
 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 
 
 
 
 
 
 
 

Overview of  
Standard Graph File Formats 

A. Messina  

 
 
 
Rapporto Tecnico N.: 
RT-ICAR-PA-2018-06 Dicembre 2018 
  

 
 
 
 
 
 
 
 
 
 
 
 

 

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)  – 
Sede di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it 
– Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it  
– Sede di Palermo, Viale delle Scienze, 90128 Palermo, URL: www.pa.icar.cnr.it 

Non è possibile visualizzare l'immagine.



 

 

Consiglio Nazionale delle Ricerche  
Istituto di Calcolo e Reti ad Alte Prestazioni  
 

 

 
 
 
 
 
 
 
 

Overview of  
Standard Graph File Formats  

A. Messina1 

 
 
 
Rapporto Tecnico N.: 
RT-ICAR-PA-2018-06 Dicembre 2018 
  

 
 
 
 
 
 
 
1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Palermo, Via Ugo 

La Malfa  n. 153, 90146 Palermo. 
 
 
I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte 
Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l’esclusiva 
responsabilità scientifica degli autori, descrivono attività di ricerca del personale e dei 
collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione 
definitiva in altra sede. 

Non è possibile visualizzare l'immagine.



Index 

1 INTRODUCTION......................................................................................................	6 

2 CSV	FORMAT	...........................................................................................................	7 

2.1 Introduction ......................................................................................................................... 7 

2.2 CSV Graphs .......................................................................................................................... 7 

2.2.1 Edge list ........................................................................................................................... 7 

2.2.2 Adjacency list ................................................................................................................... 7 

2.2.3 Mixed .............................................................................................................................. 8 

2.2.4 Matrix .............................................................................................................................. 8 

3 GRAPHVIZ	DOT	FORMAT	.....................................................................................	9 

3.1 Introduction ......................................................................................................................... 9 

3.2 The DOT Language ............................................................................................................... 9 

3.2.1 Subgraphs and Clusters .................................................................................................. 10 

3.2.2 Lexical and Semantic Notes ............................................................................................ 11 

3.3 Examples ........................................................................................................................... 13 

3.3.1 Basic example ................................................................................................................ 13 

3.3.2 Labels ............................................................................................................................ 13 

3.3.3 Adjacency lists ............................................................................................................... 13 

4 GDF	FORMAT	........................................................................................................	14 

4.1 Introduction ....................................................................................................................... 14 

4.2 The GUESS .gdf format ....................................................................................................... 14 

4.3 Examples ........................................................................................................................... 16 

4.3.1 Basic example ................................................................................................................ 16 

4.3.2 Example with edge weight ............................................................................................. 16 

4.3.3 Various attributes .......................................................................................................... 17 



4.3.4 Working with texts ......................................................................................................... 17 

5 GML	FORMAT	........................................................................................................	18 

5.1 Introduction ....................................................................................................................... 18 

5.2 Key issues of GML .............................................................................................................. 18 

5.3 GML Syntax ........................................................................................................................ 19 

5.3.1 How Graphs and Other Data Structures are Represented ............................................... 20 

5.3.2 Restrictions .................................................................................................................... 21 

5.3.3 How to Represent Common Data Structures .................................................................. 22 

5.3.4 Order of Attributes ........................................................................................................ 23 

5.3.5 Unknown Attributes ....................................................................................................... 23 

5.3.6 Consistency.................................................................................................................... 23 

5.4 Examples ........................................................................................................................... 24 

5.4.1 Basic example ................................................................................................................ 24 

5.4.2 Labels ............................................................................................................................ 24 

6 GRAPHML	FORMAT	.............................................................................................	26 

6.1 Introduction ....................................................................................................................... 26 

6.2 Basic Concepts ................................................................................................................... 26 

6.2.1 The Header .................................................................................................................... 27 

6.2.2 The Graph ...................................................................................................................... 28 

6.2.3 Declaring a Graph .......................................................................................................... 28 

6.2.4 Declaring a Node............................................................................................................ 29 

6.2.5 Declaring an Edge .......................................................................................................... 29 

6.3 GraphML-Attributes ........................................................................................................... 29 

6.3.1 GraphML-Attributes Example ......................................................................................... 30 

6.3.2 Declaring GraphML-Attributes ....................................................................................... 31 

6.3.3 Defining GraphML-Attribute Values................................................................................ 32 



7 GEXF	........................................................................................................................	33 

7.1 Introduction ....................................................................................................................... 33 

7.2 Basic Concepts ................................................................................................................... 33 

7.2.1 Header........................................................................................................................... 34 

7.2.2 Network Topology ......................................................................................................... 34 

7.2.3 Declaring a Graph .......................................................................................................... 35 

7.2.4 Declaring a Node............................................................................................................ 35 

7.2.5 Declaring an Edge .......................................................................................................... 36 

7.3 Network Data .................................................................................................................... 36 

7.3.1 Data types ..................................................................................................................... 37 

7.3.2 Attributes Example ........................................................................................................ 37 

7.3.3 Declaring Attributes ....................................................................................................... 38 

7.3.4 Defining Attribute Values ............................................................................................... 38 

8 REFERENCES	.........................................................................................................	40 

  



1 Introduction 

There are many different file formats for graphs. The capabilities of these file formats 
range from simple adjacency lists or coordinates to complex formats that can store 
arbitrary data. This has led to a situation where we have a large number of different, 
mostly incompatible formats.  

Exchanging graphs between different programs is painful, and sometimes impossible. 
The obvious answer to this problem is the introduction of a common file format. 

One reason is that exchange formats often do not support all product and platform 
specific features. This is inevitable, but should not exclude the exchange of platform 
independent parts, probably with a less-efficient, portable replacement for product 
specific features.  

Another concern is efficiency. One should not expect a universal format to be more 
efficient than one that is designed for a specific purpose, but there is no reason that a 
common file format should be so inefficient that it cannot be used.  

In the case of graphs, many file formats for graphs are not designed for efficiency, but 
for ease of use, so the overhead should be small. Furthermore, there is no reason that 
prevents the use of both an optimized native format, and a second interchange format. 

In general, a common graph file format should have the following features: 

1. The format must be platform independent, and easy to implement. 
 

2. It must have the capability to represent arbitrary data structures, since advanced 
programs have the need to attach their specific data to nodes and edges. 
 

3. It should be flexible enough that a specific order of declarations is not needed, 
and that any non-essential data may be omitted. 

 

 

 	



2 CSV Format 

 

2.1 Introduction 

A	comma-separated	values	(CSV)	file	is	a	delimited	text	file	that	uses	a	comma	to	
separate	values.	A	CSV	file	stores	tabular	data	(numbers	and	text)	 in	plain	text.	
Each	line	of	the	file	is	a	data	record.	Each	record	consists	of	one	or	more	fields,	
separated	by	commas.	The	use	of	the	comma	as	a	field	separator	is	the	source	of	
the	name	for	this	file	format	[1].	

The	 term	 "CSV"	 also	 denotes	 some	 closely	 related	 delimiter-separated	 formats	
that	 use	 different	 field	 delimiters,	 for	 example,	 semicolons.	 These	 include	 tab-
separated	values	and	space-separated	values.	A	delimiter	that	is	not	present	in	the	
field	data	(such	as	tab)	keeps	the	format	parsing	simple.	These	alternate	delimiter-
separated	 files	 are	 often	 even	 given	 a	 .csv	 extension	 despite	 the	 use	 of	 a	 non-
comma	 field	 separator.	 This	 loose	 terminology	 can	 cause	 problems	 in	 data	
exchange.	 Many	 applications	 that	 accept	 CSV	 files	 have	 options	 to	 select	 the	
delimiter	character	and	the	quotation	character.	

	

	

2.2 CSV Graphs 

CSV	files	can	simply	represent	relationships	and,	usually,	graphs	expressed	in	CSV	
format	are	directed	graphs.	

	

2.2.1 Edge list 

A	graph	with	two	edges	“a”->”b”	and	“b”->”c”	can	be	written	as	follow:	

 
a;b 
b;c 
 

	

2.2.2 Adjacency list 

All	 edges	 can	 be	 written	 as	 node	 pairs.	 It’s	 also	 possible	 to	 write	 all	 node’s	
connection	on	the	same	line.	The	example	below	represents	a	graph	with	3	edges:	



“a”	->	“b”,	“b”	->	“c”	and	“b”	->	“d”.	

 
a;b 
b;c;d 
 

	

2.2.3 Mixed 

The	following	example	shows	various	cases	that	CSV	supports	as	well.	Self-loops	
and	mutual	edges	are	supported.	It’s	also	possible	to	repeat	an	edge,	“D”	->	“E”	is	
repeated	twice	in	this	example.	As	a	consequence,	the	edge	weight	is	incremented.	
“D”	->	“E”	has	a	edge	weight	at	two,	whereas	default	value	is	one.	

 
A,B 
B,A 
C,C 
D,E 
A,D 
D,B,E 
F,G,A,B 
 

	

2.2.4 Matrix 

The	sample	below	shows	a	graph	with	5	nodes.	An	edge	is	created	when	the	cell	is	
‘1′.	

 
;A;B;C;D;E 
A;0;1;0;1;0 
B;1;0;0;0;0 
C;0;0;1;0;0 
D;0;1;0;1;0 
E;0;0;0;0;0 
 

Different	edges	weights	can	be	simply	expressed	replacing	‘1’	by	a	value	formatted	
as	a	double.	

	

  



3 GraphViz DOT Format 

 

3.1 Introduction 

DOT	 is	 the	 text	 file	 format	 of	 the	 suite	 GraphViz	 [2],	 an	 open	 source	 graph	
visualization	 software.	 It	 has	 a	 human-readable	 syntax	 that	 describes	 network	
data,	including	subgraphs	and	elements	appearances	(i.e.	color,	width,	label).	

