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1 Abstract 

The field of systems biology is characterized by a huge amount of heterogeneous data, 
hard to integrate due to their complex nature and rich semantics.  

One of the key goals in this scope is understanding the complex relationships among 
these biological data and, certainly, we need solutions to speed up their integration and 
querying.  

Anyhow, analyzing large volumes of biological data through traditional database 
systems is troublesome and challenging.  

In this work, we demonstrate how using a semantic knowledge graph for complex 
biological relationships, such as BioGrakn Disease Network (BioGraknDN), would 
accelerate the knowledge discovery process.  

 

 

 

 	



2 The BioGrakn Disease Network (BioGraknDN) 

 

2.1 Motivation and significance 

Nowadays,	 the	 availability	 of	 many	 analytical	 tools	 in	 biomedical	 science	 has	
produced	a	 lot	of	 information	about	all	sorts	of	biological	components	(tissues,	
diseases,	cells,	proteins,	drugs,	pathways,	etc.)	and	their	functions.		

Of	 course,	 these	 components	 are	 important	 individually,	 but	 we	 also	 need	 to	
understand	their	biological	characteristics	in	relation	to	the	potential	interactions	
they	have	with	each	other,	and	this	requires	the	 integration	of	vast	amounts	of	
heterogeneous,	highly	complex	and	semantically	rich	data.		

For	 example,	 some	 genes	 may	 be	 linked	 to	 multiple	 diseases,	 encoding	 many	
proteins,	 and	 could	 include	 some	 source	 information.	 Recognizing	 the	
relationships	 between	 such	 entities	 can	 be	 decisive	 in	 providing	 the	 biological	
context	for	hypothesis	generation	and	validation.		

As	shown	in	Figure	1,	before	producing	any	insight	(e.g.,	drug	discovery),	the	first	
step	 typically	 implicates	 the	 integration	of	different	biomedical	data.	These	are	
often	available	from	public	or	proprietary	data	sets,	while	others	can	be	extracted	
through	text	mining	methods	from	sources,	such	as	PubMed	articles.		

 
Figure 1 - A general work-flow: from data ingestion to insights generation	

Data	sets	like	UniProt,	ENSEMBL,	Drug	Bank,	etc.,	usually	come	in	textual	formats	
(TSV/CSV)	and,	as	this	is	flat	data,	we	need	to	connect	these	data	sets	so	that	the	
networks	can	be	established.	



Unfortunately,	source	biological	data	is	not	always	uniform.	For	example,	we	can	
have	 some	 well-annotated	 proteins	 because	 they	 have	 been	 studied	
experimentally,	 but	 there	 also	 are	 ‘hypothetical	 proteins’	 having	 little	 to	 no	
information.		

Furthermore,	since	biological	research	gives	us	unpredictable	results,	new	studies	
are	constantly	available	and	their	outcomes	could	be	 integrated	 into	our	work-
flow.	 In	 other	words,	 we	 are	 dealing	 with	 a	 challenging,	 time-consuming,	 and	
difficult-to-scale	process.	

Once	our	data	sources	have	been	integrated	somehow,	a	computational	layer	can	
produce	some	form	of	insight.	For	instance,	we	could	predict	a	particular	pattern	
using	machine	learning,	or	a	sequencing	algorithm	could	help	us	to	find	sequence	
similarities	between	genes	or	proteins.	

Even	 though	 this	 insight	 may	 extend	 the	 previously	 ingested	 data,	 without	 a	
complex	integration	process,	we	would	still	have	an	incomplete	biological	context.	
For	example,	if	a	new	drug	candidate	for	a	disease	is	suggested,	we	can't	know	its	
interactions	with	other	biological	entities.	Also,	if	data	are	stored	into	a	traditional	
relational	database,	we	need	to	use	too	much	complex	and	expensive	join	queries	
to	pull	out	interesting	results.	

BioGraknDN	can	let	us	improve	two	areas	of	intervention:	

• Data	integration	and	ingestion:	a	hard-coded	script	to	integrate	flat	data,	
no	matter	 if	 in	memory	or	 into	 a	 relational	 database,	 is	 rigid	 and	 time-
consuming,	 particularly	 when	 we	 are	 going	 to	 add	 new	 data	 sources.	
Furthermore,	 navigating	 and	 analyzing	 data	 can	 be	 computationally	 too	
expensive	due	to	its	inherent	complexity.	
	

• Biologically	 contextualizing	 newly	 generated	 insights:	 it	 will	 be	 hard	 to	
associate	the	data	produced	by,	for	example,	machine	learning	algorithm	
or	a	sequencing,	because	the	data	integration	process	is	characterized	by	
an	 inflexible	 nature.	 Therefore,	 interactions	 with	 other	 biological	
components	will	lose	their	biological	contextuality.	

