

Consiglio Nazionale delle Ricerche Istituto di Calcolo e Reti ad Alte Prestazioni

Modelli e tecniche per l'analisi di dati radiomici

MOLIM - ONCOBRAIN LAB Metodi innovativi di imaging molecolare per lo studio di malattie oncologiche e neurodegenerative

Mara Sangiovanni, Nadia Brancati

Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche (ICAR-CNR)

mara.sangiovanni@icar.cnr.it, nadia.brancati@icar.cnr.it

RT-ICAR-NA-2021-05

Dicembre 2021

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) – Sede di Cosenza, Via P. Bucci Cubo 8/9C, 87036 Rende, Italy, URL: www.icar.cnr.it – Sede di Napoli, Via P. Castellino 111, 80131 Napoli, URL: www.na.icar.cnr.it – Sede di Palermo, Via Ugo La Malfa 153, 90146 Palermo, URL: www.pa.icar.cnr.it

Modelli e tecniche per l'analisi di dati radiomici

MOLIM - ONCOBRAIN LAB Metodi innovativi di imaging molecolare per lo studio di malattie oncologiche e neurodegenerative

Mara Sangiovanni, Nadia Brancati

Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche (ICAR-CNR)

mara.sangiovanni@icar.cnr.it, nadia.brancati@icar.cnr.it

RT-ICAR-NA-2021 -05

Dicembre 2021

I rapporti tecnici dell'ICAR-CNR sono pubblicati dall'Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche. Tali rapporti, approntati sotto l'esclusiva responsabilità degli autori, descrivono l'attività del personale e dei collaboratori dell'ICAR, in alcuni casi in un formato preliminare prima della pubblicazione definitiva in altra sede.

Modelli e tecniche per l'analisi di dati radiomici

MOLIM - ONCOBRAIN LAB Metodi innovativi di imaging molecolare per lo studio di malattie oncologiche e neurodegenerative

Mara Sangiovanni, Nadia Brancati

Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche (ICAR-CNR)

Abstract

Il presente rapporto tecnico contiene la definizione dei modelli e delle tecniche per l'analisi di dati radiomici, utilizzati nell'ambito del progetto "MOLIM - ONCOBRAIN LAB: Metodi innovativi di imaging molecolare per lo studio di malattie oncologiche e neurodegenerative". A partire dai dati radiomici estratti dalle immagini mediche, sono stati definiti ed implementati metodi di Machine Learning allo scopo di classificare alcuni biomarker sia in ambito tumorale che in ambito neurodegenerativo, con particolare interesse rivolto al tumore al seno e al colon e ai morbi Alzheimer e Parkinson. Gli interessanti risultati ottenuti, nonostante l'esiguo numero di pazienti arruolati, aprono scenari a sviluppi futuri, confidando nella creazione di dataset di dati molto più ampi.

Keywords: radiomica, machine learning, classificazione, patologie tumorali, patologie neurodegenerative

Introduzione	6
Patologie tumorali	8
Tumore al seno	8
Tumore del colon retto	10
Modelli di apprendimento supervisionato	11
Tumore al seno	12
Tumore del colon retto	14
Metodologie di Machine Learning per patologie tumorali	16
Malattie Neurodegenerative	18
Morbo di Alzheimer	19
Morbo di Parkinson	21
Ulteriori tecniche di Feature selection e classificazione	22
Analisi dei dati del tumore al seno	23
Dati provenienti da dataset online	23
Dati di progetto	28
Marcatori molecolari	28
Definizione dei marcatori e loro valori	28
HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2 - HER2	28
RECETTORI ESTROGENICI/PROGESTINICI - ER/PR	29
INDICE DI PROLIFERAZIONE - KI67	29
Classificazione molecolare	30
Decisioni su dati reali di progetto	30
HER2_score	30
ER_status_percent	31
PR_status_percent	31
KI67_level_percent	31
Classificazione molecolare	32
Casi particolari	32
Sottotipi istologici	33
Definizione dei sottotipi	33
Decisioni su dati reali di progetto	33
Classificazione dei tipi istologici	34
Casi particolari	35
Stadiazione del tumore	37
Definizione dei sottotipi	37
Decisioni su dati reali di progetto	37
Classificazione dei valori di stadiazione	37
Analisi dei dati delle malattie neurodegenerative	38
Morbo di Alzheimer	38
Dati clinici	39
DATI UNICZ	40
Dati da immagini mediche	40

Correlazione tra dati	40
Morbo di Parkinson	43
Dati clinici	45
DATI UNICZ	45
Dati da immagini mediche	45
Correlazione tra dati	46
Esperimenti preliminari sul dataset TCGA-BRCA	48
Marcatore PR	49
Marcatore ER	50
Istotipo	51
Stage	52
Discussione	54
Esperimenti di classificazione su dati reali di progetto	54
Approcci di selezione delle features e classificazione	54
Classificazione e validazione	56
Classificazione	56
Validazione	61
Implementazione e testing	61
Tumore al seno	61
Distribuzione dei dati	62
DATI SDN	62
DATI UNIME	63
Preprocessing	65
Risultati della classificazione e della validazione	65
Tumore al colon	67
Distribuzione dei dati	67
Preprocessing	68
Risultati della classificazione e della validazione	68
Morbo di Alzheimer	68
Distribuzione dei dati	69
DATI UNICZ FDG	69
DATI SDN AMY	70
Preprocessing	71
Risultati della classificazione e della validazione	71
Morbo di Parkinson	73
DATI UNICZ	73
Preprocessing	74
Risultati della classificazione e della validazione	74
Bibliografia	75

1. Introduzione

Il progetto "MOLIM - ONCOBRAIN LAB: Metodi innovativi di imaging molecolare per lo studio di malattie oncologiche e neurodegenerative" ha come obiettivo lo sviluppo di metodi innovativi per l'interpretazione delle immagini con il supporto dei sistemi bioinformatici. Viene proposto l'utilizzo di tecniche di radiomica che rappresenta un'innovativa modalità di analisi delle immagini diagnostiche, che garantisce una stima accurata della tipizzazione dei tessuti.

Per radiomica si intende l'analisi delle immagini mediche volta ad ottenere, tramite opportuni metodi matematici e l'uso dei computer, informazioni di tipo quantitativo non rilevabili direttamente tramite la semplice osservazione visiva da parte dell'operatore. Associata alla valutazione del radiologo risulta essere un potente strumento da impiegare in medicina epigenomici/genomici (radiogenomica), insieme а dati molecolari. clinici psico-socio-ambientali, a scopo di supporto alla diagnosi e al monitoraggio dei pazienti durante il follow-up. La radiomica nasce quindi per sviluppare strumenti di supporto decisionale ed implica la combinazione di dati ricavati dall' imaging medicale con altre caratteristiche del paziente, quando disponibili, per aumentare la potenza dei modelli di supporto. I dati quantitativi estratti dalle immagini possono venire integrati in modelli predittivi multidisciplinari per la gestione del paziente, anche mediante l'utilizzo di metodiche di machine learning e di intelligenza artificiale, superando e arricchendo di fatto la quantità e la qualità dei dati associati ai singoli esami.

Il presente documento ha come obiettivo la descrizione di modelli e tecniche per l'estrazione di conoscenza da dati radiomici, mediante l'utilizzo di algoritmi di Machine Learning a partire dalle feature estratte dalle immagini mediche dei pazienti arruolati nell'ambito del progetto. Allo scopo di supportare il medico nelle sue diagnosi giornaliere, nel follow-up e nella scelta personalizzata delle terapie, viene effettuata l'integrazione dei descrittori numerici estratti dalle immagini con dati clinici/molecolari/morfologici, mediante l'utilizzo di algoritmi di Machine Learning. Il documento è così strutturato: dopo una breve introduzione sui modelli e le tecniche per il supporto alla diagnosi mediante dati radiomici, si entra nel dettaglio delle patologie oggetto di progetto. Viene successivamente effettuato uno studio sulle tecniche di apprendimento supervisionato, dopodichè inizia un'analisi dei dati, sia di quelli provenienti da dataset online sia dei dati reali di progetto. Infine, si passa a mostrare i risultati sugli esperimenti effettuati.

In Figura 1 è rappresentato uno schema generale di un tipico esempio di flusso di dati in ambito radiomico/radiogenomico. Il primo passo è quello della acquisizione delle immagini relative alla patologia oggetto di indagine, che nel contesto del progetto comprende due grandi tematiche: patologie tumorali e malattie neurodegenerative.

Figura 1: Flusso dati in ambito radiomico/radiogenomico

In ciascuna delle immagini acquisite si deve poi individuare la ROI (Region Of Interest), la regione di interesse più consona alla patologia trattata ed estrarla tramite tecniche di segmentazione (*"Lesion segmentation"* in Figura 1). Da queste regioni vengono poi estratti dei descrittori, detti *Features*, che catturano caratteristiche diverse delle immagini sia a livello di geometria, che a livello di distribuzione dei pixel, che a livello statistico (*"Feature extraction"* in Figura 1). Le feature radiomiche devono essere considerate, assieme a quelle provenienti dalla cartella clinica e da informazioni -omiche (ad esempio, per patologie tumorali: biomarkers di caratterizzazione dei tipi derivanti da espressione genica), come punto di partenza per la successiva estrazione di informazioni tramite metodologie di machine learning supervisionato. Obiettivo finale è la costruzione di modelli di apprendimento che consentano, a partire dai dati, la diagnosi di nuovi casi e/o la definizione di una eventuale stratificazione prognostica (punti 4 e 5 di Figura 1).

E' stata effettuata una prima ricognizione della letteratura scientifica per individuare, per ciascuna delle aree di interesse, quali sono le modalità più affidabili per affrontare i vari aspetti su elencati ed iniziare a definire quali sono gli approcci possibili con i dati a disposizione. Si è considerata anche la possibilità di avvalersi di banche dati di libero accesso (ad esempio: TCIA) per iniziare a testare le metodologie individuate. Questi dati infatti potrebbero essere usati - laddove ci sia corrispondenza fra protocolli di acquisizione, metodologie di estrazione, feature estratte e dati clinici - per ampliare ulteriormente il dataset di input per la costruzione dei modelli di learning.

Le successive sezioni prenderanno in considerazione in maniera separata la letteratura individuata per ciascuna delle patologie di interesse. Si è inoltre deciso di separare le malattie oncologiche da quelle neurodegenerative.

2. Patologie tumorali

2.1. Tumore al seno

Le features in input saranno le seguenti:

- 14 features di forma (3D) sono descrittori della dimensione e della forma tridimensionale e sono indipendenti dalla distribuzione dei livelli di grigio, e sono quindi calcolati solo sull'immagine originale;
- 18 features di primo ordine sono descrittori della distribuzione dell'intensità dei voxel con metriche basilari e diffuse come ad esempio media e mediana;
- 68 features di secondo ordine o di texture sono feature texturali calcolate su matrici che descrivono la distribuzione dei livelli di grigio e la loro rispettiva posizione. Sono estratte dalle matrici seguenti: Gray Level Co-occurence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix (GLDM).

Esse saranno estratte per tutte le tipologie di immagini a disposizione. Gli outcome attesi dal punto di vista medico comprendono: i) la predizione dell istotipo tumorale (benigno vs maligno, se maligno di tipo Duttale, Lobulare...); ii) la predizione del fenotipo immunoistochimico (cioè ER,PgR HER2, KI67); iii) la stratificazione prognostica (metastasi/sopravvivenza).

Esistono moltissimi approcci in letteratura che possono indicare la strada da perseguire come descritto ad esempio in [1], [2], e di seguito indichiamo quelli che sono sembrati i più interessanti. La maggior parte è basata su metodi di classificazione supervisionata delle features radiomiche/radiogenomiche e cliniche estratte. In alcuni casi, viene preventivamente estratto un sottoinsieme di features rilevanti da usare come discriminatori, come in Huang et al. [3], dove viene impiegato un passo di clustering non supervisionato per estrarre i descrittori più rilevanti dalle features radiomiche derivanti sia da PET che da RM, che vengono poi affiancate a quelle cliniche. Sul sottoinsieme di features estratte vengono poi testati diversi sistemi di classificazione con l'obiettivo di costruire un classificatore in grado di predire il tempo di sopravvivenza senza recidive, ed il grado tumorale. Diversi algoritmi sono stati testati, fra cui support vector machine (SVM), random forest (RF), e regressione logistica con termini di regolarizzazione in norma L1, L2 e di tipo ElasticNet. Tutte le features radiomiche sono state normalizzate tramite z-score prima del model training. Le capacità predittive vengono quantificate tramite una misura assai diffusa, e cioè l'AUC, Area Under receiver operator haracteristic (ROC) Curve, ed i corrispondenti intervalli di confidenza, CI. I parametri del modello sono stati ottimizzati usando un approccio di cross validation su 10 ripetizioni. Il risultato migliore è ottenuto usando le features di texture derivanti da Gray Level Co-occurrence Matrix (GLCM) per il grado tumorale, ottenuto tramite regressione logistica con termine di regolarizzazione in norma L2 (AUC 0.76 (95% CI = [0.62, 0.83]). Per l'analisi di free survival invece, in cui il migliore classificatore è ottenuto tramite ElasticNet si ottiene invece una AUC di 0.75 (95% CI = [0.62, 0.88]) e di 0.68 (95% CI = [0.58, 0.81]) per le recidiva dopo 1 e 2 anni rispettivamente.

In [4], [5] Li et al. estraggono un totale di 38 descrittori matematici (chiamati CEIPs, Computer Extracted Phenotypes) dalle segmentazioni di immagini DCE-RM appartenenti al dataset online del Tumor Cancer Imaging Archive (TCIA [6]). Queste features includono dimensioni e forma della lesione tumorale, e caratteristiche di morfologia, texture, cinetica. Esse sono state descritte nel dettaglio del deliverable 2.1.1 "Analisi e definizione di modelli e tecniche per l'estrazione di dati radiomici attraverso l'utilizzo di imaging molecolare".(Figura 2).

Figura 2: features estratte dal database TCIA

Le features estratte dalle immagini sono rese disponibili, inoltre, alla comunità scientifica e si candidano ad essere usate come test set per la scelta del modello. Alle features da immagine si affiancano inoltre le informazioni cliniche. Gli obiettivi della classificazione sono due: 1) la determinazione dello stato dei marker clinici dei recettori (ER/PR/HER2) e 2) la determinazione dei sottotipi di tumore a partire dallo stato dei marker molecolari immunoistochimici (normale, luminal A, luminal B, HER2-enriched, basal-like). La classificazione è stata fatto dividendo il problema generale in diversi problemi binari risolti tramite regressione, in cui la performance è stata determinata usando l'analisi della curva ROC tramite un modello binormale parametrico. L'approccio è stato di leave-one-out cross validation, con risultati che sono molto interessanti per la discriminazione del sottotipo molecolare, e migliorabili per la predizione della ricorrenza.

Un altra direzione possibile è quella di estrarre dai dati tutte le feature radiomiche possibili e poi operare dei passi di feature selection prima e durante la classificazione come in [7], [8] dove viene fatta una prima selezione delle features che sono più rilevanti e poi si procede alla classificazione. In [7] la prima fase di selezione delle features è fatta tramite Feature ranking basato su Mann-Whitney U test, ed è seguita poi da un metodo di Embedded Feature Selection basato su Random Forest accoppiato alla classificazione tramite Support Vector Machines (SVMs). I risultati, valutati in termini di cureve ROC, dipendono dal tipo di problema di classificazione e sono buoni per la distinzione Triple Negative vs NOT TN (NTN), e meno convincenti per la discriminazione degli altri tipi immunoistochimici. In [8] si

effettua prima un Feature Ranking ad ampio spettro tramite approccio ANOVA, e un passo successivo di raffinamento basato sul ranking ottenuto dalle features come risultato della classificazione tramite diversi metodi di regressione. Filtrate le features, si effettua poi la classificazione. Vengono presi in considerazione molti metodi diversi, fra cui Decision Trees, Linear Discriminant Analysis, SVM con differenti distanze, K-nearest neighbour classifiers (KNNs) in diversi setting di parameteri, e cinque diversi metodi per l'Ensamble Learning fra cui AdaBoost. Analogamente al lavoro precedente, i risultati sono molto dipendenti dal tipo di problema di classificazione, e mentre per la discriminazione TN vs NTN si arriva ad accuratezze del 90%, non si ottengono risultati comparabili per gli altri tipi di classificazione immunistochimica.

In [9] dati genomici e radiogenomici provenienti dal dataset TCGA-BRCA sono stati utilizzati per la predizione di stadio tumorale, metastasi dei linfonodi, stato dei recettori degli estrogeni (ER), stato dei recettori del progesterone (PR) e lo stato del recettore del fattore di crescita epidermico umano 2 (HER2). Tutte le feature genomiche e radiomiche sono state standardizzate in modo da avere media zero e varianza 1, prima di passare alle analisi statistiche successive. Sono stati sperimentati due test statistici: il t-test e la regressione logistica mediante l'algoritmo LASSO. Per quanto riguarda il t-test, non sono state trovate feature genomiche che permettono di differenziare stadio e metastasi dei linfonodi, mentre molte feature genomiche permettono di predire stato ER e PR e infine una sola feature genomica, TP53 (ME) è significativamente associata allo stato HER2. Relativamente alla regressione logistica con LASSO, è stato dimostrato che le feature genomiche funzionano meglio delle radiomiche nella predizione di stato ER e PR. Per la predizione delle metastasi dei linfonodi e dello stato HER2, né le feature radiomiche, né quelle genomiche permettono di fare predizioni affidabili. Per quanto riguarda lo stadio tumorale, la feature radiomica più discriminante risulta essere il diametro effettivo, che è una misura della grandezza del tumore.

In [10] gli autori fanno utilizzo delle sole feature radiomiche per la predizione dello stadio tumorale e delle metastasi dei linfonodi. In particolare, per lo stadio tumorale 4 tipi di classificazione sono effettuati: a) stadio I versus stadio III, b) stadio II versus stadio III, c) stadio I versus stadio II, e d) stadio I+II versus stadio III. Nel caso della classificazione dei linfonodi, lo scopo è distinguere tra tumori con nodi negativi e quelli con uno o più nodi positivi. Per tutti i 5 tipi di classificazione è risultato che le feature più discriminanti sono la grandezza del tumore e l'area di superficie.

2.2. Tumore del colon retto

Le features di input sono estratte sulla scia di quelle del tumore al seno e sono accompagnate dalle informazioni cliniche. Gli obiettivi attesi includono: 1) determinare la stadiazione del tumore per supportare una eventuale terapia; 2) determinare la tipologia in termini di risposta/non risposta al trattamento farmacologico; 3) determinare la possibilità di successive metastasi ai linfonodi.

Anche nel caso di questa patologia esiste una letteratura piuttosto ampia, per una review si veda [11]. In [12] gli autori estraggono dalle immagini CT 150 features di texture e le usano per determinare la stadiazione del tumore. Usando un approccio di regressione LASSO viene fatta selezione delle features, e la predizione fatta tramite Mann-Whitney U-test. La performance viene valutata in termini di AUC. In [13] gli autori estendono il precedente lavoro usando le features estratte nel primo e l'informazione sulla stadiazione per predire la formazione di metastasi ai linfonodi. Gli approcci usati sono gli stessi del lavoro precedente. In [14] invece, allo scopo di predire la resistenza alla terapia farmacologica, vengono estratte dalle immagini di MRI multimodale più di 2400 features radiomiche. Il passo di riduzione del numero di features e loro selezione è basato su approccio di regressione LASSO, mentre il modello predittivo è stato costruito tramite regressione su analisi multivariabile. L'approccio è stato testato su una corte di pazienti completamente nuova rispetto ai dati di test. In [15] le features radiomiche estratte da immagini CT vengono usate per la predizione di markers genomici legati alla prognosi. Più di 300 features comprendenti anche informazioni da istogrammi e di texture vengono poi selezionate per la loro stabilità valutando gli intra-/inter-class correlation coefficients (ICCs), e per la loro rilevanza tramite analisi univariata. Il passo di feature selection viene fatto tramite algoritmo RELIEF e la parte di predizione tramite SVM. Le prestazioni sono valutate usando diverse metriche, tra cui AUC, come visibile in Figura 3.

Figura 3: Estrazione di feature radiomiche da immagini CT e successiva elaborazione

L'ultimo lavoro qui considerato usa le feature radiomiche per predire l'instabilità dei microsatelliti (MSI) prima dell'intervento chirurgico. Dalle ROI del tumore annotate su immagini CT vengono estratte 254 feature che comprendono feature da grey-level co-occurrence matrices (GLCMs), run-length matrices (RLMs),local binary patterns (LBPs), fractal dimension (FD), intensity histogram (IH), angle co-occurrence matrices (ACMs). A queste vengono affiancate le features da informazioni cliniche. La fase di costruzione del modello viene effettuata tramite random forest (RF) e validata su una coorte distinta di pazienti. Le prestazioni sono misurate in termini di AUC, sensitivity e specificity.

3. Modelli di apprendimento supervisionato

Alla luce di quanto emerso, è possibile usare approcci molto differenti di apprendimento supervisionato per la creazione di modelli predittivi che sfruttino le features radiomiche. Non

emerge chiaramente una tecnica superiore alle altre, per cui si ritiene che questo punto vada affrontato tramite test su dati pubblici per poter iniziare a stabilire il sottoinsieme di metodologie che saranno poi effettivamente sviluppate. Emerge chiaramente però che l'applicazione di tecniche di Deep Learning è ancora molto insidiosa, in quanto per essere efficace necessità di enormi moli di dati [16]. A questo si aggiunge la difficoltà, intrinseca al metodo, di individuare eventuali markers che possano spiegare il fenotipo sottostante la predizione.

Dalla letteratura analizzata si evince che è molto importante affiancare ai dati radiomici anche i dati clinici o provenienti da biomarkers genomici. Andremo dunque a descrivere quali sono i dati non radiomici presenti in questo progetto ed utili agli obiettivi delineati.

3.1. Tumore al seno

Per il tumore al seno è prevista una ampia raccolta di dati non radiomici, che comprende sia dati clinici di base, sia markers di tipo istologico che biomarcatori genomici. In Tabella 1 sono riportate le informazioni per ognuno dei dati considerati. Per maggiori dettagli è possibile consultare il documento presente a <u>questo link</u> sul sito della Associazione Italiana di Oncologia Medica [17].

TIPO	NOME	DESCRIZIONE
DATI GENERALI	età	Età al momento della diagnosi
	genere	M/F
DATI ISTOLOGICI	presenza di biopsia	Si/No
	dimensioni del tumore	Dimensione della resezione
	presenza di linfonodi ascellari	Si/No
	grado istologico	Definisce la aggressività del tumore (G1/G2/G3)
	tipo istologico	Classificazione istologica del tumore
	presenza di invasione	Stabilisce se c'è infiltrazione nei vasi sanguigni
	vascolare	(Si/No)
	multifocalità	Si/No
	presenza di linfociti tumorali	Si/No
	Livello di proliferazione tramite marker KI67	Misura quanto è aggressivo il tumore in base alla sua capacità di replicarsi.
CLASSIFICAZION E ISTOLOGICA	Classificazione istologica del tumore	Il nome della classe come da referto. Ad esempio: neoplasia/carcinoma/iperplasia; lobulare/tubulare/duttale; tumore <i>in situ</i> o tumore <i>infiltrante</i> .
CLASSIFICAZION E MOLECOLARE	classificazione molecolare del tumore	Deriva dal risultato di specifici saggi sulla presenza di proteine espresse nel tumore. La classificazione

		comprende: Luminal A, LuminalB, Basal like, HER2-like.
RECETTORI ORMONALI	ER	Presenza o meno di recettori degli estrogeni. Può essere +/-
	PR	Presenza o meno di recettori dei progestinici Può essere +/-
	HER2	Presenza o meno di recettori del fattore di crescita dell'epidermide HER2.
	TN	Tripli negativi. Identifica la categoria di tumori che ha tutti I recettori precedenti negativi. (Si/No)
MARKERS DI ESPRESSIONE DI CITOCHERATINE	CK5/6	La presenza/assenza di citocheratine mioepiteliali è legata a diversi sottotipi tumorali. (Si/No).
	CK14	
MADVEDS DI	CK17	Mutaziani spacifisha di quasti gani sana associata
MARKERS DI MUTAZIONI GENICHE	BRCA1	ad una superiore probabilità di sviluppare tumori. Alcune mutazioni non sono patogeniche, altre
	BRCA2	invece si. (Si/No)
	TP53	Mutazione associata ad alta instabilità genetica e superiore patogenicità. (Si/No)
INFORMAZIONI DIAGNOSTICHE / PROGNOSTICHE	CLASSIFICAZIONE TNM	T indica le dimensioni del tumore in una scala da 1 a 4; N indica se I linfonodi adiacenti presentano o meno infiltrazioni maligne (N0/N1),M indica se sono presenti metastasi o meno (M0/M1)
	stadio del tumore	Indica la situazione evolutiva del tumore. In ordine di gravità crescente si va dallo stadio 0 allo stadio IV, con sottostadi indicati dalle lettere A,B,C
	presenza di metastasi distanti	Si/No
	sito della metastasi	Descrizione del sito
	risposta al trattamento (followup)	Si/No

Tabella 1

I dati presentati nella Tabella 1 possono essere usati sia come input da affiancare alle features radiomiche che come output atteso in fase di classificazione. Si prenda ad esempio il problema della discriminazione fra pazienti sani e malati e, nel caso di malati, fra diversi sottotipi molecolari: in questo caso tutte le informazioni istologiche vengono usate come input; se invece il problema di classificazione è la predizione dei sottotipi

immunoistochimici, allora questi dati saranno usati come obiettivo atteso ed eliminati dagli input.

E' iniziata un'analisi di dataset di test poichè il TCIA mette a disposizione non solo le immagini, ma anche le features estratte da esse per un sottoinsieme curato di immagini. Oltre ad esse, ci sono i dati clinici che – pur non corrispondendo nella loro interezza – consentono di iniziare a definire le metodologie di costruzione dei classificatori per la diagnosi e/o predizione.

In particolare si considereranno i seguenti dati per cui si riporta la corrispondenza (a volte solo semantica) con i dati prodotti nel progetto:

- $age_at_initial_pathologic_diagnosis \rightarrow età$
- ajcc_tumor_stage_code \rightarrow stadio del tumore
- breast_cancer_optical_measurement_histologic_type \rightarrow tipo istologico
- breast_carcinoma_estrogen_receptor_status \rightarrow ER+/ER-
- breast_carcinoma_progesterone_receptor_status \rightarrow PR+/PR-
- her2_immunohistochemistry_level_result \rightarrow HER2+/HER2-
- number_of_lymphnodes_positive_by_he \rightarrow presenza di linfonodi ascellari
- PAM50_call \rightarrow classificatione molecolare

Si vuole qui sottolineare che: 1) pur non essendo ricchi come quelli prodotti dal progetto, questi dati consentono già di testare diversi approcci di classificazione; 2) che per quanto riguarda la classificazione molecolare, nel caso dei dati del TCIA non è ottenuta direttamente da saggi molecolari, ma ricavata a partire dai dati di espressione genica forniti dall'archivio del TGCA per i pazienti corrispondenti.

3.2. Tumore del colon retto

Anche per il tumore del colon retto è prevista una ampia raccolta di dati non radiomici, che comprende sia dati clinici di base, sia markers di tipo istologico che biomarcatori genomici. In Tabella 2 sono riportate le informazioni per ognuno dei dati considerati. Per maggiori informazioni si rimanda ancora una volta al già citato sito dell'AIOM [17] e al documento che si può trovare sullo stesso sito a <u>questo link</u>.

TIPO	NOME	DESCRIZIONE
DATI GENERALI	età	Età al momento della diagnosi
	sesso	M/F
DATI ISTOLOGICI	presenza di biopsia	Si/No
	dimensioni del tumore	Dimensione della resezione

	Sito del tumore	Ad esempio: colon, colon ascendente, colon sigma, retto
	grado istologico	Definisce la aggressività del tumore (G1/G2/G3)
	tino istologico	Classificazione istologica del tumore
	tipo istologico	Es: Adenocarcinoma villoso, Adenoma tubulare
	presenza di invasione vascolare	Stabilisce se c'è infiltrazione nei vasi sanguigni (Si/No)
	multifocalità	Si/No
	presenza di linfonodi tumorali	conteggio
CLASSIFICAZION E ISTOLOGICA	Classificazione istologica del tumore	Il nome della classe come da referto. Ad esempio:
CLASSIFICAZION E MOLECOLARE	classificazione molecolare del tumore	Deriva dal risultato di specifici saggi sulla presenza di proteine espresse nel tumore. La classificazione comprende: Luminal A, LuminalB, Basal like, HER2-like.
RECETTORI ORMONALI	ER	Presenza o meno di recettori degli estrogeni. Può essere +/-
	PR	Presenza o meno di recettori dei progestinici Può essere +/-
	HER2	Presenza o meno di recettori del fattore di crescita dell'epidermide HER2.
	TN	Tripli negativi. Identifica la categoria di tumori che ha tutti I recettori precedenti negativi. (Si/No)
MARKER GENOMICI DI PRESENZA DI MSI	Micro Satellite instability	La presenza/assenza determina la possibilità o meno di effettuare determinate terapie.
MARKERS DI MUTAZIONI GENICHE	KRAS/NRAS	Mutazioni specifiche di questi geni sono associate a sottotipi con prognosi diverse e alla resistenza ad alcune terapie con anticorpi monoclonali anti-EGRF
	BRAF	La mutazione in questo gene è associata a fenotipi diversi a seconda dei codoni coinvolti (V600/non-V600)
	TP53	Mutazione associata ad alta instabilità genetica e superiore patogenicità. (Si/No)
INFORMAZIONI DIAGNOSTICHE / PROGNOSTICHE	CLASSIFICAZIONE TNM-UICC 2009	Sono presi in considerazione caratteristiche diverse che includono le dimensioni del tumore T, la presenza di metastasi nei linfonodi N, e le metastasi a distanza M. Per ognuna delle caratteristiche esiste una suddivisione ulteriore in classi. Ad esempio: T0-T4 e successiva ulteriore classificazione usando le lettere a,b,c.

stadio del tumore	Indica la situazione evolutiva del tumore. In ordine di gravità crescente si va dallo stadio 0 allo stadio IV, con sottostadi indicati dalle lettere A,B,C.
presenza di metastasi distanti	Si/No
sito della metastasi	Descrizione del sito
risposta al trattamento (followup)	Si/No

Tabella 2

Non sarà possibile fare il test perché al momento, pur esistendo dataset che consentono di usare le immagini, non comprendono features radiomiche già estratte e disponibili. Per cui questa fase sarà rimandata alla effettiva disponibilità dei dati di progetto.

3.3. Metodologie di Machine Learning per patologie tumorali

Come è possibile dedurre dalle due tabelle, i dati in input per le due patologie sono estremamente simili, così come sono simili gli obiettivi di output. Si descriveranno brevemente qui quali sono gli algoritmi di machine learning che, alla luce di quanto estratto dall'indagine sulla letteratura esistente, si candidano ad essere i più adatti alla problematica in questione.

In particolare, dato l'alto numero delle features, si considereranno metodi che prevedono un passo di feature selection allo scopo di ridurre il numero di dati in input e prevenire così sia gli effetti sul learning derivanti da feature ridondanti o inutili, sia il cosiddetto "curse of dimensionality" che affligge gli algoritmi di learning in spazi ad alta dimensionalità.

I metodi di Feature Selection (FS) si possono suddividere dal punto di vista strutturale in tre grandi categorie: Filter, Wrapped, Embedded [18], mentre dal punto di vista funzionale possono essere suddivisi in due grandi categorie: i Ranker ed i metodi a Subset [19]. Per quanto riguarda l'aspetto funzionale, I metodi Ranker assegnano pesi ad ogni singola feature, in modo che l'ordinamento ricavato corrisponda alla loro rilevanza teorica. Sono anche detti metodi continui o di valutazione individuale. I metodi cosiddetti di valutazione dei sottoinsiemi (*subset evaluation*) producono possibili sottoinsiemi di feature usando strategie di ricerca. Dopodichè il sottoinsieme viene valutato tramite una funzione che determinerà il sottoinsieme finale di features scelte. I metodi possono essere o univariati o multivariati a seconda che considerino o meno ogni feature indipendentemente dalle altre.

Dal punto di vista strutturale, invece, i metodi Filter effettuano un preprocessamento delle feature che è indipendente dal successivo passo di apprendimento e dipende da caratteristiche sottostanti ai dati. I metodi wrapper usano l'algoritmo di apprendimento scelto come una routine interna che consente di misurare quanto una feature sia utile al processo di apprendimento, testato su un seti di validazione. Nei metodi Embedded, invece, il processo di FS è parte integrante del metodo di apprendimento, in modo che la ricerca sia guidata dal processo stesso di apprendimento [20-21]. In Figura 4 è riportata, in maniera schematica, la suddivisione dal punto di vista strutturale dei metodi di FS.

Figura 4: Suddivisione dei metodi di feature selection dal punto di vista strutturale: a) filter, b) embedded e c) wrapper

Ognuno di questi approcci ha i suoi pro ed i suoi contro in termini di velocità di calcolo e di accuratezza delle soluzioni trovate. I metodi Filters sono i più veloci e meno computazionalmente costosi, rischiano meno overfitting ma sono anche i meno accurati. I metodi wrappers sono i più accurati ma sono improponibili dal punto di vista computazionale su problemi grandi, e soffrono di overfitting. I metodi Embedded si collocano a metà fra i due. La Figura 5, tratta sempre da [20] riporta un sottoinsieme di metodi per cui si specificano sia le caratteristiche strutturali che funzionali.

	Uni/multivariate	Functional view	Structural view	Complexity
Chi-squared	Univariate	Ranker	Filter	nm
F score (Fisher score)	Univariate	Ranker	Filter	nm
Information gain	Univariate	Ranker	Filter	nm
ReliefF	Multivariate	Ranker	Filter	n^2m
mRMR	Multivariate	Ranker	Filter	nm^2
SVM-RFE	Multivariate	Ranker	Embedded	$\max(n, m)m^2$
CFS	Multivariate	Subset	Filter	nm^2
FCBF	Multivariate	Subset	Filter	nmlogm
INTERACT	Multivariate	Subset	Filter	nm^2
Consistency	Multivariate	Subset	Filter	nm^2

Figura 5: Tipologia di alcuni dei metodi più usati per la feature selection

In questo contesto terremo conto della letteratura analizzata e ci concentreremo sui seguenti metodi, di cui daremo una breve descrizione rimandando alla letteratura specifica per ulteriori approfondimenti.

Fra i metodi filter consideriamo: Fisher score [22], ANOVA f-value [23] e Logistic Regression [24]. Il primo filtra le feature basandosi su caratteristiche di similarità fra le features, mentre nel secondo si valutano, sotto l'ipotesi di distribuzione normale, le medie di diverse popolazioni; in ultimo la Logistic Regression è una tecnica statistica in cui vengono stimate le relazioni fra le variabili, valutando quanto il cambiamento in una variabile si riflette sulle altre.

I metodi filter vanno poi combinati con un classificatore, qui prendiamo in considerazione l'algoritmo di Support Vector Machine (SVM) [25]. SVM si basa sull'idea di trovare un iperpiano che divida al meglio un insieme di dati in diverse classi. L'algorimo prende il nome dai cosiddetti *"support vector"*, vettori di supporto, che corrispondono ai dati più vicini all'iperpiano. Tali punti dipendono dai dati che si sta analizzando e, se modificati, portano ad un cambiamento della posizione dell'iperpiano di separazione. Per questo motivo sono

considerati gli elementi critici di un set di dati. Affiancato al cosiddetto kernel trick le SVMs è possibile generare modelli non lineari in spazi ad alta dimensionalità.

Un classificatore Random Forest [26] è un algoritmo supervisionato che usa alberi di decisione e un approccio bagging per aggregare le decisioni prese singolarmente dagli alberi. Diversi alberi decisionali vengono infatti condensati in un unico modello. Le previsioni fatte individualmente dai singoli alberi potrebbero risultare non accurate ma, se combinate insieme sono mediamente più vicine al risultato "esatto". L'output del Random Forest infatti è, nel caso di un problema di regressione, la media del risultato numerico restituito dai diversi alberi; oppure nel caso di un problema di classificazione, la classe individuata dal maggior numero di alberi. Random Forest restituisce naturalmente il ranking delle features, che è basata sul calcolo dell'out-of-bag error. RF ed è quindi un algoritmo di FS di tipo embedded. E' un metodo estremamente veloce e poco prono all'overfitting.