	

	

3.2 The DOT Language 

The	following	is	an	abstract	grammar	defining	the	DOT	language,	where:	

• Terminals	are	shown	in	bold	font	and	nonterminals	in	italics;	
• Literal	characters	are	given	in	single	quotes;	
• Parentheses	(	and	)	indicate	grouping	when	needed;	
• Square	brackets	[	and	]	enclose	optional	items;	
• Vertical	bars	|	separate	alternatives.	

 
Graph      : [ strict ] (graph | digraph) [ ID ] '{' stmt_list '}' 
stmt_list  : [ stmt [ ';' ] stmt_list ] 
stmt       : node_stmt 
           | edge_stmt 
           | attr_stmt 
           | ID '=' ID 
           | subgraph 
attr_stmt  : (graph | node | edge) attr_list 
attr_list  : '[' [ a_list ] ']' [ attr_list ] 
a_list     : ID '=' ID [ (';' | ',') ] [ a_list ] 
edge_stmt  : (node_id | subgraph) edgeRHS [ attr_list ] 
edgeRHS    : edgeop (node_id | subgraph) [ edgeRHS ] 
node_stmt  : node_id [ attr_list ] 
node_id    : ID [ port ] 
port       : ':' ID [ ':' compass_pt ] 
           | ':' compass_pt 
Subgraph   : [ subgraph [ ID ] ] '{' stmt_list '}' 
compass_pt : (n | ne | e | se | s | sw | w | nw | c | _) 
 

	The	 keywords	 node,	 edge,	 graph,	 digraph,	 subgraph,	 and	 strict	 are	 case-
independent.	Note	also	that	the	allowed	compass	point	values	are	not	keywords,	
so	these	strings	can	be	used	elsewhere	as	ordinary	identifiers	and,	conversely,	the	
parser	will	actually	accept	any	identifier.	

An	ID	is	one	of	the	following:	



• Any	string	of	alphabetic	([a-zA-Z\200-\377])	characters,	underscores	('_')	
or	digits	([0-9]),	not	beginning	with	a	digit;	

• a	numeral	[-]?(.[0-9]+	|	[0-9]+(.[0-9]*)?	);	
• any	double-quoted	string	("...")	possibly	containing	escaped	quotes	(\");	
• an	HTML	string	(<...>).	

An	ID	is	just	a	string;	the	lack	of	quote	characters	in	the	first	two	forms	is	just	for	
simplicity.	There	is	no	semantic	difference	between	abc_2	and	"abc_2",	or	between	
2.34	and	"2.34".		

Obviously,	to	use	a	keyword	as	an	ID,	it	must	be	quoted.	Note	that,	in	HTML	strings,	
angle	brackets	must	occur	in	matched	pairs,	and	newlines	and	other	formatting	
whitespace	characters	are	allowed.		

In	 addition,	 the	 content	 must	 be	 legal	 XML,	 so	 that	 the	 special	 XML	 escape	
sequences	for	",	&,	<,	and	>	may	be	necessary	in	order	to	embed	these	characters	
in	attribute	values	or	 raw	 text.	As	an	 ID,	 an	HTML	string	 can	be	any	 legal	XML	
string.	However,	if	used	as	a	label	attribute,	it	 is	interpreted	specially	and	must	
follow	the	syntax	for	HTML-like	labels.	

Both	quoted	strings	and	HTML	strings	are	scanned	as	a	unit,	so	any	embedded	
comments	will	be	treated	as	part	of	the	strings.	

An	edgeop	is	->	in	directed	graphs	and	--	in	undirected	graphs.	

The	 language	 supports	 C++-style	 comments:	 /*	 */	 and	 //.	 In	 addition,	 a	 line	
beginning	with	a	'#'	character	is	considered	a	line	output	from	a	C	preprocessor	
(e.g.,	#	34	to	indicate	line	34)	and	discarded.	

Semicolons	and	commas	aid	readability	but	are	not	required.	Also,	any	amount	of	
whitespace	may	be	inserted	between	terminals.	

As	another	aid	for	readability,	dot	allows	double-quoted	strings	to	span	multiple	
physical	 lines	 using	 the	 standard	 C	 convention	 of	 a	 backslash	 immediately	
preceding	 a	 newline	 character.	 In	 addition,	 double-quoted	 strings	 can	 be	
concatenated	 using	 a	 '+'	 operator.	 As	 HTML	 strings	 can	 contain	 newline	
characters,	 which	 are	 used	 solely	 for	 formatting,	 the	 language	 does	 not	 allow	
escaped	newlines	or	concatenation	operators	to	be	used	within	them.	

	

3.2.1 Subgraphs and Clusters 

Subgraphs	play	three	roles	in	Graphviz.	First,	a	subgraph	can	be	used	to	represent	
graph	 structure,	 indicating	 that	 certain	 nodes	 and	 edges	 should	 be	 grouped	



together.	 This	 is	 the	 usual	 role	 for	 subgraphs	 and	 typically	 specifies	 semantic	
information	 about	 the	 graph	 components.	 It	 can	 also	 provide	 a	 convenient	
shorthand	for	edges.	An	edge	statement	allows	a	subgraph	on	both	the	 left	and	
right	sides	of	the	edge	operator.	When	this	occurs,	an	edge	is	created	from	every	
node	on	the	left	to	every	node	on	the	right.	For	example,	the	specification	

 
A -> {B C} 
 

is	equivalent	to	

 
A -> B 
A -> C 
 

In	 the	 second	 role,	 a	 subgraph	can	provide	a	 context	 for	setting	attributes.	For	
example,	 a	 subgraph	 could	 specify	 that	 blue	 is	 the	 default	 color	 for	 all	 nodes	
defined	in	it.	In	the	context	of	graph	drawing,	a	more	interesting	example	is:	

is	equivalent	to	

 
subgraph {  
    rank = same; A; B; C;  
}  
 

	
This	 (anonymous)	 subgraph	 specifies	 that	 the	 nodes	 A,	 B	 and	 C	 should	 all	 be	
placed	on	the	same	rank	if	drawn	using	dot.	

The	third	role	for	subgraphs	directly	involves	how	the	graph	will	be	laid	out	by	
certain	layout	engines.	If	the	name	of	the	subgraph	begins	with	cluster,	Graphviz	
notes	the	subgraph	as	a	special	cluster	subgraph.	If	supported,	the	layout	engine	
will	do	the	layout	so	that	the	nodes	belonging	to	the	cluster	are	drawn	together,	
with	the	entire	drawing	of	the	cluster	contained	within	a	bounding	rectangle.	Note	
that,	for	good	and	bad,	cluster	subgraphs	are	not	part	of	the	DOT	language,	but	
solely	a	syntactic	convention	adhered	to	by	certain	of	the	layout	engines.	

	

3.2.2 Lexical and Semantic Notes 

A	 graph	 must	 be	 specified	 as	 either	 a	 digraph	 or	 a	 graph.	 Semantically,	 this	
indicates	whether	or	not	there	is	a	natural	direction	from	one	of	the	edge's	nodes	
to	the	other.		

Lexically,	 a	 digraph	must	 specify	 an	 edge	 using	 the	 edge	 operator	 ->	 while	 a	
undirected	 graph	 must	 use	 --.	 Operationally,	 the	 distinction	 is	 used	 to	 define	



different	 default	 rendering	 attributes.	 For	 example,	 edges	 in	 a	 digraph	will	 be	
drawn,	by	default,	with	an	arrowhead	pointing	 to	 the	head	node.	For	ordinary	
graphs,	edges	are	drawn	without	any	arrowheads	by	default.	

A	graph	may	also	be	described	as	strict.	This	forbids	the	creation	of	multi-edges,	
i.e.,	 there	can	be	at	most	one	edge	with	a	given	tail	node	and	head	node	 in	the	
directed	case.	For	undirected	graphs,	there	can	be	at	most	one	edge	connected	to	
the	same	two	nodes.	Subsequent	edge	statements	using	the	same	two	nodes	will	
identify	the	edge	with	the	previously	defined	one	and	apply	any	attributes	given	
in	the	edge	statement.	For	example,	the	graph	

 
strict graph {  
  a -- b 
  a -- b 
  b -- a [color=blue] 
}  
 

	
will	have	a	single	edge	connecting	nodes	a	and	b,	whose	color	is	blue.	

If	a	default	attribute	is	defined	using	a	node,	edge,	or	graph	statement,	or	by	an	
attribute	assignment	not	attached	to	a	node	or	edge,	any	object	of	the	appropriate	
type	 defined	 afterwards	 will	 inherit	 this	 attribute	 value.	 This	 holds	 until	 the	
default	attribute	 is	set	 to	a	new	value,	 from	which	point	 the	new	value	 is	used.	
Objects	defined	before	a	default	attribute	is	set	will	have	an	empty	string	value	
attached	to	the	attribute	once	the	default	attribute	definition	is	made.	

A	 subgraph	 receives	 the	attribute	 settings	of	 its	parent	graph	at	 the	 time	of	 its	
definition.	This	can	be	useful;	for	example,	one	can	assign	a	font	to	the	root	graph	
and	 all	 subgraphs	 will	 also	 use	 the	 font.	 For	 some	 attributes,	 however,	 this	
property	is	undesirable.	If	one	attaches	a	label	to	the	root	graph,	it	is	probably	not	
the	desired	effect	to	have	the	label	used	by	all	subgraphs.	Rather	than	listing	the	
graph	attribute	at	the	top	of	the	graph,	and	the	resetting	the	attribute	as	needed	
in	the	subgraphs,	one	can	simply	defer	the	attribute	definition	in	the	graph	until	
the	appropriate	subgraphs	have	been	defined.	