The	 problems	 above	 are	 addressed	 by	 using	Grakn	 (1),	which	 is	 an	 intelligent	
database	that	can	organize	complex	networks	of	data	in	the	form	of	a	knowledge	
graph.		

Entities	and	relationships	are	the	concepts	of	the	systems,	while	rules	can	be	used	
to	perform	automated	reasoning.		

The	principles	of	knowledge	representation	and	reasoning	are	implemented	in	a	
type	 system	 schema,	 a	 more	 expressive	 and	 useful	 system	 than	 traditional	



relational	and	NoSQL	databases	when	we	have	to	manage	large-scale	linked	data.	

	

	

2.2 Software description 

BioGraknDN	 is	 a	Grakn	 knowledge	 graph,	 derived	 from	 (2),	 that	 integrates	 the	
following	data	sources:	

• UniProt	 KnowledgeBase	 (UniprotKB)	 (3):	 annotated	 functional	
information	on	human	proteins;	
	

• Reactome	(4):	validated	human	metabolic	pathways,	annotated	as	a	set	of	
biological	events	and	linked	to	proteins;	
	

• Drug	Gene	Interaction	Database	(DGIdb)	(5):	approved	drug	compounds	
and	their	links	with	proteins;	
	

• DisGeNET	 (6):	 curated	 subset	 for	 diseases	 and	 mapped	 to	 UniProt	
identifiers	using	gene	names;	
	

• HPA-Tissue	(7):	data	on	gene-expression-tissue	enhanced	associations;	
	

• EBI	IntAct	(8):	protein-protein	interaction	data;	
	

• Gene	 Expression	 Omnibus	 (9):	 Three	 studies	 were	 integrated	 and	
differentially	 expressed	 genes	 (DEGs)	 were	 identified	 between	 asthma	
subtype/control	cohorts	using	the	limma	Bioconductor	package;	
	

• TissueNet	(10):	associations	between	human	tissues	and	protein-protein	
interactions;	

Figure	2	shows	a	simple	schema	that	represents	the	above	data	sets.	The	Grakn	
Python	 client	 was	 used	 to	 load	 this	 data	 from	 their	 TSVs	 and	 CSVs	 into	
BioGraknDN.	

Having	created	BioGraknDN,	there	are	several	reasons	that	make	this	process	so	
easy	to	do	with	Grakn.	These	include:	



 
Figure 2 - The database schema used in BioGrakn Disease Network	

1. Graql,	the	Grakn’s	flexible	and	expressive	language,	allows	us	to	modify	the	
schema	as	new	datasets	are	ingested.	This	meant,	for	example,	that	when	
we	need	to	insert	drug-gene	relationships	from	DGIdb,	we	could	change	the	
schema	and	create	different	roles	(inhibitor,	antagonist,	and	blocker)	for	
drugs	when	interacting	with	a	gene,	and	this	avoids	from	having	to	create	
new	 relationship	 types	 for	 each	 role.	 If	 we	 were	 using	 a	 traditional	
relational	database,	implementing	such	a	change	would	have	meant	a	re-
design	of	the	schema,	which	can	be	a	costly	and	complicated	process.	
	

2. Thanks	to	the	type	system	implemented	in	Grakn,	relationships	types	and	
attributes	 can	 be	 hierarchically	 modeled,	 to	 enable	 easier	 querying	
afterward.	For	example,	the	attribute's	identifier	and	name	are	created	as	
the	parent	type	of	all	other	identifiers	and	names.	Figure	3	shows	how	they	
look	like.	

 
Figure 3 - Definition of parent types for other identifiers and names	



This	means	that	any	type	of	identifier	can	be	queried	for	without	having	to	
explicitly	state	if,	for	example,	an	entrez-id	or	ensembl-id	exists.	Then,	to	
query	for	entrez-id	29851	and	to	ask	to	be	returned	its	gene	symbol:	

 
match $g isa gene, has identifier "29851", has gene-symbol $gs;  
  get $gs; {$gs val "ICOS" isa gene-symbol;} 
 

	

3. Furthermore,	 when	 we	 need	 to	 insert	 tissue-PPI	 relationships	 from	
TissueNet,	 we	 can	 use	 hyper-relationships	 to	 express	 this	 concept.	 The	
tissue	entity	is	modeled	as	having	a	process-localization	relationship	with	
the	 protein-protein-interaction	 relationship,	 that	 is	 a	 relationship	 inside	
another	relationship.	Such	level	of	expressivity	is	quite	useful	as	it	means	
the	 model	 can	 be	 designed	 more	 closely	 guided	 by	 the	 needs	 of	 its	
application.	

