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Abstract

In this work we propose to extend the spherical separation approach,
amply used in supervised classification, to the unsupervised case, by as-
signing each datum to a suitable sphere. Since such spheres are com-
putable by facing a nonsmooth nonconvex optimization problem di�cult
to solve, our main idea consists in designing a heuristics approach based
on solving successive linear programs aimed at providing the radii of the
clustering spheres, whereas the centers are fixed in advance as the barycen-
ters of each current cluster, similarly to the strategy adopted by the well
known K-Means algorithm.

Preliminary numerical results on some clustering problems drawn from
the literature are reported.

Keywords: Unsupervised Classification, Clustering, Spherical Separation,
K-Means

1 Introduction

Nowadays, we produce and collect huge amounts of data, for example via so-
cial media, online transactions and network sensors. This exponential growth
of available data makes the entire decision-making process very complex start-
ing from the data representation itself. Indeed, there is a real need to analyze
data e�ciently for discovering regular patterns in them and making better de-
cisions. To answer this demand, it is important to develop new computational
approaches and tools in data analysis.

Optimization plays a crucial role in this field as many mathematical pro-
grams have been proposed to model data mining problems, where the aim is
to discover and extract previously unknown information from data [21, 26, 27].
The data mining process involves several distinct activities such as data repre-
sentation, supervised data classification, association rules, feature selection and
extraction, regression analysis and clustering.
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In particular, in this work we focus on clustering. It is an unsupervised
classification technique, where the aim is to partition a data set into subsets
(clusters) of similar objects in order to recognize patterns in data. The idea
is that each cluster consists of objects that are similar amongst themselves
and dissimilar compared to objects of other clusters. Clustering analysis has
many applications in various fields such as in medical sciences [5, 31], computer
sciences [12] and economics [16], and consequently there are di↵erent approaches
and algorithms for it in function of the problems to be solved. A possible
classification is the following:

partitioning clustering;

hierarchical clustering;

density-based clustering;

grid-based clustering;

model-based clustering;

constraint-based clustering.

In the partitional clustering methods, the objective is to find a partition of
the objects that optimizes some predefined clustering criterion [14, 23]. These
methods can be divided into two subclasses: hard partitional clustering, where
each object belongs to only one cluster and soft partitional clustering, where
each object may belong to more than one cluster.

The hierarchical clustering methods create a hierarchical decomposition of
the given data set [14, 15, 20]. Based on how the hierarchical decomposition
is formed, these methods are distinguished in agglomerative and divisive ap-
proaches. The agglomerative clustering [8] is a bottom-up approach that starts
with each object forming a cluster of its own. It keeps on merging the clusters
that are close each to other, as one moves up the hierarchy until all the groups
are merged into one or until a termination condition holds. On the other hand,
divisive clustering [6] is a top-down approach. Initially, all the objects belong
to one cluster and the division is performed recursively, as one moves down the
hierarchy until each object is a cluster or a termination condition occurs.

Density-based clustering methods focus on the notion of density [18, 24].
They identify distinctive clusters, based on the idea that a cluster in a data
space is a contiguous region of high point density, separated each from the other
by contiguous regions of low point density. The data points in the separating
regions of low point density are typically considered noise or outliers.

The grid-based clustering approach di↵ers from the conventional clustering
algorithms since it concerns not the objects but the space where the objects are
located [7, 25, 32]. A typical grid-based clustering algorithm starts by partition-
ing the object space into a finite number of cells, i.e. it creates a grid structure
on which all the operations for clustering are implemented. The benefit of this
type of methods is the quick processing time, which is generally independent of
the number of data objects.
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Model-based clustering is a statistical approach [10, 11, 28]. The observed
data are assumed to have been generated from a finite number of component
models, i.e. probability distributions. Each component, that is initially un-
known, determines the cluster to which the generated observation belongs and
the key learning task is to calculate the parameters of its distribution.

Constraint-based clustering finds clusters that satisfy certain conditions, for
example user expectations or given properties [19, 30]. In such sense the con-
straints provide an interactive communication way between the user and the
clustering process.

In this work we present an hard partitional clustering technique based on
spherical separation, which is a common strategy used in supervised classifica-
tion.

Throughout the paper, we will use the following notation. Given a vector
x 2 Rn, we indicate by kxk its Euclidean norm and given any set X , we denote
by |X | its cardinality.