If	an	edge	belongs	to	a	cluster,	its	endpoints	belong	to	that	cluster.	Thus,	where	
you	put	an	edge	can	effect	a	layout,	as	clusters	are	sometimes	laid	out	recursively.	

There	 are	 certain	 restrictions	 on	 subgraphs	 and	 clusters.	 First,	 at	 present,	 the	
names	 of	 a	 graph	 and	 its	 subgraphs	 share	 the	 same	 namespace.	 Thus,	 each	
subgraph	must	have	a	unique	name.	Second,	 although	nodes	can	belong	to	any	
number	of	subgraphs,	it	is	assumed	clusters	form	a	strict	hierarchy	when	viewed	
as	subsets	of	nodes	and	edges.	

	



3.3 Examples 

3.3.1 Basic example 

The	sample	below	shows	a	directed	graph	with	two	edges.	

 
digraph sample { 
    A -> B; 
    B -> C; 
} 
 

	
	

3.3.2 Labels 

The	sample	below	shows	the	same	example	but	with	both	node	and	edge	labels.	

 
digraph sample2 { 
    A -> B [ label = "Edge A to B" ]; 
    B -> C [ label = "Edge B to C" ]; 
    A [label="Node A"]; 
} 
 

	
	

3.3.3 Adjacency lists 

The	sample	below	shows	edges	can	be	put	as	adjacency	lists.	

 
digraph sample3 { 
    A -> {B ; C ; D} 
    C -> {B ; A} 
} 
 

	

  



4 GDF Format 

	

4.1 Introduction 

GDF	is	the	file	format	used	by	GUESS	[3].	It	is	built	like	a	database	table	or	a	coma	
separated	file	(CSV).	It	supports	attributes	to	both	nodes	and	edges.	A	standard	
file	is	divided	in	two	sections,	one	for	nodes	and	one	for	edges.	Each	section	has	a	
header	line,	which	basically	is	the	column	title.	Each	element	(i.e.	node	or	edge)	is	
on	a	line	and	values	are	separated	by	coma.	The	GDF	format	is	therefore	very	easy	
to	read	and	can	be	easily	converted	from	CSV.	

	

	

4.2 The GUESS .gdf format 

The	file	structure	for	the	.gdf	files	is	very	simple.	We	will	basically	define	the	nodes	
with	their	properties	followed	by	the	edges	with	theirs.	

The	node	definition	section	starts	with	the	line:	“nodedef>	name”	

The	nodedef	 line	will	 tell	what	 the	 format	 is	of	 the	 following	 lines	 that	 actually	
describe	nodes.	In	the	simple	case	we	are	just	going	to	have	one	column	on	each	
line,	the	node	name.	Nodes	are	required	to	have	unique	names	(identifiers).	

The	simplest	file	looks	something	like	this:	

 
nodedef> name 
foobar 
 

	
which	tells	that	we	want	a	node	called	foobar.	

All	 other	 aspects	 of	 the	 node	 (color,	 visibility,	 style)	 will	 be	 extracted	 from	
defaults.	 After	 name	 (the	 only	 required	 column),	 you	 may	 use	 pre-defined	
columns	and	new	columns	to	set	and	control	extra	node	properties.	

Pre-defined	columns	are:	

• x	–	a	double	representing	the	node’s	x	location	(default:	random)	
• y	–	a	double	representing	the	node’s	y	location	(default:	random)	
• visible	 –	 a	 boolean	 indicating	 if	 the	 node	 should	 be	 displayed	 (default:	

true)	



• color	–	a	string,	the	default	color	of	the	node	(default:	“blue”).	We	have	a	
long	list	of	color	names	that	we	know	about,	but	if	you	didn’t	want	to	use	
one	of	those	you	could	quote	an	rgb	triplet	(e.g.	“124,234,222”)	

• fixed	–	boolean,	can	the	node	be	moved?	(default:	false)	
• style	–	an	int	indicating	which	style	of	node	to	use	(default:	1).	Currently	

GUESS	maps:	rectangle	=	1,	ellipse	=	2,	rounded	rectangle	=	3,	text	inside	a	
rectangle	=	4,	text	inside	an	ellipse	=	5,	text	inside	a	rounded	rectangle	=	6,	
and	an	image	=	7	

• width	–	double,	node	width	(default:	4)	
• height	–	double,	node	height	(default:	4)	
• label	–	string,	a	label	for	the	node	in	the	visualization	(default	is	the	name)	
• labelvisible	–	boolean,	should	we	show	the	label?	(default:	false)	
• image	–	string,	a	filename	of	the	image	to	use	if	the	node	style	=	7	

These	pre-defined	attributes	can	be	overridden	by	simply	adding	them	to	the	list	
in	the	nodedef	line.	For	example:	

 
nodedef> name,x,y,color 
foo,0,0,blue 
bar,100,100,red 
 

	
This	means	that	you	want	two	nodes:	a	blue	one	called	foo	at	(0,0)	and	a	red	one	
called	 bar	 at	 (100,100).	 Notice	 that	 you	 don’t	 have	 to	 quote	 things	 explicitly	
(strings	versus	numbers).	The	system	should	figure	that	out	for	you	(unless	your	
string	has	a	comma	in	which	case	you’ll	want	to	put	it	in	quotes).	

Edges	are	defined	in	a	very	similar	way,	the	only	required	columns	for	edges	are	
“node1”	and	“node2”	which	are	the	names	of	the	two	nodes	you	are	connecting.		

A	simple	example	is	something	like:	

 
nodedef> name 
a 
b 
c 
d 
edgedef> node1,node2 
a,b 
a,c 
a,d 
 

	
which	defines	a	star	network	centered	on	node	a.	

Edges,	 like	 nodes,	 can	 contain	 pre-defined	 and	 user-defined	 attributes	 in	 the	
definition	lines.	Valid	pre-defined	edge	properties	are:	



• visible	–	a	boolean	indicating	if	the	edge	should	be	displayed	(default:	true)	
• color	–	a	string,	the	default	color	of	the	node	(default:	“green”).	
• weight	–	a	double	indicating	the	edge	weight	(default:	1,	but	not	currently	

used	for	calculations)	
• width	–	double,	node	width	(default:	.3)	
• directed	 -	 boolean,	 indicating	 edge	 directionality	 (default:	 false,	

undirected/bidirected).	 If	 true,	 this	will	assume	node1	 is	 the	source	and	
node2	is	the	destination.		

• label	-	string,	a	label	for	the	node	in	the	visualization	(default	is	the	edge	
weight)		

• labelvisible	-	boolean,	should	we	show	the	label?	(default:	false)		

One	critical	thing	to	note	is	that	duplicated	edges	are	not	supported.	That	is,	you	
cannot	create	more	than	one	edge	of	the	same	direction	between	two	nodes.	At	
most	you	can	have	3	edges	between	two	nodes	(a->b,	b->a,	and	a-b).	Recall	that	a-
b	and	a<->b	are	considered	to	be	the	same	thing.	

	

	

4.3 Examples 

4.3.1 Basic example 

The	GDF	below	is	a	minimal	example,	where	the	label	column	is	optional.	

 
nodedef>name VARCHAR,label VARCHAR 
s1,Site number 1 
s2,Site number 2 
s3,Site number 3 
edgedef>node1 VARCHAR,node2 VARCHAR 
s1,s2 
s2,s3 
s3,s2 
s3,s1 
 

	
	

4.3.2 Example with edge weight 

Edge	weight	is	basically	edge	thickness	and	is	defined	as	follow.	

 
nodedef>name VARCHAR,label VARCHAR 
s1,Site number 1 
s2,Site number 2 
s3,Site number 3 
edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE 



s1,s2,1.2341 
s2,s3,0.453 
s3,s2, 2.34 
s3,s1, 0.871 
 

	
	

4.3.3 Various attributes 

We	can	add	as	many	attributes	as	we	need.	Add	attributes	title	in	the	header	line	
and	respect	order,	as	you	would	do	for	CSV.	On	the	below	example,	all	attributes	
are	design	attributes	except	“class”	that	I	added.	

 
nodedef>name VARCHAR,label VARCHAR,class VARCHAR, visible 
BOOLEAN,labelvisible BOOLEAN,width DOUBLE,height DOUBLE,x DOUBLE,y 
DOUBLE,color VARCHAR 
s1,SiteA,blog,true,true,10.0,10.0,-52.11296,-25.921143,'114,116,177' 
s2,SiteB,forum,true,true,10.986123,10.986123,-
20.114172,25.740356,'219,116,251' 
s3,SiteC,webpage,true,true,10.986123,10.986123,8.598924,-
26.867584,'192,208,223' 
edgedef>node1 VARCHAR,node2 VARCHAR,directed BOOLEAN,color VARCHAR 
s1,s2,true,'114,116,177' 
s2,s3,true,'219,116,251' 
s3,s2,true,'192,208,223' 
s3,s1,true,'192,208,223' 
 

	
	

4.3.4 Working with texts 

Problems	often	comes	when	coma,	apostrophe	(i.e.	single-quote)	or	double-quote	
are	used	in	texts.	The	example	below	shows	how	to	manage	these	strings,	wrap	
single-quotes	around	it.	

 
nodedef>name VARCHAR,label VARCHAR,class VARCHAR, visible 
BOOLEAN,labelvisible BOOLEAN,width DOUBLE,height DOUBLE,x DOUBLE,y 
DOUBLE,color VARCHAR 
s1,'Hello "world" !',type1,true,true,10.0,10.0,-52.11296,-
25.921143,'114,116,177' 
s2,'Well, this is',type1,true,true,10.986123,10.986123,-
20.114172,25.740356,'219,116,251' 
s3,'A correct 'GDF' file',type1,true,true,10.986123,10.986123,8.598924,-
26.867584,'192,208,223' 
edgedef>node1 VARCHAR,node2 VARCHAR,directed BOOLEAN,color VARCHAR 
s1,s2,true,'114,116,177' 
s2,s3,true,'219,116,251' 
s3,s2,true,'192,208,223' 
s3,s1,true,'192,208,223' 
 

	
	
	



5 GML Format 

	

5.1 Introduction 

The	Graph	Modeling	Language	(GML)	[4]	is	a	file	format	for	graphs	designed	to	
represent	 arbitrary	 data	 structures	 and	 characterized	 by	 portability,	 simple	
syntax,	extensibility	and	flexibility.	A	GML	file	consists	of	hierarchical	key-value	
lists.	Even	 if	GML	was	bound	to	a	specific	system,	namely	Graphlet.,	 then	 it	has	
been	overtaken	and	adopted	by	several	other	drawing	graphs	systems,	such	as	
Pajek	[5],	yEd	[6],	LEDA	[7]	and	NetworkX	[8].	

