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Quantum Computing Management of a Cloud/Edge Architecture
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Modern Cloud/Edge architectures are composed of computing nodes belonging to multiple layers, including Cloud facilities, 
Edge/Fog nodes and sensors/actuators. In this paper, we present an architecture that includes also quantum computing 
devices, in two ways: (i) quantum devices can become, in the next future, a viable alternative for executing computation that is 
intractable classically and (ii) they can be exploited to assist resource management and scheduling within the architecture 
itself. Furthermore, we describe the procedure through which a typical resource assignment problem, which has NP-hard 
complexity, can be transformed into a formulation that can be tackled by QAOA, a renowned hybrid quantum algorithm, and 
we present some preliminary results obtained for a simple instance, a knapsack problem where an Edge node needs to select 
and retrieve a set of processes from the Cloud.

1 INTRODUCTION
Recently, new paradigms are emerging to distribute the computation among centralized and decentralized nodes, 
exploiting heterogeneous types of platforms, with very different capabilities and characteristics: sensors/actuators, 
mobile devices, personal computers, Cloud data centers, etc. The so-called continuous computing architecture 
[3, 5, 15] aims to integrate all these platforms and foster their cooperation.

Research on Quantum Computing is exploring a further alternative, which, in the next years, can help to tackle 
combinatorial optimization problems that are intractable on classical computers. Quantum computers leverage 
the intrinsic parallel nature of quantum operations, based on the superposition principle of quantum mechanics: 
in particular, an operation can be performed on a number of configurations that is exponential with respect to the 
number of adopted resources, i.e., the qubits. Today, the most promising approach is to devise variational hybrid 
algorithms [7], in which quantum computation is driven by a set of parameters that are optimized classically, in a 
cycle that aims at finding the best solution with a significant speed-up with respect to classical approaches.
A computing architecture that includes the quantum computing alternative can be composed of three layers:

(i) a device layer, which includes sensors/actuators and smart objects; (ii) an Edge/Fog layer, which includes 
Edge nodes located close to the devices and (iii) a Cloud/Quantum layer that includes Cloud infrastructures 
and quantum computing devices. The efficient and flexible management of this architecture relies on resource 
management algorithms that are able to determine where the computation should be performed (assignment
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problem) and when (scheduling problem). Resource management can be handled at any of the three layers: for 
example, sensor devices can self-organize in wireless sensor networks [6], Edge nodes can determine 
which processes can be offloaded to the device layer or to the Cloud [2], and management algorithms can be 
used to schedule hundreds or thousands of processes on the nodes of a Cloud data center [1, 7].
In this paper, we discuss how a typical resource management problem can be transformed and solved by a 

renowned hybrid quantum algorithm, i.e., the Quantum Approximate Optimization Algorithm (QAOA) [10]. In 
particular, we refer to the problem of assigning a number of processes to a set of Edge nodes or to the Cloud. 
This is a very important problem, as Edge nodes can offer advantages under multiple aspects – lower latency, 
more efficient usage of local data, higher level of security, etc. – but they have limited computing and memory 
capacity, so they can host only a subset of processes.

Afterward, given the current limitation of available quantum computers, we discuss a simplified problem in 
which there is only one Edge node that can retrieve a subset of processes from the Cloud [16]: the aim is to 
maximize the added value related to the selection while matching the constraint related to the node capacity. 
This becomes a knapsack problem, which, despite its simple formulation, is a reference problem for computer 
scientists [11]. Indeed, it is NP-hard and no known algorithm is both correct and polynomial-time in all cases. 
We show how this problem can be transformed into an Ising problem [8] and solved by the QAOA algorithm. In 
particular, a quantum diagonal operator (a “Hamiltonian” operator) is built from the Ising expression, and the 
problem becomes finding the minimum eigenvalue of this operator and the corresponding eigenvector, i.e., the 
“ground state” in the Physics language. The components of this eigenvector correspond to the values of the binary 
variables that specify whether the single processes should be assigned to the Edge node or remain in the Cloud.

The intent of this paper is to introduce the researchers in the Edge/Cloud computing field to the opportunities 
of Quantum Computing, and report some preliminary results for a simple problem. The paper is organized as 
follows: Section 2 illustrates the reference architecture and the resource management problem; Section 3 describes 
how a knapsack problem can be reformulated and solved with QAOA; Section 4 reports preliminary results for 
an instance of the knapsack problem and Section 5 concludes the paper.

2 EDGE MODELING

2.1 Reference Architecture
Figure 1 shows the quantum-assisted Edge/Cloud computing continuum architecture exploited as a reference in 
the present paper. As mentioned in the introductory section, the architecture consists of three layers: the Device 
layer, the Edge/Fog layer, and the Cloud/Quantum layer. At the bottom, the Device layer comprehends a set of 
heterogenous end-devices, which span from connected sensors/actuators to smart objects and users’ smartphones. 
A device can be connected to a specific Edge node or can access the internet directly. Devices can gather sensed 
information, act upon an environment, do local processing, and request processing to the Edge/Cloud continuum.