Support Vector Machines with Recusive Feature Elimination (SVM-RFE) [27] è un metodo di Embedded FS in cui si sfruttano i pesi assegnati alle variabili di input dal classificatore SVM. Tali pesi saranno usati per fare ranking delle features, eliminando progressivamente quelle meno rilevanti. E' un buon compromesso fra tempi di esecuzione, accuratezza del risultato e rischio di overfitting.

4. Malattie Neurodegenerative

Per entrambe le malattie neurodegenerative le features in input saranno quelle estratte nella attività precedente e provenienti dall'OR1. Gli outcomes attesi dal punto di vista medico comprendono: 1) la estrazione delle features radiomiche derivate dalle immagini ibride MRI/PET che possono essere usate, assieme alle informazioni cliniche, per la predizione della progressione della patologia; 2) laddove possibile ricavare le segmentazioni delle aree cerebrali, si vuole testare l'uso combinato delle features radiomiche e delle features connettomiche, allo scopo di estrarre i descrittori migliori per la diagnosi *precoce* della malattia, punto importantissimo per entrambe le patologie.

Sia per il morbo di Alzheimer che per il Parkinson gli approcci di machine learning su dati radiomici ibridi sono meno diffusi, sia perché l'accesso alle immagini di test non è semplice come nel caso delle patologie tumorali sia perché l'approccio ibrido MRI/PET con traccianti specifici è stato definito e messo a punto molto recentemente. Ciò nonostante esistono già degli esempi in letteratura che possono essere utili come indicazione sulle tecniche più efficaci di machine learning per la classificazione di dati provenienti da immagini di queste patologie. Si può consultare, per una breve review sugli approcci di radiomica in entrambe le patologie, il lavoro [28]; mentre per l'uso di approcci di machine learning su dati di connettomica per diverse patologie, incluse quelle di interesse, si può considerare la estremamente dettagliata review in [29]; per un benchmarking dei diversi approcci di machine learning sui dati di connettomica provenienti da alcuni dei più importanti database di fMRI si può consultare [31].

4.1. Morbo di Alzheimer

In un lavoro di recentissima pubblicazione [32] dalla immagini di RM della regione ippocampale dei pazienti vengono estratte 495 features diverse. Tramite un approccio di Embedded Feature Selection, basato su Recursive Feature Elimination (RFE) per la selezione delle feature e su Support Vector Machine con un kernel RBF per la classificazione, gli autori dimostrano che le feature radiomiche provenienti dall'ippocampo possono essere usate per la diagnosi precoce di AD (Alzheimer's Disease). Viene usato un approccio di cross-validation in fase di apprendimento, e le prestazioni vengono espresse in termini di AUC.

Figura 6: L'approccio metodologico usato in [34] per l'estrazione delle features derivanti da immagini ibride

Un approccio molto simile viene usato in [33] dove si usano dati da RM per distinguere AD dalla cosiddetta Demenza Vascolare (VD). Invece in [34] si usano, come in questo progetto, feature derivanti da immagini ibride PET/MRI (Figura 6). In questo caso vengono estratte 172 diverse features, fra cui features di primo e secondo livello; features di texture da Gray-Level Co-occurrence Matrix (GLCM), da Gray-Level Run-Length Matrix (GLRLM), da Gray-Level Size Zone Matrix (GLSZM), e da Neighborhood Gray-ToneDifference Matrix (NGTDM). Le features vengono usate per predire l'indice prognostico della malattia tramite un approccio di Feature ranking che sfrutta un modello di Cox minimizzato tramite LASSO (least absolute shrinkage and selection operator) con termine di regolarizzazione in norma L1. Viene usato un approccio di cross validation 70/30% e la performance viene analizzata tramite Harrell's Consistency index. Si dimostra che l'approccio combinato ha un potere predittivo superiore rispetto alle modalità singole di imaging.

Per quanto riguarda lavori in cui si usano invece features da connettoma si possono considerare i lavori [35-36] in cui si usano dati provenienti da risonanza magnetica funzionale (fMRI) in stato di riposo per costruire il connettoma dei pazienti.

Figura 7: Approccio metodologico per sfruttare dati dei connettomi

I dati vengono usati nel primo per fare diagnosi e distinguere in maniera automatica pazienti sani da pazienti malati, nel secondo per definire la progressione della malattia e distinguere i pazienti che rimangono in stato di Mild Cognitive Impairment da quelli che poi svilupperanno la malattia di Alzheimer.

In Figura 7 è riportato l'approccio metodologico su cui è basato il secondo lavoro. A valle della costruzione del connettoma, quest'ultimo viene convertito in un grafo che viene poi analizzato tramite una serie di misure locali e globali, che costituiscono l'insieme 913 delle features su cui poi si basano le fasi successive. In particolare viene sviluppato un algoritmo di Feature Selection che si basa sul consenso di diversi approcci di feature ranking (Multivariate Minimal Redundancy Maximal Relevance (MRMR), Fisher score, Chi-square score, Gini score, Kruskal-Wallis test). Le feature estratte sono poi usate per addestrare un classificatore basato su Support Vector Machines (SVM) con un kernel lineare. Viene usato un approccio di Cross Validation e le prestazioni vengono analizzate tramite AUC.

In [37] invece si costruisce il connettoma metabolico sfruttando dati che vengono da PET con tracciatore ¹⁸F-fluorodeoxyglucose (FDG-PET) allo scopo di distinguere pazienti con MCI da pazienti AD. Anche in questo caso si calcola il connettoma e si estraggono le feature dalla matrice di similarità costruita tramite Kullback-Leibler divergence). Feature selection e classificazione seguono la metodologia SVM-RFE. Viene usato un approccio di leave-one-out cross validation e le prestazioni vengono misurate in termini di accuratezza precisione ed AUC.

Molti dei lavori qui citati hanno dati che vengono dal consorzio ADNI (Alzheimer's Disease Neuroimaging Initiative) [38] o dal progetto Humane Connectome (HUP) [39] i cui database sono accessibili sotto motivata richiesta e dopo autorizzazione, non risultando quindi disponibili per un uso che non sia ritenuto appropriato dal comitato di garanzia.

4.2. Morbo di Parkinson

Per il morbo di Parkinson la letteratura di riferimento è molto ridotta. Mancano al momento terapie, markers molecolari o da immagini che possano essere di supporto per la diagnosi la cura e la definizione della progressione della malattia.

Figure 8: Metodologia usata in [40] per la classificazione di features da immagini.

In [40] un ampio insieme di features radiomiche vengono estratte dalle immagini PET ¹⁸F-FDG, incluse feature di texture, wavelet, di istogramma e di intensità per un totale di più di 6000 per ogni paziente (figura 8). Tramite calcolo della autocorrelazione e l'uso del Fisher score, viene fatto feature selection e feature ranking per conservare solo le features informative. Per classificare i pazienti malati/sani si usano sia le SVMs che un approccio basato su Random Forests. Viene usato un approccio di crossfold validation e le prestazioni sono valutate in termini di AUC.

In [41] l'obiettivo è quello di predire la progressione della malattia combinando features cliniche e motorie con features "hand-crafted" classiche e radiomiche da immagini DAT-SPECT. La metodologia di classificazione è basata su Random Forest, l'approccio è di leave-one-out-cross validation e le prestazioni vengono calcolate in termini di errore assoluto.

In [42] si usano feature radiomiche estratte da immagini MRI di una particolare regione (Substantia Nigra) per discriminare pazienti sani da pazienti malati. In totale vengono usate 105 features radiomiche estratte da voxel di interesse che includono sia feature di forma che di texture. Tre diversi metodi di Feature Selection (ANOVA, RFE e Random Forest) vengono

usati per estrarre un ranking delle features. La classificazione viene fatta usando le SVMs con un approccio di cross-fold validation, e le prestazioni sono valutate in termini di AUC.

In [43] vengono usate assieme feature estratte da immagini single-photon emission computed tomography (SPECT) associate alle features cliniche di valutazione degli effetti della malattia sulle capacità motorie (presenza di rigidità, tremori, acinesia, disturbi del linguaggio,...). Vengono valutati molti diversi mezzi per effettuare la classification binaria in sani/malati: Support Vector Machines (SVMs), Random Forests (RFs), multilayer perceptron (MLP) Neural Network, Linear Regression, e K-NearestNeighbor. Le prestazioni sono valutate in termini di AUC con relativi intervalli di confidenza.

Per il morbo di Parkinson lavori di riferimento che facciano uso di dati di connettomica combinati con il machine learning praticamente non esistono.

Analogamente a quanto accade per Alzheimer, i dati per questa patologia possono essere ottenuti solo dopo motivata richiesta al consorzio Parkinson's Progression Markers Initiative (PPMI) [44].

4.3. Ulteriori tecniche di Feature selection e classificazione

Oltre ai metodi di feature selection e classificazione riportati nella sezione per le patologie tumorali, includiamo – tenendo conto della letteratura a supporto - anche una breve descrizione di altri due metodi che saranno usati per la classificazione a valle della feature selection: Multilayer Perceptron (MP) e K-nearest neighbohor (K-NN).

Il perceptron è una rete formata da un certo numero di neuroni. Tramite uno strato singolo di neuroni si possono introdurre diverse funzioni di attivazione a soglia. Una rete del genere da sola non ha un particolare potere espressivo, e di norma quindi si introducono altri livelli di neuroni e si sostituisce la funzione di attivazione con la funzione logistica. In tal modo (poiché la funzione logistica è differenziabile), si possono usare algoritmi di gradient descent in fase di apprendimento, dando così vita a una rete chiamata *Multilayer Perceptron* [45]. Dunque la rete sarà formata da due livelli di unità di elaborazione, con d ingressi e con m uscite per il primo strato, a cui si aggiungono anche c uscite al secondo livello, dette unità nascoste perchè le loro funzioni di attivazione non sono direttamente accessibili dall'esterno. In genere la funzione di attivazione delle unità nascoste sarà di tipo non lineare, così da garantire un maggiore potere espressivo.

Il K-NN [46] è considerato il più semplice algoritmo di machine learning, in quanto classifica un oggetto in base alla somiglianza con i suoi k vicini (neighbor), dove k è un intero positivo tipicamente non molto grande. La scelta del parametro k dipende dalle caratteristiche dei dati, in genere rappresentati come vettori in uno spazio. La distanza tra vicini è in genere calcolata usando la distanza euclidea oppure la distanza Manhattan, per dati numerici, ma consente l'uso di altre distanze definite in base alla natura dei dati: ad esempio la distanza di Hamming per stringhe. Lo spazio dei dati viene suddiviso in regioni in base alle posizioni reciproche dei dati e alle loro caratteristiche di apprendimento. Un dato è assegnato ad una certa classe se questa è la più frequente fra i k esempi più vicini all'oggetto sotto esame.

5. Analisi dei dati del tumore al seno 5.1. Dati provenienti da dataset online

E' stata effettuata un'analisi preliminare di alcuni dati provenienti dal TCIA. Sono stati uniti i dati clinici pubblici della collezione TCGA-BRCA con le feature radiomiche estratte. Sono quindi state selezionate 173 variabili complete, ovvero con un numero di NA pari a 0. Definiti i pazienti e le variabili a disposizione e di interesse, si è passati ad una prima analisi descrittiva del dataset.

Questa fa uso degli strumenti statistici ed è di fondamentale importanza per comprendere le caratteristiche peculiari del caso che si sta studiando, oltre ad una panoramica delle incidenze di alcuni comportamenti, peculiarità o specifiche all'interno del sottogruppo dataset.

Sono stati prodotti degli istogrammi e delle tabelle di correlazione per valutare la distribuzione delle variabili oltre ad eventuali relazioni implicite. Occorre tenere in considerazione che è possibile effettuare delle descrizioni considerando in maniera condizionata una o più variabili, ovvero ad esempio l'età media al variare dei centri invianti o il numero di linfonodi al variare dello stadio tumorale. L'analisi è stata divisa e ripetuta per due diverse sequenze di risonanza magnetica, ovvero STIR e DCE (Figura 9).

Figura 9: istogrammi di distribuzione delle variabili

Sono state effettuate ulteriori analisi per individuare le correlazioni tra le variabili estratte (figura 10). Ad esempio si può calcolare il coefficiente di correlazione di Pearson. A seconda del valore del coefficiente, è possibile avere un'indicazione su quanto due variabili seguano andamenti simili o siano legate tra loro.

In particolare, un modo utile per visualizzare il risultato di questa operazione è l'utilizzo di mezzi grafici, come ad esempio una "heatmap". Si può notare come le relazioni tra le variabili nei due casi siano simili, ad eccezione delle feature derivanti dall'analisi radiomica, che dipende anche dai livelli di grigio.

Figura 10: correlazione dei dati (heatmap)

In aggiunta, è evidente come le variabili "sesso" o "vital status" non influenzino in alcun modo lo scenario, essendo variabili costanti (i pazienti considerati sono tutti di sesso femminile e "alive" nel momento dell'esame).

Inoltre, si sono analizzate le caratteristiche cliniche dei 9 pazienti che hanno valori delle feature radiomiche legate al volume della lesione (S1, S3 e S4) al di sotto delle media. Rispetto allo stadio dei linfonodi (vedi Figura 11), la maggior parte dei pazienti risulta avere uno stadio dei linfonodi pari a N1.

Volume VS Lymphonode Stage

Figura 11: Distribuzione dello stadio dei linfonodi rispetto alle feature di Volume di 9 pazienti esaminati

In Figura 12 è mostrata la distribuzione dello stadio della neoplasia e in questo caso la maggior parte dei pazienti risulta avere uno stadio IIIB.

Volume VS Neoplasm Disease Stage

Figura 12: Distribuzione dello stadio della neoplasia rispetto alle feature di Volume di 9 pazienti esaminati

Rispetto ai recettori di estrogeno e progesterone, 7 dei 9 pazienti sono positivi ad entrambi i recettori (vedi Figure 13 e 14).

Figura 13: Distribuzione dello stato dei recettori dell'estrogeno rispetto alle feature di Volume di 9 pazienti esaminati

Figura 14: Distribuzione dello stato dei recettori del progesterone rispetto alle feature di volume di 9 pazienti esaminati

In figura 15 è illustrata la distribuzione dei pazienti rispetto all'istotipo. Per 7 di essi l'istotipo risulta essere Duttale.

Figura 15: Distribuzione dell'istotipo rispetto alle feature di volume di 9 pazienti esaminati

Infine, relativamente allo stadio tumorale, soltanto 1 paziente su 9 ha stadio tumorale pari a T3 (vedi Figura 16).

Volume VS Tumoral Stage

Figura 16: Distribuzione dello stadio tumorale rispetto alle feature di volume di 9 pazienti esaminati

Per quanto riguarda le feature radiomiche legate alla dinamiche ed analizzate nell'attività 2.1, era risultato che solo 3 pazienti avevano valori al di sotto della media, relativamente alle feature E1, E3 e E4. Analizzando le caratteristiche cliniche di questi 3 pazienti, risulta che 2 di essi hanno le stesse caratteristiche cliniche considerate precedentemente. In particolare, risultano avere uno stadio dei linfonodi pari a **N0**, sono **positivi** ai recettori di **estrogeno** e

progesterone, hanno istotipo **duttale**, lo stadio tumorale è pari a **T2** e infine, lo stadio della neoplasia è pari a **IIA**. Il terzo paziente invece ha in comune solo stadio dei linfonodi, la positività al recettore del progesterone e l'istotipo.

5.2. Dati di progetto

Di seguito si affronta il problema di valutare i dati clinici ricevuti dai partner al fine di usarli per le successive fasi di machine learning. Per rendere possibile la selezione delle features e la classificazione su un numero non elevato di campioni a disposizione rispetto al numero di features radiomiche estratte, si è deciso di accorpare e ridurre ad un numero inferiore di classi quei dati i cui valori sono usati come obiettivi di classificazione. In particolare quindi si analizzeranno i valori dei marcatori molecolari, andando ad estrarre anche i sottotipi individuabili mediante i loro valori. I sottotipi molecolari possono essere usati laddove nei dati manchino informazioni sul sottotipo istologico.

5.2.1. Marcatori molecolari

5.2.1.1. Definizione dei marcatori e loro valori

I valori dei marcatori HER2, ER, PR e IK67 sono sfruttati per dare la definizione del sottotipo molecolare, una classificazione utile in fase di diagnosi sia per la definizione della terapia, che per la successiva prognosi. Di seguito si analizzano i valori di ciascun marcatore alla luce della corrente letteratura, e allo scopo di definire i valori usati in fase di feature selection e classificazione.

HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR 2 - HER2

Il valore di score di HER2 è estremamente rilevante perché prevede terapie profondamente differenti nel caso di score positivo/negativo.

Nei casi di equivocità (IHC=2+) si dovrebbe fare almeno il test FISH, o comunque prevedere una rivalutazione secondo quanto indicato dalla linee guida AIOM 2018 [17] (pag. 38, e Allegato 3 pag. 234) che a loro volta recepiscono le linee guida ASCO [47]. In realtà anche quando FISH è negativo ma il risultato non sembra coerente con quanto determinato dal patologo l'indagine andrebbe ripetuta. Risultano quindi definite le seguenti classificazioni ridotte:

SCORE HER2	TEST RESULT
Positivo	IHC > 3+
	FISH positivo
	IHC=2+ E FISH positivo
Negativo	IHC=0+, 1+
	FISH negativo
	IHC=2+, FISH negativo
Equivoco	IHC=2+

FISH e	equivoco
--------	----------

RECETTORI ESTROGENICI/PROGESTINICI - ER/PR

Lo stato dei recettori, sia estrogenici che progestinici andrebbe riportato come percentuale e valutato come una variabile quantitativa continua come indicato dalle linee guida AIOM [17] (pag 38). Seguendo le linee dell'ASCO [47] si considerano positivi i tumori con almeno 1% di cellule positive. Esiste però una relazione tra i livelli di positività ed i benefici ottenuti con i trattamenti ormonali. Pertanto i tumori con elevati livelli di recettori sono quelli che hanno maggiori probabilità di beneficiare di una terapia ormonale. Per la determinazione del sottotipo Luminale A si usa il cutoff introdotto dalla Consensus di St. Gallen 2013 [48] che prevede la presenza di recettori progestinici positivi con valore di positività superiore al 20%. Risultano quindi definite le seguenti classificazioni ridotte:

STATUS ER/PR	TEST RESULT
Positivo	IHC > 1%
Negativo	IHC=0

INDICE DI PROLIFERAZIONE - KI67

L'attività proliferativa misurata con il *KI67 labeling index* è oggi un fattore prognostico riconosciuto. Purtroppo però l'alta variabilità del conteggio dell'IK67 fra vari laboratori non permette di fissare un valore di soglia unico al di sotto o al di sopra del quale il tumore possa essere definito a bassa o ad elevata attività proliferativa. L'AIOM sul KI67 si allinea alle posizioni definite nella Consensus di St. Gallen 2013 [48] secondo cui una percentuale del 20% è da considerarsi positiva [17]. La St. Gallen del 2015 [49] però afferma che gli score devono essere interpretati in base ai valori mediani del laboratorio in cui vengono fatti gli esami: "*Ki-67 scores should be interpreted in the light of local laboratory values: as an example, if a laboratory has a median Ki-67 score in receptor-positive disease of 20%, values of 30% or above could be considered clearly high; those of 10% or less clearly low.*" La successiva St. Gallen del 2017 [50] riprende e conferma quanto detto, ma suggerisce che il grading del tumore possa essere considerato al posto della proliferazione come indice prognostico. Risultano quindi definite le seguenti classificazioni ridotte:

STATUS KI67	TEST RESULT
Positivo	>= 20%
Negativo	< 20%

5.2.1.2. Classificazione molecolare

In base ai valori individuati per i marcatori molecolari è possibile definire una classificazione dei sottotipi tumorali che riflette in maniera molto accurata l'eventuale suddivisione su base genetica.

Tale classificazione è considerata di estrema importanza sia per la definizione della terapia personalizzata da proporre ai pazienti, sia per la definizione di una prognosi più attendibile [17], [50].

NOME	HER2 score	ER score	PR score	KI67 score
Luminal A-like	-	+	+ *	-
Luminal B-like			-	+/-
/HER2 negative	-	-	+/-	+
Luminal B-like /HER2 positive	+	+	+/-	+/-
HER2-positive (non-luminal)	+	-	-	+/-
Triple Negative (ductal)	-	-	-	+/-

NOTE: * Per Luminal A-like deve essere $PR \ge 20\%$, come da indicazioni AIOM che recepiscono le indicazioni ASCO.

5.2.1.3. Decisioni su dati reali di progetto

Come già accennato, per rendere possibile sia la selezione delle features che la classificazione su un numero non elevato di campioni a disposizione rispetto al numero di features radiomiche estratte, si è deciso di accorpare e ridurre ad un numero inferiore di classi quei dati i cui valori sono usati come obiettivi di classificazione. Questo approccio si applica a tutti i marcatori molecolari.

HER2_score

Il campo è stato trasmesso con poca informazione sulle modalità di acquisizione. Poiché ha valori compresi fra 0 e 3, ed in alcuni casi c'è un * che indica che la FISH non è amplificata, se ne può dedurre 1) che si tratti dei valori di IHC, anche se non tutti hanno il simbolo '+' alla fine, e: 2) che, poiché in alcuni casi è stato segnalato che non c'è espressione del gene HER2 usando il simbolo: '*', sia stato eseguito per IHC ambiguo un ulteriore indagine tramite FISH, come raccomandato.

Dunque, si è deciso di considerare tre classi, come rappresentato in tabella.

HER2 SCORE	VALORI	VALORE CLASSE
Positivo	3, 3+	2

Negativo	0, 1, 1+, 2*	0
Ambiguo	2, 2+	1

ER_status_percent

In questo caso i valori sono indicati in percentuali, e normalmente basta una percentuale diversa da zero perché sia considerato ER positivo. Le ultime risoluzioni dell'ASCO in materia [6] (non ancora recepite nelle linee guida AIOM) indicano che in caso di ER con percentuali basse in presenza di HER2 e PR negativi, il valore basso di ER vada segnalato come equivoco e da rivedere . Si è deciso in questo caso di non considerare questa raccomandazione e di tenere solo 2 classi.

ER STATUS	VALORI	VALORE CLASSE
Positivo	> 0%	1
Negativo	0	0

PR_status_percent

In questo caso i valori sono indicati in percentuali e, poiché esiste un limite di soglia usato per distinguere il sottotipo Luminal A-like dal B, si è deciso di considerare tre classi, di seguito descritte.

PR STATUS	VALORI	VALORE CLASSE
Positivo	>= 20%	2
Basso	> 0 and <20%	1
Negativo	0	0

KI67_level_percent

In questo caso i valori sono indicati in percentuali, e, come detto nel paragrafo precedente, sussistono diversi problemi nella classificazione in alto/basso di questo marcatore. Alla luce di quanto detto su, si è deciso di considerare soltanto due classi, alto e basso.

CLASSE HER2 SCORE	VALORI	VALORE CLASSE
Alto	>= 20%	1
Basso	< 20 %	0

Classificazione molecolare

Nella tabella seguente viene indicato come ottenere la classificazione molecolare usando i nuovi valori delle classi definite per i marcatori:

NOME	HER2 score	ER score	PR score	KI67 score
Luminal A-like	0	1	2	0
Luminal B-like	0	1	0	0/1
/HER2 negative	0	1	0/1/2	1
Luminal B-like /HER2 positive	2	1	0/1/2	0/1
HER2-positive (non-luminal)	2	0	0	0/1
Triple Negative (ductal)	0	0	0	0/1

Applicando questa regola, si ha la seguente distribuzione dei fenotipi molecolari per il set dei primi 29 pazienti (30 insiemi di features, dal momento che una paziente ha doppia segnalazione) forniti dal partner SDN:

CLASSE	SIGLA	NUMERO DI PAZIENTI
Luminal A-like	LA	2
Luminal B-like /HER2 negative	LBH2N	9
Luminal B-like /HER2 positive	LBH2P	5
HER2-positive (non-luminal)	NL	1
Triple Negative (ductal)	TN	7*
Sconosciuto	U	3*

NOTE: * si vedano i casi particolari descritti nel paragrafo successivo.

Casi particolari

PAZIENTE SDN_FDG_Bca_020: in questo caso la paziente ha una doppia segnalazione una per ciascuna mammella. Poichè i fenotipi molecolari descritti sono diversi, si è deciso di considerare ciascuna regione tumorale separatamente.

PAZIENTE SDN_FDG_Bca_011: in questo caso si ha ER=0 e PR=5, quindi fenotipo ER-/PR+. Questo è un evento molto raro e parecchio dibattuto, e mentre qualche autore lo considera come un nuovo sottotipo, le indicazioni dell'ASCO sono di ripetere gli esami,

perché probabilmente uno dei due valori è frutto di un artefatto [51], [52]. Poichè in questo caso il conteggio dei PR è davvero basso e, nello studio indicato [52], il 47% dei retesting dava ER-/PR- come fenotipo risultante, si è deciso di considerare PR=0, arrivando così ad una definizione di TN per questo paziente.

PAZIENTE SDN_FDG_Bca_007

In questi caso non è possibile una corretta assegnazione del fenotipo molecolare perché il livello di HER2 è equivoco. I due tipi possibili sono: LBH2N e LBH2P.

PAZIENTE SDN_FDG_Bca_026:

In questi caso non è possibile una corretta assegnazione del fenotipo molecolare perché il livello di HER2 è equivoco. I due tipi possibili sono: TN e NL.

5.2.2. Sottotipi istologici

Anche il sottotipo istologico è uno dei dati attesi come outcome nel processo di machine learning. Si andranno ad analizzare le classi presenti ed eventuali raggruppamenti, sia per il partner SDN che per il partner UNIME.

5.2.2.1. Definizione dei sottotipi

Per la definizione dei sottotipi di cancro alla mammella ci si riferisce alle già citate linee guida della Associazione Italiana di Oncologia Medica, che a loro volta recepiscono le indicazioni della World Health Organization 2019. Tale classificazione è riportata al paragrafo 3.1 del documento [17].

5.2.2.2. Decisioni su dati reali di progetto

In tabella è riportata la suddivisione dei dati rispetto alla annotazione fornita dal partner SDN.

SOTTOTIPO (IT)	(IT) SOTTOTIPO (EN)		NUMERO DI PAZIENTI
Sarcoma Mieloide Balstico	Blastic Myeloide Sarcoma	BMS	1
Carcinoma duttale invasivo	Invasive Ductal Carcinoma	DC	42*
Carcinoma lobulare	Lobular Carcinoma	LC	5*
Carcinoma infiltrante di tipo non speciale	Carcinoma infiltrante di Non Specific Type ipo non speciale Carcinoma		32*
Adenosi sclerosante	osi sclerosante Sclerosing adenosys		1*
Resezione di tumore primario	Surgery Primary Tumor	SPT	1**

Sconosciuto	-	-	11
TOTALE	TOTALE	-	93

Note: *: si vedano i casi particolari per ulteriori informazioni; **: in questo caso c'è un errore, in quanto la resezione di un tumore primario non è un tipo istologico.

SOTTOTIPO) (IT)	SOTTOT	IPO (EN)	SIGLA UNIME	NUMERO DI PAZIENTI
Carcinoma duttal	e in situ	Ductal Carcin	ioma in Situ	DCIS	1
Carcinoma invasivo	duttale	Invasive Carcinoma	Ductal	IDC	17*
Carcinoma lobulare		Lobular Care	inoma	LC	2
Carcinoma infiltr	ante	Infiltrating Ca	arcinoma	IC	1
Carcinoma infiltrante	tubulare	Tubular carcinoma	infiltrating	CA Tubulare Infiltrante	1
Sconosciuto		-		-	2
TOTALE		TOTALE		-	24

Analogamente si riporta la suddivisione dei dati per il partner UNIME.

Note: *: si vedano i casi particolari per ulteriori informazioni;

Classificazione dei tipi istologici

La tabella su riportata può essere rivista alla luce delle indicazioni che si trovano nelle già citate linee guida. In esse si considerano il tipo DC ed il tipo NST come una unica classe che sarà quindi chiamata DC/NST. Vengono accorpati in una classe tutti i pazienti che hanno un sottotipo sconosciuto o non utilizzabile. Si ha dunque che il numero di classi si riduce molto, ma purtroppo si ottiene praticamente una sola classe per il sottotipo, con un profondo sbilanciamento rispetto alle altre. Nella tabella che segue sono riportati i risultati ottenuti.

SOTTOTIPO (IT)	SOTTOTIPO (EN)	SIGLA	NUMERO DI PAZIENTI
BMS	Blastic Myeloide Sarcoma	BMS	1
Carcinoma duttale invasivo/Carcinoma infiltrante di tipo non speciale	Invasive Ductal Carcinoma/ Non Specific Type Carcinoma	DC/NST	74

Carcinoma lobulare	Lobular Carcinoma	LC	5
Sconosciuto o non utilizzabile	-	-	13
TOTALE	TOTALE	-	93

Analogamente si riportano i risultati ottenuti per il partner UNIME. Anche in questo caso sono stati raggruppati i tipi IDC con il tipo IC.

SOTTOTIPO (IT)	SOTTOTIPO (EN)	SIGLA	NUMERO DI PAZIENTI UNIME
Carcinoma duttale in situ	Ductal Carcinoma in Situ	DCIS	1
Carcinoma duttale invasivo/Carcinoma infiltrante di tipo non speciale	Invasive Ductal Carcinoma/ Non Specific Type Carcinoma	DC/NST	14
Carcinoma lobulare	Lobular Carcinoma	LC	2
Carcinoma tubulare infiltrante	Tubular infiltrating carcinoma	CA Tubulare Infiltrante	1
Sconosciuto o non utilizzabile	-	-	6
TOTALE	TOTALE	-	24

Casi particolari

PAZIENTE SDN_FDG_Bca_041: in questo caso la paziente ha annotato istotipo DC con la annotazione "(NOS)", che sta per Not Otherwise Specified. Nelle linee guida questo sottotipo viene chiamato NAS (Non Altrimenti Specificato) e secondo le indicazioni WHO 2019, riprese dalle linee guida AIOM [1], questo tipo va raggruppato con i carcinomi di tipo NST.

PAZIENTE SDN_FDG_Bca_043: in questo caso la paziente ha annotato istotipo DC+MC, cioè carcinoma duttale e carcinoma mucinoso. Poichè la classificazione è incerta, ed il carcinoma MC molto raro, è stato contato come DC.

PAZIENTE SDN_FDG_Bca_044: in questo caso la paziente ha annotato istotipo DC con la annotazione "(cytoincluded)", a indicare che l'assegnazione è avvenuta non tramite saggio immunoistochimico ma tramite ago aspirato. E' stato contato come DC.

PAZIENTE SDN_FDG_Bca_081: in questo caso la paziente ha indicato istotipo SA con annotazione (atypical). La adenosi sclerosante è considerata una patologia benigna, che in qualche caso può essere prodromo di carcinomi mammari. In ogni caso, mancando tutte le informazioni che servono per la classificazione, è sostanzialmente inutilizzabile in fase di learning e test.

PAZIENTI UNIME_FDG_BCa_001 UNIME_FDG_BCa_022 UNIME_FDG_BCa_023 UNIME_FDG_BCa_024: in tutti questi casi non ci sono dati di Risonanza Magnetica, per cui non è possibile includerli nelle fasi di classificazione che sono basate, in prima istanza, su questa tipologia di esame diagnostico.
5.2.3. Stadiazione del tumore

La stadiazione del tumore è effettuata a partire dalla rilevazione di tre caratteristiche diverse che coinvolgono le dimensioni del tumore primitivo (T), lo stato dei linfonodi regionali (N) e la presenza di metastasi distanti (M). Le diverse combinazioni possibili dei tre parametri vengono poi raggruppate in stadi, utili a descrivere lo stato della patologia e fortemente associati alla prognosi del paziente.

5.2.3.1. Definizione dei sottotipi

Per la classificazione degli stadi in base ai valori di T,N,M si può consultare la Tabella 3.2 delle linee guide AIOM [17].

5.2.3.2. Decisioni su dati reali di progetto

In tabella è riportata la suddivisione dei dati in base ai possibili valori di stadiazione per i pazienti SDN.

STADIO	NUMERO DI PAZIENTI
IIA	15
IIB	12
IIIA	28
IIIB	14
IIIC	2
IV	11
Non specificato	11
TOTALE	93

Per i pazienti UNIME invece non ci sono informazioni di stadiazione esplicitamente riportati.

Classificazione dei valori di stadiazione

La tabella su riportata può essere semplificata allo scopo di rendere possibile il machine learning con un numero così limitato di dati. Si raggrupperanno dunque gli stadi indipendentemente dalla sottostadiazione (data dalla lettere a fianco al numero romano). Si ottiene così la seguente tabella degli stadi

	STADIO	NUMERO DI PAZIENTI
II		27
III		44

IV	11
Non specificato	11
TOTALE	93

6. Analisi dei dati delle malattie neurodegenerative

Descriviamo qui, il set di dati clinici generati nell'ambito del progetto e che saranno usati nella fase di generazione dei modelli di apprendimento.

TIPO	NOME	DESCRIZIONE
DATI GENERALI	età	Età al momento della diagnosi
	sesso	M/F
	educazione	In anni, da 4 a 17.
DIAGNOSI	Diagnosi	Definizione della patologia
	MMSE	
TOKEN TEST (test de gettoni)	ⁱ TOKEN	Test di valutazione della comprensione orale. Valore fra 0 e 36.
COWAT (CONTROLLED ORAL WORD ASSOCIATION TEST)	COWAT	Misura la produzione di parole orali, il risultato è un numero intero.
RAVLT (Rey Auditory Verbal Learning Test)	R.I	Valuta le capacità di rievocazione immediata e differita. In
	R.D.	genere e un numero con almeno un decimale.
FCSRT (Free And Cued Selective Reminding Test)	IFR	Sono indici che vengono usati per misurare le capacità di rievocazione della memoria. Ogni test comprende in genere dodici figure per cui il punteggio totale varia fra 0 e 12. I
	ITR	test sono: Rievocazione Libera Immediata (IFR),
	DFR	Rievocazione Immediata Totale (ITR), Rievocazione
	DTR	Differita Libera (DFR), Rievocazione Differita Totale (DTR). L' Indice di Sensibilità al Suggerimento Semantico
	ISC	(ISC) si ricava a partire da IFR e ITR.
DIGIT	FW	Il digit test forward (FW) e backward (BW) serve per misurare il funzionamento della memoria di lavoro. Valore

6.1. Morbo di Alzheimer

	BW	numerico, è il numero massimo di numeri in sequenza ricordati dal paziente in 3 test su 4.
FAB		Frontal Assessment Battery. Vengono esplorate le funzioni del lobo frontale in 6 test, il cui valore varia da 0 e 3 per un totale quindi di 18 punti.
STROOP	W C	Serve per valutare l'attenzione visiva. Si articola in tre test W (word), C (color), CW (COLOR WORD) prova di interferenza). Gli output dei test sono due, un tempo (la
	CW	differenza fra il tempo nella prova CW e la media nelle altre due) ed il numero degli errori (terza prova rispetto alla media delle prime due).
WEIGL		Test per valutare la capacità di cogliere somiglianze. I punteggi grezzi sono numeri interi, ma quando si effettuano le correzioni sono numeri con almeno 2 cifre decimali.
JLO V		Judgment of Line Orientation, è un test di elaborazione spaziale. In genere è una stima di quanti task, su un totale di 30, sono stati correttamente risolti.
BECK II		Test dello stato di depressione di un paziente. In genere contiene una serie di test con risposte correlate ad intensità crescenti. Il punteggio totale individua delle fasce di stadiazione (ad esempio per 9 domande con 4 risposte: 0-9, prestazione normale; 10-15 lieve; 16-19 da lieve a moderata; 20-29 = da moderata a grave; 30-36 = depressione grave).
НАМА		Test Hamilton Rating Scale for Anxiety. Mlisura lo stato d'ansia. E' composta da 14 domande, per ognuna delle quali ci possono essere 4 risposte con punteggi di gravità crescente da 0 a 4. Ci sono delle fasce di stadiazione associate (< 17 lieve entità, 18-24 da lieve a moderata; 25-30 da moderata a grave)

6.1.1. Dati clinici

Di seguito si affronta il problema di valutare i dati clinici ricevuti dai partner al fine di usarli per le successive fasi di machine learning. Per rendere possibile la selezione delle features e la classificazione su un numero non elevato di campioni a disposizione rispetto al numero di features radiomiche estratte, si è deciso di accorpare e ridurre ad un numero inferiore di classi quei dati i cui valori sono usati come obiettivi di classificazione.