2 The model

Let
Y

4
= {y1, . . . , ym}

be a finite set ofm points, such that yi 2 Rn, i = 1, . . . ,m, and let k be an integer
number such that k < m. The clustering problem consists of automatically
partitioning the m points of the set Y into k subsets (clusters) Yj , j = 1, . . . , k,
on the basis of their similarities.

For this purpose we propose to use a multisphere separation approach, based
on constructing k spheres of the type:

Sj(xj , Rj) = {x 2 Rn | kx� xjk2 = R2
j}, j = 1, . . . , k,

where xj 2 Rn is the center of the sphere Sj and Rj 2 R+ is the corresponding
radius.

In particular, the criterion we propose is to cluster the points on the basis
of their distance with respect to each sphere. In other words, a point yi 2 Y
belongs to the cluster Yj if

kyi � xjk2 �R2
j  kyi � xrk2 �R2

r for any r = 1, . . . , k and r 6= j,

i.e. if
kyi � xjk2 �R2

j  min
1  r  k

r 6= j

�
kyi � xrk2 �R2

r

 
. (1)

Then, letting

dij
4
= kyi � xjk2, i = 1, . . . ,m and j = 1, . . . , k
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be the squared distance between the point yi and the center of the sphere Sj ,
and assuming (1) as the clustering criterion for yi, we say that the point yi does
not belong to the cluster Yj if

dij �R2
j > min

1  r  k
r 6= j

�
dir �R2

r

 
.

As a consequence the error function, say eij , of yi with respect to the cluster
Yj is defined as follows

eij(x1, . . . , xk;R1, . . . , Rk)
4
= max

8
<

:0, dij �R2
j � min

1  r  k
r 6= j

{dir �R2
r}

9
=

;

= max

8
<

:0, dij �R2
j + max

1  r  k
r 6= j

{R2
r � dir}

9
=

;

= max
1  r  k

r 6= j

�
0, dij +R2

r � (dir +R2
j )
 
.

(2)
Summing up, we obtain the following final clustering error function:

e(x1, . . . , xk;R1, . . . , Rk)
4
=

mX

i=1

kX

j=1

eij(x1, . . . , xk;R1, . . . , Rk),

which takes into account the clustering error of all the points of set Y with
respect to every cluster.

To strengthen the clustering process, in addition to the minimization of the
above function e, we propose to compute the clustering spheres by minimizing
also the respective volumes, which is a common strategy used in supervised
classification (see for example [3, 1, 2, 17]). Then we come out with the following
optimization problem:

min
x1,...,xk;R1,...,Rk

f(x1, . . . , xk;R1, . . . , Rk), (3)

where

f(x1, . . . , xk;R1, . . . , Rk)
4
= e(x1, . . . , xk;R1, . . . , Rk) + C

kX

j=1

R2
j , (4)

with C being a positive parameter, tuning the trade-o↵ between the two above
di↵erent objectives: the minimization of the clustering error and the minimiza-
tion of the radii of the spheres.

Problem (3) is a di�cult problem, due to the nonconvexity and the nons-
moothness of the objective function f , involving the nonsmooth and nonconvex
functions eijs defined by (2).
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3 A heuristic algorithm

In this section we propose a heuristic approach for solving problem (3). The
underlying idea is only in part similar to the well known K-Means approach
(see for example the survey [13]), since the computation of the centers xjs of
the spheres are performed in a similar way as K-Means updates the centers of the
clusters. In addition, di↵erently from K-Means, in our approach an important
role is played by the computation of the radii of the spheres (see relationship
(1)), that in K-Means does not intervene.

In particular, the proposed overall algorithm is a variant of the Block Coordi-
nate Descent approach [29], consisting in the computation of the optimal values
of the centers xjs, when the radii Rjs are fixed, and, vice-versa, of the optimal
values of the radii when the centers are fixed. Unfortunately, tackling problem
(3) by using BCD in its original form is not a practicable way from the compu-
tational point of view, because, even when all the radii Rjs are fixed, problem
(3) is still a di�cult problem since it remains nonsmooth and nonconvex. Then,
to overcome this di�culty, we have chosen to update, at each iteration of the
algorithm, the centers of the spheres as the barycenters of the points currently
belonging to the corresponding clusters, on the basis of the criterion expressed
by relationship (1), which, in case Rj = 0 for any j = 1, . . . , k, coincides with
the clustering criterion used by K-Means.