	

	

5.2 Key issues of GML 

A	 common	 file	 format	 must	 be	 platform	 independent	 and	 easy	 to	 implement.	
Furthermore,	it	must	have	the	capability	to	represent	arbitrary	data	structures,	
since	advanced	programs	have	the	need	to	attach	their	specific	data	to	nodes	and	
edges.	 It	 should	 be	 flexible	 enough	 that	 a	 specific	 order	 of	 declarations	 is	 not	
needed,	and	that	any	non-essential	data	may	be	omitted.	GML	attempts	to	satisfy	
all	these	requirements.	

 
graph [ 
  comment "This is a sample graph" 
  directed 1 
  IsPlanar 1 
  node [ 
    id 1  
    label "Node 1" 
  ] 
  node [ 
    id 2 
    label "Node 2" 
  ] 
  node [  
    id 3  
    label "Node 3" 
  ] 
  edge [  
    source 1 
    target 2 
    label "Edge from node 1 to node 2" 
  ] 
  edge [  
    source 2 
    target 3 
    label "Edge from node 2 to node 3" 
  ] 
  edge [ 
    source 3 
    target 1  
    label "Edge from node 3 to node 1" 
  ] 
] 
 



	
The	above	example	describes	a	circle	of	three	nodes.	This	example	shows	several	
key	issues	of	GML:	

• ASCII	Representation	for	Simplicity	and	Portability.	A	GML	file	is	a	7-
bit	ASCII	file.	This	makes	it	simple	to	write	files	through	standard	routines.	
Parsers	are	easy	to	implement,	either	by	hand	or	with	standard	tools	like	
lex	 and	 yacc.	 Also,	 files	 are	 text	 files,	 they	 can	 be	 exchanged	 between	
platforms	without	special	converters.	

• Simple	 Structure.	 A	 GML	 file	 consists	 of	 hierarchically	 organized	 key-
value	pairs.	A	key	is	a	sequence	of	alphanumeric	characters,	such	as	graph	
or	id.	A	value	is	either	an	integer,	a	floating-point	number,	a	string	or	a	list	
of	key-value	pairs	enclosed	in	square	brackets.	

• Extensibility	and	Flexibility.	GML	can	represent	arbitrary	data,	and	it	is	
possible	to	attach	additional	information	to	every	object.	For	example,	the	
graph	in	Figure	1	adds	an	IsPlanar	attribute	to	the	graph.	This	may	lead	to	
a	situation	in	where	an	application	adds	data	which	cannot	be	understood	
by	another	application.	Therefore,	applications	are	free	to	ignore	any	data	
which	they	do	not	understand.	They	should,	however,	save	these	data	and	
re-write	them.	

• Representation	of	 Graphs.	 Graphs	 are	 represented	 by	 the	 keys	 graph,	
node	and	edge.	The	topological	structure	is	modeled	with	the	node's	id	and	
the	edge's	source	and	target	attributes:	the	id	attributes	assign	numbers	to	
nodes,	which	are	referenced	by	source	and	target.	

	
	

	

5.3 GML Syntax 

Table 1 - The GML Grammar in BNF Format 

GML		 ::=	 List	
List	 ::=	 *+*	(whitespace	Key	whitespace	Value)	
Value	 ::=	 Integer	|	Real	|	String	|	[	List	]	
Key	 ::=	 [	a-z	A-Z	]	[	a-z	A-Z	0-9	]*	
Integer	 ::=	 sign	digit+	
Real	 ::=	 sign	digit*	.	digit*	mantissa	
String	 ::=	 "	instring	"	
sign	 ::=	 empty	|	+	|	-	
digit	 ::=	 [0-9]	
mantissa	 ::=	 empty	|	E	sign	digit	
instring	 ::=	 ASCII	-	{&,"}	|	&	character+	;	
whitespace	 ::=	 space	|	tabulator	|	newline	



In	 addition	 to	 the	 above	 grammar,	 all	 lines	 starting	 with	 a	 "#"	 character	 are	
ignored	by	the	parser.	This	 is	a	standard	behavior	 for	most	UNIX	software	and	
allows	the	embedding	of	foreign	data	in	a	file.	Of	course,	this	information	can	also	
be	added	within	the	GML	structure.	However,	it	is	convenient	to	add	large	external	
data	 through	 this	mechanism,	 as	 any	 lines	 starting	with	#	will	 not	 be	 read	 by	
another	application.	

Further	reglementations	are	a	maximum	line	length	and	a	maximum	key	size	of	
254	characters	(this	is	necessary	since	some	operating	systems	and	editors	do	not	
handle	 longer	 lines),	 and	 the	 use	 of	 7-bit	 ASCII	 characters	 only.	 Any	 other	
characters	are	coded	in	the	ISO	8859-1	character	set,	and	have	the	form	&name;.	
Especially,	the	characters	"	and	&	within	strings	must	be	coded	this	way	to	avoid	
ambiguity.	 The	 ISO	 8859-1	 is	 also	 used	 by	 HTML,	which	 is	 the	most	 common	
format	for	distributing	data	on	the	world	wide	web.	

The	above	grammar	is	kept	as	simple	as	possible,	and	avoids	unnecessary	items	
like	an	"="	to	stress	assignments	or	specific	data	types	for	boolean	or	enumeration	
values.	 Keys	 and	 values	 are	 separated	 by	 white	 space.	 With	 that,	 it	 is	
straightforward	to	generate	a	GML	file	from	a	given	structure,	and	a	parser	can	
easily	be	implemented	on	various	platforms.	

	

5.3.1 How Graphs and Other Data Structures are Represented 

A	GML	file	defines	a	tree.	Each	node	in	the	tree	is	labelled	by	a	key.	Leaves	have	
integer,	floating	point	or	string	values.	The	notion	

k1.k2.	...	.kn	

is	used	to	specify	a	path	in	the	tree	where	the	nodes	are	labelled	by	keys	k1,	k2,	...	
kn.	

x.k1.k2.	...	.kn	

is	used	to	specify	a	path	which	starts	at	a	specific	node	x	in	the	tree.	

In	the	above	grammar,	all	 lines	starting	with	a	"#"	character	are	ignored	by	the	
parser.	 This	 is	 a	 standard	 behavior	 for	 most	 UNIX	 software	 and	 allows	 the	
embedding	of	foreign	data	in	a	file	as	well	as	within	the	GML	structure.	However,	
it	is	convenient	to	add	large	external	data	through	this	mechanism,	as	any	lines	
starting	with	#	will	not	be	read	by	another	application.	The	above	grammar	is	kept	
as	simple	as	possible.	Keys	and	values	are	separated	by	white	space.	With	that,	it	
is	straightforward	to	generate	a	GML	file	from	a	given	structure,	and	a	parser	can	
easily	be	implemented	on	various	platforms.	



With	GML,	a	graph	is	defined	by	the	keys	graph,	node	and	edge,	where	node	and	
edge	are	sons	of	graph	in	no	particular	order.	Each	non-isolated	node	must	have	a	
unique	.graph.node.id	attribute.	Furthermore,	the	end	nodes	of	the	edges	are	given	
by	the	 .graph.edge.source	and	 .graph.edge.target	attributes.	Their	values	are	the	
graph.node.id	values	of	end	nodes.	

Directed	and	undirected	graphs	are	stored	in	the	same	format.	The	distinction	is	
done	with	the	.graph.directed	attribute	of	a	graph.	If	the	graph	is	undirected	that	
attribute	 is	 omitted.	 In	 an	 undirected	 graph,	 .graph.edge.source	 and	
.graph.edge.target	 may	 be	 assigned	 arbitrarily.	 GML	 does	 not	 define	 separate	
representations	for	directed	and	undirected	graphs	since	it	would	have	made	the	
parser	 more	 complex,	 especially	 in	 applications	 that	 read	 both	 directed	 and	
undirected	graphs	and	additionally	if	graphics	are	being	used	source	and	target	
have	a	meaning	even	for	undirected	graphs	for	example,	if	an	edge	is	represented	
by	a	polyline,	then	the	sequence	of	points	implies	a	direction	on	the	edge.	

	

5.3.2 Restrictions 

• The	values	of	the	.graph.node.id	elements	must	be	unique	within	the	graph.	
• Each	edge	must	have	.graph.edge.source	and	.graph.edge.target	attributes.	
• Not	all	nodes	have	a	.id	field	since	this	field	is	considered	not	necessary	for	

isolated	
• nodes.	Referencing	the	node	can	be	problematic.	
• With	these	conventions,	a	simple	parser	for	a	Graph	in	GML	works	in	four	

steps:	
1. Read	the	file	and	build	the	tree.	
2. Scan	the	tree	for	a	node	g	labeled	graph.	
3. Find	and	create	all	nodes	in	g.node.	Remember	their	g.node.id	values.	
4. Find	 all	 edges	 in	 g.edge,	 and	 their	 g.edge.source	 and	 g.edge.target	

attributes.	Find	the	end	nodes	and	insert	the	edges.	
Step	 1	 should	 be	 integrated	 into	 the	 other	 steps	 to	 gain	 efficiency.	 It	
requires	all	attributes	to	be	saved	leading	to	overhead.	However,	extraction	
of	data	attached	to	nodes,	edges	and	graphs,	becomes	easier	more	so	to	
preserve	unknown	data.	