I dati ricevuti dal partner UNICZ comprendono dati clinici, test cognitivi e features radiomiche ma purtroppo non comprendono i dati sulla presenza di beta-amiloide.

DATI UNICZ

I dati clinici includono, oltre a sesso ed età, anche il valore dell'indicatore di educazione, che è fondamentale per il corretto bilanciamento dei risultati ottenuti dai test cognitivi. Questi ultimi comprendono tutti i test descritti nei precedenti documenti di progetto.

Sono inoltre disponibili i dati relativi all'uptake del mezzo di contrasto FDG per le regioni di interesse, e cioè: Lobo Parietale, Lobo Occipitale, Lobo Temporale, Lobo Frontale, Corteccia limbica, Ippocampo ed Amigdala.

6.1.2. Dati da immagini mediche

I dati, estratti tramite il tool Freesurfer [68] da immagini cliniche comprendono:

- area, curvatura media, volume, spessore di tutte le strutture **corticali** sia per l'emisfero destro che per il sinistro (dati freesurfer *aparc*)
- volume delle aree **subcorticali** sia per **emisfero destro** che per il **sinistro** (dati freesurfer *aseg*)
- volume delle sottoregioni (nuclei) del Talamo
- volume delle sottoregioni della Amigdala e dell'Ippocampo
- volume delle quattro sottoregioni del Tronco encefalico

Le colonne Left-WM-hypointensities', 'Right-WM-hypointensities', 'Left-non-WM-hypointensities', 'Right-non-WM-hypointensities' sono state rimosse perché tutte valorizzate a 0.

6.1.3. Correlazione tra dati

In collaborazione con i partner clinici è stata effettuata un'analisi di correlazione tra un sottoinsieme di dati, particolarmente significativi ai fini diagnostici. In particolare, lo scopo è stato identificare correlazioni specifiche tra 1) dati relativi ai **test cognitivi**, presenti nella tabella del paragrafo 7.1, 2) dati di **uptake** del mezzo di contrasto FDG e 3) dati provenienti da immagini, in particolare relativi ai **volumi**. I sottoinsiemi di dati per cui analizzare eventuali correlazioni sono stati identificati dai partner clinici successivamente ai primi esperimenti effettuati per la classificazione diagnostica.

Sono stati scelti gli indici di correlazione di Pearson [69] e di Spearman [70]. I risultati sono disponibili come immagini negli allegati al presente documento, da 1 a 3. Per semplicità riportiamo nelle successive figure solo qualche esempio rappresentativo.

In figura 1, riportiamo il grafico delle correlazioni di Pearson tra i dati dei test e di uptake.

Fig. 1: Correlazione di Pearson tra dati dei test e dati di uptake

In particolare, nella diagonale inferiore sono riportati gli indici di correlazione, mentre nella diagonale superiore sono indicati i corrispondenti *p-value*.

Per semplicità di lettura, tale grafico viene accompagnato da quello presente in figura 2.

Fig. 2: Correlazione di Pearson rilevanti tra dati dei test e dati di uptake

In tale grafico, il valore 1 (-1) si trova in corrispondenza di indici di correlazione maggiori uguali di 0.3 (minori uguali di -0.3) e con *p-value* minore 0 uguale a 0.05, valore solitamente scelto come soglia di significanza. In questo modo, i valori 1 (-1) si troveranno in corrispondenza di alta correlazione (anti-correlazione) tra i dati. Ad esempio, dal grafico di figura 2, si evince che R_Parietal e L_Parietal sono altamente correlati con MMSE e TOKEN_TEST.

In statistica è particolarmente noto il problema dei test multipli, che si verifica quando si considera un insieme di inferenze statistiche contemporaneamente oppure si deduce un sottoinsieme di parametri selezionati in base ai valori osservati. Più variabili vengono incluse, più è probabile che si verifichino inferenze errate. Diverse tecniche statistiche sono state sviluppate per evitare che ciò accada, consentendo di confrontare direttamente i livelli di significatività per confronti singoli e multipli. Queste tecniche di correzione generalmente richiedono una soglia di significatività più rigorosa per i confronti individuali, in modo da

compensare il numero di inferenze fatte. La correzione che solitamente viene utilizzata è quella di Bonferroni [71]. Tale correzione controlla il Family-wise error rate (FWER), che è definito come la probabilità di ottenere almeno un errore di Tipo I (Falso positivo) all'interno della correzione, cioè la probabilità che almeno un *p-value* porti a rigettare l'ipotesi nulla.

La correzione di Benjamini-Hochberg [72] permette di fare un migliore controllo dei falsi positivi utilizzando il False discovery rate (FDR), che è definito come la proporzione di falsi positivi (errori di Tipo I) tra le ipotesi rigettate dal test e quelle che pensiamo siano falsi positivi.

Abbiamo effettuato esperimenti utilizzando entrambi questi tipi di correzioni, dal momento che, nonostante la correzione di Bonferroni sia quella più utilizzata, l'abbiamo ritenuta piuttosto "conservativa" nel caso dei dati analizzati.

Inoltre, abbiamo applicato la correzione per "sotto-famiglie" di dati. Così ad esempio, nel caso dell'analisi di correlazione tra dati di uptake e test cognitivi, i test sono stati suddivisi in "sotto-famiglie" e la correzione è stata applicata ad ogni sotto-famiglia VS i dati di uptake.

Nelle figure 3 e 4 sono riportate ad esempio le correzioni di Bonferroni e di Benjamini-Hochberg rispettivamente, per l'MMSE.

Fig. 3 Correzione di Bonferroni MMSE VS Dati di Uptake

Fig. 4 Correzione di Benjamini-Hochberg MMSE VS Dati di Uptake

Come si può osservare, in entrambi i casi c'è la conferma che R_Parietal e L_Parietal sono altamente correlati. Inoltre, nel caso della correzione di Benjamini-Hochberg solo la R_Amygdala sembra non essere correlata a MMSE.

Negli allegati indicati, sono riportati tutti i valori calcolati con gli indici di correzione sia di Bonferroni che di Benjamini-Hochberg. In ogni caso, nel seguito indicheremo i dati che sono altamente correlati facendo riferimento alla correzione di Benjamini-Hochberg. In particolare, facendo riferimento al p-value corretto indichiamo i dati di test che hanno un p-value corretto minore di 5^{-4} . In questo caso, quindi avremo che:

- MMSE è correlato con: R_Parietal, L_Parietal, R_Temporal, R_Temporal, L_Frontal, L_LimbicCortex, R_Hippocapus e L_Hippocampus;
- TOKEN_TEST è correlato con tutti tranne Occipital e Amygdala, sia destro che sinistro;
- RAVLT R.I. e RAVLT R.D. sono correlati con tutti tranne Occipital e Amygdala, sia destro che sinistro;
- Tra gli FCSRT, l'ISC è correlato con L_Parietal, mentre l'IFR con R_LimbicCortex, L_Amygdala e con Hippocampus sia destro che sinistro;

Relativamente ai dati provenienti da immagini e in particolare dati di volume non risulta nessuna particolare correlazione nè con i dati dei test, nè con quelli di uptake, prendendo una soglia pari a 5^{-4} . Scegliendo invece una soglia meno conservativa, come ad esempio un classico 0.005, troviamo che relativamente ai dati di uptake, l'lh_parsopercularis risulta correlato con R_Temporal, l' lh_posteriorcingulate risulta correlato con R_Amygdala, l'lh_superiortemporal risulta correlato con R_Hippocampus, e infine lh_temporalpole è correlato con R_parietal.

Considerando questa soglia anche per i dati di test, ritroviamo qualche correlazione anche in questo caso:

- lh_lingual è correlato sia con COWAT che con TOKEN_TEST;
- lh_lateraloccipital è correlato con RAVLT R.I.;
- lh_caudalmiddlefrontal e lh_cuneus sono entrambi correlati con FCSRT ITR;
- lh_lateralorbitofrontal è correlato con BECK II.

6.2. Morbo di Parkinson

Il morbo di Parkinson comprende tutti i test su descritti ed in più una serie di test specifici di questa patologia perché strettamente legati ai disturbi motori tipici della patologia (H&Y test, e UPDRS test).

TIPO	NOME	DESCRIZIONE
DATI GENERALI	età	Età al momento della diagnosi
	sesso	M/F
	educazione	In anni, da 4 a 17.
DIAGNOSI	Diagnosi	Definizione della patologia
	MMSE	
TOKEN TEST (test de gettoni)	i TOKEN	Test di valutazione della comprensione orale. Valore fra 0 e 36.
COWAT (CONTROLLED ORAL WORD	COWAT	Misura la produzione di parole orali, il risultato è un numero intero.

ASSOCIATION TEST)				
RAVLT (Rey Auditory Verbal Learning Test)	R.I	Valuta le capacità di rievocazione immediata e differita. In		
	R.D.	genere è un numero con almeno un decimale.		
FCSRT (Free And Cued Selective Reminding Test)	IFR	Sono indici che vengono usati per misurare le capacità di rievocazione della memoria. Ogni test comprende in genere dodici figure per cui il punteggio totale varia fra 0 e 12. I test		
	ITR	sono: Rievocazione Libera Immediata (IFR), Rievocazione		
	DFR	Immediata Totale (ITR), Rievocazione Differita Libera		
	DTR	Sensibilità al Suggerimento Semantico (ISC) si ricava a		
	ISC partire da IFR e ITR.			
DIGIT	FW	Il digit test forward (FW) e backward (BW) serve per misurare il funzionamento della memoria di lavoro. Valore		
	BW	numerico, è il numero massimo di numeri in sequenza ricordati dal paziente in 3 test su 4.		
FAB		Frontal Assessment Battery. Vengono esplorate le funzioni del lobo frontale in 6 test, il cui valore varia da 0 e 3 per un totale quindi di 18 punti.		
STROOP	W	Serve per valutare l'attenzione visiva. Si articola in tre		
	С	W (word), C (color), CW (COLOR WORD) prova di interferenza). Gli output dei test sono due un tempo (la		
	CW	differenza fra il tempo nella prova CW e la media nelle altre due) ed il numero degli errori (terza prova rispetto alla media delle prime due).		
WEIGL		Test per valutare la capacità di cogliere somiglianze. I punteggi grezzi sono numeri interi, ma quando si effettuano le correzioni sono numeri con almeno 2 cifre decimali.		
JLO V		Judgment of Line Orientation, è un test di elaborazione spaziale. In genere è una stima di quanti task, su un totale di 30, sono stati correttamente risolti.		
BECK II		Test dello stato di depressione di un paziente. In genere contiene una serie di test con risposte correlate ad intensità crescenti. Il punteggio totale individua delle fasce di stadiazione (ad esempio per 9 domande con 4 risposte: 0-9, prestazione normale; 10-15 lieve; 16-19 da lieve a moderata; 20-29 = da moderata a grave; 30-36 = depressione grave).		
HAMA		d'ansia. E' composta da 14 domande, per ognuna delle quali ci possono essere 4 risposte con punteggi di gravità		

		crescente da 0 a 4. Ci sono delle fasce di stadiazione associate (< 17 lieve entità, 18-24 da lieve a moderata; 25-30 da moderata a grave)
H&Y		Valutazione di Hoehn and Yahr dei sintomi della malattia. In ordine crescente da 0 a 5, con valori intermedi 1.5 e 2.5
UPDRS	Ι	Unified Parkinson's Disease Rating Scale. Misura vari
	II	aspetti: I (Attività mentale, comportamento, umore), II
	III	(attività della vita giornaliera), III (esame motorio) per cui I
		valori vanno da 0 a 4 in ordine di gravità crescente; IV
	IV	(complicazioni della terapia nell'ultima settimana) valori si/no. Il numero di domande in ogni test può variare.

6.2.1. Dati clinici

Di seguito si affronta il problema di valutare i dati clinici ricevuti dai partner al fine di usarli per le successive fasi di machine learning. Per rendere possibile la selezione delle features e la classificazione su un numero non elevato di campioni a disposizione rispetto al numero di features radiomiche estratte, si è deciso di accorpare e ridurre ad un numero inferiore di classi quei dati i cui valori sono usati come obiettivi di classificazione.

I dati ricevuti dal partner UNICZ comprendono dati clinici, test cognitivi e features radiomiche ma purtroppo non comprendono i dati sulla presenza di beta-amiloide.

DATI UNICZ

I dati clinici includono, oltre a sesso ed età, anche il valore dell'indicatore di educazione, che è fondamentale per il corretto bilanciamento dei risultati ottenuti dai test cognitivi. Questi ultimi comprendono tutti i test descritti nei precedenti documenti di progetto.

Sono inoltre disponibili i dati relativi all'uptake del mezzo di contrasto FDG per le regioni di interesse, e cioè: Lobo Parietale, Lobo Occipitale, Lobo Temporale, Lobo Frontale, Corteccia limbica, Ippocampo ed Amigdala.

6.2.2. Dati da immagini mediche

I dati, estratti tramite il tool Freesurfer [68] da immagini cliniche comprendono:

- area, curvatura media, volume, spessore di tutte le strutture **corticali** sia per l'emisfero destro che per il sinistro (dati freesurfer *aparc*)
- volume delle aree **subcorticali** sia per **emisfero destro** che per il **sinistro** (dati freesurfer *aseg*)
- volume delle sottoregioni (nuclei) del Talamo
- volume delle sottoregioni della Amigdala e dell'Ippocampo
- volume delle quattro sottoregioni del Tronco encefalico

Le colonne Left-WM-hypointensities', 'Right-WM-hypointensities', 'Left-non-WM-hypointensities', 'Right-non-WM-hypointensities' sono state rimosse perché tutte valorizzate a 0.

6.2.3. Correlazione tra dati

Così come per il morbo di Alzheimer, anche nel caso del Parkinson in collaborazione con i partner clinici è stata effettuata un'analisi di correlazione tra un sottoinsieme di dati, particolarmente significativi ai fini diagnostici. In particolare, lo scopo è stato identificare correlazioni specifiche tra 1) dati relativi ai **test cognitivi e motori**, presenti nella tabella del paragrafo 7.2, 2) dati di **uptake** del mezzo di contrasto FDOPA e 3) dati provenienti da **immagini**, in particolare un sottoinsieme identificato dai modelli di classificazione. I sottoinsiemi di dati per cui analizzare eventuali correlazioni sono stati identificati dai partner clinici successivamente ai primi esperimenti effettuati per la classificazione diagnostica.

Anche in questo caso, sono stati scelti gli indici di correlazione di Pearson e di Spearman. I risultati sono disponibili come immagini negli allegati al presente documento, da 4 a 6. Per semplicità riportiamo nelle successive figure solo qualche esempio rappresentativo.

X_UPORS1
3
3ee9
5e06
6e0
0.00
0.5
1
0.07
0.65
0.5
0.05
0.06
0.04
0.07
0.07
0.05
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07

Fig. 5 Correlazione di Pearson tra dati dei test e dati di uptake

In particolare, nella diagonale inferiore sono riportati gli indici di correlazione, mentre nella diagonale superiore sono indicati i corrispondenti *p-value*.

Per semplicità di lettura, tale grafico viene accompagnato da quello presente in figura 6.

In figura 5, riportiamo il grafico delle correlazioni di Pearson tra dati test e di uptake.

Fig. 6: Correlazione di Pearson tra dati dei test e dati di uptake: valori rilevanti

In tale grafico, il valore 1 (-1) si trova in corrispondenza di indici di correlazione maggiori uguali di 0.3 (minori uguali di -0.3) e con *p-value* minore o uguale a 0.05, valore solitamente scelto come soglia di significanza. In questo modo, i valori 1 (-1) si troveranno in corrispondenza di alta correlazione (anti-correlazione) tra i dati. Ad esempio, dal grafico di figura 6, si evince che R_Putamen è altamente anti-correlato con UPDRS I, UPDRS II e UPDRS IV.

Relativamente alle correzioni di Bonferroni e di Benjamini-Hochberg, riportiamo due grafici di esempio nelle figure successive.

Fig. 7: Correzione di Bonferroni UPDRS VS Dati di Uptake

Fig. 8: Correzione di Benjamini-Hochberg UPDRS VS Dati di Uptake

L'ipotesi precedentemente formulata relativamente al R_Putamen correlato con UPDRS I e UPDRS II viene confermata in parte dalla correzione di Benjamini-Hochberg, dove risulta che soltanto UPDRS I ha una forte correlazione con R_Putamen. Inoltre, avendo suddiviso i dati in "sotto-famiglie", viene evidenziata anche una correlazione abbastanza forte tra UPDRS I e L_Putamen.

Sempre facendo riferimento all'indice di correzione di Benjamini-Hochberg, nel caso del Parkinson le correlazioni che vengono fuori coinvolgono soltanto i Putamen e i particolare essi risultano correlati con i test: BECK, UPDRS I, FAB, FCSRT ITR, HAMA, STROOP C, STROOP W e TOKEN.

Relativamente ai test cognitivi e alle loro possibili correlazioni con i dati provenienti da immagini, FCSRT ITR risulta particolarmente correlato con rh_postcentral_thickness, mentre STROOP C risulta correlato con rh_pericalcarine_thickness. Nessuna correlzione è invece emersa tra dati di uptake e dati estratti dalle immagini.

7. Esperimenti preliminari sul dataset TCGA-BRCA

In attesa di ricevere le feature radiomiche e i dati clinici per tutti i pazienti arruolati per il progetto MOLIM, relativamente al cancro al seno, è stato analizzato il dataset di immagini presente nel portale "The Cancer Imaging Archive" (TCIA), in particolare la collezione

Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) [53,54], contenente 91 campioni. Sono stati effettuati i primi esperimenti in termini di classificazione, correlando feature radiomiche e cliniche.

In particolare, in questa prima fase, tutte le feature radiomiche presenti nel dataset pubblico, insieme con l'età delle pazienti sono state utilizzate per la classificazione.

Come outcome degli esperimenti sono stati utilizzati gli stessi outcome previsti per il progetto in esame e cioè:

- Recettore del progesterone (PR)
- Recettore dell'estrogeno (ER)
- Istotipo
- Stage

Non vengono invece utilizzati né il marcatore Ki67, perché non presente nel dataset pubblico né il marcatore HER2, dal momento che per 39 campioni su 91 tale dato non è disponibile.

Relativamente agli esperimenti sono stati utilizzati i seguenti algoritmi:

- Random Forest (RF) [55]
- K-nearest neighbor (KNN) [56]
- Naive Bayes (NB) [57]
- Support vector machine con kernel non lineare (SVM) [58]
- Multi-layer perceptron (MLP) [59]
- Decision Tree (DT) [60]

La classificazione è avvenuta sia in versione semplice che utilizzando l'approccio cosiddetto "ensemble". In particolare per la versione ensemble è stato utilizzato Adaboost [61].

Dal momento che i campioni sono in numero molto limitato (è stato utilizzato il metodo Synthetic Minority Over-sampling Technique for Nominal and Continuous (SMOTE-NC), che differentemente dal classico SMOTE elabora dati sia numerici che categorici [62, 63]. SMOTE genera osservazioni "sintetiche" a partire dalla classe di minoranza e li aggiunge al set di dati esistenti. I record artificiali della classe di minoranza vengono generati basandosi sulla similarità nello spazio dei predittori. Per ciascun record x_i appartenente alla classe di minoranza vengono create k osservazioni e solo quelle più vicine sono prese come campioni.

Per la strategia di testing è stata utilizzata una 10 Fold Cross validation (10-Fold-CV) e una Leave One Out Cross Validation (LOOCV) [64, 65], essendo tutti pazienti differenti. Vengono quindi di seguito riportati i risultati per gli algoritmi elencati e relativamente alle due strategie di testing utilizzate.

7.1. Marcatore PR

Nel caso del recettore del progesterone, è stata effettuata una classificazione binaria, essendo infatti presenti campioni annotati con la sola informazione sulla presenza/assenza del recettore: PR+ e PR-.

Nella tabella 1 sono riportati i risultati per la 10 Fold Cross validation. Sia nel caso della classificazione di base, che utilizzando un metodo ensemble, l'algoritmo Random Forest (rf) fornisce il miglior risultato in termini di accuratezza, di AUC e di F1 score.

10-Fold-CV							
	Basic Algorithm						
algorithm accuracy precision recall f1score auc							
dt	0,73	0,57		0,57	0,56	0,57	
knn	0,48	0,48		0,48	0,41	0,47	
mlp	0,59	0,39		0,47	0,39	0,47	
nb	0,37	0,54		0,53	0,36	0,65	
rf	0,78	0,57		0,60	0,58	0,66	
svm	0,47	0,52		0,54	0,43	0,55	
		Adabo	ost				
algorithm	accuracy	precision	recall		f1score	auc	
nb	0,54	0,43		0,49	0,39	0,58	
rf	0,79	0,62		0,63	0,61	0,62	
svm	0,47	0,55		0,56	0,44	0,56	

Tabella 1: 10-Fold Cross Validation per PR

Nella tabella 2 sono riportati i risultati per la Leave One Out Cross validation. Anche in questo caso, sia relativamente alla classificazione di base, che al metodo ensemble, l'algoritmo Random Forest (rf) fornisce il miglior risultato in termini di accuratezza, di AUC e di F1 score. Naturalmente, nel caso della LOOCV, le misure di performance forniscono lo stesso risultato, dal momento che sono calcolate su un singolo paziente.

LOOCV							
	Basic algorithm						
algorithm	accuracy	precision	recall	f1score			
dt	0,73	0,73	0,73	0,73			
knn	0,53	0,53	0,53	0,53			
mlp	0,53	0,53	0,53	0,53			
nb	0,42	0,42	0,42	0,42			
rf	0,76	0,76	0,76	0,76			
svm	0,49	0,49	0,49	0,49			
		Adaboost					
algorithm	accuracy	precision	recall	f1score			
nb	0,71	0,71	0,71	0,71			
rf	0,76	0,76	0,76	0,76			
svm	0,48	0,48	0,48	0,48			

Tabella 2: LOOCV per PR

7.2. Marcatore ER

Anche nel caso del recettore dell'estrogeno, è stata effettuata una classificazione binaria, essendo infatti presenti campioni annotati con la sola informazione sulla presenza/assenza del recettore: ER+ e ER-.

Nella tabella 3 sono riportati i risultati per la 10 Fold Cross validation. In questo caso, l'algoritmo Random Forest (rf) utilizzato come algoritmo di base per la classificazione, fornisce il miglior risultato in termini di accuratezza, di AUC e di F1 score.

10-Fold-CV							
	В	asic algo	rithm				
algorithm	gorithm accuracy precision recall f1score au						
dt	0,71	0,48	0,48	0,47	0,48		
knn	0,53	0,51	0,54	0,44	0,57		
mlp	0,69	0,45	0,61	0,48	0,60		
nb	0,37	0,44	0,55	0,34	0,70		
rf	0,83	0,64	0,66	0,64	0,70		
svm	0,48	0,56	0,59	0,44	0,66		
		Adaboo	st				
algorithm	accuracy	precision	recall	f1score	auc		
nb	0,58	0,46	0,52	0,40	0,68		
rf	0,83	0,58	0,61	0,59	0,71		
svm	0,44	0,56	0,59	0,41	0,59		

Tabella 3: 10-Fold Cross Validation per ER

Anche nel caso della Leave One Out Cross validation, il Random Forest (rf) è l'algoritmo che fornisce il miglior risultato (vedi tabella 4).

LOOCV						
	Bas	ic algorith	m			
algorithm accuracy precision recall f1score						
dt	0,70	0,70	0,70	0,70		
knn	0,65	0,65	0,65	0,65		
mlp	0,71	0,71	0,71	0,71		
nb	0,29	0,29	0,29	0,29		
rf	0,82	0,82	0,82	0,82		
svm	0,54	0,54	0,54	0,54		
	A	daboost				
algorithm	accuracy	precision	recall	f1score		
nb	0,82	0,82	0,82	0,82		
rf	0,81	0,81	0,81	0,81		
svm	0,47	0,47	0,47	0,47		

Tabella 4: LOOCV per ER

7.3. Istotipo

Nel caso dell'istotipo, le classi sono principalmente due, *Infiltrating Ductal* e *Infiltrating Lobular*. Solo per 2 delle 91 pazienti è fornito un istotipo identificato come *Other* e un altro identificato come *Mixed Histology*. Essendo solo 2 i campioni che si differenziano dagli altri, essi sono stati esclusi dalla classificazione, in modo da avere anche in questo caso la possibilità di effettuare una classificazione binaria (*Infiltrating Ductal vs Infiltrating Lobular*).

La tabella 5 mostra i risultati nel caso della 10 Fold Cross validation, mentre la 6 nel caso della LOOCV. In questo caso, per entrambe le strategie, il Random Forest (rf) fornisce il

miglior risultato quando viene utilizzato all'interno di un ensemble (nel caso della 10 Fold CV, viene presa la AUC maggiore).

10-Fold-CV										
	Basic algorithm									
algorithm	accuracy	precision	recall	f1score	auc					
dt	0,75	0,46	0,44	0,45		0,44				
knn	0,51	0,47	0,41	0,38		0,43				
mlp	0,44	0,26	0,49	0,28		0,66				
nb	0,38	0,51	0,52	0,35		0,66				
rf	0,84	0,51	0,61	0,54		0,76				
svm	0,19	0,34	0,49	0,18		0,51				
		Adaboo	st							
algorithm	accuracy	precision	recall	f1score	auc					
nb	0,66	0,49	0,50	0,42		0,57				
rf	0,84	0,52	0,61	0,54		0,79				
svm	0,19	0,34	0,49	0,18		0,49				

Tabella 5: 10-Fold Cross Validation per Istotipo

LOOCV								
Basic algorithm								
algorithm	accuracy	precision	recall	f1score				
dt	0,74	0,74	0,74	0,74				
knn	0,48	0,48	0,48	0,48				
mlp	0,69	0,69	0,69	0,69				
nb	0,38	0,38	0,38	0,38				
rf	0,81	0,81	0,81	0,81				
svm	0,20	0,20	0,20	0,20				
	Ada	boost						
algorithm	accuracy	precision	recall	f1score				
nb	0,27	0,27	0,27	0,27				
rf	0,84	0,84	0,84	0,84				
svm	0,20	0,20	0,20	0,20				

Tabella 6: LOOCV per Istotipo

7.4. Stage

Nel caso dello stage, i dati di partenza mostrano 7 differenti valori per lo stage:

- 1. Stage I
- 2. Stage IA
- 3. Stage II
- 4. Stage IIA

- 5. Stage IIB
- 6. Stage IIIA
- 7. Stage IIIC

Dal momento che i campioni sono solo 91, per poter ottenere una classificazione quantomeno accettabile, è stato necessario "accorpare" le classi. In particolare, le classi sono state identificate in questo modo:

- 1. Stage I, che comprende Stage I e Stage IA
- 2. Stage II, che comprende Stage II, Stage IIA e Stage IIB
- 3. Stage III, che comprende Stage IIIA e Stage IIIC.

In questo caso, è stata quindi effettuata una classificazione a 3 classi.

10-Fold-CV							
	Ba	asic algorith	ım				
algorithm	accuracy	precision	recall	f1score			
dt	0,44	0,38	0,35	0,35			
knn	0,30	0,28	0,30	0,25			
mlp	0,38	0,33	0,37	0,30			
nb	0,27	0,29	0,39	0,26			
rf	0,46	0,28	0,32	0,29			
svm	0,28	0,27	0,22	0,21			
		Adaboost					
algorithm	accuracy	precision	recall	f1score			
nb	0,35	0,30	0,37	0,27			
rf	0,48	0,28	0,33	0,29			
svm	0,27	0,27	0,22	0,22			

Tabella 7: 10-Fold Cross Validation per Stage

In tabella 7 sono mostrati i risultati relativi alla 10 Fold Cross validation. Come si può osservare, in questo caso non viene raggiunto neanche il 50% in termini di accuratezza per nessuno degli algoritmi utilizzati. Il motivo è dovuto al fatto che la 10-Fold Cross validation utilizzata con 91 campioni effettua il training su 81 pazienti e il test su 10 pazienti e probabilmente 81 pazienti, nonostante l'utilizzo di un algoritmo di generazione di osservazioni "sintetiche" è un numero troppo limitato per poter effettuare un training a 3 classi.

I risultati si fanno invece più interessanti nel caso della Leave One Out Cross validation (vedi tabella 8). In questo caso una SVM a più classi permette di ottenere delle performance intorno al 60% di accuratezza.

LOOCV							
	Ba	asic algorith	ım				
algorithm	accuracy	precision	recall	f1score			
dt	0,43	0,43	0,43	0,43			
knn	0,29	0,29	0,29	0,29			
mlp	0,42	0,42	0,42	0,42			
nb	0,30	0,30	0,30	0,30			
rf	0,46	0,46	0,46	0,46			
svm	0,60	0,60	0,60	0,60			
		Adaboost					
algorithm	accuracy	precision	recall	f1score			
nb	0,46	0,46	0,46	0,46			
rf	0,48	0,48	0,48	0,48			
svm	0,60	0,60	0,60	0,60			

Tabella 8: LOOCV per Stage

7.5. Discussione

Dai risultati ottenuti fino a questo momento, sembra chiaro che 91 campioni sono un numero troppo limitato per poter ottenere delle accuratezze interessanti in termini di classificazione dei biomarcatori molecolari. Comunque i risultati più interessanti si ottengono nel caso della classificazione binaria e in particolare è l'istotipo a dare i risultati più promettenti.

In termini di algoritmi invece, il Naive Bayes e l'SVM forniscono quasi sempre i risultati peggiori, esclusa la classificazione a tre classi per lo Stage, dove è proprio SVM a mostrare i risultati migliori.

A questo punto si intende procedere ad uno studio più approfondito della tipologia delle feature radiomiche da utilizzare per la classificazione, dal momento che alcune delle feature usatea questo scopo potrebbero introdurre rumore, e quindi contribuire in maniera negativa al risultato della classificazione. Infatti, anche in letteratura sono presenti una serie di studi che approfondiscono l'analisi delle feature più significative in termini di classificazione [66, 67].

8. Esperimenti di classificazione su dati reali di progetto

8.1. Approcci di selezione delle features e classificazione

I dati raccolti nel progetto (e analizzati nel dettaglio, per ogni patologia, nei paragrafi a seguire) possiedono caratteristiche tali da necessitare di un attento approccio metodologico alla fase di apprendimento supervisionato.

Bilanciamento delle classi e feature selection

Per ovviare al problema dello sbilanciamento delle classi si è usato un approccio di letteratura chiamato *SMOTE* (Synthetic Minority Over-sampling Technique) [62,63], tramite cui vengono generati, in fase di apprendimento, un certo numero di campioni appartenenti alle classi sottorappresentate in modo da ottenere un dataset perfettamente bilanciato in termini di numero di campioni per ogni classe.

Inoltre, il numero di *features* per ogni paziente è molto elevato rispetto al numero di campioni, in tutte le patologie considerate. Si è scelto dunque di effettuare un passo di *feature selection* (FS) prima della classificazione, in modo da individuare soltanto le features più rilevanti per l'apprendimento ed evitare gli effetti del cosiddetto "curse of dimensionality".

E' ormai noto, dalla letteratura, che non esiste un singolo algoritmo di feature selection che sia il migliore in assoluto, ma che è necessario sperimentare e trovare quale è l'algoritmo che produce i risultati migliori per uno specifico dataset. A questo scopo si è scelto di considerare, fra i diversi algoritmi esistenti, il sottoinsieme descritto in Tabella 9.

Algoritmo	Acronimo di progetto	Tipo (Ranker/Subset)	Approccio (Filter/Embedded)
Chi squared	CHI	Ranker	Filter
Fisher score	FS	Ranker	Filter
Gini index	GI	Ranker	Filter
Mutual Information	MI	Ranker	Filter
ReliefF	RF	Ranker	Filter
LR-RFE	LR	Ranker	Embedded
CFS	CFS	Subset	Filter

Tabella 9. Elenco degli algoritmi di Feature Selection usati.

Si è scelto di considerare diversi approcci di feature selection basati su metodi di tipo *filter*, che restituiscono un ranking (in genere completo, se si esclude il metodo Mutual Information) delle features perché sono un ottimo compromesso fra bontà delle soluzioni trovate e tempi di calcolo. Sono poi stati considerati due algoritmi più pesanti in termini di tempi di calcolo ma che forniscono soluzioni in genere più accurate e cioè Recursive Feature Elimination con Lasso Regression (LR-RFE) che è un metodo embedded, e CFS (Correlation-Based feature selection) che è un metodo basato sulla correlazione e valuta sottoinsiemi di features (risultando per questo motivo il più lento di tutti gli algoritmi considerati).

8.2. Classificazione e validazione

Anche in questo caso vale la stessa considerazione fatta per gli algoritmi di feature selection: non esiste un algoritmo di classificazione universalmente efficace, ma bisogna cercare sperimentalmente quale fornisce i risultati migliori per il dataset considerato. Si deve inoltre tenere conto che il sottoinsieme di features estratte al passo precedente influisce sui risultati ottenuti con uno specifico algoritmo. Sono stati presi in considerazione diversi approcci, elencati in tabella 10, fra quelli più noti ed usati in letteratura per la loro efficacia.

Algoritmo	Acronimo di progetto
Decision Tree	DT
K-nearest-neighbor	KNN
Multi Layer Perceptron	MLP
Naive Bayes	NB
Random Forest	RF
Support Vector Machines	SVM

Tabella 10. Elenco degli algoritmi di classificazione usati.

8.2.1. Classificazione

Come già detto, non esiste un metodo univoco ed affermato che sia possibile usare come riferimento per trattare i dati radiomici usati in questo progetto. Il primo obiettivo da perseguire è quello della riduzione del numero di features usate per la classificazione. A questo scopo si è deciso per un approccio a cascata in cui una prima selezione delle features viene effettuata usando i metodi che restituiscono un ranking completo (Chi, Fisher, Gini index, ReliefF). Si estraggono da questi ranking un sottoinsieme *n* predefinito di features, con n=[5,10,15,20,25,40,45,50], che vengono poi date in input a tutti gli algoritmi di classificazione. In base al migliore risultato ottenuto dai classificatori (valutato in termini di f1score) si individuano le features più rilevanti: le features vengono aggregate sui diversi fold (si veda il paragrafo sulla Validazione dei dati) usando come misura la minima posizione ottenuta dalla singola feature nei vari fold ed il numero totale di fold in cui tale posizione è stata ricoperta. Le features vengono poi ordinate per rilevanza in base a questo criterio, e vengono estratte tutte quelle che almeno una volta hanno avuto minima posizione

n. Su questo sottoinsieme si ripete il procedimento di classificazione, usando però gli altri metodi di selezione delle features (Mutual Information, CFS, LR-RFE) con un insieme *m* più ristretto di soglie per il numero di features da selezionare, con m = [1, ..., 10]. Anche in questo caso si sceglie il risultato migliore in termini di f1score e si individuano, applicando lo stesso criterio su descritto, la combinazione di features più promettenti e algoritmo di classificazione. Queste informazioni vengono usate per addestrare e generare un modello di predizione che sarà poi validato (laddove possibile) usando dati provenienti da un diverso dataset. Il modello di predizione così ottenuto, se sufficientemente efficiente, sarà usato nella costruzione della piattaforma. Il processo a due fasi è illustrato in figura 1.

Questo tipo di approccio è stato usato per la gran parte dei dati di progetto, escluso i dati di tumore al colon, su cui si è sperimentato un approccio lievemente differente, anche se impostato sullo stesso principio di un raffinamento successivo delle features selezionate.