On the other hand, whenever all the centers xj , for j = 1, . . . , k, are fixed,
it is easy to see that problem (3) reduces to a linear program. In fact, in such
case, introducing the auxiliary variables zj , for j = 1, . . . , k, and letting

zj
4
= R2

j � 0 j = 1, . . . , k,

problem (3) becomes:

8
><

>:
min
z

mX

i=1

kX

j=1

max
1  r  k

r 6= j

{0, dij + zr � (dir + zj)}+ C
kX

j=1

zj

zj � 0 j = 1, . . . , k,

(5)

which is equivalent to the following linear program:

8
>>>>>>>>><

>>>>>>>>>:

min
z,⇠

mX

i=1

kX

j=1

⇠ij + C
kX

j=1

zj

⇠ij � dij + zr � (dir + zj) i = 1, . . . ,m j = 1 . . . , k
r = 1, . . . , k r 6= j

zj � 0 j = 1, . . . , k
⇠ij � 0 i = 1, . . . ,m j = 1 . . . , k.

(6)

We come out with the following heuristic algorithm, where by Ij , j =
1, . . . , k, we indicate the index set corresponding to the cluster Yj such that:
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Yj = {yi 2 Y | i 2 Ij}.

Moreover we indicate by x̄j and z̄j , j = 1, . . . , k, the center and the radius
of the sphere Sj , available at the current iteration.

Algorithm 1: Sph-Clust
0

Input: y1, . . . , ym; C � 0; x̄1, . . . , x̄k

Output: I1, . . . , Ik
.Initialization

1 for j  1, . . . , k do

2 Ij  ;
3 repeat

.Computing the squared distances
4 for j  1, . . . , k do

5 for i 1, . . . ,m do

6 dij  kyi � x̄jk2

.Computing the squared radii of the spheres
7 Solve problem (6) to compute z̄j , j = 1, . . . , k

.Updating the clusters
8 for i 1, . . . ,m do

9 j⇤i  arg min
j=1...,k

{dij � z̄j}

10 Ij⇤i  Ij⇤i [ {i}
.Updating the centers of the spheres

11 for j  1, . . . , k do

12 x̄j  1
|Ij |

P
i2Ij

yi

13 until all the sets Ijs, j = 1, . . . , k, do not change

Algorithm 1 (Sph-Clust0) deserves some comments. First of all, it is easy to
see that the algorithmic scheme is very similar to K-Means, apart from step 7,
where the linear program (6) is solved to obtain the radii of the spheres (once
the centers xjs have been fixed) and lines 8-10, where the clusters are formed on
the basis of the criterion (1), involving the computation of the radii. Moreover,
a crucial question is the choice of the initial centers (as in K-Means) together
with to the choice of C, the latter tuning the trade-o↵ between the clustering
error and the minimization of the volume of the spheres. Note that, in case C is
very large (take for example C > m, Theorem 1), Algorithm 1 coincides exactly
with K-Means, since the linear program provides null radii for all the spheres,
coming out with the same clustering criterion used by K-Means.

Since the objective function of problem (5) is nonnegative and the null so-
lution is feasible, it is trivial to see that problem (5) admit an optimal solution,
as formalized by the following lemma concerning the equivalent linear program
(6).
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Lemma 1. Problem (6) admits an optimal solution.

Proof. Since ⇠ij � 0, for any i = 1, . . . ,m and j = 1 . . . , k, and zj � 0 for any
j = 1 . . . , k, taking into account the positivity of C, the objective function is
bounded. Moreover the problem cannot be infeasible, since a feasible solution
is: 8

<

:

zj = 0 j = 1, . . . , k;
⇠ij = max{0, dij � min

1  r  k
r 6= j

dir} i = 1, . . . ,m j = 1 . . . , k.

3.1 Choosing the weighting parameter

In this subsection we show some results based on the duality theory and con-
cerning the choice of C, which plays a relevant role in Algorithm 1 since it is
the main characterization with respect the standard K-Means algorithm.

The dual of problem (6) is the following:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

max
↵

mX

i=1

kX

j=1

kX

r = 1
r 6= j

(dij � dir)↵ijr

kX

r = 1
r 6= j

↵ijr  1 i = 1, . . . ,m j = 1 . . . , k

mX

i=1

kX

r = 1
r 6= j

↵ijr �
mX

i=1

kX

r = 1
r 6= j

↵irj  C j = 1, . . . , k

↵ijr � 0 i = 1, . . . ,m j = 1 . . . , k
r = 1, . . . , k r 6= j.

(7)
For sake of the simplicity, in what follows we refer to the second group

of constraints of the dual problem as the C-constraints and we introduce the
following definition.