• Validation	of	the	file	is	not	possible	using	tools.	

GML	is	a	capable	description	language	for	graph	drawing	purposes	and	while	it	
includes	provision	for	extensions;	the	mechanisms	for	associating	external	data	
with	a	graph	element	is	provision	for	extensions;	the	mechanisms	for	associating	
external	data	with	a	graph	element	is	not	well	defined.	

	



5.3.3 How to Represent Common Data Structures 

Integers.	GML	uses	signed	32-bit	 integers,	which	are	commonly	available	on	all	
architectures	and	 languages.	Larger	numbers	should	be	 represented	as	strings.	
Especially,	bitsets	with	more	than	31	entries	should	be	represented	as	strings.	

• Floating	point.	Floating	point	values	should	stay	inside	the	range	of	double	
precision	floating	point	values.	
	

• Boolean.	Boolean	values	are	represented	by	0	(false)	and	1	(true).	
	

• Pointers.	 Pointers	 are	 modeled	 by	 id	 attributes.	 id	 values	 are	 not	
necessarily	unique	through	the	file;	details	are	specified	by	the	application.	
Alternatively,	one	could	use	a	name	attribute	which	assigns	a	string	name	
to	an	object.		
	

• Record.	 A	 record	 data	 structure	 can	 easily	 be	 translated	 into	 a	 GML	
subtree,	like	in	the	following	example:	

name: record 
 a: typea;  
 b: typeb;  
 c: typec; 
end; 

translates	into	

name: [ 
 a Insert the value(s) of a here  
 b Insert the value(s) of b here  
 c Insert the value(s) of c here 
] 

• List,	 Set,	Array.	 These	 data	 types	 are	 represented	 in	 the	 same	ways	 as	
records	are.	e.g.	

name: List of x; 

translates	into	

name: [ 
 x Insert the value(s) of the first element here  
 x Insert the value(s) of the second element here  
 x Insert the value(s) of the third element here 
] 

Note	 that	 the	 key	 x	 occurs	 more	 than	 once	 within	 name.	 integrated	
intoParsers	must	preserve	the	order	of	objects	to	guarantee	that	the	list	is	
read	 correctly	 (see	 also	 the	 next	 section).	 integrated	 intoArrays	 should	
make	x	a	list	and	specify	the	index	in	an	.x.id	field	if	necessary.	



5.3.4 Order of Attributes 

GML	does	usually	not	require	that	attributes	appear	in	a	specific	order	in	the	file.	
The	order	of	objects	is	not	considered	significant	as	long	as	their	keys	are	different.	
That	is,	if	there	are	several	attributes	with	the	same	key	(id,	label)	in	a	list,	then	
the	parser	integrated	into	must	preserve	their	order.	

	

5.3.5 Unknown Attributes 

GML	is	designed	so	that	any	application	can	add	its	own	features	to	graphs,	nodes	
and	edges.	However,	not	all	applications	understand	all	attributes.	GML	deals	with	
foreign	data	in	two	ways:	

1. Simply	 ignore	 it.	However,	 this	means	the	data	gets	 lost	when	the	 file	 is	
written,	 for	example,	 a	program	 that	does	graph	 transformations	would	
throw	away	any	graphics	data.	

2. An	even	greater	complication	is	to	save	everything	to	a	generic	structure	
and	write	it	back	when	a	new	file	is	written.	This	may	guarantee	no	data	is	
lost	but	can	result	in	inconsistencies	if	the	application	alters	the	graph	since	
both	changes	in	the	structure	and	in	the	values	of	attributes	can	make	other	
attributes	invalid.	

	

5.3.6 Consistency 

Consider	 the	 following	 situation:	 a	 file	 includes	 information	 of	 some	 graph	
theoretical	property,	say	the	existence	of	a	Hamiltonian	circle.	It	is	easy	to	see	that	
this	information	may	become	invalid	if	an	edge	is	removed,	but	not	if	an	edge	is	
added.	However,	a	program	that	does	not	know	about	Hamilton	cycles	will	not	be	
able	to	check	and	guarantee	this	property.	

Another	example	is	if	a	node	is	moved,	then	the	coordinates	of	its	adjacent	edges	
must	be	updated.	However,	some	programs	always	treat	edges	as	straight	lines	
from	center	to	center	and	do	not	take	care	about	this.	Other	programs	might	draw	
the	edges	in	a	more	complex	way,	for	example	adjust	the	arrows	at	the	end	of	the	
edge	to	the	node's	shape.	Even	more,	an	attribute	IsDrawnPlanar	might	become	
invalid	when	node	or	edge	coordinates	have	changed.	

As	 these	 examples	 show,	 both	 changes	 in	 the	 structure	 and	 in	 the	 values	 of	
attributes	can	make	other	attributes	invalid.	We	therefore	need	a	way	to	specify	
which	attributes	are	safe	with	changes	and	which	not.	This	is	done	by	the	following	
rule:	



Any	 keyword	 which	 starts	 with	 a	 capital	 letter	 should	 be	 considered	
invalid	as	soon	as	any	changes	have	occurred.	We	call	such	a	key	unsafe.	

This	means	 that	 it	 is	 still	possible	 to	add	 the	above	 information	with	keys	 like	
"HasHamiltonianCircle"	or	"IsDrawnPlanar",	but	in	practice,	this	information	will	
not	 be	 written	 to	 a	 file	 unless	 the	 application	 knows	 how	 to	 deal	 with	 that	
particular	attribute.	

	

	

5.4 Examples 

5.4.1 Basic example 

The	sample	below	shows	a	graph	of	three	nodes	and	two	edges.	

 
graph 
[ 
  node 
  [ 
   id A 
  ] 
  node 
  [ 
   id B 
  ] 
  node 
  [ 
   id C 
  ] 
   edge 
  [ 
   source B 
   target A 
  ] 
  edge 
  [ 
   source C 
   target A 
  ] 
] 
 

	
	

5.4.2 Labels 

The	sample	below	shows	the	same	example	but	with	both	node	and	edge	labels.	

 
graph 
[ 
  node 
  [ 
   id A 
   label "Node A" 
  ] 



  node 
  [ 
   id B 
   label "Node B" 
  ] 
  node 
  [ 
   id C 
   label "Node C" 
  ] 
   edge 
  [ 
   source B 
   target A 
   label "Edge B to A" 
  ] 
  edge 
  [ 
   source C 
   target A 
   label "Edge C to A" 
  ] 
] 
 

	
	

	

	

	 	



6 GraphML Format 

	

6.1 Introduction 

The	GraphML	file	format	[9]	[10]	uses	.graphml	extension	and	is	XML	structured.	
It	supports	attributes	for	nodes	and	edges,	hierarchical	graphs	and	benefits	from	
a	flexible	architecture.	Gephi	supports	a	limited	set	of	this	format	(no	sub-graphs	
and	hyperedges).	This	format	is	supported	by	NodeXL	[9],	Sonivis	[10],	GUESS	[3]	
and	NetworkX	[8].	

	

	

6.2 Basic Concepts 

The	 purpose	 of	 a	 GraphML	 document	 is	 to	 define	 a	 graph.	 Let	 us	 start	 by	
considering	 the	 graph	shown	 in	 the	 figure	 below.	 It	 contains	 11	 nodes	 and	 12	
edges.	

	

That	graph	is	defined	by	the	following	.graphml	document:	

 
<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns 
     http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 
  <graph id="G" edgedefault="undirected"> 
    <node id="n0"/> 
    <node id="n1"/> 
    <node id="n2"/> 
    <node id="n3"/> 
    <node id="n4"/> 
    <node id="n5"/> 
    <node id="n6"/> 
    <node id="n7"/> 
    <node id="n8"/> 
    <node id="n9"/> 
    <node id="n10"/> 
    <edge source="n0" target="n2"/> 
    <edge source="n1" target="n2"/> 
    <edge source="n2" target="n3"/> 
    <edge source="n3" target="n5"/> 
    <edge source="n3" target="n4"/> 
    <edge source="n4" target="n6"/> 



    <edge source="n6" target="n5"/> 
    <edge source="n5" target="n7"/> 
    <edge source="n6" target="n8"/> 
    <edge source="n8" target="n7"/> 
    <edge source="n8" target="n9"/> 
    <edge source="n8" target="n10"/> 
  </graph> 
</graphml> 
 

	
The	 GraphML	 document	 consists	 of	 a	 graphml	 element	 and	 a	 variety	 of	
subelements:	graph,	node,	edge.	In	the	remainder	of	this	section	we	will	discuss	
these	elements	in	detail	and	show	how	they	define	a	graph.	

	

6.2.1 The Header 

In	 this	 section	we	 discuss	 the	 parts	 of	 the	 document	which	 are	 common	 to	 all	
GraphML	documents,	basically	the	graphml	element.	

 
<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns  
     http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 
 
  ... 
 
</graphml> 
 

	
The	first	line	of	the	document	is	an	XML	process	instruction	which	defines	that	the	
document	adheres	to	the	XML	1.0	standard	and	that	the	encoding	of	the	document	
is	UTF-8,	the	standard	encoding	for	XML	documents.	Of	course,	other	encodings	
can	be	chosen	for	GraphML	documents.	