Per i dati di tumore al colon, infatti, si è voluto indagare un approccio basato su Ensemble Feature Selection. La ricerca di features tramite metodi ensemble è basata sulla supposizione che features molto rilevanti per il dominio in esame dovrebbero essere scelte da più algoritmi di features selection, e quindi considerare i risultati di più selettori dovrebbe portare alla individuazione di sottoinsiemi più stabili di features. A questo scopo si considerano i ranking ottenuti dai quattro metodi che restituiscono un ordinamento completo delle features in input (Chi, Fisher, Gini index, ReliefF). Anche in questo caso si estraggono da questi ranking un sottoinsieme *n* predefinito di features, con n=[5,10,15,20,25,40,45,50], che vengono poi date in input a tutti gli algoritmi di classificazione. In base al migliore risultato ottenuto dai classificatori (valutato in termini di flscore) si individuano le features più rilevanti: le features vengono aggregate sui diversi fold (si

Figura 1: Processo di selezione e di classificazione per Cancro alla Mammella, Morbo di Parkinson e Morbo di Alzheimer

veda il paragrafo sulla Validazione dei dati) usando come misura la minima posizione ottenuta dalla singola feature nei vari fold ed il numero totale di fold in cui tale posizione è stata ricoperta. Per ognuno dei metodi ranker suindicati sono state selezionate tutte le features con minima posizione $p = \{1, 2\}$ per un totale di 20 features, alcune delle quali comuni ai vari metodi. Una controindicazione dell'approccio di Ensemble Feature Selection è che nella fase di aggregazione delle features è possibile che diversi metodi scelgano diverse features fra loro fortemente correlate. A questo scopo viene calcolata la correlazione di Pearson tra le diverse features. Tutte le features che hanno correlazione reciproca c > 0.9 vengono eliminate, tranne una (selezionata a caso) per ogni gruppo. Per ridurre ulteriormente la presenza di features ridondanti si effettua un passo ulteriore di feature selection usando il metodo CFS. Le features così individuate vengono poi usate per un ultimo ciclo di feature selection tramite metodi a ranking non completo (LR-RFE, MI). Anche in questo caso si sceglie il risultato migliore in termini di f1score e si individua quindi il sottoinsieme di features più promettenti e l'algoritmo di classificazione. Queste informazioni vengono usate per addestrare e generare un modello di predizione che, se sufficientemente efficiente, sarà usato nella costruzione della piattaforma. Il processo di filtraggio delle features è rappresentato in figura 2.

Figura 2: Processo di selezione e classificazione per Cancro al Colon

8.2.2. Validazione

Per poter effettuare la validazione dei risultati ottenuti si è scelto di procedere come segue, data l'esiguità del numero di campioni in input: si è utilizzato un approccio di Ten-Fold Cross Validation nelle fasi di feature selection in cui determinare quali features usare. Una volta determinato il sottoinsieme di features più rappresentative si è usato un approccio di Leave One Out Validation per determinare l'efficacia del sottoinsieme di features estratte e l'algoritmo usato per addestrare il modello finale.

8.3. Implementazione e testing

Si è scelto Python come linguaggio in cui implementare il codice per il machine learning. Tale scelta è stata pressoché immediata in quanto il linguaggio è: 1) non proprietario; 2) supportato da innumerevoli librerie per il calcolo scientifico e per il machine learning (quali *numpy, SciPy,* o *scikit-learn*), che sono uno *standard de facto* nella comunità scientifica. La gran parte degli algoritmi e degli approcci descritti nei paragrafi precedenti sono supportati dalle già citate librerie di Python, mentre per alcuni degli algoritmi di feature selection si è usata la libreria *scikit-feature* [10] sviluppata dalla Arizona State University.

Il testing degli algoritmi è stato eseguito in diverse condizioni:

- 1. con tutte le features disponibili, cioè senza effettuare il passo di *Feature Selection* allo scopo di stabilire un riferimento generico sui risultati che si otterrebbero senza selezione.
- 2. effettuando la Feature Selection e variando il numero di features estratte per individuare il sottoinsieme più rilevante;
- 3. usando tutte le features da immagini assieme, oppure tenendo separate le diverse modalità (ADC, SUB, PC,T2);
- 4. usando tutti, una parte o nessun dato clinico assieme ai dati radiomici, con l'obiettivo di esplorare la possibilità di individuare insiemi ridotti di features, con il fine ultimo di semplificare le pratiche cliniche.

8.4. Tumore al seno

L'obiettivo finale di questa porzione di progetto è la costruzione di modelli di machine learning che, opportunamente addestrati, siano di supporto alla diagnosi. Al termine dello studio effettuato si è determinato che definire dei modelli che abbiano come outcome il tipo istologico è purtroppo impossibile con i dati in possesso, poiché praticamente tutti i pazienti risultano essere di uno stesso sottotipo. Si è determinato che è invece possibile usare come outcome il valore dei markers molecolari. L'obiettivo in questo caso sarebbe di evitare l'analisi istologica deducendo le informazioni direttamente dalle immagini RMI.

Le features cliniche utilizzabili (cioè con valori definiti per tutti gli outcome) sono:

- età
- dimensioni tumore (considerato come area ottenuta moltiplicando le due dimensioni fornite)

Il numero totale di pazienti per cui i valori dei markers sono presenti è: 80 per i dati del partner SDN, 19 per i dati del partner UNIME.

8.4.1. Distribuzione dei dati

DATI SDN

Nell'ambito della classificazione di marker molecolari la suddivisione dei valori è lievemente differente rispetto alle soglie usate nella clinica. I valori usati per distinguere le varie classi sono riportate nella seguente tabella.

Marker	Marker Negativo	Marker Positivo
ER	< 10%	>=10%
HER2	= 0	>1
KI67	<14%	>=14%
PR	< 10%	>=10%

Quindi per i quattro marker molecolari la distribuzione delle classi è riportata nei grafici a seguire.

In generale le classi sono sbilanciate, in alcuni casi in maniera molto forte, come ad esempio nel caso di HER2.

Marker ER - distribuzione delle classi

Nel caso del marker KI67 questa condizione è particolarmente evidente.

Invece nel caso del marker PR la distribuzione è perfettamente bilanciata.

Marker PR - distribuzione delle classi

DATI UNIME

Anche per i dati del partner UNIME si riporta, per i quattro marker molecolari, la distribuzione delle classi.

Nel caso di ER i dati sono molto sbilanciati a favore della classe dei positivi.

Discorso simile per HER2, in cui a prevalere sono invece i negativi.

HER2 - class distribution

Anche per sbilanciamento verso la classe dei negativi.

KI67 si ha un forte

Per PR la situazione

è appena migliore.

Per la fase di apprendimento sono stati usati solo i dati di SDN, in modo da partire da un insieme omogeneo (rispetto alla macchina usata per l'acquisizione delle immagini). Per i dati di UNIME non è stato possibile farlo perchè sono in numero ridotto, e mal distribuiti nelle varie classi. I dati di UNIME sono stati usati per effettuare i test sui modelli di predizione generati.

8.4.2. Preprocessing

In questo paragrafo si descrivono tutti i passaggi che vengono effettuati prima della classificazione. I dati in input sono costituiti dalle *features* radiomiche, descritte nei precedenti documenti, estratte dalle immagini di risonanza magnetica (RM) dei pazienti. Per ogni RM di un singolo paziente sono disponibili quattro diverse tipologie di immagini, da ognuna delle quali viene estratta una diversa informazione riguardante la lesione. Le tipologie sono: T2-weighted (T2), apparent diffusion coefficient (ADC), post contrast (PC), e subtraction (SUB). Nel caso delle immagini SUB e PC sono state estratte immagini a diversi tempi dopo la somministrazione del mezzo di contrasto. Per scegliere quale delle immagini usare, per le PC è stato scelto il tempo t in cui il valore di medio del mezzo di è massimo assorbimento contrasto (valore della colonna original firstorder Mean). Di conseguenza, nelle immagini SUB è stato preso il corrispondente tempo t-1. Per ogni tipologia di immagine sono state estratte 1197 features che sono state usate prima separatamente e poi considerate tutte insieme, avendo quindi per ogni paziente un totale di 4788 features. Ad esse si aggiungono i dati clinici descritti precedentemente. Prima di essere elaborati i dati sono stati riscalati nell'intervallo [0,1].

8.4.3. Risultati della classificazione e della validazione

I modelli predittivi costruiti sono stati valutati mediante analisi delle performance di classificazione dei pazienti sulla base degli outcome clinici considerati. In particolare, il potere di classificazione di tali modelli è stato valutato considerando i seguenti parametri:

- Sensibilità, la proporzione dei veri positivi;
- Specificità, la proporzione dei veri negativi;
- Accuratezza, la proporzione dei pazienti correttamente classificati.

Nel contempo, i risultati dell'analisi sulle possibili fonti di variabilità che potessero influire sulla misura delle features radiomiche utilizzate per la costruzione dei modelli predittivi sono stati oggetto di un articolo scientifico di recente pubblicazione [73].

Per la definizione del sottotipo molecolare si è scelto di considerare separatamente i quattro marker coinvolti, in quanto il numero di pazienti in input non consente la classificazione diretta sulle classi esistenti. La combinazione dei valori ottenuti per i singoli marker ER, HER2,KI67, PR potrà dare indicazioni sul sottotipo molecolare così come definito nella tabella del paragrafo 1.2.

Come descritto nei paragrafi precedenti, il testing relativo alla prima fase di feature selection è effettuato prendendo in considerazione tutte le possibili combinazioni di dati. Tutti i risultati sono disponibili come allegati al presente documento (allegato 7).

Di seguito vengono riportati i risultati più significativi (in termini di f1score) per il passo finale di classificazione con validazione Leave-One-Out (tabella 1). Le features individuate per i diversi markers sono disponibili come allegato al presente documento (allegato 8). Il modello di predizione, costruito a partire dalle features e dall'algoritmo individuati, è stato poi testato sui dati del partner UNIME, non usati per la fase di addestramento. I risultati dei test sono riportati in tabella 2.

	Risultati della classificazione LOO per I markers molecolari.									
Marke r	Tipo features	Tipo immagine	algoritmo di classificazione	numero di features	accurac y	precision	recall	flscore		
ER	radiomiche da singola immagine	T2	SVM	11	0.8125	0.872	0.82	0.845		
HER2	radiomiche	T2/ADC	RF	5	0.8	0.667	0.609	0.636		
KI67	radiomiche da singola immagine	РС	MLP	2	0.846	0.966	0.851	0.905		
PR	radiomiche da singola immagine	PC	MLP	3	0.725	0.725	0.725	0.725		

Tabella 1

Risultati dei test sui dati UNIME								
Marker	numero pazienti	per classe (N/P)	accuracy	precision	recall	f1score		
	10	P=16	0.7895	0.8333	0.9375	0.8823		
· EK	19	N=3	0.7895	0	0	0		
HED?	10	N=16	0.8421	0.8421	1	0.91		
· NEKZ	19	P=3	0.8421	0	0	0		
V167	10	N=14	0.778	0.75	0.92	0.85		
· KIU/	18	P=4	0.778	0.5	0.75	0.6		

PR	19	N=6	0.6842	0	0	0
		P=13	0.6842	0.684	1	0.812
	T 1 11 0					

Tabella 2

8.5. Tumore al colon

Si è determinato che è possibile usare come outcome per questi dati solo la possibile presenza di linfonodi, in quanto i dati acquisiti sono solo di pazienti con patologia e per altri obiettivi possibili (ad esempio grading e staging) non tutti i pazienti hanno informazione. L'obiettivo in questo caso sarebbe di predire il coinvolgimento dei linfonodi direttamente dalle immagini (N0/N+). L'unica features clinica utilizzabile (cioè con valori definiti per tutti gli outcome) è:

● età

Il numero totale di pazienti forniti dal partner UNIMIB è 52.

8.5.1. Distribuzione dei dati

La distribuzione delle classi è riportata nel grafico che segue.

Purtroppo le classi sono molto sbilanciate.

8.5.2. Preprocessing

I dati in input sono costituiti dalle *features* radiomiche, descritte nei precedenti documenti, estratte dalle immagini dei pazienti. Per ogni immagine sono state estratte 168 features. Prima di essere elaborati i dati sono stati riscalati nell'intervallo [0,1].

8.5.3. Risultati della classificazione e della validazione

Come descritto nei paragrafi precedenti, il testing relativo alla prima fase di feature selection è effettuato prendendo in considerazione tutte le possibili combinazioni di dati. Tutti i risultati sono disponibili come allegati al presente documento (allegato 9).

Di seguito vengono riportati i risultati più significativi (in termini di f1score) per il passo finale di classificazione con validazione Leave-One-Out (tabella 3). Le features individuate sono disponibili come allegato al presente documento (allegato 10). Il modello di predizione, costruito a partire dalle features e dall'algoritmo individuati, è stato poi testato su di un singolo paziente non inserito nel dataset di creazione del modello. Su questo paziente il modello ha dato il risultato corretto.

Risultati della classificazione LOO per la diagnosi di coinvolgimento dei linfonodi in pazienti affetti da tumore al colon							
Тіро	Tipo features	algoritmo di classificazione	numero di features	accurac y	precision	recall	f1score
N0/N+	radiomiche	MLP	7	0.804	0.897	0.854	0.875

Tabella 3

8.6. Morbo di Alzheimer

Al termine dello studio effettuato sui dati si sono individuate due possibili linee di indagine. Sui dati di PET-FDG del partner UNICZ si è determinato che è possibile usare come obiettivo della classificazione la presenza/assenza di malattia e, in quest'ultimo caso, diagnosticarne la progressione determinando se è monolaterale/bilaterale. Sui dati PET-AMY del partner SDN si è deciso, nonostante l'esiguità dei campioni, di provare a determinare se i pazienti sono positivi/negativi al marker della beta amiloide. Il partner UNIME ha messo inoltre a disposizione un piccolo dataset PET-FDG e PET-AMY su cui si è stabilito di effettuare i test dei modelli. Si è deciso in tutti i casi di NON usare i dati provenienti dai test cognitivi, in modo da affidarsi esclusivamente alle informazioni provenienti da immagini e dai dati clinici di base, con l'obiettivo di rendere più rapida ed agevole la fase di supporto alla diagnosi. Infatti, in questa configurazione,

si potrebbe prescindere dalla somministrazione dei test cognitivi, operazione in genere estremamente lunga, ed affidarsi unicamente al responso dell'imaging.

Le features cliniche utilizzabili (cioè con valori definiti per tutti gli outcome) sono:

- età
- sesso
- grado di istruzione

Inoltre sono disponibili, per i dati UNICZ e UNIME, anche i valori di uptake del mezzo di contrasto in diverse regioni cerebrali dell'emisfero destro e sinistro (Lobo Parietale, Occipitale, Temporale, Frontale, Corteccia Limbica, Ippocampo, Amigdala).

Il numero totale di pazienti FDG di UNICZ è 94, per SDN ne sono disponibili 27 per AMY e 19 per FDG, mentre UNIME ne ha 4 AMY e 4 FDG.

8.6.1. Distribuzione dei dati

DATI UNICZ FDG

I dati presenti sono suddivisi in casi di controllo/malato, e per i malati è presente anche l'indicazione sulla tipologia della malattia, cioè se monolaterale o bilaterale.

Dal grafico in figura si vede che i dati sono sbilanciati, anche se in modo lieve, con una predominanza dei casi di controllo rispetto ai malati.

Per quanto riguarda la distribuzione nelle due classi monolaterale/bilaterale si ha che la prima classe è più presente della seconda, e dunque la mancanza di bilanciamento è più sensibile (Figura 2).

DATI SDN AMY

I dati SDN sono fortemente sbilanciati, con la classe degli amiloide positivo che è preponderante.

Morbo di Alzheimer - Distribuzione delle classi per test amiloide

8.6.2. Preprocessing

I dati in input sono costituiti dalle *features* di volume, spessore, etc. come descritte nei precedenti paragrafi, estratte dalle immagini multimodali PET/RMI dei pazienti. Si ribadisce la scelta di non usare le features cliniche da test cognitivi, al fine di permettere una diagnosi legata il quanto più

possibile ai soli dati clinici essenziali e alle immagini mediche. Le features sono in totale 461 per ogni paziente, sia per i dati UNICZ che per i dati SDN ed UNIME. Prima di essere elaborati i dati sono stati riscalati nell'intervallo [0,1].

Risultati della classificazione e della validazione 8.6.3.

DISCRIMINAZIONE CONTROLLO/MALATO E MONOLATERALE/BILATERALE (DATI UNICZ FDG)

Dato il numero ristretto di pazienti, si è deciso di separare il problema a tre classi, e si effettua in due passi la distinzione fra sano e malato, e quella fra AD monolaterale e bilaterale.

Di seguito vengono riportati i risultati più significativi e descritto l'approccio che ha portato alla selezione dei modelli per ognuno dei problemi di classificazione considerati. Come descritto nei paragrafi precedenti, il testing relativo alla prima fase di feature selection è effettuato prendendo in considerazione tutte le possibili combinazioni di dati. Tutti i risultati sono disponibili come allegati al presente documento (allegato 11).

In tabella 4 vengono riportati i risultati più significativi (in termini di f1score) per il passo finale di classificazione con validazione Leave-One-Out. Le features individuate per i diversi markers sono disponibili come allegato al presente documento (allegato 12).

Ri	Risultati della classificazione LOO per la diagnosi di Alzheimer e valutazione mono/bilaterale									
Тіро	Tipo features	algoritmo di classificazione	numero di features	accurac y	precision	recall	flscore			
Controllo/ Malato	radiomiche /uptake	DT	1	0.894	0.902	0.86	0.881			
Controllo/ Malato	radiomiche	MLP	6	0.851	0.854	0.814	0.834			
Monolater ale/Bilater ale	radiomiche /uptake	RF	23	0.791	0.815	0.846	0.830			
Monolater ale/Bilater ale	radiomiche	SVM	12	0.674	0.75	0.692	0.72			

Tabella 4

Per entrambi gli obiettivi di classificazione, sono riportati i risultati che si ottengono usando come features di addestramento solo quelle provenienti da immagini o la combinazione di queste con le features di uptake. Nella distinzione fra controlli e malati, l'uso delle features di uptake migliora le prestazioni e riduce il numero delle features. Accade lo stesso nel caso della distinzione fra AD monolaterale e bilaterale, con la differenza che il numero di features usate è più alto.

DISCRIMINAZIONE PAZIENTI AMYLOIDE NEGATIVO/POSITIVO (DATI SDN e UNIME)

Si precisa qui che, a differenza di tutti gli altri dataset di tutto il progetto, per questo dataset si è dovuto effettuare la classificazione tramite cross fold validation usando tre fold, invece che i dieci solitamente considerati, perché il numero di campioni a disposizione è troppo ridotto per poter fare altrimenti. Inoltre, per la stessa ragione, si è scelto di non usare le features cliniche a disposizione. I risultati completi sono disponibili come allegati al presente documento (allegato 11).

In tabella 5 vengono riportati i risultati più significativi (in termini di f1score) per il passo finale di classificazione con validazione Leave-One-Out. Le features individuate per i diversi markers sono disponibili come allegato al presente documento (allegato 12).

Risultati della classificazione LOO per la diagnosi differenziale amiloide negativo/positivo							
Тіро	Tipo features	algoritmo di classificazione	numero di features	accurac y	precision	recall	f1score
Controllo/ Malato	radiomiche	SVM	6	0.714	0.882	0.789	0.834

Tabella 5

Per quanto riguarda il test sui dati UNIME, per tutti e quattro i pazienti disponibili il predittore ha correttamente assegnato la classe amiloide positiva. Purtroppo non sono disponibili dati di test appartenenti alla classe dei pazienti amiloide negativi.

8.7. Morbo di Parkinson

Sui dati PET-FDOPA messi a disposizione dal partner UNICZ è naturale costruire un classificatore per distinguere i casi di controllo dai casi di malattia. Vale la pena precisare che i pazienti segnalati
come controllo sono affetti comunque da patologie motorie e cognitive, ma non diagnosticati come Parkinson's. Per completezza si riporta che il partner SDN ha messo a disposizione dei dataset di pazienti le cui PET sono ottenute con traccianti differenti (AMY e FDG). Purtroppo questi dati non possono essere usati come test, e sono troppo pochi per poter considerare altre tipologie di classificazione.

Si è deciso anche in questo caso di NON usare i dati provenienti dai test cognitivi, in modo da affidarsi esclusivamente alle informazioni provenienti da immagini e dai dati clinici di base, con l'obiettivo di rendere più rapida ed agevole la fase di supporto alla diagnosi. Infatti, in questa configurazione, si potrebbe prescindere dalla somministrazione dei test cognitivi, operazione in genere estremamente lunga, ed affidarsi unicamente al responso dell'imaging. Le features cliniche utilizzabili (cioè con valori definiti per tutti gli outcome) sono:

- età
- sesso

Inoltre sono disponibili anche i valori di uptake del mezzo di contrasto in diverse regioni cerebrali dell'emisfero destro e sinistro (Caudato, Putamen, Talamo).

Il numero totale di pazienti di UNICZ è 51.

DATI UNICZ

Dal grafico in figura 1 si vede che i dati sono sbilanciati con una predominanza delle diagnosi di Parkinson's rispetto ai casi di controllo.

8.7.1. Preprocessing

In questo paragrafo si descrivono tutti i passaggi che vengono effettuati prima della classificazione. I dati in input sono costituiti dalle *features* di volume, spessore, etc. come descritte nei precedenti paragrafi, estratte dalle immagini multimodali PET/RMI dei pazienti. Si ribadisce la scelta di non usare le features cliniche da test cognitivi, al fine di permettere una diagnosi legata il quanto più possibile ai soli dati clinici essenziali e alle immagini mediche. Le features sono in totale 461 per ogni paziente.

Prima di essere elaborati i dati sono stati riscalati nell'intervallo [0,1].

8.7.2. Risultati della classificazione e della validazione

Di seguito vengono riportati i risultati più significativi e descritto l'approccio che ha portato alla selezione dei modelli per ognuno dei problemi di classificazione considerati. Come descritto nei paragrafi precedenti, il testing relativo alla prima fase di feature selection è effettuato prendendo in considerazione tutte le possibili combinazioni di dati. Tutti i risultati sono disponibili come allegati al presente documento (allegato 13).

In tabella 6 vengono riportati i risultati più significativi (in termini di f1score) per il passo finale di classificazione con validazione Leave-One-Out. Le features individuate per i diversi markers sono disponibili come allegato al presente documento (allegato 14). In mancanza di dati da altri partner, il modello di predizione, costruito a partire dalle features e dall'algoritmo individuato, è stato validato su di un unico paziente, eliminato dal dataset al momento della costruzione del modello. Su questo paziente il modello ha dato il risultato corretto.

Risult	tati della clas	sificazione LO	O per la diaș Parkinso	gnosi diffe on	erenziale co	ontrollo/	' malato di
Тіро	Tipo features	algoritmo di classificazione	numero di features	accurac y	precision	recall	flscore
Controllo/ Malato	radiomiche /uptake	KNN/SVM	2	0.980	0.974	1	0.987
Controllo/ Malato	radiomiche	SVM	27	0.922	0.946	0.946	0.946

Tabella 6

Sono qui riportati i risultati che si ottengono sia usando come features di addestramento solo quelle provenienti da immagini sia la combinazione di queste con le features di uptake. L'uso delle features di uptake migliora le prestazioni e riduce notevolmente il numero delle features.

9. Bibliografia

- B. Reig, L. Heacock, K. J. Geras, and L. Moy, "Machine learning in breast MRI," *J. Magn. Reson. Imaging*, vol. 52, no. 4, pp. 998–1018, 2020, doi: 10.1002/jmri.26852.
- [2] L. J. Grimm and M. A. Mazurowski, "Breast Cancer Radiogenomics: Current Status and Future Directions," Acad. Radiol., vol. 27, no. 1, pp. 39–46, Jan. 2020, doi: 10.1016/j.acra.2019.09.012.
- [3] S. Huang *et al.*, "Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis," *Npj Breast Cancer*, vol. 4, no. 1, Art. no. 1, Aug. 2018, doi: 10.1038/s41523-018-0078-2.
- [4] H. Li *et al.*, "Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set," *Npj Breast Cancer*, vol. 2, no. 1, Art. no. 1, May 2016, doi: 10.1038/npjbcancer.2016.12.
- [5] H. Li *et al.*, "MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays," *Radiology*, vol. 281, no. 2, pp. 382–391, May 2016, doi: 10.1148/radiol.2016152110.
- [6] "Welcome to The Cancer Imaging Archive," *The Cancer Imaging Archive (TCIA)*. https://www.cancerimagingarchive.net/ (accessed Nov. 09, 2020).
- Z. Liu et al., "Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic [7] Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study," Clin. Cancer Res., vol. 25, no. 12, pp. 3538-3547, Jun. 2019, doi: 10.1158/1078-0432.CCR-18-3190.
- [8] T. Xie *et al.*, "Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer," *Front. Oncol.*, vol. 9, 2019, doi: 10.3389/fonc.2019.00505.
- [9] W. Guo *et al.*, "Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data," *J. Med. Imaging*, vol. 2, no. 4, p. 041007, Sep. 2015, doi: 10.1117/1.JMI.2.4.041007.
- [10] E. S. Burnside *et al.*, "Using computer-extracted image phenotypes from tumors on breast magnetic resonance imaging to predict breast cancer pathologic stage," *Cancer*, vol. 122, no. 5, pp. 748–757, 2016, doi: https://doi.org/10.1002/cncr.29791.
- [11] N. Horvat, D. D. B. Bates, and I. Petkovska, "Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review," *Abdom. Radiol.*, vol. 44, no. 11, pp. 3764–3774, Nov. 2019, doi: 10.1007/s00261-019-02042-y.
- [12] C. Liang *et al.*, "The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer," *Oncotarget*, vol. 7, no. 21, pp. 31401–31412, Apr. 2016, doi: 10.18632/oncotarget.8919.

- [13] Y. Huang *et al.*, "Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer," *J. Clin. Oncol.*, vol. 34, no. 18, pp. 2157–2164, May 2016, doi: 10.1200/JCO.2015.65.9128.
- [14] X. Zhou *et al.*, "Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer," *Ann. Surg. Oncol.*, vol. 26, no. 6, pp. 1676–1684, Jun. 2019, doi: 10.1245/s10434-019-07300-3.
- [15] L. Yang et al., "Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?," Eur. Radiol., vol. 28, no. 5, pp. 2058–2067, May 2018, doi: 10.1007/s00330-017-5146-8.
- [16] Z. Zhu, E. Albadawy, A. Saha, J. Zhang, M. R. Harowicz, and M. A. Mazurowski, "Deep learning for identifying radiogenomic associations in breast cancer," *Comput. Biol. Med.*, vol. 109, pp. 85–90, Jun. 2019, doi: 10.1016/j.compbiomed.2019.04.018.
- [17] "AIOM | Associazione Italiana di Oncologia Medica Official Website," *AIOM*. https://www.aiom.it/ (accessed Nov. 12, 2020).
- [18] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, *Feature Extraction: Foundations and Applications*. Springer, 2008.
- [19] L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, pp. 1205–1224, Oct. 2004.
- [20] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, "Feature selection for high-dimensional data," *Prog. Artif. Intell.*, vol. 5, no. 2, pp. 65–75, May 2016, doi: 10.1007/s13748-015-0080-y.
- [21] Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," *Bioinformatics*, vol. 23, no. 19, pp. 2507–2517, Oct. 2007, doi: 10.1093/bioinformatics/btm344.
- [22] R. O. Duda, P. E. Hart, and D. G. Stork, *Pattern classification*. John Wiley & Sons, 2012.
- [23] D. A. Freedman, Statistical models: theory and practice. cambridge university press, 2009.
- [24] D. W. Hosmer and S. Lemeshow, Applied logistic regression. Wiley New York, 2000.
- [25] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support vector regression machines," in Advances in neural information processing systems, 1997, pp. 155–161.
- [26] L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
- [27] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification using Support Vector Machines," *Mach. Learn.*, vol. 46, no. 1, pp. 389–422, Jan. 2002, doi: 10.1023/A:1012487302797.
- [28] C. Salvatore, I. Castiglioni, and A. Cerasa, "Radiomics approach in the neurodegenerative brain," *Aging Clin. Exp. Res.*, pp. 1–3, Aug. 2019, doi: 10.1007/s40520-019-01299-z.
- [29] C. J. Brown and G. Hamarneh, "Machine Learning on Human Connectome Data from MRI," *ArXiv161108699 Cs Q-Bio Stat*, Nov. 2016, Accessed: Nov. 11, 2020. [Online]. Available: http://arxiv.org/abs/1611.08699.

- [30] "Benchmarking functional connectome-based predictive models for resting-state fMRI," *NeuroImage*, vol. 192, pp. 115–134, May 2019, doi: 10.1016/j.neuroimage.2019.02.062.
- [31] K. Dadi *et al.*, "Benchmarking functional connectome-based predictive models for resting-state fMRI," *NeuroImage*, vol. 192, pp. 115–134, May 2019, doi: 10.1016/j.neuroimage.2019.02.062.
- [32] K. Zhao *et al.*, "Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer's disease: diagnosis, longitudinal progress and biological basis," *Sci. Bull.*, vol. 65, no. 13, pp. 1103–1113, Jul. 2020, doi: 10.1016/j.scib.2020.04.003.
- [33] T. Xie *et al.*, "Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer," *Front. Oncol.*, vol. 9, 2019, doi: 10.3389/fonc.2019.00505.
- [34] H. Zhou *et al.*, "Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer's Disease," *Front. Neurosci.*, vol. 12, 2019, doi: 10.3389/fnins.2018.01045.
- [35] A. Khazaee, A. Ebrahimzadeh, and A. Babajani-Feremi, "Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory," *Clin. Neurophysiol.*, vol. 126, no. 11, pp. 2132–2141, Nov. 2015, doi: 10.1016/j.clinph.2015.02.060.
- [36] S. H. Hojjati, A. Ebrahimzadeh, and A. Babajani-Feremi, "Identification of the early stage of alzheimer's disease using structural mri and resting-state fmri," *Front. Neurol.*, vol. 10, no. AUG, 2019, doi: 10.3389/fneur.2019.00904.
- [37] M. Wang, Z. Yan, and J. Jiang, "Brain metabolic connectome classify mild cognitive impairment into Alzheimer's dementia *," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, Jul. 2019, pp. 32–35, doi: 10.1109/EMBC.2019.8857104.
- [38] "ADNI Alzheimer's Disease Neuroimaging Initiative." http://adni.loni.usc.edu/ (accessed Nov. 11, 2020).
- [39] "Human Connectome Project | Data." http://www.humanconnectomeproject.org/data/ (accessed Nov. 11, 2020).
- [40] Y. Wu *et al.*, "Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls," *Ann. Transl. Med.*, vol. 7, no. 23, Dec. 2019, doi: 10.21037/atm.2019.11.26.
- [41] A. Rahmim *et al.*, "Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images," *NeuroImage Clin.*, vol. 16, pp. 539–544, Jan. 2017, doi: 10.1016/j.nicl.2017.08.021.
- [42] Z. Cheng *et al.*, "Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson's Disease," *Front. Aging Neurosci.*, vol. 11, 2019, doi: 10.3389/fnagi.2019.00167.

- [43] R. Mabrouk, B. Chikhaoui, and L. Bentabet, "Machine Learning Based Classification Using Clinical and DaTSCAN SPECT Imaging Features: A Study on Parkinson's Disease and SWEDD," *IEEE Trans. Radiat. Plasma Med. Sci.*, vol. 3, no. 2, pp. 170–177, Mar. 2019, doi: 10.1109/TRPMS.2018.2877754.
- [44] "Parkinson's Progression Markers Initiative ." https://www.ppmi-info.org/ (accessed Nov. 11, 2020).
- [45] T. Hastie, R. Tibshirani, and J. Friedman, *The elements of statistical learning: data mining, inference, and prediction.* Springer Science & Business Media, 2009.
- [46] N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression," *Am. Stat.*, vol. 46, no. 3, pp. 175–185, 1992.

[47] A. C. Wolff *et al.*, "Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update," *J. Clin. Oncol.*, vol. 31, no. 31, pp. 3997–4013, Oct. 2013, doi: 10.1200/JCO.2013.50.9984.

[48] A. Goldhirsch *et al.*, "Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013," *Ann. Oncol.*, vol. 24, no. 9, pp. 2206–2223, Sep. 2013, doi: 10.1093/annonc/mdt303.
[49] A. S. Coates *et al.*, "Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015," *Ann. Oncol.*, vol. 26, no. 8, pp. 1533–1546, Aug. 2015, doi: 10.1093/annonc/mdv221.

[50] G. Curigliano *et al.*, "De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017," *Ann. Oncol.*, vol. 28, no. 8, pp. 1700–1712, Aug. 2017, doi: 10.1093/annonc/mdx308.

[51] K. H. Allison *et al.*, "Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update," *J. Clin. Oncol.*, vol. 38, no. 12, pp. 1346–1366, Jan. 2020, doi: 10.1200/JCO.19.02309.

[52] N. M. Foley *et al.*, "Re-Appraisal of Estrogen Receptor Negative/Progesterone Receptor Positive (ER–/PR+) Breast Cancer Phenotype: True Subtype or Technical Artefact?," *Pathol. Oncol. Res.*, vol. 24, no. 4, pp. 881–884, Oct. 2018, doi: 10.1007/s12253-017-0304-5.

[53]wiki.cancerimagingarchive.net/display/DOI/TCGA+Breast+Phenotype+Research+Group+Dat a+sets#19039112036220c66a5a436f90e4a0b54367bfae

[54] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057.

[55] Ho, Tin Kam. "Random decision forests." Proceedings of 3rd international conference on document analysis and recognition. Vol. 1. IEEE, 1995.

[56] Dasarathy, Belur V. "Nearest neighbor (NN) norms: NN pattern classification techniques." IEEE Computer Society Tutorial (1991).

[57] Langley, Pat, Wayne Iba, and Kevin Thompson. "An analysis of Bayesian classifiers." Aaai. Vol. 90. 1992.

[58] Vapnik, Vladimir. The nature of statistical learning theory. Springer science & business media, 2013.

[59] Rumellhart, D. E. "Learning internal representations by error propagation." Parallel distributed processing 1 (1986): 318-362.

[60] Magee, J. F. (1964). Decision trees for decision making (pp. 35-48). Harvard Business Review.

[61] Zhang, Cha, and Yunqian Ma, eds. Ensemble machine learning: methods and applications. Springer Science & Business Media, 2012.

[62] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence research 16 (2002): 321-357.

[63] https://imbalanced-learn.readthedocs.io/en/stable/index.html

[64] McLachlan, Geoffrey J., Do, Kim-Anh; Ambroise, Christophe (2004). Analyzing microarray gene expression data. Wiley.

[65] Molinaro, A. M.; Simon, R.; Pfeiffer, R. M. (2005-08-01). "Prediction error estimation: a comparison of resampling methods". Bioinformatics. 21 (15): 3301–3307.

[66] Chen, C. H., Chang, C. K., Tu, C. Y., Liao, W. C., Wu, B. R., Chou, K. T., ... & Huang, T. C. (2018). Radiomic features analysis in computed tomography images of lung nodule classification. PloS one, 13(2), e0192002.

[67] Filograna, L., Lenkowicz, J., Cellini, F., Dinapoli, N., Manfrida, S., Magarelli, N., ... & Valentini, V. (2019). Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study. La radiologia medica, 124(1), 50-57.

[68] "FreeSurferWiki - Free Surfer Wiki." https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki (accessed May 10, 2021).

[69] Weisstein, Eric W. "Statistical Correlation". mathworld.wolfram.com.

[70] Corder, G. W. & Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step Approach, Wiley.

[71] Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. *Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze*, *8*, 3-62.

[72] Benjamini Y, Hochberg Y (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing" (PDF). Journal of the Royal Statistical Society, Series B. 57 (1): 289–300.

[73] Romeo, V., Cavaliere, C., Imbriaco, M., Verde, F., Petretta, M., Franzese, M., Stanzione, A., Cuocolo, R., Aiello, M., Basso, L., Amitrano, M., Lauria, R., Accurso, A., Brunetti, A., &

Salvatore, M. (2020). Tumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. European journal of radiology, 126, 108907.