Definition 1 (Degenerate problem). The linear program (6) (or equivalently

its dual (7)) is degenerate if there exist an index i 2 {1, . . . ,m} and a couple of

indexes (j, r), with j 2 {1, . . . , k}, r 2 {1, . . . , k} and r 6= j, such that dij = dir.

Note that, when at the current iteration the problem is degenerate, apply-
ing an iteration of the standard K-Means would result in a non-unequivocal
assignment of at least a point yi to a cluster.

In the next theorems we provide two di↵erent conditions, respectively suf-
ficient and necessary, for having zj = 0, for any j = 1, . . . , k, in the optimal
solution to problem (6).
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Theorem 1. If C > m, any optimal solution to problem (6) is such that zj = 0
for any j = 1, . . . , k.

Proof. By contradiction, if there exists an index j 2 {1, . . . , k} such that zj >
0, then by the complementary slackness, the jth C-constraint is satisfied as
equality, i.e.:

C =
mX

i=1

kX

r = 1
r 6= j

↵ijr �
mX

i=1

kX

r = 1
r 6= j

↵irj . (8)

Summing up over i the first group of the dual constraints, we have:

mX

i=1

kX

r = 1
r 6= j

↵ijr  m j = 1 . . . , k. (9)

Combining (8) and (9) and taking into account the positivity of the variables
↵irj , we obtain C  m, which is a contradiction.

On the basis of the above theorem, whenever C > m, Algorithm 1 reduces
to the K-Means algorithm: in fact the assignment criterion of the points to the
clusters (lines 8-10) coincides, at each iteration, with the assignment criterion
adopted by the K-Means, since all the variables zj , for j = 1, . . . , k, are null.

Theorem 2. If the linear program (6) is not degenerate and an optimal solution

is such that zj = 0 for any j = 1, . . . , k, then

C � max
1jk

{|D̄j |� (k � 1)|Dj |}, (10)

where, for any j = 1, . . . , k,

Dj
4
=

⇢
i 2 {1, . . . ,m} | dij = min

1rk
dir

�

and D̄j is the complement of Dj.

Proof. If zj = 0 for any j = 1, . . . , k, by the equivalence between problems (5)
and (6), for any couple of indexes (i, j), with i = 1, . . . ,m and j = 1 . . . , k, we
have

⇠ij = max
1  r  k

r 6= j

{0, dij � dir}.

Let the index i be fixed for sake of the simplicity. Since the problem is not
degenerate, there exists a unique index p such that ⇠ip = 0, with dip = min

1rk
dir

and such that
⇠ip > dip � dir, for any r 6= p.
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Taking into account the above inequality, by the complementary slackness, we
have

↵ipr = 0 for any r 6= p. (11)

On the other hand, for any q 6= p, it holds ⇠iq = diq � dip > 0, which, by the
complementary slackness, implies

X

r 6=q

↵iqr = 1. (12)

Moreover we have

⇠iq > diq � dir for any r 6= p and for any r 6= q,

which, by the complementary slackness, implies

↵iqr = 0 for any r 6= p and for any r 6= q. (13)

Combining (12) and (13), we have necessarily ↵iqp = 1.
In summary, we have shown that, in corresponding to any fixed index i 2

{1, . . . ,m}, since q can assume k � 1 values di↵erent from p, we have exactly
k� 1 variables ↵iqp equal to 1, whereas by (11) and (13) the remaining (k� 1)2

dual variables are equal to zero.
For any i = 1, . . . ,m, each variable ↵iqp = 1 corresponds to i 2 Dp (since

⇠ip = 0) and to i /2 Dq (since ⇠iq > 0) and acts with a positive sign on the qth C-
constraint and with a negative sign on the pth C-constraint. Then, substituting
the values of all the dual variables ↵iqp = 1 into the C-constraints, we obtain

C � |D̄j |� (k � 1)|Dj | for any j = 1, . . . , k,

i.e.
C � max

1jk
{|D̄j |� (k � 1)|Dj |}.

