString();

 InsertQuery mirna = insert(
 var("m")
 .isa("mirna")
 .has("accession", accession)
 .has("name", name)
 .has("description", description)
 .has("comment", comment)
 .has("sequence", sequence));

 loader.add(mirna, keyspace);

 entryCounter++;

 Iterator<Feature> itf = entry.getFeatureSet().iterator();

 int cnt = 1;
 while (itf.hasNext()) {
 Feature f = itf.next();

 String location = f.getLocation().toString();
 String subSequence =
 sequence.substring(f.getLocation().getMin()-1, f.getLocation().getMax());
 String matAccession = "";
 String matProduct = "";

 @SuppressWarnings("unchecked")
 Map<Object, ?> map = f.getAnnotation().asMap();
 Set<Object> keys = map.keySet();
 for (Object key : keys) {
 String keyString = key.toString();
 String value = (String) map.get(key);

 if (keyString.substring(keyString.lastIndexOf(":")+1).equals("accession"))
 matAccession = value;

 if (keyString.substring(keyString.lastIndexOf(":")+1).equals("product"))
 matProduct = value;
 }

 InsertQuery mature = insert(
 var("mat" + cnt)
 .isa("mirnaMature")
 .has("accession", matAccession)
 .has("product", matProduct)
 .has("sequence", subSequence)
 .has("location", location));

 loader.add(mature, keyspace);

 entryCounter++;

 Query<?> rel = match(
 var("m1").isa("mirna").has("accession", accession),
 var("m2").isa("mirnaMature").has("accession", matAccession)).
 insert(
 var("p"+cnt).isa("precursorOf").
 rel("precursor", "m1").rel("mature", "m2")
);

 loader.add(rel, keyspace);

 cnt++;
 }

 if (entryCounter % 1000 == 0) {
 System.out.print(".");
 }

}

System.out.println(" done");

…

	

4.2.2 UniprotKB

The	XML	version	of	UniProKB/Swiss-Prot	is	accompanied	by	an	XML	schema	file,	
which	describes	the	structure	of	the	XML	document.	

The	XML	Schema	language	is	also	referred	to	as	XML	Schema	Definition	(XSD).	The	
purpose	 of	 an	 XML	 Schema	 is	 to	 define	 the	 legal	 building	 blocks	 of	 an	 XML	
document:	

• the	elements	and	attributes	that	can	appear	in	a	document	
• the	number	of	(and	order	of)	child	elements	
• data	types	for	elements	and	attributes	
• default	and	fixed	values	for	elements	and	attributes	

In	order	to	get	a	Java	representation	of	the	XML	schema	cited	above,	it	is	necessary	
to	map	 the	elements	of	 the	 schema	 to	members	of	 a	 (or	more)	 java	 class.	This	
transformation	can	be	done	using	the	data	binder	JAXB	[18].	

JAXB	generates	classes	and	groups	them	in	Java	packages.	A	package	consists	of	a	
Java	class	name	and	an	ObjectFactory	class.	The	latter	is	a	factory	that	is	used	to	
return	instances	of	a	bound	Java	class.	

After	data	bindings	exist,	 the	 JAXB	binding	runtime	API	can	be	used	to	convert	
XML	 instance	 documents	 to	 and	 from	 Java	 objects.	 Data	 stored	 in	 an	 XML	
document	is	accessible	without	the	need	to	understand	the	data	structure.	JAXB	
annotated	classes	and	artifacts	contains	all	the	information	that	the	JAXB	runtime	
API	 needs	 to	 process	 XML	 instance	 documents.	 The	 JAXB	 runtime	API	 enables	
marshaling	of	JAXB	objects	to	XML	and	unmarshaling	the	XML	document	back	to	
JAXB	class	instances.	

In	this	case,	the	ETL	reads	the	XML	source	document	by	using	the	Streaming	API	
for	XML	 (StAX)	[19].	 It	provides	 the	 interface	XMLStreamReader,	which	gives	a	
low-level	 but	 very	 efficient	 cursor-like	 API	 for	 reading	 XML	 documents.	When	
using	it	we	iterate	over	various	events	in	XML	document	and	extract	information	
about	these	events.	Once	we	are	done	with	the	current	event,	we	move	to	the	next	

one	and	continue.	The	events	can	be	for	example	the	start	of	element,	the	end	of	
element	or	characters	data.	