Allegato 1

Morbo di Alzheimer

Test Cognitivi vs Dati di Uptake

Correlazione di Pearson

Correlazione di Spearman

X_BECK II	0.2	0.7	0.04	0.3	0.3	0.6	0.8	1	0.6	0.4	0.8	0.5	0.9	0.4	- 0.8 - 0.6 - 0.4 - 0.2
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	-

Correzione con Benjamini-Hochberg

x_COWAT	0.007	0.004	0.02	0.01	0.02	0.006	0.01	0.006	0.03	0.04	0.4	0.2	0.06	0.02	- 0.4 - 0.3 - 0.2 - 0.1
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	

TAMOD V

DIGIT FW	0.03	0.06	0.3	0.6	0.1	0.5	0.009	0.01	0.06	0.1	0.7	0.5	0.3	0.3	- 0.6 - 0.5 - 0.4
DIGIT BW X_I	0.1	0.3	0.08	0.3	0.07	0.3	0.1	0.2	0.02	0.05	0.02	0.01	0.03	0.01	- 0.3 - 0.2 - 0.1
×	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	

															- 0.30
															- 0.25
	102	0.01	0.2	0.3	0.02	0.07	0.02	0.02	0.03	0.06	0.1	0.1	0.07	0.06	- 0.20
X_FAB	5.02	0.01	0.2	0.5	0.02	0.07	0.02	0.02	0.05	0.00	0.1	0.1	0.07	0.00	- 0.15
															- 0.10
															- 0.05
10 75	rietal .	rietal .	ipital	ipital	poral	poral.	ontal	ontal	ortex .	ortex	gdala .	gdala .	. sndu	sndu	
	_R_Pa	(_L_Pa	R_Occ	L_Occ	<pre>L_Tem</pre>	- Tem	Y_R_Fr	Y_L_Fr	nbicC	mbicC	_Amy	Amy	opocal	opocal	
	7	~	≻'	'≺	7		5		'LL	1	Υ ^R	٦- ۲	重	Ē	

X_FCSRT IFR -	0.005	0.002	0.02	0.02	0.002	0.0006	0.005	0.002	0.0004	0.0005	0.002	0.0003	5e-05	1e-05	- 0.8
X_FCSRT ITR -	0.5	0.5	1	1	0.1	0.2	0.4	0.4	0.05	0.05	0.02	0.01	0.002	0.003	- 0.6
X_FCSRT DFR -	0.3	0.07	0.7	0.1	0.1	0.01	0.1	0.07	0.07	0.04	0.1	0.09	0.02	0.004	- 0.4
X_FCSRT ISC -	0.01	0.0002	0.2	0.04	0.03	0.006	0.02	0.004	0.01	0.006	0.5	0.1	0.2	0.1	- 0.2
	Y_R_Parietal -	Y_L_Parietal	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	-

X_HAMA	0.4	0.2	0.6	0.4	0.6	0.4	0.3	0.2	0.4	0.4	0.8	0.6	0.6	0.9	- 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	-

x JLO V	0.4	0.4	0.4	0.2	0.9	0.7	0.6	0.5	0.8	0.9	0.9	0.7	1	0.6	- 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	-

8															- 0.030
															- 0.025
															- 0.020
155	5e-05	2e-06	0.0007	0.0006	2e-05	5e-06	0.002	0.0003	0.0007	0.0002	0.03	0.002	0.0003	2e-05	- 0.015
νM-×															- 0.010
															- 0.005
	1			,		-	1			, m		-	_	,	
	ietal	ietal	pital	pital	oral	oral	ntal	ntal	rtex	rtex	dala	dala	sndu	sndu	
	Par	Par	Occil	Occi	emp	emp	Fro	Fro	icCo	icco	nyg	nyg	can	can	
	Υ. Έ	Ľ.	R.	j -	L T	Ľ,	,≺ R	Ľ,	dmi	dmi	R_AI	L_AI	oddi	ippo	
			7	~	'≺	≻`			L L	רר	`	≻'	н Н	н Ц	
									7	-			≻'	7	

X_MMSE

X_MMSE -	0.0002	9e-06	0.002	0.002	6e-05	2e-05	0.004	0.0008	0.002	0.0006	0.05	0.004	0.0008	6e-05
X_TOKEN TEST	3e-05	1e-05	0.01	0.008	2e-05	5e-05	3e-06	5e-06	2e-06	4e-06	0.01	0.003	8e-06	2e-06
X_COWAT ·	0.01	0.008	0.04	0.02	0.03	0.01	0.02	0.01	0.04	0.07	0.5	0.2	0.1	0.04
X_RAVLT R.I.	0.0009	0.001	0.02	0.03	0.0002	0.0004	0.0004	0.0004	6e-05	0.0002	0.003	0.002	0.0006	0.0004
X_RAVLT R.D.	2e-05	1e-05	0.001	0.002	4e-07	1e-06	3e-05	1e-05	2e-05	3e-05	0.001	0.0003	8e-06	4e-06
X_FCSRT IFR -	0.008	0.004	0.04	0.03	0.003	0.001	0.009	0.004	0.0009	0.0009	0.003	0.0006	0.0001	3e-05
X_FCSRT ITR	0.5	0.5	1	1	0.1	0.2	0.4	0.4	0.06	0.06	0.03	0.02	0.003	0.006
X_FCSRT DFR	0.4	0.09	0.7	0.2	0.1	0.02	0.1	0.09	0.09	0.06	0.2	0.1	0.03	0.007
X_FCSRT ISC ·	0.02	0.0004	0.2	0.05	0.05	0.01	0.03	0.006	0.02	0.01	0.5	0.2	0.2	0.1
X_DIGIT FW	0.04	0.08	0.4	0.7	0.1	0.5	0.02	0.02	0.08	0.1	0.7	0.5	0.3	0.4
X_DIGIT BW -	0.2	0.3	0.1	0.4	0.09	0.4	0.2	0.2	0.03	0.06	0.03	0.02	0.04	0.02
X_FAB -	0.04	0.02	0.2	0.4	0.03	0.1	0.03	0.03	0.04	0.09	0.1	0.2	0.1	0.08
X_STROOP W	0.05	0.08	0.2	0.7	0.09	0.2	0.1	0.1	0.1	0.2	0.6	0.6	0.3	0.3
X_STROOP C	0.005	0.005	0.08	0.1	0.004	0.01	0.02	0.01	0.02	0.02	0.1	0.08	0.01	0.02
X_STROOP CW ·	0.08	0.03	0.1	0.1	0.01	0.01	0.02	0.01	0.01	0.01	0.03	0.009	0.001	0.0009
X_WEIGL ·	0.03	0.02	0.2	0.09	0.06	0.03	0.05	0.03	0.03	0.05	0.1	0.1	0.07	0.06
X_LO V ·	0.5	0.4	0.4	0.2	0.9	0.7	0.6	0.5	0.8	0.9	0.9	0.7	1	0.6
X_BECK II -	0.2	0.7	0.06	0.4	0.3	0.6	0.8	1	0.7	0.5	0.8	0.5	0.9	0.5
X_HAMA -	0.4	0.2	0.6	0.4	0.6	0.5	0.4	0.2	0.5	0.4	0.8	0.7	0.6	0.9
	Y_R_Parietal -	Y_L_Parietal -	_R_Occipital -	<pre>'</pre>	_R_Temporal -	_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	.imbicCortex -	.imbicCortex -	R_Amygdala -	L_Amygdala -	lippocampus -	lippocampus -

- 0.8

- 0.6

- 0.4

- 0.2

AVLT R.I.	0.0003	0.0004	0.01	0.02	6e-05	0.0001	0.0001	0.0001	2e-05	8e-05	0.001	0.0006	0.0002	0.0001	- 0.015 - 0.012 - 0.010
VLT R.D. X_R	7e-06	4e-06	0.0005	0.0008	1e-07	3e-07	1e-05	4e-06	6e-06	1e-05	0.0005	0.0001	2e-06	1e-06	- 0.007 - 0.005 - 0.002
X_RA'	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	r_R_Hippocampus -	Y_L_Hippocampus -	-

W 400	0.04	0.06	0.2	0.6	0.07	0.1	0.08	0.08	0.1	0.2	0.6	0.5	0.2	0.3
00PXCS1R0	0.003	0.003	0.06	0.1	0.002	0.007	0.009	0.007	0.01	0.01	0.1	0.06	0.008	0.01
oP cw_str	0.06	0.02	0.1	0.1	0.006	0.006	0.01	0.006	0.008	0.007	0.02	0.005	0.0005	0.0005
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -

- 0.6

- 0.5 - 0.4 - 0.3 - 0.2 - 0.1

X_TOKEN TEST	8e-06	4e-06	0.006	0.003	6e-06	1e-05	8e-07	1e-06	4e -07	1e-06	0.006	0.001	2e-06	4e-07	- 0.006 - 0.005 - 0.004 - 0.003 - 0.002 - 0.001
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	•

X_WEIGL	0.02	0.01	0.2	0.06	0.04	0.02	0.03	0.02	0.02	0.03	0.1	0.09	0.05	0.04	- 0.16 - 0.12 - 0.12 - 0.10 - 0.08 - 0.06 - 0.04
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	

Correzione con Bonferroni

CK II	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.10 - 1.05 - 1.00
X_BE	1		1			1				1		P			- 0.95
	Y_R_Parietal	Y_L_Parietal	Y_R_Occipital	Y_L_Occipital	Y_R_Temporal	Y_L_Temporal	Y_R_Frontal	Y_L_Frontal	Y_R_LimbicCortex	Y_L_LimbicCortex	Y_R_Amygdala	Y_L_Amygdala	Y_R_Hippocampus	Y_L_Hippocampus	

X_COWAT	0.7	0.4	1	1	1	0.6	1	0.6	1	1	1	1	1	1	- 1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	•

															- 1.00
FW -	1	l	1	1	1	1	0.9	1	1	l	1	1	1	1	- 0.98
IGIT															- 0.96
^d ×															- 0.94
_	1	1	1	,	,	1	1		1	1	1	1	1	1	- 0.92
T BV	1	T	1	1	T	1	T	Т	I	T	1	T	1	T	- 0.90
DIGI															A Contraction
\mathbf{x}'	- tal	etal -	ital -	ital -	- Iral	oral -	- Ital	- Ital	tex -	tex -	ala -	ala -	- snd	- sno	
	Parie	Parie	occip	occip	empo	empo	Fror	Fror	cCor	cCor	nygd	nygd	cam	cam	
	, 	Ĺ	R_0	5	LT.	Ĕ	Ϋ́R	<u>_</u>	idmi	idmi	R_An	L_Ar	oddi	oddi	
			~	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	'≺	≻.			<u>_</u> R_L	7-1-1	~'	≻'	L H	L L	
										100			7	-	

															- 1.10
															- 1.05
FAB	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.00
×'															- 0.95
															- 0.90
	etal -	etal -	ital -	oital -	oral -	oral -	ntal -	ntal -	tex -	tex -	Iala -	lala -	- snd	- snd	0.50
	Pari	Pari	Occip	Occip	emp	emp	Froi	Fro	icCor	icCor	mygo	mygo	ocam	ocam	
	Υ. Έ	Ţ	Y_R		<u>ſ</u> ŖŢ	Υ ⁻ Γ-Τ	Ϋ́Η	- T	Limb	Limb	R_A	'L-A	Hippo	Hippo	
					6				Υ.R.	ר' ר	Υ.	<i>_</i>	YR	ר'	

X FAB

MA '	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.10 - 1.05 - 1.00
X_HA	1	•	1	1	1		1			1	1	1	1	1	- 0.95 - 0.90
	Y_R_Parietal	Y_L_Parietal	Y_R_Occipital	Y_L_Occipital	Y_R_Temporal	Y_L_Temporal	Y_R_Frontal	Y_L_Frontal	Y_R_LimbicCortex	Y_L_LimbicCortex	Y_R_Amygdala	Y_L_Amygdala	Y_R_Hippocampus	Y_L_Hippocampus	

V LIAMA

>0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.10 - 1.05 - 1.00
JLX			,	,	1	1	,	1	1	1	1	1	1	1	- 0.95 - 0.90
	Y_R_Parietal	Y_L_Parietal	Y_R_Occipital	Y_L_Occipital	Y_R_Temporal	Y_L_Temporal	Y_R_Frontal	Y_L_Frontal	Y_R_LimbicCortex	Y_L_LimbicCortex	Y_R_Amygdala	Y_L_Amygdala	Y_R_Hippocampus	Y_L_Hippocampus	

X_MMSE	0.005	0.0002	0.07	0.06	0.002	0.0004	0.2	0.03	0.07	0.02	1	0.2	0.03	0.002	- 1.0 - 0.8 - 0.6 - 0.4 - 0.2
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	-

X_MMSE -	0.03	0.001	0.3	0.3	0.008	0.002	0.9	0.1	0.3	0.1	1	0.8	0.1	0.008
X_TOKEN TEST	0.004	0.002	1	1	0.003	0.007	0.0004	0.0005	0.0002	0.0005	1	0.7	0.0009	0.0002
X_COWAT ·	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_RAVLT R.I.	0.2	0.2	1	1	0.03	0.06	0.06	0.07	0.009	0.03	0.6	0.3	0.1	0.07
X_RAVLT R.D.	0.003	0.002	0.2	0.4	4e-05	0.0001	0.004	0.002	0.003	0.004	0.2	0.05	0.0009	0.0004
X_FCSRT IFR	- 1	0.8	1	1	0.6	0.2	1	0.8	0.2	0.2	0.6	0.1	0.02	0.004
X_FCSRT ITR	- 1	1	1	1	1	1	1	1	1	1	1	1	0.7	1
X_FCSRT DFR	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_FCSRT ISC ·	- 1	0.06	1	1	1	1	1	1	1	1	1	1	1	1
X_DIGIT FW	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_DIGIT BW -	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_FAB	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_STROOP W	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_STROOP C	- 1	1	1	1	0.7	1	1	1	1	1	1	1	1	1
X_STROOP CW -	- 1	1	1	1	1	1	1	1	1	1	1	1	0.2	0.2
X_WEIGL ·	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_LO V -	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_BECK II -	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
X_HAMA -	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Y_R_Parietal -	Y_L_Parietal -	_R_Occipital -	_L_Occipital -	_R_Temporal -	_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	-imbicCortex	-imbicCortex	R_Amygdala -	L_Amygdala -	ippocampus -	lippocampus -

RAVLT R.I.	0.04	0.04	1	1	0.006	0.01	0.01	0.02	0.002	0.008	0.1	0.07	0.02	0.01
/LT R.D. X_F	0.0007	0.0004	0.05	0.09	9e-06	3e-05	0.001	0.0004	0.0006	0.001	0.06	0.01	0.0002	9e-05
X_RAI	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -

X_TOKEN TEST	0.0008	0.0004	0.6	0.3	0.0006	0.001	7e-05	0.0001	3e-05	9e-05	0.7	0.1	0.0002	4e-05	- 0. - 0. - 0 - 0 - 0 - 0
	Y_R_Parietal -	Y_L_Parietal -	Y_R_Occipital -	Y_L_Occipital -	Y_R_Temporal -	Y_L_Temporal -	Y_R_Frontal -	Y_L_Frontal -	Y_R_LimbicCortex -	Y_L_LimbicCortex -	Y_R_Amygdala -	Y_L_Amygdala -	Y_R_Hippocampus -	Y_L_Hippocampus -	•

X_TOKEN TEST

		_													- 1.0000
															- 0.9975
															- 0.9950
02110702	1	1	1	,		1	1	1	,	1		1	. 1	1	- 0.9925
, EIGL	1	-	T	T	I	T	1	1	1	1	1	1	1	1	- 0.9900
×'															- 0.9875
															- 0.9850
		. .	1												
	etal	etal	ital	oital	oral	oral	ntal	ntal	tex	tex	Jala	dala	snd	snd	
	Pari	Pari	ccip	ccip	dua	dua	Fro	Fro	COL	COL	ŋygc	ŋygc	cam	cam	
	۳,	Ľ	P.O.		-Te	Ĕ	Υ. Έ	, L	mbi	mbio	An	An	bodd	odd	
	~	-	'≺	≻'	Ϋ́	'≺	50 1		, Li	Ē	Υ.R	ילר	Ē	三	
									7	~			Ϋ́	7	

Allegato 2

Morbo di Alzheimer

Test Cognitivi vs Volume

Correlazione di Pearson

Correzione con Benjamini-Hochberg

X_MMSE -	0.9	0.8	0.8	0.6	0.5	1	0.8	0.4	0.7	1	0.9	0.4	0.5	1	0.7	1	1	0.9
X_TOKEN TEST	0.7	1	0.7	0.8	1	1	0.7	1	0.9	0.8	0.7	0.03	0.8	0.6	0.8	1	0.9	1
X_COWAT -	0.4	0.7	0.7	0.6	0.4	0.7	1	0.7	1	0.4	0.3	0.04	1	0.7	0.7	0.9	0.9	0.9
X_RAVLT R.I	0.3	0.7	0.9	0.5	0.3	0.4	0.9	0.8	0.8	0.05	0.7	0.06	0.8	0.2	0.7	1	0.9	1
X_RAVLT R.D	0.08	0.3	0.9	0.8	0.4	0.5	0.9	0.9	0.6	0.2	0.9	0.3	0.8	0.2	0.8	0.7	0.7	0.6
X_FCSRT IFR -	0.2	1	1	0.7	1	1	0.1	0.7	0.2	0.9	0.8	0.9	0.8	0.5	0.9	0.2	0.8	0.8
X_FCSRT ITR -	0.3	0.8	0.04	0.03	1	0.4	0.9	1	0.8	0.5	0.5	0.5	0.9	0.2	0.7	0.7	0.7	0.9
X_FCSRT DFR -	0.09	0.8	1	1	0.7	0.3	0.8	0.7	0.7	0.7	0.8	0.5	0.8	0.2	1	0.3	0.8	0.7
X_FCSRT ISC -	0.3	0.5	0.9	0.9	0.6	0.8	0.06	0.07	0.8	0.3	0.4	0.9	0.7	0.8	0.4	1	0.8	0.4
X_DIGIT FW -	0.5	0.8	0.3	0.6	0.7	0.7	0.8	0.8	0.8	0.5	0.8	0.7	1	0.6	0.8	1	0.7	0.7
X_DIGIT BW -	0.1	0.5	0.7	1	0.9	0.8	0.9	0.6	0.9	0.8	0.7	1	0.8	0.2	0.7	0.9	0.9	0.7
X_FAB -	0.9	0.7	0.9	0.9	0.3	0.9	0.2	0.3	0.7	1	0.6	0.6	0.8	0.9	0.4	0.8	0.7	0.8
X_STROOP W -	0.9	0.8	0.5	1	0.9	0.9	0.9	0.8	0.9	0.7	0.8	0.6	0.9	0.8	0.9	1	0.7	0.8
X_STROOP C -	0.7	0.9	0.8	0.5	1	0.6	0.5	0.8	0.8	0.2	0.5	0.2	0.7	0.4	0.6	0.4	0.8	0.8
X_STROOP CW -	0.7	0.6	0.7	0.9	0.9	0.7	0.9	0.9	0.8	0.7	0.9	0.3	1	1	0.8	0.5	0.8	0.9
X_WEIGL -	0.9	0.9	0.9	1	0.8	0.9	0.2	0.3	0.6	0.9	0.7	0.9	0.4	1	0.6	0.8	0.8	0.9
X_JLO V -	1	0.7	0.8	0.3	1	0.9	0.9	1	0.5	0.5	1	0.7	0.6	1	0.9	0.5	0.07	0.4
X_BECK II -	0.09	0.9	0.7	0.7	0.7	0.1	0.06	0.2	1	0.2	0.04	0.7	0.2	0.3	1	0.8	0.5	1
X_HAMA -	0.9	1	0.9	0.9	0.9	0.6	0.9	0.9	0.9	1	1	0.5	0.5	1	0.5	0.9	0.8	0.8
	Y_lh_bankssts	audalanteriorcingulate	lh_caudalmiddlefrontal	Y_lh_cuneus	Y_lh_entorhinal	Y_lh_fusiform	Y_Ih_inferiorparietal	Y_lh_inferiortemporal	Y_lh_isthmuscingulate	Y_lh_lateraloccipital	_lh_lateralorbitofrontal	Y_lh_lingual	_lh_medialorbitofrontal	Y_lh_middletemporal	Y_lh_parahippocampal	Y_lh_paracentral	Y_lh_parsopercularis	Y_lh_parsorbitalis

- 0.6

- 0.4

X_MMSE -	0.5	0.3	0.8	0.9	1	0.9	0.8	0.9	1	0.8	1	1	0.5	0.2	0.9	0.8	0.9	0.9
X_TOKEN TEST	0.8	0.3	0.9	0.8	0.6	0.8	0.7	0.5	0.7	0.5	0.7	1	0.9	0.7	0.7	0.7	0.7	0.8
X_COWAT -	0.5	0.09	0.9	1	0.3	0.9	0.5	0.3	0.5	0.5	0.2	0.9	0.9	1	0.7	1	0.2	0.8
X_RAVLT R.I	0.8	0.3	0.7	0.7	0.6	0.7	0.3	0.4	0.8	0.8	0.2	0.9	0.5	0.4	0.5	0.8	0.3	0.6
X_RAVLT R.D	0.5	0.5	0.7	1	0,8	0.3	0.6	0.4	0.7	0.9	0.3	0.8	0.8	0.5	0.3	0.9	0.7	0.8
X_FCSRT IFR -	0.9	0.9	0.7	1	1	0.08	0.3	0.9	0.8	0.03	0.2	0.9	0.3	0.3	0.8	0.7	1	0.6
X_FCSRT ITR -	0.9	0.2	0.9	0.7	0.6	0.6	0.2	0.5	0.3	1	0.09	0.7	0.2	0.5	0.3	0.8	0.2	0.8
X_FCSRT DFR -	0.9	1	0.5	0.7	0.7	0.8	0.2	0.2	0.6	0.9	0.2	0.5	1	0.9	0.3	0.6	0.6	0.9
X_FCSRT ISC -	0.6	0.7	0.5	0.8	0.7	0.8	0.6	0.5	0.6	0.3	0.3	0.3	0.8	1	0.8	0.1	0.5	0.4
X_DIGIT FW -	0.7	0.5	0.8	0.8	0.6	0.8	0.5	0.7	0.6	0.3	0.9	0.5	0.9	0.4	0.9	0.6	0.9	0.7
X_DIGIT BW -	0.2	1	0.3	0.3	0.5	1	1	1	0.8	0.5	0.3	1	1	1	0.7	0.7	0.8	0.8
X_FAB -	1	0.3	1	0.6	0.6	0.5	0.7	0.6	0.6	0.3	0.7	0.8	0.5	0.5	0.3	0.6	0.7	0.9
X_STROOP W -	0.3	0.8	0.6	0.9	0.9	0.2	0.7	0.9	0.5	0.2	0.9	0.9	0.8	0.3	0.4	0.6	0.9	0.7
X_STROOP C -	0.8	0.5	1	0.6	0.7	0.9	0.6	0.8	0.8	0.9	0.4	0.5	0.9	0.5	0.8	0.9	0.4	0.6
X_STROOP CW -	0.8	1	0.9	0.7	0.7	0.4	0.9	0.8	1	1	1	0.8	0.9	0.9	0.9	0.7	1	0.8
X_WEIGL -	0.9	0.8	0.9	0.9	0.3	0.6	1	0.6	0.9	0.1	0.7	1	0.5	1	0.7	0.9	1	1
X_JLO V -	0.8	1	0.5	0.5	1	0.4	1	0.4	0.4	0.9	0.9	1	0.7	0.7	0.4	0.7	0.8	0.7
X_BECK II -	0.5	0.8	0.8	1	0.8	0.9	0.6	0.8	0.5	1	0.7	0.8	0.9	0.4	0.9	0.3	0.2	0.3
X_HAMA -	0.06	1	0.7	0.8	0.9	1	0.7	1	0.7	0.6	0.6	0.8	0.8	0.5	0.9	0.9	1	1
	Y_lh_parstriangularis -	Y_lh_pericalcarine -	Y_lh_postcentral -	Y_lh_posteriorcingulate -	Y_lh_precentral -	Y_Ih_precuneus -	ostralanteriorcingulate -	.h_rostralmiddlefrontal	Y_lh_superiorfrontal .	Y_Ih_superiorparietal -	Y_lh_superiortemporal -	Y_lh_supramarginal -	Y_lh_frontalpole -	Y_lh_temporalpole -	_h_transversetemporal -	- r_lh_insula	Y_BrainSegVolNotVent -	Y_etiv.

- 0.6

- 0.4

X_MMSE -	- 1	0.1	0.7	0.6	0.9	0.8	1	0.6	0.8	0.3	0.9	0.5	0.7	0.9	0.9	0.6	0.6	1
X_TOKEN TEST -	0.7	0.3	0.8	0.5	0.9	0.8	0.9	0.7	0.5	0.6	0.8	0.1	0.9	0.6	0.3	0.3	0.9	0.9
X_COWAT -	0.7	0.6	0.7	0.3	0.7	0.6	0.5	0.4	0.2	0.06	0.1	0.1	1	0.2	0.1	0.5	0.8	0.7
X_RAVLT R.I	0.9	0.1	1	0.3	0.9	0.5	0.4	0.2	0.7	0.004	0.2	0.04	1	0.2	0.02	0.7	0.8	0.3
X_RAVLT R.D	0.7	0.3	0.9	0.5	0.9	0.6	0.7	0.3	1	0.02	0.4	0.3	1	0.3	0.2	0.8	0.8	0.6
X_FCSRT IFR -	0.6	0.5	0.4	0.9	0.8	0.9	0.9	0.4	0.9	0.5	0.6	0.7	0.8	0.6	0.5	0.7	0.9	1
X_FCSRT ITR -	0.5	1	0.8	0.1	0.2	0.2	0.8	0.05	0.6	0.1	0.4	0.3	0.9	0.6	0.4	0.4	1	1
X_FCSRT DFR -	0.4	0.9	0.9	0.6	0.9	0.4	0.8	0.2	0.6	0.02	0.6	0.5	0.9	0.1	0.1	0.7	0.6	0.8
X_FCSRT ISC -	0.5	1	0.8	0.7	0.6	0.7	0.06	0.7	1	0.5	0.4	0.9	0.4	0.6	0.7	0.7	1	0.09
X_DIGIT FW -	0.8	0.8	0.8	0.8	1	0.8	1	0.8	0.9	0.8	0.9	0.5	0.8	0.8	1	0.7	0.9	0.5
X_DIGIT BW -	- 1	0.5	0.3	0.5	0.7	0.8	0.7	0.2	1	0.6	1	0.9	1	0.3	0.6	0.9	0.4	0.4
X_FAB -	- 1	0.4	0.5	0.8	0.7	0.9	0.5	0.8	0.8	0.4	0.1	0.8	1	0.6	0.08	1	0.9	0.4
X_STROOP W -	0.6	0.5	0.6	1	1	0.8	0.8	1	0.9	0.8	0.9	0.7	0.9	0.7	0.3	0.9	0.7	0.7
X_STROOP C -	0.3	0.7	1	0.4	0.9	0.2	0.1	0.3	0.9	0.08	0.4	0.5	0.4	0.6	0.2	0.2	0.8	0.7
X_STROOP CW -	0.6	0.4	0.9	0.6	0.9	0.5	0.9	1	0.5	0.2	0.8	0.4	0.8	0.6	0.4	0.9	0.9	1
X_WEIGL -	0.9	0.2	1	0.9	1	1	0.9	1	0.8	0.9	0.8	1	0.9	0.7	0.3	1	0.8	0.5
X_LO V -	0.8	0.6	0.9	0.5	0.9	0.8	0.6	0.6	0.6	0.7	0.9	0.8	0.8	1	0.9	0.9	0.1	1
X_BECK II -	0.7	0.9	0.8	0.8	0.4	0.5	0.8	0.3	0.6	0.9	0.07	0.7	0.1	0.6	0.7	0.5	0.7	0.3
X_HAMA -	- 1	0.9	1	0.6	1	0.9	1	0.9	0.7	0.7	1	0.6	0.4	0.8	1	0.6	0.8	0.3
	Y_rh_bankssts	audalanteriorcingulate	rh_caudalmiddlefrontal	Y_rh_cuneus	Y_rh_entorhinal	Y_rh_fusiform	Y_rh_inferiorparietal	Y_rh_inferiortemporal	Y_rh_isthmuscingulate	Y_rh_lateraloccipital	_rh_lateralorbitofrontal	Y_rh_lingual	_rh_medialorbitofrontal	Y_rh_middletemporal	Y_rh_parahippocampal	Y_rh_paracentral	Y_rh_parsopercularis	Y_rh_parsorbitalis

- 0.6

- 0.2

X_MMSE -	0.7	0.7	0.4	0.2	0.7	0.7	0.8	0.6	0.4	0.6	0.7	0.4	0.9	1	0.6	1		
X_TOKEN TEST -	0.7	0.6	0.8	0.9	0.8	0.8	0.5	0.7	0.4	0.7	0.7	0.8	1	1	0.5	0.8		~
X_COWAT -	0.4	0.3	0.9	0.8	0.7	1	0.7	0.8	0.8	0.8	0.5	0.8	1	0.8	0.6	0.8	- 0.	9
X_RAVLT R.I	0.6	0.5	0.8	0.8	0.9	0.6	1	0.3	0.7	0.8	0.5	0.9	0.9	0.8	0.7	0.8		
X_RAVLT R.D	0.2	0.6	0.7	0.5	0.8	0.5	0.9	0.2	0.8	0.5	0.4	0.6	0.8	0.9	0.3	0.8	- 0.	8
X_FCSRT IFR -	0.6	0.9	0.2	0.8	0.6	0.1	0.9	0.8	1	0.3	0.8	0.3	0.8	0.5	0.9	0.5		
X_FCSRT ITR -	- 1	0.1	1	0.6	0.9	1	0.4	0.4	0.3	1	0.3	0.9	0.2	0.6	0.6	0.4	- 0.	7
X_FCSRT DFR -	0.3	1	0.5	1	0.6	0.8	0.6	0.1	0.8	0.8	0.2	0.8	0.9	0.4	0.7	0.4		
X_FCSRT ISC -	0.9	0.2	0.2	0.5	0.5	0.4	0.8	0.8	0.5	0.1	0.6	0.2	0.7	0.7	0.8	0.3	- 0.	6
X_DIGIT FW -	0.2	0.9	0.6	0.4	0.3	0.9	0.8	0.2	0.4	0.8	1	0.9	0.8	0.5	0.9	0.7		
X_DIGIT BW -	0.6	0.6	0.5	0.7	0.5	0.7	0.9	0.6	0.7	0.5	0.4	0.8	1	0.5	0.5	0.6	- 0.	5
X_FAB -	0.8	0.9	0.6	0.5	0.7	0.8	0.8	0.8	0.6	1	0.4	0.9	0.8	0.5	0.9	1		
X_STROOP W -	1	0.9	0.8	0.4	1	0.9	0.8	0.9	0.7	0.4	0.8	1	0.7	0.6	0.6	0.6	- 0.	.4
X_STROOP C -	0.5	0.9	1	1	0.9	1	0.8	0.6	0.5	0.8	0.3	1	0.2	0.6	0.6	0.4		
X_STROOP CW -	0.3	0.8	0.3	0.7	0.4	0.5	0.8	0.8	1	0.9	0.9	0.7	0.5	0.8	0.8	0.8	- 0.	.3
X_WEIGL -	0.9	0.9	1	0.6	0.6	0.8	0.7	0.9	0.9	0.5	0.9	0.8	0.6	0.5	0.8	0.7		
X_LO V -	0.2	0.9	0.3	0.6	1	0.5	0.8	0.5	0.5	0.9	0.8	0.9	0.5	0.8	0.4	0.8	- 0	2
X_BECK II -	0.8	1	0.5	0.8	0.7	1	0.8	0.3	0.5	0.9	0.6	1	0.8	1	0.8	0.3	0.	2
X_HAMA -	0.1	0.6	0.3	0.4	0.3	0.8	1	0.2	0.5	0.3	0.9	0.8	1	0.7	0.3	0.9		
	Y_rh_parstriangularis -	Y_rh_pericalcarine -	Y_rh_postcentral -	Y_rh_posteriorcingulate -	Y_rh_precentral -	Y_rh_precuneus .	ostralanteriorcingulate -	rh_rostralmiddlefrontal -	Y_rh_superiorfrontal -	Y_rh_superiorparietal -	Y_rh_superiortemporal -	Y_rh_supramarginal -	Y_rh_frontalpole -	Y_rh_temporalpole -	_rh_transversetemporal -	Y_rh_insula .		