The Edge/Fog layer consists of a network of heterogeneous computing nodes available at different levels of the 
networking infrastructure that connects the device layer and the internet. These nodes can be deployed near the 
devices, e.g., in-home Edge computing nodes, or made available by network providers, e.g., in the nearing of 
cellular radio towers. The computational capabilities and resources vary widely, but, in general, the nearer to the 
end devices are the nodes, the lower their capabilities. However, processing on Edge nodes results in lowering 
the network latency in communication with the end devices.
The top layer includes and integrates Cloud and quantum resources. They are positioned in the same level 

as they need to be tightly integrated with each other, since hybrid algorithms combine classical and quantum 
computation, as mentioned in the introductory section. Adding quantum resources to the typical Cloud/Edge 
architecture can help to solve hard problems for which quantum algorithms promise to offer a computational 
speedup in the coming years, specifically: (i) optimization problems, which can be approached with variational
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Fig. 1. Quantum-assisted Edge/Cloud computing continuum.

quantum algorithms [7], and machine learning problems, which can be tackled with quantum machine learning 
algorithms [4]. In this context, quantum computers can be exploited not only to perform computation but 
also to execute algorithms for the resource management of the architecture itself. Assignment and scheduling 
algorithms are typically NP-hard, therefore, if their instances are dimensionally large, classical computation could 
be infeasible. Quantum algorithms can be useful as the exploitation of quantum parallelism promises to speed up 
the computation.

2.2 Assignment Problem Formulation
Given a set of processes P = {1, ..., 𝑃 } and a set of computational Edge nodes in the Edge/Cloud continuum 
N = {1, ..., 𝑁 }, there is the problem of assigning each process to an Edge node or to the Cloud. The execution of 
processes on Edge nodes can bring important benefits, for example, in terms of service latency and access to 
local data that have peculiar security and privacy characteristics. Therefore, the assignment needs to maximize 
the effectiveness of the processes, for example in terms of service latency, and at the same time it must take into 
account the limited availability of the computation resources on each node.

The problem can be formulated as a binary linear programming problem, which is known to be NP-hard [9], 
as follows:
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max
∑︁

𝑖∈P, 𝑗∈N
𝑣𝑖 𝑗𝑥𝑖 𝑗 (1)∑︁

𝑗∈N
𝑥𝑖 𝑗 <= 1, ∀𝑖 ∈ P (2)∑︁

𝑖∈P
𝑤𝑖𝑥𝑖 𝑗 <= 𝐵 𝑗 , ∀𝑗 ∈ N (3)

The binary variable 𝑥𝑖 𝑗 is equal to 1 if the process 𝑖 is assigned to the Edge node 𝑗 , and 0 otherwise. If a process
𝑖 is not assigned to any Edge node, it is considered to be assigned to the Cloud. The objective is to assign the
processes to nodes and maximize the overall gain function while matching the capacity constraints of the Edge
nodes. Each process 𝑖 ∈ P is assigned a value 𝑣𝑖 𝑗 , which is the value gain of executing process 𝑖 on a node 𝑗 ∈ N ,
w.r.t. executing the process on the Cloud (e.g., a measure of its effectiveness in terms of latency or occupied
network bandwidth), and an integer weight𝑤𝑖 , which represents the amount of computing resources required by
process 𝑖 for its execution. Each Edge node 𝑗 has a capacity 𝐵 𝑗 , defined as an integer. It is worth noting that the
Cloud has no constraints, as its capacity is considered much larger than the available Edge nodes.
The number of binary variables needed for this problem is equal to:

𝑃 · 𝑁 + 𝑃 +
∑︁
𝑗∈N

⌈log2 (𝐵 𝑗 + 1)⌉ (4)

where 𝑃 · 𝑁 is the number of binary variables 𝑥𝑖 𝑗 . Moreover, to convert the inequalities constraints (2) into
equations, we need 𝑃 slack binary variables, one for each inequality. Also, to convert the inequalities constraints
(3), for each node 𝑗 , we need a number of slack binary variables ⌈log2 (𝐵 𝑗 + 1)⌉ that allow giving every possible
value to the residual capacity of the node 𝑗 , i.e., the capacity that remains not assigned to processes, defined as:

𝐵 𝑗 −
∑︁
𝑖∈P

𝑤𝑖𝑥𝑖 𝑗 (5)

A simplified model is obtained when there is only one Edge node and a set of processes, and the problem is to
decide whether or not to assign each process to the node or run it into the Cloud. Even in this simplified version,
the problem is still NP-hard, since it becomes a knapsack problem:

max
∑︁
𝑖∈P

𝑣𝑖𝑥𝑖 (6)∑︁
𝑖∈P

𝑤𝑖𝑥𝑖 <= 𝐵 (7)

In this case, we have a set of binary variables 𝑥𝑖 , which are equal to 1 if the process 𝑖 is offloaded to the Edge
node, and 0 otherwise, and the capacity of the Edge node is equal to 𝐵. The number of binary variables needed by
the knapsack problem is:

𝑃 + ⌈log2 (𝐵 + 1)⌉ (8)