The	second	line	contains	the	root-element	element	of	a	GraphML	document:	the	
graphml	 element.	 The	 graphml	 element,	 like	 all	 other	 GraphML	 elements,	
belongs	to	the	namespace	http://graphml.graphdrawing.org/xmlns.	For	this	
reason,	we	define	this	namespace	as	the	default	namespace	in	the	document	by	
adding	the	XML	Attribute	xmlns="http://graphml.graphdrawing.org/xmlns"	
to	it.	The	two	other	XML	Attributes	are	needed	to	specify	the	XML	Schema	for	this	
document.	In	our	example	we	use	the	standard	schema	for	GraphML	documents	
located	 on	 the	 graphdrawing.org	 server.	 The	 first	 attribute,	
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance",	defines	xsi	as	
the	 XML	 Schema	 namespace.	 The	 second	 attribute,	
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns	
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"	 ,	 defines	 the	
XML	Schema	location	for	all	elements	in	the	GraphML	namespace.	

The	XML	Schema	reference	is	not	required	but	it	provides	means	to	validate	the	



document	and	is	therefore	strongly	recommended.	

 
<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"> 
 
  ... 
 
</graphml>  
 

	
	

6.2.2 The Graph 

A	graph	is,	not	surprisingly,	denoted	by	a	graph	element.	Nested	inside	a	graph	
element	are	the	declarations	of	nodes	and	edges.	A	node	is	declared	with	a	node	
element,	and	an	egde	with	an	edge	element.	

 
<graph id="G" edgedefault="directed"> 
    <node id="n0"/> 
    <node id="n1"/> 
    ... 
    <node id="n10"/> 
    <edge source="n0" target="n2"/> 
    <edge source="n1" target="n2"/> 
    ... 
    <edge source="n8" target="n10"/> 
</graph> 
 

	
In	 GraphML	 there	 is	 no	 order	 defined	 for	 the	 appearance	 of	 node	 and	 edge	
elements.	Therefore,	the	following	example	is	a	perfectly	valid	GraphML	fragment:	

 
<graph id="G" edgedefault="directed"> 
    <node id="n0"/> 
    <edge source="n0" target="n2"/> 
    <node id="n1"/> 
    <node id="n2"/> 
    ... 
</graph>  
 

	
	

6.2.3 Declaring a Graph 

Graphs	 in	 GraphML	 are	 mixed,	 in	 other	 words,	 they	 can	 contain	 directed	 and	
undirected	edges	at	 the	 same	 time.	 If	no	direction	 is	specified	when	an	edge	 is	
declared,	 the	 default	 direction	 is	 applied	 to	 the	 edge.	 The	 default	 direction	 is	
declared	 as	 the	 XML	 Attribute	 edgedefault	 of	 the	 graph	 element.	 The	 two	
possible	values	for	this	XML	Attribute	are	directed	and	undirected.	Note	that	
the	default	direction	must	be	specified.	

	



Optionally	an	identifier	for	the	graph	can	be	specified	with	the	XML	Attribute	id.	
The	identifier	is	used,	when	it	is	necessary	to	reference	the	graph.	

	

6.2.4 Declaring a Node 

Nodes	in	the	graph	are	declared	by	the	node	element.	Each	node	has	an	identifier,	
which	must	be	unique	within	the	entire	document,	i.e.,	in	a	document	there	must	
be	no	two	nodes	with	the	same	identifier.	The	identifier	of	a	node	is	defined	by	the	
XML-Attribute	id.	

	

6.2.5 Declaring an Edge 

Edges	in	the	graph	are	declared	by	the	edge	element.	Each	edge	must	define	its	
two	 endpoints	 with	 the	 XML-Attributes	 source	 and	 target.	 The	 value	 of	 the	
source,	resp.	target,	must	be	the	identifier	of	a	node	in	the	same	document.	

Edges	with	only	one	endpoint,	also	called	loops,	selfloops,	or	reflexive	edges,	are	
defined	by	having	the	same	value	for	source	and	target.	

The	 optional	 XML-Attribute	 directed	 declares	 if	 the	 edge	 is	 directed	 or	
undirected.	 The	 value	 true	 declares	 a	 directed	 edge,	 the	 value	 false	 an	
undirected	edge.	If	the	direction	is	not	explicitly	defined,	the	default	direction	is	
applied	to	this	edge	as	defined	in	the	enclosing	graph.	

Optionally	an	identifier	for	the	edge	can	be	specified	with	the	XML	Attribute	id.	
When	it	is	necessary	to	reference	the	edge,	the	id XML-Attribute	is	used.	

 
    ... 
    <edge id="e1" directed="true" source="n0" target="n2"/> 
    ... 
 

	
	

	

6.3 GraphML-Attributes 

In	the	previous	section	we	discussed	how	to	describe	the	topology	of	a	graph	in	
GraphML.	 While	 pure	 topological	 information	 may	 be	 sufficient	 for	 some	
appications	of	GraphML,	for	the	most	time	additional	information	is	needed.	With	
the	 help	 of	 the	 extension	 GraphML-Attributes	 one	 can	 specify	 additional	



information	of	simple	type	for	the	elements	of	the	graph.	Simple	type	means	that	
the	information	is	restricted	to	scalar	values,	e.g.	numerical	values	and	strings.	

If	 you	 want	 to	 add	 structured	 content	 to	 graph	 elements	 you	 should	 use	 the	
key/data	extension	mechanism	of	GraphML.		

GraphML-Attributes	must	 not	 be	 confounded	with	 XML-Attributes	which	 are	 a	
different	concept.	

	

6.3.1 GraphML-Attributes Example 

In	this	section	a	graph	with	colored	nodes	and	edge	weights	will	be	our	running	
example.	

	

We	will	use	GraphML-Attributes	to	store	the	extra	data	on	the	nodes	and	edges.	
The	related	.graphml	file	will	be	as	follow:	

 
<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
      xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns  
        http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 
  <key id="d0" for="node" attr.name="color" attr.type="string"> 
    <default>yellow</default> 
  </key> 
  <key id="d1" for="edge" attr.name="weight" attr.type="double"/> 
  <graph id="G" edgedefault="undirected"> 
    <node id="n0"> 
      <data key="d0">green</data> 
    </node> 
    <node id="n1"/> 
    <node id="n2"> 
      <data key="d0">blue</data> 
    </node> 
    <node id="n3"> 
      <data key="d0">red</data> 
    </node> 
    <node id="n4"/> 
    <node id="n5"> 
      <data key="d0">turquoise</data> 
    </node> 
    <edge id="e0" source="n0" target="n2"> 
      <data key="d1">1.0</data> 
    </edge> 
    <edge id="e1" source="n0" target="n1"> 
      <data key="d1">1.0</data> 
    </edge> 
    <edge id="e2" source="n1" target="n3"> 
      <data key="d1">2.0</data> 
    </edge> 
    <edge id="e3" source="n3" target="n2"/> 
    <edge id="e4" source="n2" target="n4"/> 



    <edge id="e5" source="n3" target="n5"/> 
    <edge id="e6" source="n5" target="n4"> 
      <data key="d1">1.1</data> 
    </edge> 
  </graph> 
</graphml> 
 

	
	

6.3.2 Declaring GraphML-Attributes 

A	GraphML-Attribute	 is	defined	by	a	key	 element	which	specifies	 the	 identifier,	
name,	type	and	domain	of	the	attribute.	

The	 identifier	 is	 specified	 by	 the	 XML-Attribute	 id	 and	 is	 used	 to	 refer	 to	 the	
GraphML-Attribute	inside	the	document.	

The	name	of	the	GraphML-Attribute	is	defined	by	the	XML-Attribute	attr.name	
and	must	be	unique	among	all	GraphML-Attributes	declared	in	the	document.	The	
purpose	of	the	name	is	that	applications	can	identify	the	meaning	of	the	attribute.	
Note	that	the	name	of	the	GraphML-Attribute	is	not	used	inside	the	document,	the	
identifier	is	used	for	this	purpose.	

The	 type	 of	 the	 GraphML-Attribute	 can	 be	 either	 boolean,	 int,	 long,	 float,	
double,	or	string.	These	types	are	defined	 like	the	corresponding	types	 in	 the	
JavaTM	programming	language.	

The	 domain	 of	 the	 GraphML-Attribute	 specifies	 for	 which	 graph	 elements	 the	
GraphML-Attribute	 is	 declared.	 Possible	 values	 include	graph,	 node,	edge,	 and	
all.	

 
    ... 
    <key id="d1" for="edge" attr.name="weight" attr.type="double"/> 
    ... 
 

	
It	is	possible	to	define	a	default	value	for	a	GraphML-Attribute.	The	text	content	of	
the	default	element	defines	this	default	value.	

 
    ... 
  <key id="d0" for="node" attr.name="color" attr.type="string"> 
    <default>yellow</default> 
  </key> 
    ... 
 

	
	

	



6.3.3 Defining GraphML-Attribute Values 

The	value	of	a	GraphML-Attribute	for	a	graph	element	is	defined	by	a	data	element	
nested	inside	the	element	for	the	graph	element.	The	data	element	has	an	XML-
Attribute	key,	which	refers	to	the	identifier	of	the	GraphML-Attribute.	The	value	
of	the	GraphML-Attribute	is	the	text	content	of	the	data	element.	This	value	must	
be	of	the	type	declared	in	the	corresponding	key	definition.	