Correzione con Bonferroni

																			3 3 6 6
X_MMSE -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.100
X_TOKEN TEST -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_COWAT -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.075
X_RAVLT R.I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_RAVLT R.D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.050
X_FCSRT IFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FCSRT ITR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FCSRT DFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.025
X_FCSRT ISC -	1	1	1	16	1	1	1	1	1	1	1	1	ĩ	1	1	1	1	1	
X_DIGIT FW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.000
X_DIGIT BW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FAB -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.975
X_STROOP W -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_STROOP C -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_STROOP CW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.950
X_WEIGL -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_LO V -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.925
X_BECK II -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_HAMA -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.900
	Y_lh_bankssts -	caudalanteriorcingulate -	_lh_caudalmiddlefrontal -	۲_h_cuneus -	Y_lh_entorhinal -	Y_lh_fusiform -	Y_lh_inferiorparietal -	Y_lh_inferiortemporal -	Y_lh_isthmuscingulate -	Y_lh_lateraloccipital -	_lh_lateralorbitofrontal -	Y_lh_lingual -	_lh_medialorbitofrontal -	Y_lh_middletemporal -	Y_lh_parahippocampal -	Y_lh_paracentral -	Y_lh_parsopercularis -	Y_lh_parsorbitalis -	0.500

X MMSE -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.100
– X_TOKEN TEST -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_COWAT -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.075
X_RAVLT R.I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_RAVLT R.D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.050
X_FCSRT IFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FCSRT ITR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FCSRT DFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.025
X_FCSRT ISC -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_DIGIT FW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.000
X_DIGIT BW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_FAB -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.975
X_STROOP W -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_STROOP C -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_STROOP CW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.950
X_WEIGL -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_LO V -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.925
X_BECK II -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_HAMA -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.900
	Y_lh_parstriangularis -	Y_lh_pericalcarine -	Y_lh_postcentral -	Y_lh_posteriorcingulate -	Y_lh_precentral -	Y_Ih_precuneus -	ostralanteriorcingulate -	lh_rostralmiddlefrontal -	Y_lh_superiorfrontal .	Y_Ih_superiorparietal -	Y_lh_superiortemporal -	Y_lh_supramarginal -	Y_lh_frontalpole -	Y_lh_temporalpole -	_lh_transversetemporal -	Y_lh_insula -	Y_BrainSegVolNotVent -	Y_eTIV -	0.500

																			-	1 00
X_MMSE -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1.00
X_TOKEN TEST -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
x_cowat -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.95
X_RAVLT R.I	1	1	1	1	1	1	1	1	1	0.6	1	1	1	1	1	1	1	1		
X_RAVLT R.D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_FCSRT IFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.90
X_FCSRT ITR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_FCSRT DFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.85
X_FCSRT ISC -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_DIGIT FW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_DIGIT BW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.80
X_FAB -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_STROOP W -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0.75
X_STROOP C -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0.75
X_STROOP CW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_WEIGL -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.70
X_LO V -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_BECK II -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_HAMA -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	0.65
	Y_rh_bankssts -	caudalanteriorcingulate -	rh_caudalmiddlefrontal -	Y_rh_cuneus -	Y_rh_entorhinal -	Y_rh_fusiform -	Y_rh_inferiorparietal -	Y_rh_inferiortemporal -	Y_rh_isthmuscingulate -	Y_rh_lateraloccipital -	_rh_lateralorbitofrontal -	Y_rh_lingual -	_rh_medialorbitofrontal -	Y_rh_middletemporal -	Y_rh_parahippocampal -	Y_rh_paracentral -	Y_rh_parsopercularis -	Y_rh_parsorbitalis -		

V MMCF	1	1	1	1	1	-	1		1	1	1	1			1	1		- 1.100
X_MMSE -	1	1	-	-	1		-	-	-	1	-	-	-	-	1	-		
X_TOKEN TEST -	-	-	-	1	1	+	1	-	-	-	1	1	-	-	-	-		- 1 075
X_COWAT -	1	-	1	+	1	+	+	1	+	1	1	1	1	1	1	1		- 1.075
X_RAVLT R.I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_RAVLT R.D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 1.050
X_FCSRT IFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_FCSRT ITR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1.025
X_FCSRT DFR -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 1.025
X_FCSRT ISC -	1	1	1	1	1	ì	1	1	1	1	1	1	1	1	1	1		
X_DIGIT FW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 1.000
X_DIGIT BW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_FAB -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0.075
X_STROOP W -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 0.975
X_STROOP C -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_STROOP CW -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 0.950
X_WEIGL -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_LO V -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		- 0.925
X_BECK II -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_HAMA -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	Y_rh_parstriangularis -	Y_rh_pericalcarine -	Y_rh_postcentral	Y_rh_posteriorcingulate -	Y_rh_precentral -	Y_rh_precuneus	rostralanteriorcingulate -	rh_rostralmiddlefrontal -	Y_rh_superiorfrontal	Y_rh_superiorparietal -	Y_rh_superiortemporal -	Y_rh_supramarginal -	Y_rh_frontalpole	Y_rh_temporalpole -	rh_transversetemporal -	Y_rh_insula -		- 0.900

Allegato 3

Morbo di Alzheimer

Dati di Uptake vs Volume

Correlazione di Pearson

Correzione con Benjamini-Hochberg

X_R_Parietal -	0.7	0.4	0.8	0.9	0.8	0.9	1	0.8	0.6	0.6	0.8	0.2	0.8	0.9	0.6	0.9	0.1	0.8		
X_L_Parietal -	0.9	0.5	0.8	1	0.6	1	0.8	0.8	0.4	0.8	1	0.3	0.6	1	0.3	1	0.2	1		
X_R_Occipital -	0.5	0.9	0.4	0.9	0.9	0.4	1	0.9	0.8	0.3	0.7	0.6	1	1	1	0.8	0.1	1		- 0.8
X_L_Occipital -	0.8	0.6	0.4	0.8	0.8	0.5	0.8	0.9	0.4	0.8	0.9	0.8	0.7	0.6	0.7	0.6	0.4	0.7		0.0
X_R_Temporal -	0.6	0.8	0.9	0.9	0.9	0.4	1	1	0.6	0.3	0.6	0.3	0.9	0.7	0.9	0.8	0.05	1		
X_L_Temporal -	0.9	0.9	0.7	0.8	0.6	0.8	0.8	0.8	0.4	0.7	0.8	0.3	0.3	1	0.6	1	0.3	0.9		- 0.6
X_R_Frontal -	0.8	0.8	0.7	0.8	0.7	0.8	0.9	0.9	0.6	0.7	1	0.2	0.8	1	0.7	1	0.3	0.8		0.0
X_L_Frontal -	0.9	1	0.8	0.8	0.6	0.8	0.8	1	0.5	0.6	1	0.2	0.7	1	0.5	1	0.3	0.9		
X_R_LimbicCortex -	0.6	0.6	1	1	0.9	0.4	0.8	0.8	1	0.3	0.6	0.3	1	0.4	0.9	0.8	0.06	0.4		- 0.4
X_L_LimbicCortex -	0.7	0.6	1	0.9	0.8	0.5	0.8	0.8	1	0.4	0.8	0.4	0.9	0.5	0.7	0.8	0.1	0.5		
X_R_Amygdala -	0.6	0.3	0.8	0.3	0.7	0.1	0.9	1	1	0.2	0.8	0.2	0.7	0.5	0.8	0.6	0.2	0.6		
X_L_Amygdala	0.5	0.4	1	0.8	0.8	0.4	0.9	1	1	0.5	1	0.4	0.8	0.6	1	0.8	0.5	0.8		- 0.2
X_R_Hippocampus -	0.2	0.5	1	0.5	0.9	0.2	0.9	0.8	1	0.3	0.6	0.2	1	0.3	1	0.4	0.1	0.4		
X_L_Hippocampus -	0.2	0.5	0.9	1	0.9	0.5	0.8	0.9	0.9	0.8	0.9	0.3	0.9	0.3	0.7	0.8	0.5	0.7		
	Y_lh_bankssts -	caudalanteriorcingulate -		Y_lh_cuneus -	Y_lh_entorhinal -	Y_lh_fusiform -	Y_lh_inferiorparietal -	Y_lh_inferiortemporal -	Y_lh_isthmuscingulate -	Y_lh_lateraloccipital -	r_lh_lateralorbitofrontal -	Y_lh_lingual -	_lh_medialorbitofrontal -	Y_lh_middletemporal -	Y_lh_parahippocampal -	Y_lh_paracentral -	Y_lh_parsopercularis -	Y_lh_parsorbitalis -		

X_R_Parietal	0.6	0.9	0.8	1	0.9	1	0.9	1	0.9	0.3	1	0.9	0.9	0.05	0.9	0.9	0.9	1	
X_L_Parietal	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.3	1	0.9	1	0.1	0.9	0.9	1	0.8	
X_R_Occipital	0.4	1	0.9	0.8	1	0.9	1	1	0.8	0.4	0.9	0.9	0.9	0.4	0.8	1	0.9	0.9	
X_L_Occipital	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.8	0.6	0.4	1	1	1	0.8	0.5	0.9	0.9	0.6	
X_R_Temporal	0.2	0.8	0.9	0.6	0.9	0.9	0.9	0.9	1	0.7	0.7	0.7	1	0.3	0.9	0.9	0.7	1	
X_L_Temporal	0.6	0.9	0.9	0.9	0.9	1	0.9	0.9	0.6	0.5	0.8	0.5	0.9	0.4	0.8	0.8	1	0.6	
X_R_Frontal	0.8	0.9	0.9	0.9	1	0.9	1	1	0.8	0.3	0.9	0.9	0.9	0.3	0.9	1	1	1	
X_L_Frontal	0.8	1	0.7	0.9	0.9	0.9	1	1	0.8	0.3	0.9	1	0.9	0.5	0.9	1	1	0.9	
X_R_LimbicCortex	0.3	0.9	0.8	0.3	0.9	0.6	0.4	0.7	1	0.8	0.3	0.8	0.9	0.6	0.6	0.8	0.7	1	
X_L_LimbicCortex	0.4	0.9	0.8	0.3	0.8	0.6	0.5	0.9	1	0.9	0.3	0.6	0.9	0.6	0.8	0.8	0.8	1	
X_R_Amygdala	0.2	0.5	0.8	0.03	0.9	0.5	0.2	0.8	0.8	0.9	0.2	0.8	0.9	0.3	0.7	0.8	0.9	0.9	
X_L_Amygdala	0.4	0.8	1	0.1	1	0.7	0.6	1	0.9	1	0.2	0.5	0.6	0.3	1	0.9	1	0.6	
X_R_Hippocampus	0.2	0.4	0.4	0.1	0.7	0.4	0.4	0.8	0.8	0.7	0.05	0.5	0.9	0.3	0.7	0.8	0.6	1	
X_L_Hippocampus	0.2	0.9	0.9	0.1	0.8	0.6	0.5	1	1	0.9	0.08	0.2	0.7	0.4	0.9	0.8	0.9	0.9	
	Y_lh_parstriangularis -	Y_lh_pericalcarine -	Y_lh_postcentral -	Y_lh_posteriorcingulate -	Y_lh_precentral -	Y_Ih_precuneus -	ostralanteriorcingulate -	lh_rostralmiddlefrontal -	Υ_lh_superiorfrontal -	Y_lh_superiorparietal -	Y_lh_superiortemporal -	Y_lh_supramarginal -	Y_lh_frontalpole -	Y_lh_temporalpole -	_h_transversetemporal -	Y_lh_insula -	Y_BrainSegVolNotVent -	Y_eTIV -	

- 0.6

- 0.4

X_R_Parietal - 0.	9 0.2	0.9	0.4	0.3	0.9	0.9	0.4	1	0.7	0.6	0.3	0.6	0.9	0.6	0.7	0.1	0.6		
X_L_Parietal - 0.	9 0.3	1	0.7	0.2	1	0.8	0.4	1	0.7	0.9	0.6	0.8	0.9	0.4	0.7	0.1	1		
X_R_Occipital -	0.2	0.6	0.3	1	1	1	0.7	0.9	0.5	0.7	0.7	0.4	0.9	0.6	0.7	0.3	0.5		- 0.8
X_L_Occipital - 0.	6 0.3	0.3	0.8	0.4	0.8	0.8	0.3	0.7	0.7	0.9	1	0.8	0.6	0.4	0.8	0.4	0.8		0.0
X_R_Temporal -	0.3	0.8	0.5	0.6	0.7	0.9	0.8	0.9	0.2	0.6	0.6	0.4	1	0.7	0.5	0.4	0.7		
X_L_Temporal -	0.5	1	0.7	0.4	1	0.9	0.7	0.8	0.2	1	0.7	0.9	0.9	0.5	0.7	0.5	1		-06
X_R_Frontal -	0.6	1	0.8	0.2	1	0.8	0.5	0.8	0.8	1	0.3	0.7	0.9	0.8	0.9	0.1	0.8		0.0
X_L_Frontal -	0.7	1	0.8	0.2	1	0.9	0.6	0.8	0.7	1	0.4	0.6	1	0.8	0.9	0.09	0.8		
X_R_LimbicCortex - 0.	6 0.9	0.5	0.4	0.2	0.7	0.9	1	0.4	0.5	0.6	0.4	0.6	0.6	1	0.6	0.2	0.7		- 0.4
X_L_LimbicCortex - 0.	5 0.9	0.5	0.6	0.2	0.8	0.8	1	0.5	0.5	0.7	0.5	0.7	0.6	1	0.6	0.2	0.8		0.1
X_R_Amygdala - ¹	. 1	0.6	0.07	0.4	0.6	0.7	1	0.8	0.1	0.7	0.4	0.6	0.9	0.8	0.3	0.7	0.2		
X_L_Amygdala - 0.	9 0.9	0.9	0.3	0.5	0.8	0.6	0.8	0.8	0.3	1	0.6	0.9	0.8	0.7	0.7	0.9	0.6		- 0.2
X_R_Hippocampus - 0.	7 0.9	0.6	0.06	0.4	0.4	0.6	0.8	0.7	0.2	0.4	0.4	0.8	0.7	0.7	0.09	0.2	0.5		0.2
X_L_Hippocampus - 0.	6 0.8	0.8	0.2	0.5	0.9	0.7	0.7	0.7	0.3	0.7	0.6	1	0.5	0.9	0.5	0.6	0.8		
Y rh hankssts		_rh_caudalmiddlefrontal _	Y_rh_cuneus -	Y_rh_entorhinal -	Y_rh_fusiform -	Y_rh_inferiorparietal -	Y_rh_inferiortemporal -	Y_rh_isthmuscingulate -	Y_rh_lateraloccipital -	<pre>'</pre>	Y_rh_lingual -	_rh_medialorbitofrontal -	Y_rh_middletemporal -	Y_rh_parahippocampal -	Y_rh_paracentral -	Y_rh_parsopercularis -	Y_rh_parsorbitalis -		

X_R_Parietal	0.7	0.4	0.8	0.7	0.8	1	0.3	1	0.9	0.7	0.8	0.8	0.9	0.8	0.7	0.9
X_L_Parietal	0.4	0.9	0.5	0.6	0.7	0.9	0.3	0.9	0.9	0.4	0.8	0.5	0.8	0.7	0.8	0.9
X_R_Occipital	0.6	0.6	0.7	0.8	0.7	0.8	0.2	0.9	0.9	0.5	0.9	0.5	0.8	0.6	0.6	0.9
X_L_Occipital	0.7	1	0.4	0.8	0.5	0.8	0.06	0.9	0.7	0.4	0.5	0.2	0.8	0.6	1	0.9
X_R_Temporal	0.4	0.5	0.9	0.8	0.9	0.9	0.2	0.9	0.9	0.8	0.9	0.8	1	0.8	0.7	0.8
X_L_Temporal ·	0.2	0.8	0.6	0.8	0.8	0.9	0.4	0.9	0.9	0.5	0.7	0.5	0.9	0.4	0.9	1
X_R_Frontal	0.4	0.7	0.6	0.6	0.5	0.9	0.2	0.9	0.8	0.4	0.8	0.5	0.8	0.8	0.8	1
X_L_Frontal	0.2	0.9	0.6	0.6	0.6	0.9	0.2	0.9	0.9	0.4	0.8	0.4	0.8	0.7	0.7	1
X_R_LimbicCortex	0.2	0.7	0.9	0.9	1	1	0.7	0.8	0.8	0.7	0.8	0.7	0.8	0.9	0.5	0.6
X_L_LimbicCortex	0.2	0.8	0.8	0.9	1	1	0.7	0.8	0.8	0.7	0.9	0.7	0.8	0.8	0.6	0.7
X_R_Amygdala	0.5	0.3	0.9	0.2	0.9	0.9	0.9	0.5	0.2	0.9	0.9	0.6	1	0.8	0.8	0.8
X_L_Amygdala	0.5	0.8	0.4	0.4	0.9	0.9	0.6	0.6	0.4	0.7	0.8	0.6	0.7	0.3	0.8	0.9
X_R_Hippocampus	0.4	0.2	0.9	0.3	0.9	0.8	0.9	0.6	0.3	0.9	0.8	0.9	0.9	0.8	0.5	0.8
X_L_Hippocampus ·	0.4	0.6	0.6	0.5	1	1	0.8	0.6	0.3	0.7	0.9	0.7	0.6	0.4	0.8	0.8
	Y_rh_parstriangularis -	Y_rh_pericalcarine -	Y_rh_postcentral -	Y_rh_posteriorcingulate -	Y_rh_precentral -	Y_rh_precuneus -	ostralanteriorcingulate -	rh_rostralmiddlefrontal -	Y_rh_superiorfrontal -	Y_rh_superiorparietal -	Y_rh_superiortemporal -	Y_rh_supramarginal -	Y_rh_frontalpole -	Y_rh_temporalpole -	.rh_transversetemporal -	Y_rh_insula -

- 0.6

- 0.4

- 0.2
Correzione con Bonferroni

																				0.0
X_R_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.1	.00
X_L_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.0)75
X_R_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_L_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.0)50
X_R_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_L_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.0)25
X_R_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-10	000
X_L_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.0	000
X_R_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.9	975
X_L_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_R_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.9	950
X_L_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
X_R_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.9	925
X_L_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.6	200
	Y_lh_parstriangularis -	Y_lh_pericalcarine -	Y_lh_postcentral -	Y_lh_posteriorcingulate -	Y_lh_precentral -	Y_lh_precuneus -	ostralanteriorcingulate -	lh_rostralmiddlefrontal -	Y_lh_superiorfrontal -	Y_Ih_superiorparietal -	Y_lh_superiortemporal -	Y_lh_supramarginal -	Y_lh_frontalpole -	Y_lh_temporalpole -		Y_lh_insula -	Y_BrainSegVolNotVent -	Y_eTIV -	- 0.3	,00

X_R_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.100
X_L_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.075
X_R_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.050
X_R_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.025
X_R_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1 000
X_L_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.000
X_R_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.975
X_L_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_R_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.950
X_L_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_R_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.925
X_L_Hippocampus -	ï	1	1	1	1	ĩ	1	1	1	1	1.	1	1	ĩ	1	1	ï	1	- 0 900
	Y_lh_bankssts -	caudalanteriorcingulate -	lh_caudalmiddlefrontal -	Y_lh_cuneus -	Y_lh_entorhinal -	Y_lh_fusiform -	Y_lh_inferiorparietal -	Y_lh_inferiortemporal -	Y_lh_isthmuscingulate -	Y_lh_lateraloccipital -	_lh_lateralorbitofrontal -	Y_lh_lingual -	_lh_medialorbitofrontal -	Y_Ih_middletemporal -	Y_lh_parahippocampal -	Y_lh_paracentral -	Y_lh_parsopercularis -	Y_lh_parsorbitalis -	- 0.900

																			1 1 0 0
X_R_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.100
X_L_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.075
X_R_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.050
X_R_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.025
X_R_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1 000
X_L_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.000
X_R_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.975
X_L_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_R_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.950
X_L_Amygdala -	1	1	1	1	1	1	1	1	ĩ	1	1	1	1	1	1	1	1	1	
X_R_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.925
X_L_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0 900
	Y_rh_bankssts -	caudalanteriorcingulate -	rh_caudalmiddlefrontal -	Y_rh_cuneus -	Y_rh_entorhinal -	Y_rh_fusiform -	Y_rh_inferiorparietal -	Y_rh_inferiortemporal -	Y_rh_isthmuscingulate -	Y_rh_lateraloccipital -	<pre>'</pre>	Y_rh_lingual -	_rh_medialorbitofrontal -	Y_rh_middletemporal -	Y_rh_parahippocampal -	Y_rh_paracentral -	Y_rh_parsopercularis -	Y_rh_parsorbitalis -	- 0.900

																	- 1 100
X_R_Parietal -	1	1	1	ļ	1	1	1	1	ļ	1	1	1	1	ļ	1	1	- 1.100
X_L_Parietal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1.075
X_R_Occipital -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Occipital -	1	1	1	1	1	1	l	1	1	1	1	l	1	1	ı	1	- 1.050
X_R_Temporal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_L_Temporal -	1	1	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	- 1.025
X_R_Frontal -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 000
X_L_Frontal -	1	1	1	1	1	1	1	1	1	1	l	1	1	1	1	1	- 1.000
X_R_LimbicCortex -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	l	1	- 0.975
X_L_LimbicCortex -	1	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_R_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.950
X_L_Amygdala -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
X_R_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.925
X_L_Hippocampus -	1	1	1	1	1	1	1	1	1	1	1	1	1	ï	1	1	0.000
	Y_rh_parstriangularis -	Y_rh_pericalcarine -	Y_rh_postcentral -	Y_rh_posteriorcingulate -	Y_rh_precentral -	Y_rh_precuneus -	ostralanteriorcingulate -	rh_rostralmiddlefrontal -	Y_rh_superiorfrontal -	Y_rh_superiorparietal -	Y_rh_superiortemporal -	Y_rh_supramarginal -	Y_rh_frontalpole -	Y_rh_temporalpole -	rh_transversetemporal -	Y_rh_insula -	

Allegato 4

Morbo di Parkinson

Test Cognitivi vs Dati di Uptake

Correlazione di Pearson

																					-										-	1.0
X_UPDRS I -	1	3e-09	5e-06	8e-06	0.06	0.0002	0.5	1	0.7	0.07	9e-05	0.05	0.3	0.5	0.05	0.08	0.04	0.03	0.06	0.4	0.4	0.2	0.05	0.04	0.09	0.02	0.1	0.5	0.9	/ I I I		
X_UPDRS II -	0.6	1	4e-12	2e-06	0.003	0.04	0.5	0.3	0.3	0.4	0.009	0.03	0.7	0.8	0.01	0.4	0.1	0.2	0.7	0.7	0.3	0.3	0.1	0.1	0.2	0.03	0.09	0.8	0.2			
X_UPDRS III -	0.6		1	7e-10	6e-05	0.2	0.2	0.006	0.1	0.9	0.05	0.07	0.2	0.2	0.04	0.8	0.04	0.05	0.2	0.2	0.2	0.02	0.02	0.07	0.2	0.03	0.1	0.7	0.4			
X_UPDRS IV -	0.6	0.6	0.6	1	0.02	0.03	0.4	0.06	0.07	0.4	0.007	0.01	0.1	0.5	0.4	0.6	0.0008	0.02	0.4	0.4	0.6	0.04	0.004	0.07	0.2	0.009	0.04	0.5	0.8		-	0.8
X_MMSE -	-0.2	-0.3	-0.3	-0.02	1	1	0.01	0.02	0.3	0.3	0.1	0.02	0.4	0.2	0.7	0.2	0.6	1	0.6	0.2	0.6	0.5	0.8	0.5	0.7	0.4	0.6	0.8	0.4			
X_TOKEN -	0.4	0.3	0.2	0.2	0.1	1	2e-05	0.1	0.4	5e-05	0.03	0.5	0.1	0.4	0.1	1e-05	0.002	0.0003	0.2	0.008	0.1	0.007	0.02	0.01	0.05	0.003	0.04	0.7	0.4			
X_COWAT -	-0.06	-0.1	-0.1	-0.08	0.3	0.5	1	5e-05	0.01	2e-05	0.5	0.9	0.3	0.7	1	0.01	0.2	0.2	0.3	0.04	0.6	0.3	0.6	0.08	0.06	0.3	0.5	0.1	0.1			0.6
X_RAVLT R.I	-0.1	-0.2	-0.3	-0.2	0.2	0.4	0.5	1	0.2	0.009	0.9	0.3		0.1	0.2	0.3	0.5	1	0.6	0.9	0.8	0.8	0.4	0.04	0.03	0.09	0.09	0.3	0.5			0.0
X_RAVLT R.D	-0.02	-0.2	-0.08	-0.2	0.1	0.1	0.3	0.01	1	0.04	0.09	0.4	0.6	0.3	0.7	0.4	0.7	0.4	0.8	0.5	0.6	0.6	0.9	0.2	0.3	0.2	0.3	0.5	1			
X_FCSRT IFR -	0.07	0.004	-0.04	0.09	0.08	0.5	0.5	0.2	0.3	1	0.5	0.3	0.1	0.4	0.06	0.006	0.09	0.05	0.2	0.02	0.7	0.02	0.06	0.0004	0.001	0.05	0.1	0.1	0.2			
X_FCSRT ITR -	0.3	0.2	0.2	0.2	-0.09	0.03	0.1	0.1	0.3	-0.004	1	0.0004	0.2		0.3	0.6	0.009	0.006	0.2	0.4	0.03	0.2	0.005	0.2	0.3	0.02	0.08	0.7	0.1		-	0.4
X_FCSRT DFR -	-0.4	-0.2	-0.2	-0.1	0.3	0.08	0.08	0.2	0.1	0.3	-0.3	1	0.4	0.8	0.7	0.9	0.2	0.4	0.0003	0.6	0.7		0.2	0.1	0.08	0.8	0.4	0.06	0.06			
X_FCSRT ISC -	-0.1	0.2	-0.09	-0.07	-0.08	-0.1	0.01	0.03	0.1	-0.03	-0.06	0.1	1	0.1	1	0.2	0.9	0.4	0.03	0.1	0.2	0.9	0.6	0.8	0.5	0.7	0.2	0.7	0.3			
X_DIGIT FW -	-0.02	0.2	0.3	0.07	-0.06	0.07	0.1	-0.2	-0.06	-0.1	-0.05	0.04	-0.2	1	0.4		0.6	0.05	0.09	0.4	0.2	0.6	0.3	0.07	0.1	0.08	0.1	0.4	1			0.2
X_DIGIT BW -			-0.09	0.06	0.2	-0.3	-0.0008	-0.2	-0.04	-0.2	-0.03	0.1	-0.03	-0.1	1	0.7	0.1	0.7	0.03	0.5	0.5	0.3	0.7	0.8	0.5	0.9	0.2	0.9	0.3		-	0.2
X_FAB -	0.05	0.002	-0.05	0.07	0.2		0.6	0.3	0.2	0.3	-0.02	0.2	0.04	0.1	-0.004	1	0.005	0.0002	0.5	0.002	0.1	0.003	0.05	0.4	0.6	0.2	0.6	0.1	0.3			
X_STROOP W -	0.3	0.2	0.2	0.4	-0.01	0.3	0.3	-0.1	0.07	0.1	0.2	-0.2	0.2	-0.07	0.4	0.3	1	4e-08	0.07	0.01	0.02	3e-06	3e-06	0.03	0.2	0.0005	0.009	0.9	0.06			
X_STROOP C -	0.3	0.06	0.3	0.2	-0.04	0.4	0.3	-0.02	0.2	0.09	0.2	-0.1	-0.09	0.2	0.07	0.4	0.5	1	0.3	0.002	0.003	3e-08	1e-06	0.02	0.08	1e-05	0.0005	1	0.07		-	0.0
X_STROOP CW -	0.4	0.1	0.1	0.1	0.04	0.2	0.1	0.007	0.3	0.2	0.3		-0.2		-0.2	0.03	0.2	-0.03	1	0.3	0.9	0.4	0.02	0.5		0.2	0.6	0.2	0.2			
X_WEIGL -	0.02	0.1	0.2	0.05	0.3	0.4	0.4	0.06	0.2	0.3	0.06	0.2	-0.2	0.09	0.1	0.3	0.3	0.3	0.06		0.5	0.003	0.007	0.3	0.6	0.06	0.3	0.4	0.1			
X_LO V -	0.2	0.2	0.2	-0.003	-0.2	0.2	-0.2	-0.2	0.09	-0.07	0.2	-0.01	0.2	0.07	0.06	0.3	0.2	0.3	-0.06	0.07	1	0.07	0.09	0.3	1	0.2	0.9	0.2	0.1			100000
X_BECK II -	0.2	0.2	0.2	0.2	0.04	0.4	0.3	-0.08	0.1	0.4	0.09	0.09	0.04	-0.1	0.1	0.4	0.5	0.6	0.02	0.2	0.09		2e-08	0.01	0.08	9e-06	0.0008	1	0.1		-	-0.2
X_HAMA -	0.4	0.3	0.3	0.5	-0.08	0.4	0.3	0.04	0.04	0.4	0.4	-0.2		-0.1	0.1	0.3	0.6	0.5	0.2	0.3	0.06	0.6	1	0.005	0.06	4e-11	5e-07	0.7	0.3			
Y_R_Caudate -	-0.2	0.02	-0.02	-0.009	0.2	-0.2	-0.04	-0.07	0.08		0.01	-0.06	0.1	-0.09	0.05	0.05	-0.2	-0.1	0.09	0.06	-0.002	-0.09	-0.1	1	1e-20	0.0003	0.008	1e-06	0.002			
Y_L_Caudate -	-0.03	0.1	0.1	0.1	0.2	-0.2	-0.04	-0.1	0.08	-0.2	0.02	-0.1	0.1	-0.2	0.08	0.04	-0.06	-0.05	0.04	0.2	0.03	-0.006	-0.02			0.002	0.008	1e-09	8e-05		-	-0.4
Y_R_Putamen -	-0.6				0.03	-0.6	-0.2	-0.02	-0.03	-0.2		0.2	0.2	-0.06	0.07		-0.5	-0.5	-0.2				-0.6	0.4	0.3	1	9e-28	0.4	0.3			
Y_L_Putamen -	-0.5		-0.2		0.01	-0.5	-0.2	-0.02	-0.09	-0.2		0.1	0.2	-0.1	0.03		-0.5	-0.5					-0.6	0.4	0.4	1	1		0.4			
Y_R_Thalamus -	0.1	0.2	0.07	0.1	0.3	0.2	0.2	0.05	0.2	0.03	0.2	-0.09	0.2	0.01	-0.05	0.3	0.1	0.1	0.2	0.2	0.2	0.2	0.1			-0.02	-0.02	1	2e-25			
Y_L_Thalamus -	0.2	0.3	0.1	0.1	0.2	0.2	0.2	0.01	0.2	0.02	0.2	-0.08	0.3	0.02	-0.04	0.4	0.2	0.2	0.1	0.2	0.2	0.2	0.2			-0.05	-0.04		1		-	-0.6
		-	<u>_</u>	>	ц,	ż	É	-		H.	e'	L'	J.	N -	N -	8	- N	J	- N	Ļ	>	=	Ā	e.	e	Ļ	ė.	IS -	IS -		-	
	ORS	RS	RS	S	IMS	KE	WA	ΤR	R.	ШЦ	E	JO.	TIS	Ē	T B/	EA.	dC	ОР	Ū.	ElG	PO	CK CK	AM	Idat	Idat	me	me	m	m			
	Idn	JPC	DD	DD	××	Ĕ,	8	NL:	VLT	SR	SR	SRT	SR	IGI	101	×	ROC	RO	00	N	Ň	В	×	Cau	Cau	uta	uta	alá	alar			
	×	×	x	⊃'		×	×	R	RA	E.	E.	Ũ,	E.	×	2		ST	S	TR	~		×		er.	4	R.	5	E.	E,			
								×	×	×	×	×	×				×	×	×					`≺`	Y	\succ	'≺	Y.	7			

Correlazione di Spearman

X UPDRS I -	1	7e-09	2e-07	4e-07	0.07	0.0007	0.1	0.6	0.1	0.01	2e-07	0.06	0.3	0.4	0.3	0.08	0.03	0.07	0.7	0.8	0.3	0.5	0.2	0.2	0.3	0.8	0.5	0.5	0.5		1.0
X UPDRS II -	0.6	1	4e-09	2e-06	0.05	0.06	0.8	0.8	0.8	0.2	0.002	0.2	0.3	0.9	0.05	0.1	0.6	0.2	0.5	0.3	0.4	0.6	0.3	0.07	0.03	0.1	0.2	0.9	0.7		
X UPDRS III -	0.6	0.7	1	2e-10	0.0004	0.09	0.7	0.06		0.3	0.0002	0.03	0.2	0.2	0.1	0.4	0.004	0.006	0.2	0.1	0.1	0.03	0.4	0.2	0.7	0.7	0.5	1	0.4		
X_UPDRS IV -	0.6	0.6	0.6	1	0.01	0.02	0.8	0.1	0.5	0.08	1e-05	0.004	0.2	0.4	0.2	0.7	0.0009	0.04	0.2	0.5	0.5	0.05	0.1	0.5		0.5	0.8	0.8	0.5	-	0.8
X_MMSE -	-0.2			-0.02	1	1	0.005	0.002	0.04	0.2	0.01	0.005	1	0.05	0.6	0.5	0.3	0.4	0.5	0.1	0.6	0.8	0.6			0.8	0.5	0.2	0.3		
X TOKEN	0.4	0.3	0.2	0.2	0.1	1	2e-05	0.2	0.3	1e-05	0.002	0.2	0.1	0.09	0.6	0.01	0.0001	0.01	0.3	0.3	0.3	0.09	0.2	0.3	0.8			0.6	0.9		
X COWAT -	-0.06	-0.1	-0.1	-0.08	0.3	0.5	1	1e-05	4e-05	2e-06	0.5	0.8	0.2	0.4	0.4	0.003	0.1	0.1	0.8	0.004	0.9	0.5	0.4	0.2	0.06	0.6	1	0.6	0.5		122211
X_RAVLT R.I	-0.1	-0.2		-0.2	0.2	0.4	0.5	1	0.0003	0.0004	0.6	0.05	0.6	0.3	0.3	0.2	0.6	0.8		0.2	0.7	1	0.4	0.07	0.01	0.2	0.2	0.9	0.9	-	0.6
X RAVLT R.D	-0.02	-0.2	-0.08	-0.2	0.1	0.1	0.3	0.01	1	0.005	0.1	0.5	0.8	0.8	0.9	0.1	0.9	0.4		0.07	0.1		1	0.4	0.2	1		0.3	0.3		
X_FCSRT IFR -	0.07	0.004	-0.04	0.09	0.08	0.5	0.5	0.2	0.3	1	0.3	0.3	0.08		0.5	0.02	0.1	0.06	0.4	0.02	0.5	0.2	0.2	0.0008	3e-06	0.2	0.3	0.002	0.0009		
X_FCSRT ITR -	0.3	0.2	0.2	0.2	-0.09	0.03	0.1	0.1	0.3	-0.004	1	4e-06	0.3		0.08	0.9	0.02	0.01	0.09		0.002	0.3	0.05	0.8		0.5	0.8	0.3	0.2	-	0.4
X_FCSRT DFR -		-0.2	-0.2	-0.1	0.3	0.08	0.08	0.2	0.1	0.3	-0.3	1	0.4	0.4	0.4	0.6	0.08	0.2	0.0001	0.3	0.4	0.5	0.07	0.5	0.3	0.04	0.1	0.8	0.6		
X_FCSRT ISC -	-0.1	0.2	-0.09	-0.07	-0.08	-0.1	0.01	0.03	0.1	-0.03	-0.06	0.1		0.3		0.4	0.3	0.2	0.002	0.3	0.09	0.4	0.2	0.2	0.2	0.2	0.2	0.3	0.2		
X_DIGIT FW -	-0.02	0.2	0.3	0.07	-0.06	0.07	0.1	-0.2	-0.06	-0.1	-0.05	0.04	-0.2	1	0.5	0.5	0.1	0.02	0.4	0.2	0.1	0.3	0.1	0.2	0.6	0.3		0.6	0.9		
X_DIGIT BW -			-0.09	0.06	0.2	-0.3	-0.0008	-0.2	-0.04	-0.2	-0.03	0.1	-0.03	-0.1	1	0.6	0.1	0.5	0.02	0.1	1	0.4		0.5	0.3			0.7	0.9	-	0.2
X_FAB -	0.05	0.002	-0.05	0.07	0.2		0.6	0.3	0.2	0.3	-0.02	0.2	0.04	0.1	-0.004		0.02	0.002	0.4	0.003		0.1	0.6	0.4	0.2	0.5		0.4	0.7		
X_STROOP W -	0.3	0.2	0.2	0.4	-0.01	0.3	0.3	-0.1	0.07	0.1	0.2	-0.2	0.2	-0.07	0.4	0.3	1	2e-07	0.06	0.04	0.006	5e-06	9e-05	0.1	0.6	0.1	0.2	0.5	0.2		
X_STROOP C -	0.3	0.06	0.3	0.2	-0.04	0.4	0.3	-0.02	0.2	0.09	0.2	-0.1	-0.09	0.2	0.07	0.4	0.5	1	0.09	0.002	0.0002	5e-07	2e-06	0.007	0.03	0.0004	0.001	0.9	0.4	-	0.0
X_STROOP CW -	0.4	0.1	0.1	0.1	0.04	0.2	0.1	0.007	0.3	0.2	0.3	-0.3	-0.2	-0.3	-0.2	0.03	0.2	-0.03	1	0.3	0.5	0.1	0.001	0.5	0.9	0.2	0.4	0.2	0.2		
X_WEIGL -	0.02	0.1	0.2	0.05	0.3	0.4	0.4	0.06	0.2	0.3	0.06	0.2	-0.2	0.09	0.1	0.3	0.3	0.3	0.06	1	0.3	7e-05	0.05	0.4	0.5	0.8		0.6	0.3		
X_LO V -	0.2	0.2	0.2	-0.003	-0.2	0.2	-0.2	-0.2	0.09	-0.07	0.2	-0.01	0.2	0.07	0.06	0.3	0.2	0.3	-0.06	0.07	1	0.02	0.05	0.4	1	0.1	0.3	0.1	0.02		-
X_BECK II -	0.2	0.2	0.2	0.2	0.04	0.4	0.3	-0.08	0.1	0.4	0.09	0.09	0.04	-0.1	0.1	0.4	0.5	0.6	0.02	0.2	0.09	1	6e-09	0.007	0.08	0.0005	0.002	0.4	0.4	 -	-0.2
X_HAMA -	0.4	0.3	0.3	0.5	-0.08	0.4	0.3	0.04	0.04	0.4	0.4	-0.2	-0.3	-0.1	0.1	0.3	0.6	0.5	0.2	0.3	0.06	0.6	1	0.0002	0.02	1e-11	1e-10	0.8	0.6		
Y_R_Caudate -	-0.2	0.02	-0.02	-0.009	0.2	-0.2	-0.04	-0.07	0.08		0.01	-0.06	0.1	-0.09	0.05	0.05	-0.2	-0.1	0.09	0.06	-0.002	-0.09	-0.1	1	7e-12	0.0001	0.0006	0.003	0.006		
Y_L_Caudate -	-0.03	0.1	0.1	0.1	0.2	-0.2	-0.04	-0.1	0.08	-0.2	0.02	-0.1	0.1	-0.2	0.08	0.04	-0.06	-0.05	0.04	0.2	0.03	-0.006	-0.02	0.9	1	0.003	0.008	0.0003	0.002	-	-0.4
Y_R_Putamen -	-0.6				0.03	-0.6	-0.2	-0.02	-0.03	-0.2		0.2	0.2	-0.06	0.07		-0.5	-0.5	-0.2			-0.5	-0.6	0.4	0.3	1	2e-25	0.9	1		
Y_L_Putamen -	-0.5	-0.3	-0.2	-0.3	0.01	-0.5	-0.2	-0.02	-0.09	-0.2	-0.4	0.1	0.2	-0.1	0.03	-0.4	-0.5	-0.5	-0.3	-0.3	-0.3	-0.4	-0.6	0.4	0.4	1	1	0.8	0.9		
Y_R_Thalamus -	0.1	0.2	0.07	0.1	0.3	0.2	0.2	0.05	0.2	0.03	0.2	-0.09	0.2	0.01	-0.05	0.3	0.1	0.1	0.2	0.2	0.2	0.2	0.1			-0.02	-0.02	1	1e-15		
Y_L_Thalamus -	0.2	0.3	0.1	0.1	0.2	0.2	0.2	0.01	0.2	0.02	0.2	-0.08	0.3	0.02	-0.04	0.4	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.6	0.7	-0.05	-0.04	1	1	_	-0.6
	S.	=	=	≥	SE	Z	AT		Ċ.	FR	TR	FR	SC	M	SW.	AB	×	Ú.	M	GL.	>	=	AA	ate .	ate	en	en	- sni	sni		
	DR	DR	ORS	ORS	MM	OK	MO	Ē	T B	T I	3T I		T	E	Ë	×	OO	100	D d	VEI	JLC	ECI	IAI	pn	nd	am	am	lan	lam		
	5	P.	IN	UPC	×	×	y X	AV	AVL	CS	CS	CSR	CSI	DIC	DIG		TRC	TR	ROC	×	×	×.	×	ů	ů,	Put	Put	Tha	Tha		
	×	×	×	×			-	×.	B	×	×	E.	×	×	×		s s	×	E.					A.B.	Ľ,	R	Ľ,	œ.	5		
									×			~					~		×							7	-	×	\succ		