Once	the	data	has	been	integrated	into	BioGraknDN,	we	will	be	able	to	do	some	
form	of	complex	computation,	such	as	sequencing	or	machine	learning	algorithm.	

The	 next	 section	 shows	 how,	 thanks	 to	BioGraknDN,	 the	 insights	 generated	 in	
these	computations	can	be	linked	to	a	biological	context.	

	

	

2.3 Illustrative examples: Bringing biological context to newly 
generated insight 

If	we	run	a	sequencing	or	ML	algorithm,	we	can	create	a	new	type	of	insight,	that	
can	be	extremely	valuable.	But	to	go	further	in	the	knowledge	discovery	process,	
we	 should	 also	 provide	 a	 biological	 context	 to	 that	 insight,	 integrating	 it	 into	
BioGraknDN.		

The	benefits	can	be	outlined	as	follows:	

1. A	 sequencing	 algorithm	 can	 be	 used	 to	 found	 similarities	 between	
sequences	 of	 proteins,	 and	 these	 can	 be	 inserted	 as	 sequence	 similarity	
relationships	between	two	protein	entities.	For	example,	Figure	4	shows	
how	 we	 would	 model	 a	 sequence	 similarity	 between	 proteins	 with	
uniprotID	P09238	and	P39900.	

	

	



 
Figure 4 - Example of sequence similarity between proteins	

2. At	 this	point,	Grakn	 rules	 can	be	defined	 in	 the	 schema	 to	 find	out	new	
insights	from	the	data.	The	following	sample	rule	will	create	a	new	drug-
disease-association	 relationship	 when	 two	 proteins	 with	 a	 sequence	
similarity	are	 found,	where	one	protein	 is	a	 target	 for	a	disease,	and	the	
other	relates	to	a	drug:	

 
when { 
    $di isa disease; 
    $pr isa protein; 
    $pr2 isa protein; 
    $pr != $pr2; 
    $dr isa drug; 
    (associated-disease: $di, associated-protein: $pr)  
        isa protein-disease-association;  
    (similar-protein: $pr, similar-protein: $pr2) 
        isa protein-similarity; 
    (target-protein: $pr2, interacted-drug: $dr)  
        isa drug-protein-interaction; 
} then { 
    (affected-disease: $di, therapeutic: $dr) 
        isa drug-disease-association; 
}; 
 

Thanks	 to	 this	 rule,	 we	 can	 now	 immediately	 query	 for	 drug-disease-
association	 relationships,	 even	 without	 any	 inserted	 drug-disease	 data.	
The	above	rule	lets	Grakn	infer	for	us	and	find	candidate	drugs	and	such	a	
query	would	look	like	as:	

 
match 
  $di isa disease, has disease-name "Asthma"; 
  $dr isa drug; 
  $r (affected-disease: $di, therapeutic: $dr)  
    isa drug-disease-association;  
  get; 
 

Figure	5	shows	the	result	returned	when	we	look	for	potential	candidate	
drugs	against	 the	disease	Asthma,	 and	we	see	 that	 the	drug	PHENYTOIN	
may	be	a	potential	candidate	against	Asthma.	No	direct	association	exists	
in	 the	data,	actually,	because	these	relationships	were	inferred	by	Grakn	
engine.	



 
Figure 5 - A potential candidate drug related to a disease	

If	we	double	click	on	the	relationship,	the	graph	expands	as	shown	in	Figure	
6,	where	we	see	 that	protein	Q969D9	 is	 associated	 to	Asthma	 and	has	a	
sequence	similarity	with	P01889,	which	has	a	relationship	with	the	drug	
PHENYTOIN.	

 
Figure 6 - Expanded view of a relation between a potential candidate drug and a disease	

Because	none	of	the	original	datasets	included	protein-drug	associations,	
that	relationship	is	also	inferred	through	another	rule,	which	states	that:	"if	
a	disease	 is	associated	with	a	gene,	 that	disease	 should	also	be	associated	
with	the	proteins	which	that	gene	encodes".	Therefore,	as	PHENYTOIN	has	
been	 reported	 to	 be	 an	 inhibitor	 to	 the	 gene	 with	 entrez-id	 3106,	 the	
protein	 it	 encodes,	P01889,	 gets	 also	 associated	with	 it.	 Exploring	 such	
transitive	 relationships	 will	 be	 of	 great	 interest	 to	 drug	 development	
research.	