 
  ... 
  <key id="d0" for="node" attr.name="color" attr.type="string"> 
    <default>yellow</default> 
  </key> 
  <key id="d1" for="edge" attr.name="weight" attr.type="double"/> 
  <graph id="G" edgedefault="undirected"> 
    <node id="n0"> 
      <data key="d0">green</data> 
    </node> 
    <node id="n1"/> 
    ... 
    <edge id="e0" source="n0" target="n2"> 
      <data key="d1">1.0</data> 
    </edge> 
    <edge id="e1" source="n0" target="n1"> 
      <data key="d1">1.0</data> 
    </edge> 
    <edge id="e2" source="n1" target="n3"> 
      <data key="d1">2.0</data> 
    </edge> 
    <edge id="e3" source="n3" target="n2"/> 
    ... 
  </graph> 
  ... 
 

	
There	 can	be	graph	elements	 for	which	a	GraphML-Attribute	 is	defined	but	no	
value	is	declared	by	a	corresponding	data	element.	If	a	default	value	is	defined	for	
this	GraphML-Attribute,	then	this	default	value	is	applied	to	the	graph	element.	In	
the	 above	 example	 no	 value	 is	 defined	 for	 the	 node	with	 identifier	n1	 and	 the	
GraphML-Attribute	with	name	color.	Therefore,	this	GraphML-Attribute	has	the	
default	 value,	 yellow	 for	 this	 node.	 If	 no	 default	 value	 is	 specified,	 as	 for	 the	
GraphML-Attribute	 weight	 in	 the	 above	 example,	 the	 value	 of	 the	 GraphML-
Attribute	 is	undefined	for	 the	graph	element.	 In	 the	above	example	the	value	 is	
undefined	of	the	GraphML-Attribute	weight	for	the	edge	with	identifier	e3.	

	

	

	

	

	

	



7 GEXF 

	

7.1 Introduction 

The	Graph	Exchange	XML	Format	(GEXF)	[13]	is	a	language	for	describing	complex	
networks	structures,	their	associated	data	and	dynamics.	Started	in	2007	at	Gephi	
[14]	project	by	different	actors,	deeply	involved	in	graph	exchange	issues,	the	gexf	
specifications	are	mature	enough	 to	 claim	being	both	extensible	and	open,	 and	
suitable	for	real	specific	applications.	

	

	

7.2 Basic Concepts 

The	purpose	of	a	GEXF	document	is	to	define	a	graph	representing	a	network.	Let	
us	start	by	considering	the	minimal	graph	shown	in	the	figure	below.	It	contains	2	
nodes	and	1	edge.	

	

A	GEXF	document	consists	of	a	gexf	element	and	a	variety	of	subelements:	graph,	
node,	edge.	In	the	remainder	of	this	section	we	will	discuss	these	elements	in	detail	
and	show	how	they	define	a	graph.	

 
<?xml version=”1.0” encoding=”UTF−8”?> 
<gexf xmlns=”http://www.gexf.net/1.2draft” 
      xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”    
      xsi:schemaLocation=”http://www.gexf.net/1.2draft  
      http://www.gexf.net/1.2draft/gexf.xsd” 
    version=”1.2”> 
  <meta lastmodifieddate=”2009−03−20”> 
    <creator>Gephi.org</creator> 
    <description>A hello world! file</description> 
  </meta> 
  <graph defaultedgetype=”directed”> 
    <nodes> 
      <node id=”0” label=”Hello”/> 
      <node id=”1” label=”Word”/> 
    </nodes> 
    <edges> 
      <edge id=”0” source=”0” target=”1”/> 
    </edges> 
  </graph> 
</gexf> 
 

	
	



7.2.1 Header 

In	this	section	we	discuss	the	parts	of	the	document	which	are	common	to	all	GEXF	
documents,	basically	the	gexf	element	and	the	meta	declaration.	
	
 
<?xml version=”1.0” encoding=”UTF−8”?> 
<gexf xmlns=”http://www.gexf.net/1.2draft” 
      xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”         
      xsi:schemaLocation=”http://www.gexf.net/1.2draft 
          http://www.gexf.net/1.2draft/gexf.xsd” 
      version=”1.2”> 
  <meta lastmodifieddate=”2009−03−20”> 
    <creator>Gephi.org</creator> 
    <description>A hello world! file</description> 
    <keywords>basic, web</keywords> 
  </meta> 
  ... 
</gexf> 
 

	
The	first	line	of	the	document	is	an	XML	process	instruction	which	defines	that	the	
document	adheres	to	the	XML	1.0	standard	and	that	the	encoding	of	the	document	
is	UTF-8,	the	standard	encoding	for	XML	documents.	Of	course,	other	encodings	
can	be	chosen	for	GEXF	documents.	

The	second	line	contains	the	root-element	element	of	a	GEXF	document:	the	gexf	
element.	 The	 gexf	 element,	 like	 all	 other	 GEXF	 elements,	 belongs	 to	 the	
namespace	 http://www.gexf.net/1.2draft.	 For	 this	 reason,	 we	 define	 this	
namespace	as	the	default	namespace	in	the	document	by	adding	the	XML	Attribute	
xmlns=”http://www.gexf.net/1.2draft”	to	it.	The	two	other	XML	Attributes	are	
needed	to	specify	the	XML	Schema	for	this	document.	In	our	example	we	use	the	
standard	 schema	 for	GEXF	documents	 located	 on	 the	 gexf.net	 server.	 The	 first	
attribute,	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”,	 defines	
xsi	 as	 the	 XML	 Schema	namespace.	 The	 second	 attribute,	xsi:schemaLocation 
=”http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd”,	
defines	the	XML	Schema	location	for	all	elements	in	the	GEXF	namespace.	

The	XML	Schema	reference	is	not	required	but	it	provides	means	to	validate	the	
document	and	is	therefore	strongly	recommended.	

The	meta	element	 contains	additional	 information	about	 the	network.	Element	
leafs	are	assumed	to	be	text,	and	lastmodifieddate	is	an	international	standard	
date	(yyyy-mm-dd).	The	graph	element	must	be	declared	after	the	meta	element.	

	

7.2.2 Network Topology 

The	network	topology	structure	containing	nodes	and	edges	is	called	the	graph.	A	
graph	 is,	 not	 surprisingly,	 denoted	 by	 a	graph	 element.	Nested	 inside	 a	graph	



element	are	the	declarations	of	nodes	and	edges.	A	node	is	declared	with	the	node	
element	 inside	 a	nodes	 element,	 and	 an	 edge	with	 the	edge	 element	 inside	 an	
edges	element.	Nodes	and	edges	orders	doesn’t	matter.	

 
<graph defaultedgetype=”directed”> 
  <nodes> 
    <node id=”0” label=”Hello” /> 
    <node id=”1” label=”Word” /> ... 
  </nodes> 
  <edges> 
    <edge id=”0” source=”0” target=”1” weight=”3.167” /> 
    ...  
  </edges> 
</graph> 
 

	
	

7.2.3 Declaring a Graph 

Graphs	 in	 GEXF	 are	 mixed,	 in	 other	 words,	 they	 can	 contain	 directed	 and	
undirected	edges	at	 the	 same	 time.	 If	no	direction	 is	specified	when	an	edge	 is	
declared,	 the	 default	 direction	defaultedgetype	 is	 applied	 to	 the	 edge.	 If	 you	
know	what	 kind	 of	 edges	 are	 stored,	 you	may	 interpret	 the	mixed	 graph	 as	 a	
directed	or	an	undirected	graph	at	your	own	risks.	

The	default	direction	is	declared	as	the	optional	XML-attribute	defaultedgetype	
of	 the	 graph	 element.	 The	 three	 possible	 values	 for	 this	 XML-attribute	 are	
directed,	undirected	and	mutual.	Note	that	the	default	direction	is	optional	and	
would	be	assumed	as	undirected.	

The	optional	XML-attribute	mode	set	 the	kind	of	network:	static	 or	dynamic.	
Last	one	provides	time	support.	Static	mode	is	assumed	by	default.	

The	edges	element	must	be	declared	after	the	nodes	element.	

 
<graph> 
  <nodes> 
  </nodes>  
  <edges>  
  </edges> 
</graph> 
 

	
	

7.2.4 Declaring a Node 

Nodes	in	the	graph	are	declared	by	the	node	element.	Each	node	has	an	identifier,	
which	must	be	unique	within	the	entire	document,	i.e.,	in	a	document	there	must	
be	no	two	nodes	with	the	same	identifier.	The	identifier	of	a	node	is	defined	by	the	



XML-attribute	id,	which	is	a	string.	Each	node	must	have	a	XML-attribute	label,	
which	is	a	string.	

 
<node id=”0” label=”Hello world” /> 
 

	
	

7.2.5 Declaring an Edge 

Edges	in	the	graph	are	declared	by	the	edge	element.	Each	edge	must	define	its	
two	 endpoints	 with	 the	 XML-Attributes	 source	 and	 target.	 The	 value	 of	 the	
source,	resp.	target,	must	be	the	identifier	of	a	node	in	the	same	document.	The	
identifier	of	an	edge	is	defined	by	the	XML-Attribute	id.	There	is	no	order	notion	
applied	to	edges.	

Edges	with	only	one	endpoint,	also	called	loops,	selfloops,	or	reflexive	edges,	are	
defined	by	having	the	same	value	for	source	and	target.	

Each	edge	can	have	an	optional	XML-attribute	label,	which	is	a	string.	

The	optional	XML-attribute	type	 declares	 if	 the	edge	 is	directed,	undirected	or	
mutual	(directed	from	source	to	target	and	from	target	to	source).	If	the	direction	
is	not	explicitly	defined,	the	default	direction	is	applied	to	this	edge	as	defined	in	
the	enclosing	graph.	

The	weight	of	the	edge	is	set	by	the	optional	XML-attribute	weight	and	is	a	float.	