…
while (xsr.nextTag() == XMLStreamConstants.START_ELEMENT) {
 Entry entry = (Entry) unmarshaller.unmarshal(xsr);

 OrganismType organism = entry.getOrganism();
 String organismTaxonomyId = ((organism != null) &&
 (!organism.getDbReference().isEmpty())) ?
 organism.getDbReference().get(0).getId() : "";

 if (organismTaxonomyId.equals("9606")) {

 if (entry.getAccession().isEmpty())
 continue;

 ProteinType prot = entry.getProtein();

 String name = entry.getName().get(0);
 String fullName = ((prot.getRecommendedName() != null) &&
 (prot.getRecommendedName().getFullName() != null)) ?
 prot.getRecommendedName().getFullName().getValue() : "";
 String alternativeName = ((!prot.getAlternativeName().isEmpty()) &&
 (prot.getAlternativeName().get(0).getFullName() != null)) ?
 prot.getAlternativeName().get(0).getFullName().getValue() : "";

 String gene = "";
 if (!entry.getGene().isEmpty()) {
 GeneType geneType = entry.getGene().get(0);
 if (!geneType.getName().isEmpty()) {
 gene = geneType.getName().get(0).getValue();
 }
 }

 SequenceType seq = entry.getSequence();
 String sequence = seq.getValue();
 int sequenceLength = seq.getLength();
 int sequenceMass = seq.getMass();

 String function = "";
 String pathway = "";
 String subunit = "";
 String tissue = "";
 String ptm = "";
 String similarity = "";

 for (CommentType comment : entry.getComment()) {
 if (comment.getText().isEmpty())
 continue;

 String s = comment.getText().get(0).getValue();

 if (comment.getType().equals("function")) {
 function = s;
 } else if (comment.getType().equals("pathway")) {
 pathway = s;
 } else if (comment.getType().equals("subunit")) {
 subunit = s;
 } else if (comment.getType().equals("tissue specificity")) {
 tissue = s;
 } else if (comment.getType().equals("PTM")) {
 ptm = s;

 } else if (comment.getType().equals("similarity")) {
 similarity = s;
 }
 }

 Query<?> protein = insert(
 var("p")
 .isa("protein")
 .has("name", name)
 .has("fullName", fullName)
 .has("alternativeName", alternativeName)
 .has("proteinGene", gene)
 .has("function", function)
 .has("proteinPathway", pathway)
 .has("subunit", subunit)
 .has("tissue", tissue)
 .has("ptm", ptm)
 .has("similarity", similarity)
 .has("sequence", sequence)
 .has("sequenceLength", sequenceLength)
 .has("sequenceMass", sequenceMass)
);

 loader.add(protein, keyspace);

 entryCounter++;

 int cnt = 1;
 for (String accessionName : entry.getAccession()) {
 Query<?> accession =
 match(var("p").isa("protein").has("name", name)).
 insert(
 var("acc" + cnt).
 isa("proteinAccession").
 has("accession", accessionName),
 var("rel" + cnt).
 isa("entityReference").
 rel("identified", "p").rel("identifier", "acc"+cnt)
);

 loader.add(accession, keyspace);

 entryCounter++;
 cnt++;
 }

 if (entryCounter % 1000 == 0) {
 System.out.print(".");
 }
 }
}

System.out.println(" done");

…

	
	

4.3 Data sources download

For	your	convenience,	all	the	used	data	sources	have	been	collected	and	they	are	
available	for	download	from	the	URL	

http://194.119.214.173/biograkn/.	

Create	 a	 destination	 directory	 on	 your	 computer,	 e.g.,	 ~/datasources,	 and	 then	
copy	the	downloaded	files	into	it.		

Alternatively,	use	a	preferred	method	of	yours	to	download	all	the	files	together.	
For	example,	with	wget:	

 $ wget -A .bz2 -r -nd -nv -P ~/datasources http://194.119.214.173/biograkn/	

Then,	uncompress	the	files:	

 $ bunzip2 ~/datasources/*	

	

	

4.4 Load the ontology and the inference rules

With	GRAKN.AI	up	and	running,	load	the	ontology	and	the	inference	rules:	

 $ cd [YOUR-GRAKN-1.2.0-DIR]
 $./graql console -k biograkn -f [WORKDIR]/ontology.gql
 $./graql console -k biograkn -f [WORKDIR]/rules.gql
 $ cd [WORKDIR]

	

Note	that	you	can	use	an	ad-hoc	keyspace,	such	as	biograkn	used	above.	

	

4.5 Import data

The	data	import	process	is	handled	by	the	java	program	BuildBioGrakn	contained	
in	the	previously	downloaded	.jar	file.	

Its	usage	is	briefly	explained	by	running	it	with	-h	command	line	option:	

 $ java -jar BuildBioGrakn.jar -h
 usage: BuildBioGrakn
 -d <arg> data source path
 -h print this help
 -k <arg> keyspace

With	no	options,	the	program	will	use	the	following	default	values:	

name	 value	

data	directory	 ~/datasources	

keyspace	 biograkn	

The	output	should	be	as	follow	(except	for	the	execution	time,	obviously!):	

$ java -jar BuildBioGrakn.jar

Building BioGrakn ...