Correzione con Benjamini-Hochberg

X_UPDRS I -	0.7	1	0.006	0.03	0.8	0.6
X_UPDRS II -	1	0.8	0.3	0.4	0.5	0.3
X_UPDRS III -	1	0.8	0.4	0.6	0.9	0.8
X_UPDRS IV	1	0.8	0.2	0.3	0.8	0.8
X_MMSE -	0.5	0.5	1	1	0.4	0.5
X_TOKEN -	0.6	0.7	0.006	0.03	0.7	0.6
X_COWAT -	0.9	0.9	0.6	0.7	0.6	0.6
X_RAVLT R.I	0.9	0.8	1	1	0.9	1
X_RAVLT R.D	0.9	0.9	1	0.9	0.7	0.6
X_FCSRT IFR -	0.3	0.5	0.5	0.5	1	1
X_FCSRT ITR -	. 1	1	0.1	0.08	0.7	0.6
X_FCSRT DFR -	0.9	0.8	0.7	0.8	0.9	0.9
X_FCSRT ISC -	0.8	0.7	0.7	0.7	0.5	0.5
X_DIGIT FW -	0.9	0.7	0.9	0.8	1	1
X_DIGIT BW -	0.9	0.9	0.9	1	0.9	0.9
X_FAB -	0.9	1	0.2	0.2	0.3	0.2
X_STROOP W -	0.7	0.9	0.02	0.03	0.8	0.7
X_STROOP C -	0.8	0.9	0.01	0.04	0.8	0.6
X_STROOP CW -	0.9	0.9	0.6	0.4	0.7	0.7
X_WEIGL -	0.9	0.7	0.3	0.4	0.7	0.5
X_LO V -	1	1	0.4	0.4	0.7	0.5
X_BECK II -	0.9	1	0.03	0.09	0.7	0.6
X HAMA -	0.8	1	0.001	0.005	0.8	0.6

- 0.8

- 0.6

- 0.4

- 0.2

Correzione con Bonferroni

							-10
X_UPDRS I -	- 1	1	0.09	0.8	1	1	- 1.0
X_UPDRS II -	- 1	1	1	1	1	1	
X_UPDRS III -	- 1	1	1	1	1	1	
X_UPDRS IV -	- 1	1	1	1	1	1	
X_MMSE -	- 1	1	1	1	1	1	- 0.8
X_TOKEN -	- 1	1	0.09	0.8	1	1	
X_COWAT -	- 1	1	1	1	1	1	
X_RAVLT R.I	- 1	1	1	1	1	1	
X_RAVLT R.D.	- 1	1	1	1	1	1	
X_FCSRT IFR -	- 1	1	1	1	1	1	- 0.6
X_FCSRT ITR -	- 1	1	1	1	1	1	
X_FCSRT DFR -	- 1	1	1	1	1	1	
X_FCSRT ISC -	- 1	1	1	1	1	1	
X_DIGIT FW	- 1	1	1	1	1	1	
X_DIGIT BW -	- 1	1	1	1	1	1	- 0.4
X_FAB -	- 1	1	1	1	1	1	
X_STROOP W -	- 1	1	0.6	0.8	1	1	
X_STROOP C	- 1	1	0.3	1	1	1	
X_STROOP CW -	- 1	1	1	1	1	1	- 0.2
X_WEIGL -	- 1	1	1	1	1	1	1000000
X_LO V -	- 1	1	1	1	1	1	
X_BECK II -	- 1	1	0.9	1	1	1	
х нама -	1	1	0.01	0.07	1	1	

							- 1.0
X_UPDRS I -	1	1	0.01	0.09	1	1	- 0.8
X_UPDRS II -	1	1	1	1	1	1	- 0.6
X_UPDRS III -	1	1	1	1	1	1	- 0.4
X_UPDRS IV -	1	1	1	1	1	1	- 0.2
	ate -	ate -	- nər	- uət	- snu	- snu	-
	Caud	Caud	utan	utan	nalan	nalan	
	YR	Υ ^Γ	Y_R_F	ΥΓ	Υ.R. TI	<u>ר</u> ח	

Allegato 5

Morbo di Parkinson

Test Cognitivi vs Freesurfer Features

Correlazione di Pearson

X_UPDRS I	1	7e-08	0.0002	20.0003	0.04	0.05	0.4	0.6	0.9	0.6	0.004	0.05	0.4	0.09	0.02	0.9	0.7	0.3	0.08	0.9	0.6	0.3	0.3	0.7	0.07	0.4	0.9	0.2	0.4	0.7
X_UPDRS II	0.6	1	3e-11	5e-06	0.0004	0.3	0.1	0.07	0.02	0.6	0.4	0.03	0.6	1	0.01	0.4		0.8	0.7	0.8	0.4	0.3	0.3	0.2	0.8	0.6	0.4	0.6	0.2	0.7
X_UPDRS III	0.6		1	4e-09	2e-05		0.1	0.02	0.1	0.5	0.3	0.06	0.4	0.4	0.08	0.6	0.2	0.3		0.8	0.4	0.1	0.2	0.1	0.1	0.7	0.9	0.6	0.1	
X_UPDRS IV	0.6	0.6	0.6	1	0.01	0.5	0.07	0.02	0.007	0.7	0.3	0.02	0.2	1	0.2	0.3	0.2	0.5	0.9	0.5	0.7	0.5	0.07	0.4	0.1	0.4	0.8	0.8	0.07	0.8
X_MMSE	-0.2	-0.3	-0.3	-0.02	1	0.7	0.004	0.02	0.4	0.2	0.07	0.007	0.3	0.3	0.5	0.2	0.4		0.5	0.2	0.2	0.8	0.7	0.9	0.5	0.9	0.6	0.08	0.1	0.3
X_TOKEN	0.4	0.3	0.2	0.2	0.1	1	9e-05	0.1	0.6	0.002	0.9	0.3	0.3	0.8	0.08	0.04	0.5	0.04	0.6	0.5	0.6	0.9	0.4	0.4	0.6	1	0.3	0.1	0.7	0.8
X_COWAT	-0.06	-0.1	-0.1	-0.08	0.3	0.5	1	5e-05	0.02	0.0001	0.5	0.6	0.5		0.9	0.02	0.6	0.6	0.1	0.06	0.4	0.3		0.6	0.9	0.5	0.8	0.5	0.7	0.2
X_RAVLT R.I.	-0.1	-0.2	-0.3	-0.2	0.2	0.4	0.5	1	0.1	0.01	0.9	0.3	1	0.04	0.3	0.5	0.4	0.5	0.4	0.8	0.5	0.8	0.6	0.5	0.8	0.03	0.1	0.02	0.05	0.8
X_RAVLT R.D.	-0.02	-0.2	-0.08	-0.2	0.1	0.1	0.3	0.01	1	0.02	0.2	0.3	0.4	0.07	0.9	0.6	0.5	0.3	1	0.6	0.9	0.6	0.7	0.9	0.4	0.09	0.1	0.0002	0.004	0.2
X_FCSRT IFR	0.07	0.004	-0.04	0.09	0.08	0.5	0.5	0.2	0.3	1	0.5	0.1	0.5	0.03	0.1	0.06	0.5	0.5	0.4	0.2	0.3	0.005	0.2	0.8	0.3	0.3	0.8	0.3	0.07	0.4
X_FCSRT ITR	0.3	0.2	0.2	0.2	-0.09	0.03	0.1	0.1	0.3	-0.004	1	0.0001	0.3	0.2	0.4	0.05	0.3	0.3	0.2	0.1	0.1	0.9	0.01	0.1	0.7	0.6	0.6	0.1	0.1	0.0006
X_FCSRT DFR	-0.4	-0.2	-0.2	-0.1	0.3	0.08	0.08	0.2	0.1	0.3	-0.3	1	0.2	0.6	0.4	0.3	0.05	0.2	0.001	0.2	0.2	0.9	0.05	0.8	0.2	0.05	0.01	0.2	0.05	0.0001
X_FCSRT ISC	-0.1	0.2	-0.09			-0.1	0.01	0.03	0.1	-0.03		0.1	1	0.2	0.8	0.5	0.4	0.5	0.02	0.3	0.1	0.5	0.3	0.2	0.4	0.1	0.007	0.05	0.1	0.04
X_DIGIT FW	-0.02	0.2	0.3	0.07	-0.06	0.07	0.1	-0.2	0.06		-0.05	0.04	-0.2	1	0.4	0.8	0.7	0.2	0.02	0.5	0.3	0.8	0.6	0.05		0.6	0.6	0.7	0.08	0.4
X_DIGIT BW	-0.3	-0.3	-0.09	0.06	0.2	-0.3	0.0008	-0.2	-0.04	-0.2	-0.03	0.1	-0.03	-0.1	1	1	0.03	0.4	0.05	0.3	0.5	0.2	0.9	0.4	0.7	0.8	0.8	0.3	0.6	0.6
X_FAB	0.05	0.002	-0.05	0.07	0.2	0.6	0.6	0.3	0.2	0.3	-0.02	0.2	0.04	0.1	-0.004	1	0.08	0.006	0.9	0.03	0.8	0.2	0.9	0.9	0.5	0.5	0.4	0.2	1	0.3
X_STROOP W	0.3	0.2	0.2	0.4	-0.01	0.3	0.3	-0.1	0.07	0.1	0.2	-0.2	0.2	-0.07	0.4	0.3	1	1e-05	0.3	0.2	0.2	0.0004	0.001	0.3		0.7	0.7	0.2	0.7	1
X_STROOP C	- 0.3	0.06	0.3	0.2	-0.04	0.4	0.3	-0.02	0.2	0.09	0.2	-0.1	-0.09	0.2	0.07	0.4	0.5	1	0.6	0.08	0.06	0.0001	0.001	0.7	0.03	0.5	0.6	0.01	1	0.8
X_STROOP CW	0.4	0.1	0.1	0.1	0.04	0.2	0.1	0.007	0.3	0.2	0.3	-0.3	-0.2	-0.3	-0.2	0.03	0.2	-0.03	1	0.9	0.5		0.04	0.4	0.5	0.9	0.1	0.02	0.6	0.5
X_WEIGL	0.02	0.1	0.2	0.05	0.3	0.4	0.4	0.06	0.2	0.3	0.06	0.2	-0.2	0.09	0.1	0.3	0.3	0.3	0.06	1	0.7	0.06	0.3	0.4	0.4	0.3	0.6	0.4	0.1	0.1
X_LO V	0.2	0.2	0.2	-0.003	-0.2	0.2	-0.2	-0.2	0.09	-0.07	0.2	-0.01	0.2	0.07	0.06	0.3	0.2	0.3	-0.06	0.07	1	0.5	0.3	0.04	0.2	0.5		0.3	0.4	0.2
X_BECK II	0.2	0.2	0.2	0.2	0.04	0.4	0.3	-0.08	0.1	0.4	0.09	0.09	0.04		0.1	0.4	0.5	0.6	0.02	0.2	0.09	1	2e-05	0.9	0.8	0.6	0.7	0.03	0.2	0.4
X_HAMA	0.4	0.3	0.3	0.5	-0.08	0.4	0.3	0.04	0.04	0.4	0.4	-0.2	-0.3		0.1	0.3	0.6	0.5	0.2	0.3	0.06	0.6	1	0.4	0.4	0.1	0.4	0.2	0.9	0.1
Y_lh_pericalcarine_thickness	0.09	-0.04	-0.2	0.06	0.009	0.07	0.1	0.02	0.09	0.08	-0.1	0.1	-0.1	-0.2	-0.09	-0.002	-0.09	0.08	0.2	-0.07	-0.2	-0.004	-0.06	1	0.9	0.8	0.08	0.3	0.3	0.4
Y_lh_postcentral_thickness	0.2	-0.1	-0.2	-0.07	0.07	0.3	0.2	0.1	0.4	0.2	0.2	-0.2	-0.01	0.07	-0.1	0.3	0.2	0.4	0.06	0.2	0.2	0.003	0.2	-0.01	1	0.07	0.003	0.1	0.5	0.6
Y_rh_paracentral_area	- 0.3	0.2	0.09	0.3	0.2	0.2	-0.04	-0.2	-0.2	0.08	0.2	-0.05	-0.08	0.2	0.03	0.05	0.1	0.2	0.1	-0.02	0.1	0.04	0.3	-0.06	0.3	1	5e-06	0.5	0.6	0.1
Y_Right-Accumbens-area	0.4	0.2	-0.07	0.2	0.3	0.3	0.2	-0.04	0.1	0.2	0.3		-0.2	0.3	-0.2	0.2	-0.02	0.1	0.2	0.1	0.2	-0.08	0.2	0.09	0.5	0.6	1	0.2	0.1	0.04
Y_rh_parstriangularis_thickness	-0.005	0.1	-0.03	0.05	-0.01	-0.04	0.05	-0.05	-0.3	0.1	-0.03	-0.1		0.3	-0.08	-0.08	-0.2	-0.3	-0.3	-0.09	-0.1	-0.2	-0.04	-0.1	-0.06	-0.07	0.2	1	0.0004	0.6
Y_rh_pericalcarine_thickness	0.2	0.3	0.2	0.2	0.07	0.3	0.2	-0.05	-0.3	-0.2	-0.02	-0.2		0.3	-0.09	0.2	0.1	0.05	0.004	0.3	0.2	-0.08	0.04	-0.04	0.008	-0.04	0.3	0.4	1	0.6
Y_rh_postcentral_thickness	- 0.3	0.1	0.2	0.2	-0.04	-0.04	-0.07	0.2	0.06	-0.07	0.7	-0.2	-0.1	-0.05	-0.1	-0.06	0.02	0.2	0.2	-0.1	0.2	0.03	0.3	-0.2	0.2	0.3	0.3	-0.08	-0.02	1
	S	=	=	\geq	SE	N	AT		Ū.	FR	TR	FR	SC	N	3W	AB	M	0	N	GL	>	=	٩A	SSS	SSS	ea	ea	SSS	SSS	SSS
	DR	OR:	RS	RS	AM.	NC	M	Ē	a.	E	E		E	Ē	Ţ	E.	OP	10	РС)EI	JLC	Ö	IAP	cne	KUE	ar	-ar	cue	CU6	CUE
	-UP	Idr	B	D	5	Ĕ,	8	ZL.	LT	SR	SR	RT	SR	19	19	×	õ	RO	8	\$	×	8	÷	ich	lich	<u>a</u>	US	lich	ick	lich
	×	5	\neg	5	^	×	×	RA	A	E.	5 5	CS	5 5	0	D		TE	ST	R	×		×		÷,	÷	ntr	be	÷	÷,	÷
		^	×	×				×	۳.	×	×	5	×	×	×		×	×	S					ne	(D)	Ce	Ę	ris	ne	<u>a</u>
									×			~					~		×					ari	nti	ara	CC	en	ari	nti
																								0	e ce	d	A-	Jgr	0	Ce
																								lC	ost	£	ght	lar	lC	ost
																								Der	à	≻'	RIG	str	Der	ġ
																								-	<u>د</u>		\succ	ar	-	£,
																								1	Υ.			1	E	~'
																								5811				E	-	
																												-		

3

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Correzione con Benjamini-Hochberg

X_BECK II	1	1	1	1	0.7	1	1	- 0.9 - 0.8
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

T FW	0.8	0.9	0.8	0.4	0.4	0.4	0.9	- 0.8
T BW_DIG	0.9	0.9	0.9	0.8	0.9	0.9	0.9	- 0.6
X_DIGI	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	-

X_HAMA	-0.06	0.2	0.3	0.2	-0.04	0.04	0.3	- 0.3 - 0.2 - 0.1 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_FCSRT IFR -	0.9	0.9	0.9	0.9	0.9	0.9	0.9	- 0.75
X_FCSRT ITR -	0.9	0.9	0.9	0.6	1	1	2e-05	0.75
X_FCSRT DFR -	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.50
X_FCSRT ISC -	0.9	1	0.9	0.9	0.9	0.9	0.9	- 0.25
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

, X JLO V	-0.2	0.2	0.1	0.2	-0.1	0.2	0.2	- 0.2 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_MMSE	1	1	0.7	0.4	1	1	1	- 0.8 - 0.6
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_UPDRS I -	0.9	0.6	0.4	0.2	1	0.7	0.4	
X_UPDRS II -	0.9	0.9	0.6	0.7	0.8	0.4	0.9	
X_UPDRS III -	0.7	0.6	0.9	0.9	1	0.7	0.6	
X_UPDRS IV -	0.9	0.9	0.5	0.6	0.9	0.6	0.6	
X_MMSE -	1	0.9	0.6	0.5	1	0.9	0.9	- 0.8
X_TOKEN -	0.9	0.5	0.7	0.5	0.9	0.5	0.9	
X_COWAT -	0.9	0.7	0.9	0.6	0.9	0.7	0.9	
X_RAVLT R.I	1	0.8	0.7	0.9	0.9	0.9	0.8	
X_RAVLT R.D	0.9	0.3	0.7	0.9	0.5	0.4	0.9	
X_FCSRT IFR -	0.9	0.7	0.9	0.7	0.9	0.7	0.9	- 0.6
X_FCSRT ITR -	0.9	0.7	0.8	0.5	1	1	0.0002	
X_FCSRT DFR -	0.8	0.7	0.9	0.8	0.9	0.7	0.6	
X_FCSRT ISC -	0.8	1	0.9	0.7	0.9	0.9	0.8	
X_DIGIT FW -	0.7	0.9	0.7	0.5	0.5	0.4	0.9	- 0.4
X_DIGIT BW -	0.9	0.9	0.9	0.7	0.9	0.9	0.9	
X_FAB -	1	0.5	0.9	0.7	0.9	0.6	0.9	
X_STROOP W -	0.9	0.6	0.8	1	0.7	0.9	1	
X_STROOP C -	0.9	0.1	0.6	0.9	0.5	0.9	0.7	
X_STROOP CW -	0.6	0.9	0.9	0.7	0.5	1	0.7	- 0.2
X_WEIGL -	0.9	0.7	1	0.8	0.9	0.5	0.8	
X_LO V -	0.7	0.6	0.9	0.7	0.9	0.7	0.6	
X_BECK II -	1	1	0.9	0.9	0.6	0.9	1	
X_HAMA -	0.9	0.7	0.5	0.6	0.9	0.9	0.4	
	h_pericalcarine_thickness -	_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	barstriangularis_thickness -	h_pericalcarine_thickness -	_rh_postcentral_thickness -	

-	-0.09	0.2	0.1	-0.02	-0.2	0.1	0.02	- 0.4
-	0.08	0.4	0.2	0.1	-0.3	0.05	0.2	- 0.2 - 0.0
-	0.2	0.06	0.1	0.2	-0.3	0.004	0.2	0.2
	Y_Ih_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	-

CO COLO

X_TOKEN	0.9	0.4	0.6	0.4	0.9	0.4	0.9	- 0.8 - 0.6 - 0.4
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_UPDRS I	0.9	0.4	0.2	0.08	1	0.7	0.2	
X_UPDRS II -	0.9	0.8	0.4	0.6	0.8	0.2	0.8	- 0.75
X_UPDRS III -	0.6	0.4	0.9	0.9	0.9	0.5	0.5	- 0.50
X_UPDRS IV	0.9	0.9	0.4	0.5	0.9	0.4	0.4	- 0.25
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_WEIGL	-0.07	0.2	-0.02	0.1	-0.09	0.3	-0.1	- 0.2 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

Correzione con Bonferroni

X_DIGIT BW_DIGIT FW

								- 1.00
X_FCSRT IFR -	1	1	1	1	1	1	1	1.00
X_FCSRT ITR -	1	1	1	1	1	1	2e-05	- 0.75
X_FCSRT DFR -	1	1	1	1	1	1	1	- 0.50
X_FCSRT ISC -	1	1	1	1	1	1	1	- 0.25
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	-

X_HAMA	-0.06	0.2	0.3	0.2	-0.04	0.04	0.3	- 0.3 - 0.2 - 0.1 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

, xJLO V	-0.2	0.2	0.1	0.2	-0.1	0.2	0.2	- 0.2 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	-

							-10
1	1	1	1	1	1	1	- 1.0
1	1	1	1	1	l	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	- 0.8
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	100000000
1	1	1	1	1	1	1	- 0.6
1	1	1	1	1	1	0.0002	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	- 0.4
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	- 0.2
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
pericalcarine_thickness -	h_postcentral_thickness -	Y_rh_paracentral_area -	_Right-Accumbens-area -	rstriangularis_thickness -	pericalcarine_thickness -	h_postcentral_thickness -	
	pericalcarine_thickness - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1 <	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	Image: Construct of the series of the ser	bericalcarine, thickness

-0.09	0.2	0.1	-0.02	-0.2	0.1	0.02	- 0.4
0.08	0.4	0.2	0.1	-0.3	0.05	0.2	- 0.2
0.2	0.06	0.1	0.2	-0.3	0.004	0.2	0.2
Y_Ih_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	-

111 0000 ŀ COULD I

X UPDRS I -	1	1	1	0.7	1	1	1	- 1.0
X_UPDRS II -	1	1	1	1	1	1	1	- 0.9
X_UPDRS III -	1	1	1	1	1	1	1	- 0.8
X_UPDRS IV -	1	1	1	1	1	1	1	
	Y_Ih_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

X_WEIGL	-0.07	0.2	-0.02	0.1	-0.09	0.3	-0.1	- 0.2 - 0.0
	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_rh_pericalcarine_thickness -	Y_rh_postcentral_thickness -	

Allegato 6
Morbo di Parkinson

Dati di Uptake vs Freesurfer Features

Correlazione di Pearson

X_R_Caudate -		2e-11	0.1	0.3	0.009	0.1	0.9	0.2	0.5	0.6	0.04	0.3	
X_L_Caudate -		1	0.1	0.2	0.0004	0.03	0.6	0.1	0.5	0.5	0.005	0.2	0.9
X_R_Putamen -	0.4	0.3		3e-14		0.5	i	0.1	0.07	0.1	0.2	0.2	0.1
X_L_Putamen -	0.4	0.4		1	0.6	0.9	0.8	0.02	0.007	0.005	0.2	0.09	0.01
X_R_Thalamus -	0.7		-0.02	-0.02	1	4e-14	0.05		0.4	0.3	0.08	0.8	0.4
X_L_Thalamus -	0.6		-0.05	-0.04	1	1	0.02	0.6	0.4	0.2	0.06	0.8	0.3
Y_lh_pericalcarine_thickness -	-0.04		0.2	0.2	-0.2	-0.2	1	0.5	0.5	0.9	0.9		0.1
Y_lh_postcentral_thickness -			-0.3	-0.4	0.2	0.2	-0.01	1	0.02	0.005	0.9	0.4	0.7
Y_rh_paracentral_area -	0.002	0.006	-0.3	-0.4	0.2	0.2	-0.06	0.3	1	0.0001	0.6	0.7	0.2
Y_Right-Accumbens-area -	0.03	0.04	-0.4	-0.4	0.3	0.3	0.09	0.5	0.6	1	0.7	0.1	0.1
Y_rh_parstriangularis_thickness -	-0.4	-0.3	-0.002	0.02				-0.06		0.2	1	0.03	0.4
Y_rh_pericalcarine_thickness -	-0.02	-0.05			0.2	0.2	-0.04	0.008	-0.04	0.3	0.4	1	
Y_rh_postcentral_thickness -	0.2	0.2	-0.2	-0.3	0.3	0.3	-0.2	0.2	0.3	0.3	-0.08	-0.02	
	X_R_Caudate -	X_L_Caudate -	X_R_Putamen -	X_L_Putamen -	X_R_Thalamus -	X_L_Thalamus -	Y_lh_pericalcarine_thickness -	Y_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	Y_rh_parstriangularis_thickness -	Y_th_pericalcarine_thickness -	Y_rh_postcentral_thickness -

- 1.0

- 0.6 - 0.4

- 0.2

- 0.0

- -0.2

Correzione con Benjamini-Hochberg

X_R_Caudate	1	0.8	1	1	0.2	1	0.8	- 0.9 - 0.8 - 0.7 - 0.6
X_L_Caudate	1	0.8	1	1	0.3	1	0.8	- 0.5 - 0.4 - 0.3 - 0.2
	h_pericalcarine_thickness -	_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	oarstriangularis_thickness -	h_pericalcarine_thickness -	_rh_postcentral_thickness -	

1				le la				
X_R_Putamen	0.4	0.2	0.2	0.2	1	0.4	0.3	- 0.9 - 0.8 - 0.7 - 0.6
X_L_Putamen	0.4	0.2	0.2	0.1	1	0.4	0.3	- 0.5 - 0.4 - 0.3 - 0.2
	h_pericalcarine_thickness -	_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	parstriangularis_thickness -	h_pericalcarine_thickness -	_rh_postcentral_thickness -	

Caudate	1	0.5	1	1	0.1	1	0.5	- 0.9
CaudateX_R_C	0.8	0.6	1	1	0.2	1	0.5	- 0.8
utamenX_L_0	0.4	0.2	0.2	0.1	1	0.4	0.4	- 0.6
utamerK_R_P	0.4	0.2	0.1	0.1	1	0.4	0.3	- 0.5
alamusX_L_P	0.4	0.5	0.5	0.2	0.9	0.5	0.3	- 0.3
alamus R_Th	0.4	0.4	0.5	0.2	0.8	0.4	0.3	- 0.2
X_L_Thi	h_pericalcarine_thickness -	_lh_postcentral_thickness -	Y_rh_paracentral_area -	Y_Right-Accumbens-area -	oarstriangularis_thickness -	h_pericalcarine_thickness -	_rh_postcentral_thickness -	

postcentral_thickness -	X_L_Thalamus 0.2 0.2	Thalamus 0.4 0.2
_rh_paracentral_area - ight-Accumbens-area -	0.5 0.3	0.5 0.3
riangularis_thickness -	0.8	0.8
ricalcarine_thickness -	0.5 0.4	0.5 0.4
_	- 0.5 - 0.4	- 0.8 - 0.7 - 0.6

Correzione con Bonferroni

								- 1.000
								- 0.975
late '	1	1	1	1	0.8	1	1	- 0.950
X_R_Cauc								- 0.925
								- 0.900
								- 0.875
- te	1	1	1	1	1	1	1	- 0.850
_L_Cauda								- 0.825
×				41		E.		- 0.800
	nickness	nickness .	ral_area .	ens-area	nickness .	nickness -	nickness .	
	lcarine_t1	central_t	paracent	Accumbe	gularis_tl	lcarine_t1	central_tl	
	h_perica	_lh_post	, Th	Y_Right	parstrian	h_perica	_rh_post	

								- 1.00
amen	1	1	1	1	1	1	1	- 0.95
X_R_Puta								- 0.90
								- 0.85
men	. 1	1	0.9	0.7	1	1	1	- 0.80
X_L_Puta								- 0.75
	thickness -	thickness -	ntral_area -	bens-area -	thickness -	thickness -	thickness -	
	pericalcarine_	h_postcentral_	Y_rh_parace	_Right-Accum	ırstriangularis _.	pericalcarine	h_postcentral_	

							- 1.100
1	1	1	1	1	1	1	- 1.075
1	1	1	1	1	1	1	- 1.050
1	1	ı	1	1	ı	1	- 1.025
							- 1.000
1	1	1	1	1	1	1	- 0.975
l	1	1	1	1	1	1	- 0.950
1	1	1	1	1	1	1	- 0.925
_pericalcarine_thickness -	lh_postcentral_thickness -	Y_rh_paracentral_area -	۲_Right-Accumbens-area -	arstriangularis_thickness -	pericalcarine_thickness -	'h_postcentral_thickness -	- 0.900
	_pericalcarine_thickness _ I _ I _ I	Lericalcarine_thickness Lerica	L 1 1 L	Lericalcarine_thickness 1 Lericalcarine_thickness 1 1	Pericalcarine_thickness - 1 1 1 Pericalcarine_thickness - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><th>Dericalcarine_thickness - 1 I bipostcentral_thickness - 1 I contral_thickness - 1 I contral_thickness - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_a</th><th>pericalcarine_thickness r</th></t<>	Dericalcarine_thickness - 1 I bipostcentral_thickness - 1 I contral_thickness - 1 I contral_thickness - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_area - 1 Contral_area - 1 I contral_area - 1 I contral_area - 1 I contral_area - 1 Contral_a	pericalcarine_thickness r

X_L_Thalamuse_R_Thalamuse_L_Putamenk_R_PutamenX_L_CaudateX_R_Caudate

								- 1.100
								- 1.075
lamus	1	1	1	1	1	1	1	- 1.050
X_R_Tha								- 1.025
								- 1.000
								- 0.975
amus	1	1	1	1	1	1	1	- 0.950
X_L_Thal								- 0.925
	ess -	ess -	rea -	rea -	ess -	ess -	less -	- 0.900
	e_thickn	L_thickn	entral_a	nbens-a	s_thickn	e_thickn	l_thickn	
	alcarine	stcentra		it-Accun	ngularis	alcarine	stcentra	
	h_peric	_hpos	Y_rt	Y_Righ	parstria	'h_peric	_rh_pos	

Marker ER positivo/negativo. Totale pazienti=80 (P=62.5%,N=37.5%).												
						Primo pa	sso di Feature selec	tion				
Tipo features	Тіро											*4
•	Immagine	algorith	im teature alg n	_teatures accuracy	ac	c_var	precision	prec_var	recall	rec_var	TISCORE	11_var
	450	svm	no_aig	all	0,5625	0,02265625	0,5510714286	0,03361549036	0,5566666667	0,027566666667	0,5319191919	0,02629151565
	ADC	mip	fisher	45	0,6125	0,02640625	0,6455952381	0,03054139739	0,6033333333	0,01832222222	0,5811255411	0,02259080102
		i u	fisher	45	0,6	0,0275	0,5901190476	0,04238521825	0,57333333333	0,02595555556	0,5637085137	0,03012497788
		dt	no_alg	all	0,6375	0,01078125	0,6125	0,01540625	0,5966666666	0,011433333333	0,5958441558	0,01249283934
	PC	dt	reliefF	20	0,65	0,03375	0,6325	0,03539513889	0,63333333333	0,04066666667	0,624011544	0,03677453654
radiomiche da	:	svm	reliefF	5	0,6125	0,02328125	0,6125	0,02533680556	0,6166666667	0,02761111111	0,6029365079	0,02443336483
singola immagine		dt	no_alg	all	0,525	0,030625	0,5116666667	0,03237777778	0,5	0,02644444444	0,4998340548	0,02875478351
	SUB	mlp	reliefF	20	0,625	0,053125	0,6025	0,06319513889	0,6	0,06488888889	0,5913924964	0,06158192734
		knn	gini_index	5	0,6	0,02125	0,6191666667	0,02584791667	0,6133333333	0,0256	0,5901587302	0,02184658604
		mlp	no_alg	all	0,7	0,035	0,6901190476	0,05956974206	0,6666666667	0,04355555556	0,6562409812	0,04674273892
	T2	mlp	fisher	45	0,725	0,015	0,7248809524	0,0216211593	0,7	0,01955555556	0,6946897547	0,01849924435
		mlp	fisher	35	0,7	0,038125	0,6833333333	0,04634722222	0,6733333333	0,04506666667	0,6704184704	0,04496287551
		rf	no_alg	all	0,5875	0,02828125	0,5611309524	0,04152678926	0,55	0,02316666667	0,5352941503	0,02725956297
	ADC	dt	gini_index	30	0,6	0,03375	0,6083333333	0,03811111111	0,6	0,03777777778	0,582950938	0,03549871634
		mlp	chi	50	0,6125	0,02953125	0,6323809524	0,04904075964	0,59	0,02512222222	0,566984127	0,02922350718
		dt	no_alg	all	0,575	0,0225	0,5176190476	0,05231428571	0,52	0,03115555556	0,4992424242	0,03396016988
- U I - h - / II I - h	PC	dt	chi	50	0,65	0,030625	0,6523809524	0,04645181406	0,6333333333	0,036	0,622012987	0,03600061057
cliniche/radiomich		dt	reliefF	15	0,6625	0,01578125	0,6467857143	0,03553005952	0,63	0,02032222222	0,6187229437	0,02321396947
e ua siliguia		rf	no_alg	all	0,625	0,00625	0,634047619	0,01191133787	0,6066666667	0,005955555556	0,5914718615	0,005432808606
ininagine	SUB	dt	reliefF	5	0,6625	0,06890625	0,6583333333	0,067875	0,6566666667	0,07245555556	0,6498556999	0,07111224906
		mlp	chi	25	0,625	0,046875	0,605	0,05648888889	0,6066666667	0,05951111111	0,5956637807	0,05473652673
		mlp	no_alg	all	0,6875	0,02265625	0,6892857143	0,04350396825	0,6633333333	0,02676666667	0,649018759	0,03007645534
	T2	mlp	fisher	25	0,7	0,01	0,6975	0,01575069444	0,6866666667	0,01337777778	0,6767532468	0,01250013306
		mlp	chi	35	0,7	0,031875	0,6710714286	0,04715279195	0,6733333333	0,0384	0,6638961039	0,04233657457
,		mlp	no alg	all	0,5625	0,04140625	0,5317857143	0,06635744048	0,5233333333	0,04712222222	0,5117748918	0,04952634238
clinicne/radiomicn	ALL	mlp	chi	50	0,675	0,035	0,66	0,04324722222	0,6666666667	0,04022222222	0,6473809524	0,04354462586
е		svm	chi	50	0,6125	0,05765625	0,6225	0,05575069444	0,63	0,0601	0,6086507937	0,05736929327
	•••••••	mlp	no alq	all	0,575	0,0475	0,5377380952	0,07054961735	0,54	0,0544	0,5305627706	0,05852337766
radiomiche	ALL	mlp	chi	25	0,625	0,034375	0,6298809524	0,04976798469	0.6	0,03777777778	0,5876767677	0,03805249444
		mlp	reliefF	15	0,625	0,021875	0,6330952381	0,03058752834	0,5933333333	0,02128888889	0,5865367965	0,02027796435

				Marker	ER positivo	/negativo (P=62.5%	%,N=37.5%) - Secon	do passo di Feature	selection			
Tipo features	Тіро											
	immagine	algorithm	feature alg n	_features accuracy	ac	c_var	precision	prec_var	recall	rec_var	f1score	f1_var
radiomiche da	то	mlp	lr	11	0,7375	0,01078125	0,7391666667	0,01598680556	0,7233333333	0,01267777778	0,7164141414	0,01300277278
singola immagine	12	mlp	Ir	43	0,7375	0,02953125	0,71875	0,04469878472	0,73	0,0301	0,7074875125	0,03940666349