Assuming	two	nodes	having	respectively	the	id	value	set	to	0	and	1:	

 
<edge id=”0” source=”0” target=”1” type=”directed” weight=”2.4” /> 
 

	
	

	

7.3 Network Data 

A	bunch	of	data	can	be	stored	within	attributes.	The	concept	is	the	same	as	table	
data	or	SQL.	An	attribute	has	a	title/name	and	a	value.	Attribute’s	name/title	must	
be	declared	for	the	whole	graph.	It	could	be	for	instance	“degree”,	“valid”	or	“url”.	
Besides	the	name	of	the	attribute	a	column	also	contains	the	type.	

	



7.3.1 Data types 

GEXF	uses	 the	XML	Schema	Data	Types	 (XSD	1.1)	 for	 the	 following	primitives:	
string,	integer,	float,	double,	boolean,	date,	and	anyURI.	

	

7.3.2 Attributes Example 

Each	 Node	 of	 this	 graph	 has	 three	 attributes:	 an	 url,	 an	 indegree	 value	 and	 a	
boolean	for	french	websites	which	is	set	to	true	by	default.	

 
<?xml version=”1.0” encoding=”UTF−8”?> 
<gexf xmlns=”http://www.gexf.net/1.2draft” 
      xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance” 
      xsi:schemaLocation=”http://www.gexf.net/1.2draft  
          http://www.gexf.net/1.2draft/gexf.xsd” 
      version=”1.2”> 
  <meta lastmodifieddate=”2009−03−20”> 
    <creator>Gephi.org</creator> 
    <description>A Web network</description> 
  </meta> 
  <graph defaultedgetype=”directed”> 
    <attributes class=”node”> 
      <attribute id=”0” title=”url” type=”string”/>  
      <attribute id=”1” title=”indegree” type=”float”/>  
      <attribute id=”2” title=”frog” type=”boolean”> 
        <default>true</default> 
      </attribute>   
    </attributes>  
    <nodes> 
      <node id=”0” label=”Gephi”> 
        <attvalues> 
          <attvalue for=”0” value=”http://gephi.org”/> 
          <attvalue for=”1” value=”1”/> 
        </attvalues> 
      </node> 
      <node id=”1” label=”Webatlas”> 
        <attvalues> 
          <attvalue for=”0” value=”http://webatlas.fr”/> 
          <attvalue for=”1” value=”2”/> 
        </attvalues> 
      </node> 
      <node id=”2” label=”RTGI”> 
        <attvalues> 
          <attvalue for=”0” value=”http://rtgi.fr”/> 
          <attvalue for=”1” value=”1”/> 
        </attvalues> 
      </node> 
      <node id=”3” label=”BarabasiLab”> 
        <attvalues> 
          <attvalue for=”0” value=”http://barabasilab.com”/> 
          <attvalue for=”1” value=”1”/> 
          <attvalue for=”2” value=”false”/> 
        </attvalues> 
      </node> 
    </nodes> 
    <edges> 
      <edge id=”0” source=”0” target=”1”/> 
      <edge id=”1” source=”0” target=”2”/> 
      <edge id=”2” source=”1” target=”0”/> 
      <edge id=”3” source=”2” target=”1”/> 
      <edge id=”4” source=”0” target=”3”/> 
    </edges> 
  </graph> 
</gexf> 
 



7.3.3 Declaring Attributes 

Attributes	are	declared	 inside	an	attributes	 element.	The	XML-attribute	class	
apply	nested	attributes	on	nodes	 (node	value)	or	edges	 (edge	value).	You	may	
specify	the	data	type	between	integer,	double,	float,	boolean,	string	and	list-string,	
and	specify	a	default	value.	

 
<graph mode=”static”> 
  <attributes class=”node”> 
    <attribute id=”0” title=”my−text−attribute” type=”string”/> 
    <attribute id=”1” title=”my−int−attribute” type=”integer”/> 
    <attribute id=”2” title=”my−bool−attribute” type=”boolean”/> 
  </attributes> 
  <attributes class=”edge”> 
    <attribute id=”0” title=”my−float−attribute” type=”float”> 
      <default>2.0</default> 
    </attribute> 
  </attributes> ... 
</graph> 
 

	
	

7.3.4 Defining Attribute Values 

You	may	 understand	 attributes	 while	 looking	 at	 this	 node	 definition.	 Besides	
native	 fields	 (id,	 label),	 node	 values	 are	 set	 for	 three	 attributes.	 Omitting	 an	
attribute	will	set	the	default	value	as	its	value.	If	no	default	value	is	set,	this	is	an	
error.	

 
<node id=”0” label=”Hello world”> 
  <attvalues> 
    <attvalue for=”0” value=”samplevalue”/> 
    <attvalue for=”1” value=”1831”/> 
    <attvalue for=”2” value=”true”/> 
  </attvalues> 
</node> 
 

	

 
<edge id=”0” source=”0” target=”1”> 
  <attvalues> 
    <attvalue for=”0” value=”1.5”/> 
  </attvalues> 
</edge> 
 

	
The	 liststring	 type	 allows	 to	 replace	 the	 usage	 of	 multiple	 boolean	 attributes.	
Instead	of	declaring	the	attributes	foo,	bar	and	foobar,	you	just	only	have	to	declare	
my-foobar.	my-foobar	may	takes	the	values	foo,	bar,	foobar,	foo;bar,	foobar;foo	etc.	
So	the	value	foobar;foo	is	equivalent	to	an	attribute	foobar=true	and	foo=true.	

Liststring	gives	the	element	values	separated	by	a	pipe,	a	comma	or	a	semi-colon.	
This	 is	 an	 unsafe	 type!	 Liststring	 values	 are	 therefore	 parsed,	 and	 this	 parsing	
don’t	 take	any	escape	character	 like	quotes	or	double-quotes	 into	account.	You	



have	to	check	your	data	before	making	a	GEXF	file.	

The	attribute	options	defines	the	available	values,	separated	by	a	pipe.	It	is	both	
used	as	a	type	constraint	and	for	parser	optimization.	The	combined	default	value	
must	be	an	available	option,	like	the	following	example.	

 
<graph mode=”static”> 
  <attributes class=”node”> 
    <attribute id=”0” title=”my−string−attribute” type=”string”> 
      <default>foo</default> 
      <options>foo|bar|foobar</options> 
    </attribute> 
    <attribute id=”1” title=”my−integer−attribute” type=”integer”> 
      <default>5</default> 
      <options>1|2|5|6</options> 
    </attribute> 
  </attributes> 
  ... 
</graph> 
 

	
When	it	is	applied	to	a	liststring	attribute,	it	gives	all	possible	elements	of	the	list:	

 
<attributes> 
  <attribute id=”0” title=”foo−attr” type=”liststring”> 
    <options>foo1|foo2|foo3</options>  
  </attribute> 
</attributes> 
<nodes> 
  <node id=”42” label=”node A”> 
    <attvalues> 
      <attvalue for=”0” value=”foo3|foo2”> 
    </attvalues> 
  </node> 
  <node id=”43” label=”node B”> 
    <attvalues> 
      <attvalue for=”0” value=””> 
    </attvalues> 
  </node> 
  <node id=”44” label=”node C”> 
    <attvalues> 
      <attvalue for=”0” value=”foo1|foo2|foo3”> 
    </attvalues> 
  </node> 
</nodes> 
 

	
	

	
	

	

	

	

	
	  



8 References 
 

[1]  Wikipedia, "Comma-separated values," [Online]. Available: 
https://en.wikipedia.org/wiki/Comma-separated_values. [Accessed 26 11 2018]. 

[2]  "Graphviz - Graph Visualization Software," [Online]. Available: 
http://www.graphviz.org. [Accessed 30 11 2018]. 

[3]  E. Adar, "GUESS: a language and interface for graph exploration," in CHI '06 
Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, Montréal, Québec, Canada, 2006.  

[4]  M. Himsolt, "GML: A portable Graph File Format," 30 11 2010. [Online]. 
Available: https://www.fim.uni-
passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf. [Accessed 2 12 2018]. 

[5]  W. De Nooy, A. Mrvar and V. Batageli, Exploratory Social Network Analysis 
with Pajek, Cambridge University Press, 2018.  

[6]  yWorks GmbH, "yEd Graph Editor," [Online]. Available: 
https://www.yworks.com/products/yed. [Accessed 2 12 2018]. 

[7]  K. Mehlhorn and S. Näher, The LEDA Platform of Combinatorial and Geometric 
Computing, Cambridge University Press, 1999.  

[8]  A. Hagberg, D. Schult and P. Swart, "NetworkX," NetworkX developers, 2018. 
[Online]. Available: http://networkx.github.io. [Accessed 2 12 2018]. 

[9]  GraphML Project Group, "The GraphML File Format," [Online]. Available: 
http://graphml.graphdrawing.org. [Accessed 3 12 2018]. 

[10]  U. Brandes, M. Eiglsperger and J. Lerner, "GraphML Primer," [Online]. 
Available: http://graphml.graphdrawing.org/primer/graphml-primer.html. 
[Accessed 3 12 2018]. 

[11]  Social Media Research Foundation, "NodeXL: Network Overview, Discovery 
and Exploration for Excel," [Online]. Available: 
https://archive.codeplex.com/?p=NodeXL. [Accessed 3 12 2018]. 



[12]  C. Müller, "SONIVIS: Social networks in virtual information spaces – a wiki-
approach," in Presentation at the XXVIII Sunbelt Social Network Conference, St. 
Pete (USA), 2008.  

[13]  GEXF Working Group, "GEXF 1.2draft Primer," 28 3 2012. [Online]. Available: 
https://gephi.org/gexf/1.2draft/gexf-12draft-primer.pdf. [Accessed 3 12 2018]. 

[14]  The Gephi Consortium, "Gephi: The Open Graph Viz Platform," [Online]. 
Available: https://gephi.org. [Accessed 3 12 2018]. 

 

 

 

 