Importing NCBI Gene done
Importing Gene Ontology done
Importing Gene2GO done
Importing miRBase done
Importing Reactome done
Importing Reactome2GO done
Importing Reactome2miRNA done
Importing miRCancer done
Importing Uniprot done
Importing Uniprot2Reactome done
Importing HGNC done
Importing miRNASNP done
Importing miRTarBase done

BioGrakn built in 0 hours 31 minutes 21 seconds

Now,	if	you	open	the	web	visualizer,	querying	for	"all	types"	will	show	something	
like	this:	

	

5 References

[1] K. H. Cheung, A. K. Smith, K. Y. Yip, C. J. Baker and M. B. Gerstein, "Semantic
Web approach to database integration in the life sciences," in Semantic Web,
Springer US, 2007, pp. 11-30.

[2] C. T. Have and L. J. Jensen, "Are graph databases ready for bioinformatics?,"
Bioinformatics, vol. 29, no. 24, pp. 3107-3108, 2013.

[3] A. Messina, H. Pribadi, J. Stichbury, M. Bucci, S. Klarman and A. Urso,
"BioGrakn: A Knowledge Graph-Based Semantic Database for Biomedical
Sciences," in Conference on Complex, Intelligent, and Software Intensive
Systems, Turin, 2017.

[4] Grakn Labs Ltd, "GRAKN.AI," [Online]. Available: https://grakn.ai. [Accessed
2 5 2018].

[5] G. D. Schuler, J. A. Epstein, H. Ohkawa and J. A. Kans, "Entrez: molecular
biology database and retrieval system," in Methods in enzymology, vol. 266, 1996,
pp. 141-162.

[6] The Gene Ontology Consortium, "The Gene Ontology project in 2008," Nucleic
Acids Research, no. 34, pp. D440-444, 2008.

[7] The UniProt Consortium, "UniProt: a hub for protein information," Nucleic Acids
Research, vol. 43, no. D1, pp. D204-D212, 2015.

[8] D. Croft, A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, M. Caudy, P.
Garapati, M. Gillespie, M. R. Kamdar, B. Jassal, S. Jupe, L. Matthews, B. May,
S. Palatnik, K. Rothfels, V. Shamovsky, H. Song, M. Williams, E. Birney, H.
Hermjakob, L. Stein and P. D'Eustachio, "The Reactome pathway
knowledgebase," Nucleic Acids Research,, vol. 42, no. D1, pp. D474-7, 2014.

[9] A. Kozomara and S. Griffiths-Jones, "miRBase: integrating microRNA
annotation and deep-sequencing data," in Nucleic acids research, vol. 39, 2011,
pp. 152-157.

[10] B. Xie, Q. Ding, H. Han and D. Wu, "miRCancer: a microRNA-cancer
association database constructed by text mining on literature," in Bioinformatics,
vol. 29, 2013, pp. 638-644.

[11] J. Gong, Y. Tong, H. M. Zhang, K. Wang, T. Hu, G. Shan, J. Sun and A. Y. Guo,
"Genome-wide identification of SNPs in microRNA genes and the SNP effects
on microRNA target binding and biogenesis," Human Mutation, vol. 33(1), pp.
254-263, 2012.

[12] C. Chou, S. Shrestha, C. Yang, N. Chang, Y. Lin, K. Liao, W. Huang, T. Sun, S.
Tu, W. Lee, M. Chiew, C. Tai, T. Wei, T. Tsai, H. Huang, C. Wang, H. Wu, S.
Ho, P. Chen, C. Chuang, P. Hsieh, Y. Wu, W. Chen, M. Li, Y. Wu, X. Huang and
N, "miRTarBase update 2018: a resource for experimentally validated
microRNA-target interactions," Nucleic Acids Research, vol. 46, no. D1, pp.
D296-D302, 2018.

[13] K. A. Gray, B. Yates, R. L. Seal, M. W. Wright and E. A. Bruford,
"Genenames.org: the HGNC resources in 2015," Nucleic Acids Research, vol. 43,
no. D1, pp. D1079-D1085, 2015.

[14] A. Messina, "ETLs for importing NCBI Entrez Gene, miRBase, mirCancer and
microRNA into a bioinformatics graph database," Palermo, 2015.

[15] A. Messina, "ETLs for importing UniProtKB, HGNC, and Reactome into a
bioinformatics graph database," Palermo, 2016.

[16] European Bioinformatics Institute, "EMBL Outstation," [Online]. Available:
ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/usrman.txt. [Accessed 15 12 2015].

[17] R. C. G. Holland, T. A. Down, M. Pocock, A. Prlić, D. Huen, K. James, S. Foisy,
A. Dräger, A. Yates, M. Heuer and M. J. Schreiber, "BioJava: an open-source
framework for bioinformatics," Bioinformatics, vol. 24, no. 18, pp. 2096-2097,
15 Sep 2008.

[18] Java Community Process, "JSR 222: Java Architecture for XML Binding (JAXB)
2.0," 2009. [Online]. Available: https://jcp.org/en/jsr/detail?id=222. [Accessed 04
02 2016].

[19] Java Community Process, "JSR 173: Streaming API for XML," 04 Mar 2014.
[Online]. Available: https://jcp.org/en/jsr/detail?id=173. [Accessed 12 Feb 2016].