Costruzione del modello con approccio leave one out													
Tino features	Тіро												
ripo icutares	immagine	algorithm	feature alg n	_features accuracy	F	precision	recall	f1s	core				
radiomiche da	т2	svm	no_alg	11	0,8125	0,8723404255		0,82	0,8453608247				
singola immagine	12	mlp	no_alg	11	0,8	0,8541666667		0,82	0,8367346939				
			TEST										

TEST

DATI	numero pazienti	per classe (N/P)	accuracy	precision	recall	f1score	
	10	P=16	0 7905	0,8333		0,9375	0,8823
UNINE	19	N=3	0,7895	0		0	0

				Marker HER	2 positivo/neg Primo pa	ativo. Totale p sso di Feature	azienti=80 (P=2 selection	9%,N=71%)				
Tipo features	Tipo immagine	algorithm	feature alg	n features	accuracy	acc var	precision	prec var	recall	rec var	f1score	f1 var
		dt	no alg	all	0,6375	0,01703125	0,6080952381	0,02638117914	0,5716666667	0,013725	0,562568542	60,0154932303
	ADC	rf	reliefF	30	0,7625	0,01390625	0,7164285714	0,03331570295	0,7066666667	0,0266222222	0,695431235	40,0278661841
		mlp	gini_index	5	0,7125	0,03140625	0,6748809524	0,04903981009	0,6733333333	0,0554	0,652756132	80,0479028803
		nb	no_alg	all	0,6625	0,01578125	0,5226190476	0,04252380952	0,57	0,0309333333	0,524868464	90,0296096989
	PC	svm	reliefF	5	0,6625	0,03140625	0,6348809524	0,03596600057	0,66	0,0401777777	0,617639027	60,0397884415
radiomiche da		mlp	fisher	15	0,6375	0,04203125	0,5819047619	0,0592723356	0,6116666667	0,0626694444	0,579393939	40,0577131313
singola immagine		nb	no_alg	all	0,7125	0,03453125	0,5660714286	0,08685126134	0,6133333333	0,0655444444	0,578568098	60,0733480055
	SUB	knn	fisher	5	0,7	0,035	0,6886904762	0,03985352891	0,6916666667	0,0399027777	0,668606948	60,0380448140
		dt	fisher	15	0,6875	0,01953125	0,6569047619	0,03253905896	0,655	0,0247805555	0,623100233	10,0273418689
		mlp	no_alg	all	0,675	0,031875	0,6595238095	0,05028231293	0,5933333333	0,0217333333	0,592132867	10,0281099517
	T2	dt	gini_index	40	0,7	0,01	0,6655952381	0,02672178288	0,6433333333	0,0107333333	0,630336330	30,0140052424
		dt	reliefF	15	0,7125	0,01890625	0,665952381	0,04676196145	0,6366666667	0,0324333333	0,628706293	7 0,0342591978
		dt	no_alg	all	0,7375	0,02015625	0,6782142857	0,03592631803	0,6816666667	0,029525	0,670611610	60,0329617331
	ADC	nb	reliefF	10	0,725	0,015	0,6958333333	0,02379513889	0,7366666667	0,0325444444	0,686176046	2 0,0257313218
		svm	reliefF	25	0,75	0,015625	0,691547619	0,03776600057	0,7066666667	0,0335666666	0,670216450	20,0325240456
		nb	no_alg	all	0,675	0,019375	0,530952381	0,04693849206	0,5783333333	0,0359472222	0,536989677	7 0,0359857067
cliniche/radiomich	PC	mlp	gini_index	20	0,6625	0,00640625	0,5604761905	0,02352063492	0,5866666667	0,0204888888	0,561445221	40,0202507071
e da singola		dt	chi	5	0,6625	0,02203125	0,5766666667	0,05415623583	0,5583333333	0,0274583333	0,554102564	10,0351274819
immagine		nb	no_alg	all	0,7125	0,03453125	0,5660714286	0,08685126134	0,6133333333	0,0655444444	0,578568098	6 0,0733480055
Ŭ	SUB	nb	reliefF	5	0,6375	0,02328125	0,6525	0,02050069444	0,6866666667	0,03021111111	0,619992785	5 0,0230917403
		mlp	chi	30	0,6875	0,02578125	0,6592857143	0,04887465986	0,64333333333	0,0397333333	0,617645687	60,0381463049
		nb	no_alg	all	0,675	0,038125	0,5861904762	0,06253577098	0,6083333333	0,0472361111	0,567625707	60,0510603830
	T2	nb	fisher	50	0,675	0,025625	0,7171428571	0,01931269841	0,7	0,0155	0,642315462	30,0229476486
		dt	reliefF	50	0,7125	0,01890625	0,6652380952	0,04080493197	0,655	0,0306138888	0,626702186	70,0299026662
cliniche/radiomich		nb	no_alg	all	0,7	0,019375	0,588452381	0,0502046627	0,63	0,0428777777	0,589284049	30,0417361929
e	ALL	mlp	gini_index	10	0,725	0,015	0,7098809524	0,0216009212	0,7066666667	0,02051111111	0,680634920	6 0,0187515926
		dt	reliefF	50	0,7125	0,01578125	0,6627380952	0,03248697562	0,6466666667	0,0199333333	0,639795759	80,0238493188
		dt	no_alg	all	0,6625	0,01578125	0,6032142857	0,01708901644	0,61833333333	0,0193583333	0,598086358	10,0197331426
radiomiche	ALL	rt	reliefF	30	0,7	0,01	0,6678571429	0,03477692744	0,6616666667	0,0271694444	0,617702297	70,0231493269
		knn	chi	5	0,6375	0,03578125	0,6283333333	0,03182222222	0,6266666667	0,0402888888	0,602828282	80,0355994128

			Marker	HER2 positive	o/negativo (P=	29%,N=71%) -	Secondo passo	di Feature selec	tion		
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall rec_v	ar f1score	f1_var
da singola	ADC	knn	mi	27	0,7375	0,03265625	0,6891666667	0,04719513889	0,71333333330,0592	26666666 0,688513	37085 0,050531854
cliniche/radiomich	ALL	dt	ofe	42		0,030025	0,0903333333	0,030323	0,715 0,0410	7222222 0,003700	10030 0,04047 93000

* in realtà sono selezionate solo radiomiche

	Costruzione del modello con approccio leave one out											
	Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	precision	recall	f1score			
Ĩ	cliniche/radiomich	A1 1	rf	no_alg	5	0,8	0,6666666667	0,6086956522	0,6363636364			
	e *		svm	no_alg	5	0,7375	0,527777778	0,8260869565	0,6440677966			

			TEST				
DATI	numero pazienti	per classe (N/P)	accuracy	precision	recall	f1	score
	10	N=16	0 0 4 2 4	0,8421		1	0,91
UNIVIE	19	P=3	0,0421	C)	0	0

HER2

				Marker Kl67 p	ositivo/nega Primo pa	itivo. Totale paz sso di Feature s	ienti=78 (P=14%	%,N=86%)				
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
		svm	no_alg	all	0,78035714	129 0,029021045	9 0,637797619	0,0599188810	0,644047619	0,064950396	30,611831501	8 0,0597826832
	ADC	nb	chi	10	0,85892857	714 0,010742984	6 0,6806547619	0,0560906498	0,7297619048	0,056123866	20,690656010	7 0,0537727090
		rf	reliefF	45	0,8214285	714 0,025318877	5 0,6766071429	0,0582107461	0,7083333333	0,0711238662	2 0,676736596	7 0,0619753294
		svm	no_alg	all	0,8964285	714 0,005854591	8 0,6669642857	0,0618152104	0,7273809524	0,059536564	0,687286047	30,0578977600
	PC	svm	chi	10	0,88571428	3 57 0,013979591	8 0,7616071429	0,0567680874	0,8047619048	0,062760770	0,771714951	7 0,0576762662
radiomiche da		rf	fisher	5	0,8589285	7140,023242984	6 0,7670833333	0,0481126736	0,8142857143	0,056071428	50,770909090	9 0,0516275482
singola immagine		dt	no_alg	all	0,81785714	129 0,014400510	2 0,6461309524	0,0590250318	0,6654761905	0,063929988	0,636959707	7 0,0547512565
	SUB	rf	fisher	30	0,88392857	714 0,001546556	1 0,6982142857	0,0366198979	0,7880952381	0,039081632	60,715710955	7 0,0306010421
		dt	reliefF	50	0,89821428	357 0,011992984	6 0,6907738095	0,0722318771	0,7285714286	0,068163265	30,704102564	10,0688497041
		svm	no_alg	all	0,75892857	7140,025653698	9 0,5826190476	0,0553844104	0,6119047619	0,065226757	30,572707292	7 0,0582746003
	T2	nb	chi	25	0,80892857	714 0,022260841	8 0,6769047619	0,0550646825	0,7023809524	0,0709183673	30,665234765	2 0,0559198166
		dt	reliefF	40	0,	85 0,02125	0,6504166667	0,0651369791	0,7071428571	0,0678061224	40,662344322	30,0637383515
		svm	no_alg	all	0,79285714	129 0,026543367	3 0,6420833333	0,0638418402	0,65	0,076054421	70,635128205	10,0679050624
	ADC	dt	chi	20	0,80892857	714 0,016967474	4 0,68125	0,0420182291	0,7607142857	0,053527494	30,682132867	10,0449815911
		nb	reliefF	15	0,82142857	714 0,022193877	5 0,6741071429	0,0575666985	0,7083333333	0,063981009	0,671561771	60,0599584766
		svm	no_alg	all	0,87142857	714 0,009426020	4 0,6491071429	0,0537546945	0,7119047619	0,060226757	30,668344988	30,0530251933
cliniche/radiomich	PC	mlp	gini_index	5	0,84821428	357 0,021189413	2 0,7420833333	0,0420918402	0,8083333333	0,054151077	10,751095571	1 0,0460727533
e da singola		nb	fisher	10	0,8571428	5710,021045918	3 0,7432738095	0,0550202699	0,7726190476	0,066310941	0,738916083	90,0558746704
immagine		rf	no_alg	all	0,8196428	5710,019862882	6 0,6226190476	0,07117488662	0,6476190476	0,076026077	10,629945054	90,0713347237
-	SUB	rf	fisher	30	0,8464285	7140,005497448	9 0,6806547619	0,0364477926	0,7666666666	0,040255102	0,686260406	30,0310040930
		dt	fisher	5	0,8089285	7140,009760841	8 0,669047619	0,0335544217	0,7607142857	0,056050170	0,68002664	1 0,0383377583
		dt	no_alg	all	0,7946428	5710,003970025	5 0,5735119048	0,0213329967	40,6488095238	0,047881235	30,587524142	50,0251965244
	12	rf	chi	5	0,7964285	7140,022971938	7 0,7211904762	0,0434321995	0,7952380952	0,042738095	20,705309690	30,0477524458
		dt	fisher	30	0,79642857	714 0,019846938	7 0,6629166667	0,0425223958	0,7357142857	0,055521541	0,665163170	20,0458356139
cliniche/radiomich		dt	no_alg	all	0,8214285	14 0,006568877	5 0,5443452381	0,0237943771	0,6476190476	0,046264172	30,571901431	90,0256080839
е	ALL	dt	chi	50	0,84642857	14 0,009579081	6 0,7041666667	0,0327083333	0,8071428571	0,031/9/052	10,717307692	30,0309727975
		dt	chi	35	0,8571428	5/10,019834183	6 0,7036904762	0,0663571995	0,7285714286	0,066575963	10,705887445	90,0657578456
		dt	no_alg	all	0,76785714	129 0,022767857	1 0,5227380952	0,034/392857	0,5476190476	0,046938775	0,526180486	20,0377020552
radiomicne	ALL	dt	tisher	20	0,87321428	357 0,021903698	9 0,8007142857	0,0481984693	0,8238095238	0,060595238	0,793439893	40,0515532430
		dt	fisher	40	0,84821428	357 0,014939413	2 0,7011904762	0,0491819019	0,7654761905	0,046089852	0,704675324	70,0480883716

			Marker K	67 positivo/ne	gativo (P=14	%,N=86%) - Se	condo passo d	i Feature selec	tion			
Tipo features	Tipo immagine	algorithm	feature alg	n features	accuracy	acc var	precision	prec var	recall	rec var	f1score	f1 var
na dia mia ha		svm	lr	21	0,844642857	10,0157557398	0,6949404762	0,0580379287	0,738095238	10,068395691	60,7012604	063 0,0595681710
radiomiche	ALL	mlp	cfs	7	0,817857142	9 0,0247321428	0,6957738095	0,0530803890	0,747619047	60,061558956	0,6968897	769 0,0565075096
radiomiche da	BC	mlp	cfs	1	0,871428571	40,0228826530	0,78375	0,0472654513	0,8392857143	30,054683956	0,7894289	044 0,0513299211
singola immagine	FV	mlp	cfs	2	0,857142857	10,0292091836	0,7795833333	0,0483973958	0,830952381	0,055408163	20,7777622	378 0,0558082622

		Costruz	ione del mode	llo con approc	ccio leave one	out		
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	precision	recall	f1score
		knn/svm	no_alg	1	0,8846153846	0,9677419355	0,8955223881	0,9302325581
radiomiche da	PC	mlp	no_alg	1	0,8205128205	0,9649122807	0,8208955224	0,8870967742

singola immagine	PC	svm *	no_alg	2	0,8846	153846	0,96774 ⁻	19355	0,895522388
		mlp	no_alg	2	0,8461	538462	0,966101	16949	0,85074626
			TEST						
	numero	per classe							
DATI	pazienti	(N/P)	accuracy	precision	recall		f1score		
	40	N=14	0 779	0,75		0,92		0,85	
UNIME	10	P=4	0,770	0,5		0,75		0,6	

				Marker PR p	ositivo/negativ	o. Totale pazi	enti=80 (P=50%	%,N=50%)				
	·				Primo pass	o di Feature s	election					
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
		svm	no_alg	all	0,6	0,030625	0,6252380952	0,0392009070	0,6	0,030625	0,5884271284	10,0313224371
	ADC	mlp	fisher	25	0,65	0,015	0,6633333333	0,0182666666	6 0,65	0,015	0,643015873	0,0157678004
		svm	fisher	30	0,6375	0,02640625	0,6719047619	0,0329453514	0,6375	0,02640625	0,6185858586	0,0285255223
		nb	no_alg	all	0,6125	0,03890625	0,6266666667	0,0576709750	0,6125	0,03890625	0,5868109668	0,0454461725
	PC	knn	fisher	5	0,7375	0,02953125	0,7652380952	0,0303675737	0,7375	0,02953125	0,726046176	0,0329099998
radiomiche da		knn	fisher	25	0,7	0,02875	0,6969047619	0,0469195578	9,7	0,02875	0,669538239	50,0414071458
singola immagine		mlp	no_alg	all	0,5375	0,05328125	0,5383333333	0,0598916666	0,5375	0,05328125	0,525476190	0,0556531179
	SUB	knn	fisher	5	0,625	0,040625	0,6164285714	0,0559687641	0,625	0,040625	0,607669552	7 0,0481511029
		svm	fisher	15	0,6125	0,04203125	0,6383333333	0,0507805555	0,6125	0,04203125	0,598650793	0,0427284013
		mlp	no_alg	all	0,5625	0,01640625	0,5716666667	0,0211138888	0,5625	0,01640625	0,5503968254	10,0172692428
	T2	mlp	fisher	50	0,7	0,0225	0,6833333333	0,0411666666	6 0,7	0,0225	0,6788095238	3 0,0328255291
		mlp	gini_index	35	0,6875	0,03203125	0,71	0,0369	0,6875	0,03203125	0,6731746032	20,0354781809
		svm	no_alg	all	0,6125	0,03578125	0,6402380952	0,0449687641	0,6125	0,03578125	0,600728715	7 0,0366596041
	ADC	mlp	fisher	25	0,65	0,015	0,6633333333	0,0182666666	0,65	0,015	0,643015873	0,0157678004
		svm	fisher	30	0,6375	0,02640625	0,6719047619	0,0329453514	0,6375	0,02640625	0,618585858	0,0285255223
		nb	no_alg	all	0,6125	0,03890625	0,6266666667	0,0576709750	0,6125	0,03890625	0,586810966	0,0454461725
cliniche/radiomich	PC	knn	fisher	5	0,7375	0,02953125	0,7652380952	0,0303675737	0,7375	0,02953125	0,726046176	0,0329099998
e da singola		dt	chi	5	0,6625	0,00953125	0,69	0,0150666666	0,6625	0,00953125	0,6523809524	10,0099761904
immagine		mlp	no_alg	all	0,5	0,046875	0,5	0,0516111111	1 0,5	0,046875	0,488571428	0,0481043335
l ·	SUB	knn	fisher	5	0,625	0,040625	0,6164285714	0,0559687641	0,625	0,040625	0,607669552	7 0,0481511029
		mlp	reliefF	5	0,6125	0,02640625	0,6316666667	0,0422472222	2 0,6125	0,02640625	0,599126984	10,0292464663
		mlp	no_alg	all	0,5625	0,01640625	0,5869047619	0,0250830498	0,5625	0,01640625	0,541522366	0,0171838122
	T2	mlp	fisher	50	0,7	0,0225	0,6833333333	0,0411666666	6 0,7	0,0225	0,6788095238	30,0328255291
		mlp	gini_index	25	0,6625	0,03140625	0,67	0,0334333333	0,6625	0,03140625	0,653650793	7 0,0336935248
cliniche/radiomich		mlp	no_alg	all	0,6375	0,02328125	0,6416666667	0,0381181972	2 0,6375	0,02328125	0,618160173	2 0,0303445640
e	ALL	mlp	reliefF	15	0,6875	0,06328125	0,6916666667	0,0755138888	0,6875	0,06328125	0,672777778	0,0707130322
		mlp	fisher	50	0,6375	0,04203125	0,635	0,0635737528	0,6375	0,04203125	0,613556998	0,0525080744
		nb	no_alg	all	0,5875	0,02203125	0,5533333333	0,0624820861	0,5875	0,02203125	0,530144300	10,0355374824
radiomiche	ALL	mlp	reliefF	15	0,6875	0,06328125	0,6916666667	0,0755138888	0,6875	0,06328125	0,672777778	0,0707130322
		mlp	fisher	50	0,6375	0,04203125	0,635	0,0635737528	0,6375	0,04203125	0,613556998	0,0525080744

			Marker F	PR positivo/ne	gativo (P=50%	,N=50%) - Sec	ondo passo di	Feature selec	ction			
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
radiomiche da	DO	knn	lr	3	0,75	0,021875	0,7871428571	0,0177088435	0,75	0,021875	0,735743145	7 0,0259008714
singola immagine	PC	nb	cfs	6	0,725	0,04	0,7433333333	0,04445555555	0,725	0,04	0,714285714	3 0,0436422272
radiomiche	ALL	knn	no alq	18	0.725	0.199375	0.725	0.199375	0.725	0.199375	0.725	0.199375

		Costru	izione del mod	ello con appro	ccio leave one	out		
Tipo features	Tipo immagine	algorithm	feature alg	n_features	accuracy	precision	recall	f1score
radiomiche da		mlp knn	no_alg no_alg	3	0,725 0,7375	0,725 0,7714285714	0,725 0,675	0,725 0,72
singola immagine	PC	nb	no_alg	6	0,725	0,7045454545	0,775	0,7380952381
		rf	no_alg	6	0,675	0,6666666667	0,7	0,6829268293

TEST										
DATI	numero pazienti	modello	per classe (N/P)	accuracy	precision reca	all f1s	score			
		Mlp/3 features	N=6	0 6040	0	0	0			
	10		P=13	0,0042	0,684	1	0,812			
UNIME	19	nb/6 features	N=6	0 4736	0,334	0,667	0,445			
			P=13	0,4730	0,714	0,385	0,5			

Selected Features

	CANCRO AL SENO		
ER	HER2	KI67	PR
T2_original_shape_Flatness	T2_original_glrlm_RunVariance	PC_wavelet-LHH_gldm_DependenceEntropy	PC_original_shape_Flatness
T2_original_glcm_Idmn	T2_original_glrlm_LongRunEmphasis	PC_wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasis	PC_wavelet-LLH_glcm_Correlation
T2_wavelet-LHH_glszm_ZoneEntropy	T2_original_glszm_ZonePercentage		PC_wavelet-HHH_ngtdm_Busyness
T2_wavelet-LHH_gldm_LargeDependenceLowGrayLevelEmphasis	T2_original_gldm_DependenceNonUniformityNormalized		
T2_wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis	ADC_wavelet-LLH_firstorder_Minimum		
T2_wavelet-LLH_gldm_SmallDependenceLowGrayLevelEmphasis			
T2_wavelet-LLH_firstorder_Skewness			
T2_log-sigma-4-0-mm-3D_glcm_Imc2			
T2_log-sigma-4-0-mm-3D_firstorder_Skewness			
T2_log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis			
T2_log-sigma-5-0-mm-3D_firstorder_Skewness			

	Predizione di presenza di linfonodi. Totale pazienti 52 (positivi 81%, negativi 19%)										
Primo passo di feature selection con metodi ranker.											
tipo features	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
	mlp	no_alg	168	0,7866666667	0,0176	0,55	0,061875	0,6025	0,05768125	0,568968254	0,0574623582
radiomiche	dt	reliefF	38	0,8066666667	0,0377333333	0,6658333333	0,0860895833	0,69	0,086775	0,6711507937	0,0853384369
	dt	no_alg	167	0,76	0,0464	0,6525	0,0879868055	0,6625	0,09078125	0,6438492063	0,0895898289
cliniche/radiomiche	mlp	reliefF	30	0,8033333333	0,0161	0,62	0,060475	0,69	0,06115	0,6384920635	0,0563057445

	Secondo passo di feature selection su features aggregate tramite min e rimozione features correlate										
tipo features	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
	dt	mi	16	0,8233333333	0,0195666666	0,7441666667	0,0457229166	0,815	0,041775	0,7466269841	0,0450349978
radiomiche	mlp	mi	19	0,82	0,0196	0,7091666667	0,0563395833	0,775	0,049375	0,7132936508	0,0529582782
radiomiche senza	dt	cfs	8	0,8833333333	0,0091666666	0,78	0,0486	0,8525	0,03393125	0,7952380952	0,0417460317
features correlate	mlp	mi	10	0,76	0,0544	0,75	0,0586805555	0,775	0,068125	0,7167857143	0,0745715561
				Terz	o passo di fea	ture selection					
tipo features	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
radiomiche senza	mlp	mi	7	0,88	0,0256	0,755	0,0901	0,775	0,0775	0,7638888888	0,0841049382
features correlate											
leatures correlate	mlp	mi	6	0,82	0,0276	0,6966666667	0,075475	0,7375	0,06703125	0,6984126984	0,0719285399
Teatures correlate	mlp	mi	6	0,82	0,0276	0,6966666667	0,075475	0,7375	0,06703125	0,6984126984	0,0719285399
	mlp	mi	6 Risultati leav	0,82	0,0276	0,6966666667	0,075475	0,7375	0,06703125	0,6984126984	0,0719285399
tipo features	mlp algorithm	mi feature alg	6 Risultati leav n_features	0,82 e one out accuracy	0,0276 precision	0,6966666667 recall	0,075475 f1score	0,7375	0,06703125	0,6984126984	0,0719285399

TUMORE AL COLON COINVOLGIMENTO DI LINFONODI Fmorph_a_dens_mvee Fmorph_v_dens_conv_hull Fstat_cov Fih_P10

Fivh_V90 _ Fcm_joint_max Fcm_diff_var

			D	azionto con	o/mal	lato o A	D monolatoralo/h	ilatoralo con annroc	cio 10 fold CV/ Total	a pazionti 94 (S-54	0/ · ADM-290/ ADP	- 199/)		
Prima fase di feature selection														
Descrizione	Numero	Tipo features	Algoritm	Algoritmo	Num	nero ac	curatezza	acc_var	precisione	prec_var	recall	rec_var	f1score	f1_var
	3	img/cliniche	rf	no_alg	all		0,7588888889	0,01449506173	0,7343650794	0,02774326657	7 0,684444444	0,02565925926	0,6782010582	0,02617210045
controllo/AD	3	img/cliniche	rf	gini_index		5	0,7988888889	0,00277654321	0,7484126984	0,01736016629	9 0,7388888889	0,01240123457	0,7152641803	0,009851890224
mono/AD bi	3	img/cliniche	mlp	fisher		15	0,734444444	0,004455555556	0,6415079365	5 0,0170871819 ²	1 0,6733333333	0,00815308642	0,6293338143	0,01039498932
	2	img/cliniche	svm	no_alg	all		0,87	0,01449506173	0,8866666667	7 0,0123777778	3 0,8766666667	0,01310833333	0,8682864358	0,01486025126
controllo/AD	2	img/cliniche	dt	gini_inde	x	20	0,8833333333	0,009734567901	0,8875	5 0,009670138889	0,8866666667	0,009975	0,8822727273	0,009957769615
	2	img/cliniche	dt	reliefF		15	0,8822222222	0,00817777778	0,8973809524	0,006801814059	9 0,8841666667	0,007964583333	0,8797763348	0,0084808225
	2	img/cliniche	rf	no_alg	all		0,625	0,055125	0,5875	5 0,07585069444	4 0,6083333333	0,05701388889	0,5730952381	0,06489801587
AD mono/AD	2	img/cliniche	knn	gini_inde	x	45	0,715	0,045025	0,7166666667	7 0,06833333333	3 0,7083333333	0,05729166667	0,685	0,059025
ы	2	img/cliniche	knn	fisher		15	0,665	0,051525	0,65	5 0,07055555556	6 0,6583333333	0,063125	0,6383333333	0,063225
controllo/AD	3	img	knn	no_alg	all		0,65	0,01845061728	0,5672222222	2 0,0361015432 ²	1 0,62	0,02668641975	0,550012025	0,02872277706
mono/AD bi	3	img	knn	chi		40	0,6588888889	0,01135925926	0,5680555556	6 0,0233599537	7 0,5866666667	0,02256296296	0,5470527621	0,01884824635
	3	img	svm	reliefF		35	0,6555555556	0,0135308642	0,5493650794	4 0,03505124717	7 0,5588888889	0,01972962963	0,5361568062	0,02308977498
	2	img	svm	no_alg	all		0,86	0,007387654321	0,8926190476	6 0,002963095238	3 0,8675	0,00600625	0,8563780664	0,008181492778
controllo/AD	2	img	svm	chi		10	0,8211111111	0,02262839506	0,8338690476	6 0,02538807044	4 0,8166666667	0,02695833333	0,8064466089	0,0296984036
	2	img	knn	gini_index		30	0,8211111111	0,01522098765	0,8416666667	0,01481597222	2 0,8116666667	0,019225	0,8040531691	0,02204648463
	2	img	nb	no_alg	all		0,655	0,055725	0,5383333333	3 0,1056555556	0,5916666667	0,06590277778	0,5451190476	0,08148822279
AD mono/AD	2	img	dt	fisher		45	0,66	0,0674	0,6208333333	0,1091840278	3 0,65	0,0775	0,6095238095	0,08830839002
51	2	img	svm	gini_index		5	0,655	0,066225	0,5916666667	0,0919444444	4 0,625	0,06701388889	0,579047619	0,07721632653

	Paziente sano/malato con approccio 10-fold CV. Totale pazienti: 94 (S=54%, AD=46%) Seconda fase di feature selection											
Numero classi	Tipo features	Algoritmo di classificazi	Algoritmo di feature selection	Numero di features	accuratezza	acc_var	precisione	prec_var	recall	rec_var	f1score	f1_var
2	img/cliniche	rf dt	cfs mi	9 1	0,893333333 0,893333333	0,002029629 0,0119061728	0,912380952 0,8975	0,001141496 0,01205625	0,894166666 0,891666666	0,00218125 0,012833333	0,890566378 0,890544733	0,002207370 0,012784315
2	img	rf svm/mlp	cfs cfs	6 6	0,8511111111 0,85	0,0131160493 0,011956790	0,862857142 0,857023809	0,013299263 0,012505513	0,8525 0,8475	0,01293125 0,01268125	0,849187756 0,846319791	0,013140190
		Costru	izione del mo	dello con app	proccio leave	one out						
Numero	Tipo	Algoritmo	Algoritmo	Numero di	accuratezza	precisione	recall	f1score				
2	img/cliniche	dt	no_alg	1	0,893617021	0,902439024	0,860465116	0,880952381				
2	img	mlp	no_alg	6	0,851063829	0,853658536	0,813953488	0,833333333				

Classificazione AD monolaterale/Bilaterale. Totale pazienti: 43 (ADM=60%, ADB=40%) Seconda fase di feature selection												
Numero	Tipo features	Algoritmo	Algoritmo	Numero di	accuratezza	acc_var	precisione	prec_var	recall	rec_var	f1score	f1_var
	mg/clinicne	knn	lr	4	0,67	0,0731	0,65	0,105277777	0,683333333	0,0747222222	0,636666666	0,089377777
2	(ua 	svm	mi	9	0,675	0,049125	0,659166666	0,082311805	0,658333333	0,0561805555	0,622023809	0,0668932114
2	img/cliniche	svm	lr	9	0,72	0,0206	0,716666666	0,0429861111	0,7333333333	0,0233333333	0,6873809524	0,0288571995
	(da fisher)	mlp	lr	10	0,715	0,032525	0,675	0,067291666	0,7333333333	0,0358333333	0,675	0,0509583333
2	ima	mlp	cfs	7	0,695	0,037225	0,7333333333	0,038263888	0,7	0,032222222	0,684047619	0,0359841836
2	ing	svm	cfs	7	0,69	0,0614	0,708333333	0,068402777	0,7083333333	0,0586805555	0,681666666	0,0661361111
									-			
		Costru	izione del mo	dello con app	roccio leave o	ne out						
Numero	Tipo features	Algoritmo	Algoritmo	Numero di	accuratezza	precisione	recall	f1score				
2	img/cliniche	rf	no_alg	23	0,790697674	40,8148148148	0,8461538462	20,830188679	(
2	img	svm	no_alg	12	0,674418604	0,75	0,6923076923	0,72				

	Marker amiloide positivo/negativo. Totale pazienti=27 (P=77.78%,N=22.22%)										
	Primo passo di Feature selection										
Features	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
	mlp	fisher	15	0,777777778	0,008230452675	0,7331349206	0,02239425863	0,6785714286	0,003401360544	0,6877289377	0,007773685411
no clinical	mlp	chi	40	0,8518518519	0,002743484225	0,7546296296	0,06688314472	0,666666666	0,01388888889	0,6791666667	0,02920138889
	Marker amiloide positivo/negativo (P=77.78%,N=22.22%) - Secondo passo di Feature selection										
Tipo immagine	algorithm	feature alg	n_features	accuracy	acc_var	precision	prec_var	recall	rec_var	f1score	f1_var
	dt	Ir	6	0,8148148148	0,0109739369	0,75	0,01388888889	0,8214285714	0,02295918367	0,7692307692	0,01704142012
no clinical	mlp	mi	20	0,8148148148	0,002743484225	0,7648809524	0,0148986678	0,7023809524	0,001133786848	0,719047619	0,003276643991
		Costruzior	ne del modello c	on approccio lea	ve one out						
Tipo immagine	algorithm	feature alg	n_features	accuracy	precision	recall	f1score				
	dt *	no_alg	6	0,8571428571	0,944444444	0,8947368421	0,9189189189				
no clinical	mlp	no_alg	6	0,7142857143	0,8823529412	0,7894736842	0,83333333333				
		TE	ST								
	numero										
DATI	pazienti	accuracy	precision	recall	fiscore						
UNIME	4	1	1	1	1						

Selected Features

	MORBO DI ALZHEIMER	
SANO_vs_MALATO	MONO_vs_BI	PRESENZA_AMILOIDE
Left-Inf-Lat-Vent	Ih_paracentral_area	Ih_cuneus_thickness
Left-Amygdala	Ih_cuneus_thickness	Ih_transversetemporal_thickness
Right-Inf-Lat-Vent	Ih_fusiform_thickness	Ih_cuneus_volume
rh_entorhinal_thickness	Ih_inferiorparietal_thickness	rh_bankssts_thickness
left_Lateral-nucleus	Ih_inferiortemporal_thickness	rh_temporalpole_thickness
left_Basal-nucleus	Ih_isthmuscingulate_thickness	rh_temporalpole_volume
	Ih_lateraloccipital_thickness	
	Ih_precentral_thickness	
	Ih_superiorparietal_thickness	
	Ih_insula_thickness	
	rh_parahippocampal_area	
	rh_bankssts_thickness	
Allegato 14

Sano/Malato

Morbo di Parkinson. Classificazione sano/malato. Totale pazienti=51 (S=27.45%, PD=72.55%)											
Primo passo di Feature selection											
Tipo features	Algoritmo	Algoritmo di	Numero di	accuratezza	acc_var	precisione	prec_var	recall	rec_var	f1score	f1_var
clinici/uptake/imm	knn	chi	5	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
agini	rf	fisher	15	0,96	0,0064	0,9275	0,03230625	0,925	0,025625	0,9206349206	0,0302343159
	mlp	fisher	20	0,7133333333	0,0542666666	0,6633333333	0,0748916666	0,7083333333	0,0697916666	0,6507142857	0,0770734693
clinici/immagini	knn	reliefF	50	0,67	0,0521	0,6666666667	0,0503472222	0,6916666667	0,0570138888	0,638452381	0,0581326672
	knn/svm/rf	chi	5	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
uptake/immagini	knn	reliefF	5	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
	knn	reliefF	50	0,73	0,0361	0,7416666667	0,0311805555	0,7791666667	0,0350868055	0,7138095238	0,0362730158
solo immagini	knn	reliefF	35	0,71	0,0369	0,7166666667	0,0322222222	0,7541666667	0,0380034722	0,6921428571	0,0367630952

		Classificazio	ne sano/mala	to Parkinson'	s (S=27.45%, I	PD=72.55%) -	Secondo pase	so di Feature s	election		
Tipo features	Algoritmo	Algoritmo di	Numero di	accuratezza	acc_var	precisione	prec_var	recall	rec_var	f1score	f1_var
clinici/uptake/imm	knn/svm	Ir	2	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
agini	knn/svm	mi	2	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
	knn/svm	ir	2	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
uptake/immagini	knn/svm	mi	2	0,98	0,0036	0,94	0,0324	0,95	0,0225	0,944444444	0,0277777777
	knn	Ir	9	0,73	0,0281	0,75	0,0236111111	0,7833333333	0,0249305555	0,7142857143	0,0295986394
solo immagini	svm	lr	5	0,77	0,0401	0,6966666667	0,0802527777	0,7166666667	0,0679861111	0,6994047619	0,0746400935

	C	ostruzione de	l modello con	approccio lea	ive one out		
Tipo features	Algoritmo	Algoritmo di	Numero di	accuratezza	precisione	recall	f1score
	knn/svm	no_alg	2	0,9803921569	0,9736842105	1	0,9866666667
uptake/immagini	mlp	no_alg	2	0,9215686275	0,9714285714	0,9189189189	0,944444444
	svm	no_alg	27	0,9215686275	0,9459459459	0,9459459459	0,9459459459
solo immagini	mlp	no_alg	27	0,8431372549	0,8918918919	0,8918918919	0,8918918919

Selected Features

MORBO DI PARKINSON						
SANO_vs_MALATO						
CON DATI UPTAKE	SENZA DATI UPTAKE					
R_Putamen	Left-Thalamus-Proper					
L_Putamen	3rd-Ventricle					
	Right-Thalamus-Proper					
	Right-Accumbens-area					
	Ih_precentral_area					
	Ih_frontalpole_meancurv					
	Ih_cuneus_thickness					
	Ih_inferiorparietal_thickness					
	Ih_middletemporal_thickness					
	Ih_postcentral_thickness					
	Ih_precuneus_thickness					
	rh_paracentral_area					
	rh_precentral_area					
	rh_superiortemporal_area					
	rh_transversetemporal_area					
	rh_lingual_meancurv					
	rh_parstriangularis_thickness					
	rh_pericalcarine_thickness					
	rh_postcentral_thickness					
	rh_transversetemporal_volume					
	right_Anterior-amygdaloid-area-AAA					
	left_presubiculum-body					
	left_CA4-head					
	right_hippocampal-fissure					
	Left-VA					
	Left-PuL					
	Right-MDm					