3. If	we	want	to	explore	the	biological	context	of	new	insights	and	compare	
the	 network	 of	 neighborhoods	 of	 biological	 components,	 traversal	 type	
queries	 can	 help	 us	 a	 lot.	 These	 queries	 can	 reveal	 paths	 connecting	
components	that	may	not	have	been	at	first	anticipated.	Such	queries	are	
done	 using	 Graql	 without	 difficulty,	 but	 would	 be	 computationally	 too	
expensive	for	a	traditional	relational	database	because	multiple	joins	are	
needed.	 A	 Graql	 query	 (results	 in	 Figure	 7)	 that	 asks	 for	 connections	



between	Asthma,	the	heart	muscle,	proteins,	and	drugs,	could	be:	

 
match 
  $di isa disease, has disease-name "Asthma"; 
  $ti isa tissue, has tissue-name "heart muscle"; 
  $dr isa drug; $pr isa protein; 
  $pda (associated-disease: $di, associated-protein: $pr) 
    isa protein-disease-association;  
  $te (expressed-protein: $pr, enhanced-tissue: $ti) 
    isa tissue-enhancement; 
  $dpi (target-protein: $pr, interacted-drug: $dr) 
    isa drug-protein-interaction;  
limit 20;  
get; 
 

 
Figure 7 - Visualization of the above query, where red nodes are drugs, greens are proteins, blue is the tissue 

heart muscle, and yellow represents the disease Asthma	

4. Also,	we	may	want	to	query	and	identify	proteins	related	to	a	disease	from	
one	 particular	 study	 and	 explore	 how	 it	 relates	 to	 diseases	 from	 other	
studies.	For	example,	to	find	proteins	that	are	common	to	Asthma	(11)	and	
are	also	associated	to	other	diseases,	we	can	ask	 for	all	protein-disease-
association	 relationship	 that	 are	 associated	 with	 the	 Kaneko	 database	
entity:	

 
match 
  $di isa disease, has disease-name "Asthma"; 
  $pr isa protein; $di2 isa disease; 
  $db isa database, has database-name "Kaneko"; 
  $di2 != $di; 
  $pda (associated-disease: $di, associated-protein: $pr) 
    isa protein-disease-association;  
  $di (ingested-source: $db, ingested-data: $r) 
    isa data-ingestion; 
  $pda2 (associated-disease: $di2, associated-protein: $pr) 
    isa protein-disease-association;  
limit 10; 
get; 
 



A	possible	result	is	shown	in	Figure	8.	

 
Figure 8 - The purple node represents the Kaneko data scource, yellow nodes are diseases and greens are proteins	

5. In	general,	shortest	path	queries	allow	us	to	find	the	nearest	connections	
between	certain	nodes.	Here,	we	can	find	the	nearest	connections	between	
biological	components.	For	example,	the	shortest	path	between	the	protein	
P38398	and	Asthma	is	displayed	in	Figure	9.	
	

 

Figure 9 - The shortest path between the protein P38398 and Asthma 

 

 

2.4 Impact 

In	 summary,	 there	 are	 two	 areas	 where	 BioGraknDN	 and	 Grakn	 can	 help	 in	
bioinformatics:	

• Ingesting	and	integrating	biomedical	data:	BioGraknDN	and	Grakn	facilitate	
the	quick	ingestion	and	integration	of	new	data	types	that	may	come	out	
due	to	the	unpredictable	nature	of	biomedical	research	and	the	dynamic	
and	 constantly	 changing	 requirements	 of	 biomedical	 communities.	 The	
available	schema	language,	the	hierarchical	model,	and	hyper	relationship	



provide	us	a	level	of	expressivity	to	model	not	uniform	biomedical	data.	
	

• Bringing	 biological	 context	 to	 newly	 generated	 insight:	BioGraknDN	 and	
Grakn	 also	 allow	 an	 easy	 ingestion	 of	 new	 insights	 and	 data	 generated	
through	 sequencing	 or	 machine	 learning	 algorithms,	 so	 they	 can	 be	
understood	 in	 their	 biological	 context.	 New	 candidate	 drugs	 may	 be	
suggested	 by	 inferred	 relationships	 between	 unconnected	 biological	
components.	

	

	

2.5 Conclusions 

Since	recent	improvements	in	omics	technologies	have	created	a	lot	of	genome-
wide	 scanning	 data,	 bioinformatics	 must	 continue	 innovating	 to	 find	 new	
techniques	for	effective	and	scalable	analysis	of	biological	data.	In	this	paper,	we	
presented	BioGraknDN	and	demonstrated	how	we	could	accelerate	the	knowledge	
discovery	process	in	biomedical	research	thanks	to	a	Grakn	knowledge	graph.	

	

	

2.6 Notes 

For	a	better	readability,	figures	from	4	to	9	show	graphic	results	of	queries	which	
were	hand-drawn	by	replicating	the	true	graphical	results	generated	by	the	Grakn	
workbench.	You	can	find	examples	of	typical	graphic	results	in	the	repository	page	
of	the	project,	at	

https://github.com/crss-lab/biograkn/tree/master/diseasenetwork	
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