On the basis of the result provided by Theorem 2, whenever at the current
iteration of Algorithm 1 the linear program (6) is not degenerate, in order to
guarantee an optimal solution characterized by at least a variable zj > 0, with
j 2 {1, . . . , k}, it is su�cient to choose C such that:

C < max
1jk

{|D̄j |� (k � 1)|Dj |}. (14)

4 Preliminary numerical results

Algorithm 1, named Sph-Clust0 (Spherical Clustering), has been implemented
in Matlab (version R2018b) and has been run on a Windows 10 system, char-
acterized by 16 GB of RAM and a 2.30 GHz Intel Core i7 processor.
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Data set k m n
Iris 3 150 4
Seeds 3 210 7
Wine 3 178 13

Thyroid 3 215 5
Breast 6 106 9
Accent 6 329 12
Glass 6 214 9

Vertebral Column 3 310 6
ECG5000 5 500 140

Lymphography 4 148 18

Table 1: Data sets

The code has been tested on ten multiclass problems, listed in Table 1. All
the data sets have been download from the UCI repository [22], except EGC5000
which has been drawn from the UEA & UCR Time Series Classification Repos-
itory [4]. We remind that k denotes the number of clusters, m is the number
of data (called also instances or points) and n is the number of features. Of
course, even if in all the used test problems the class label of each point is known,
this information has been exploited only to evaluate the results provided by the
clustering algorithm.

As discussed in the previous section, a crucial point for Algorithm 1 (Sph-
Clust0) is to choose a suitable value of C in order to have at least one radius
of the k spheres di↵erent from zero. Since condition (14) depends on the single
iteration, in order to maintain the same value of C along the overall running of
the algorithm, we have chosen C in the grid {1, 10, 100}, reporting in Table 2
the best result obtained for each data set in terms of purity [9].

About the choice of the initial centers x̄1, . . . , x̄k of the k spheres, we have
set x̄i = yi, for any i = 1, . . . , k.

In Table 2 we compare our results with those ones provided by the K-Means
algorithm, for which we have considered two di↵erent versions: the first one
(Algorithm K-Means0) has been run using the same starting point used for
Algorithm Sph-Clust0, whereas in the second version (Algorithm K-Means) the
initial centers of the clusters have been randomly generated.

For the sake of completeness, in correspondence to the results provided by
Algorithm Sph-Clust0, we report also the number of iterations coinciding with
the number of solved linear programs of the type (6).

Looking at the overall results, we can observe that Algorithm Sph-Clust0

overcomes the standard K-Means on all the data sets, except ECG5000 where
the behaviours are quite comparable. In particular our approach outperforms
significantly on Breast and Glass (more than four percentage points), but also
on Iris and Wine (more than two percentage points).
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Data set
Sph-Clust0 K-Means0 K-Means
% iter % %

Iris 92.00 5 88.67 89.33
Seeds 90.48 4 89.05 89.52
Wine 73.03 5 68.54 70.22

Thyroid 82.33 12 80.47 75.35
Breast 53.77 10 43.40 45.28
Accent 53.19 21 52.89 52.28
Glass 63.08 14 58.41 55.61

Vertebral Column 73.55 9 72.90 72.90
ECG5000 92.80 25 93.00 92.60

Limphography 71.62 8 70.27 70.27

Table 2: Numerical results in terms of purity
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[20] X. Min, D. Pfoser, A. Züfle, and Y. Sheng. A hierarchical spatial net-
work index for arbitrarily distributed spatial objects. ISPRS International

Journal of Geo-Information, 10(12), 2021.

[21] B. Mirkin. Mathematical classification and clustering. Mathematical Clas-

sification and Clustering, 1996.

[22] P. M. Murphy and D. W. Aha. UCI repository of machine learning
databases. In http://www.timeseriesclassification.com, 1992.

[23] G. Nagy. State of the art in pattern recognition. Proceedings of the IEEE,
56(5):836–857, 1968.

12



[24] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering
in spatial databases: The algorithm gdbscan and its applications. Data

Mining and Knowledge Discovery, 2(2):169–194, 1998.

[25] E. Schikuta and M. Erhart. The bang–clustering system: Grid–based data
analysis. Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
1280:513–524, 1997.

[26] H. Spath. Cluster Analysis Algorithms for Data Reduction and Classifica-

tion of Objects, 1980.

[27] M. Teboulle. A unified continuous optimization framework for center-based
clustering methods. Journal of Machine Learning Research, 8:65–102, 2007.

[28] S.D. Tomarchio, L. Bagnato, and A. Punzo. Model-based clustering via
new parsimonious mixtures of heavy-tailed distributions. AStA Advances

in Statistical Analysis, 2022.

[29] P. Tseng. Convergence of a block coordinate descent method for nondi↵er-
entiable minimization. Journal of Optimization Theory and Applications,
109(3):475–494, 2001.

[30] A.K.H. Tung, J. Han, L.V.S. Lakshmanan, and R.T. Ng. Constraint-based
clustering in large databases. Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1973:405–419, 2001.

[31] R. Veloso, F. Portela, M.F. Santos, Á. Silva, F. Rua, A. Abelha, and
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