3 QUANTUM FORMULATION OF THE EDGE KNAPSACK PROBLEM
The optimization problem shown in the previous section can be tackled with quantum computing, following two 
possible avenues: (i) using a gate-based quantum computer and a hybrid variational algorithm, such as QAOA;
(ii) using a quantum annealing computer that, through analog physical processes, aims to achieve the ground 
state of a Hamiltonian operator [12]. Both avenues present pros and cons. Specifically, quantum annealing can 
exploit a larger number of qubits, currently up to 1,000, but the connectivity graph among qubits is limited, which 
hinders the possibility of solving general problems. In this paper, we focus on the gate-based approach, and on its
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adoption for solving the knapsack problem, in which there is only one Edge node, and the problem is to decide
which processes should be offloaded from the Cloud to this node.

The first step of this transformation is to convert the inequality constraint (7) into an equation that includes
⌈log2 (𝐵 + 1)⌉ binary slack variables, denoted with the symbol 𝑦:

𝑃∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
⌈log2 (𝐵+1) ⌉∑︁

𝑖=1
2(𝑖−1)𝑦𝑖 = 𝐵 (9)

The next step is to include the constraint (7) into the objective function, and obtain an extended objective
function, defined as:

min
(
−

𝑃∑︁
𝑖=1

𝑣𝑖𝑥𝑖 +𝐴 ·
(
𝐵 −

𝑃∑︁
𝑖=1

𝑤𝑖𝑥𝑖 −
⌈log2 (𝐵+1) ⌉∑︁

𝑖=1
2(𝑖−1)𝑦𝑖

)2)
(10)

𝐴 = 1 +
𝑃∑︁
𝑖=1

𝑣𝑖 (11)

Themaximization problem has been converted to aminimization problem, and the constraint has been transformed
into a penalty, which is equal to 0 only when the constraint is satisfied by the values of the binary variables.
When the constraint is not satisfied, the value of the penalty is equal or larger than 𝐴. Since the value of 𝐴 is
defined, in Eq. (11), to be larger than the maximum possible value of the first term of Eq. (10), a violation of the
constraint cannot be compensated by the minimization of the first term. This ensures that, in the desired solution,
the values of the binary variables match the constraint.
Now, we need to perform the following variable substitutions:

𝑥𝑖 =
1 − 𝑧𝑖

2
, 𝑖 = 1, ..., 𝑃 (12)

𝑦𝑖 =
1 − 𝑧 (𝑃+𝑖 )

2
, 𝑖 = 1, ..., ⌈log2 (𝐵 + 1)⌉ (13)

At this point, the binary variables have been substituted by discrete variables 𝑧, numbered from 1 to 𝑃 + ⌈log2 
(𝐵 + 1)⌉, which can assume values {+1, −1}, leading to an Ising problem [8], i.e., a problem formulated as:

𝑚𝑖𝑛

( 𝑄∑︁
𝑖=1

ℎ𝑖 · 𝑧𝑖 −
𝑄∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝐽𝑖 𝑗 · 𝑧𝑖 · 𝑧 𝑗
)

(14)

where the number of discrete variables is denoted as 𝑄 = 𝑃 + ⌈log2 (𝐵 + 1)⌉.
Now, each discrete variable is associated with a qubit, and the quantum computing problem is defined over a

registry of 𝑄 qubits. Starting from the Ising expression, a Hamiltonian operator is built with sums and tensor
products of two basic one-qubit operators, the identity I and the Pauli operator Z. For each term in Eq. 14,
the operator Z𝑖 substitutes the variable 𝑧𝑖 , and the identity operator I is added for each variable 𝑧 that does
not appear in the term. Moreover, the multiplications between the 𝑧 variables are substituted with the tensor
products between the corresponding Z operators. For example, with 𝑄 = 5 the term 𝑧1 · 𝑧4 is substituted with
Z1 ⊗ I2 ⊗ I3 ⊗ Z4 ⊗ I5 or, more succinctly, Z1 ⊗ Z4 or, even more briefly, Z1Z4, where the identity operators are
implicit. The Hamiltonian operator that corresponds to Eq. 14 is:

H =

𝑄∑︁
𝑖=1

ℎ𝑖 · Z𝑖 −
𝑄∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝐽𝑖 𝑗 · Z𝑖 ⊗ Z𝑗 (15)
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Now, the problem becomes finding the ground state of the Hamiltonian operator, as mentioned in the intro-
ductory section. A register of 𝑄 qubits is prepared by QAOA to achieve with maximum probability the ground 
state, in which each qubit, after measurement, collapses to one of the basis states |0⟩ or |1⟩. The solution to the 
problem is obtained by setting each binary variable to 0 (if the corresponding qubit collapses to |0⟩) or 1 (if the 
corresponding qubit collapses to |1⟩).

4 RESULTS
Here, we show some preliminary results obtained for a knapsack problem with 𝑃 = 3, and 𝐵 = 3. The number of 
qubits is 𝑄 = 5, see expression (8). The values and the weights are assigned as follows:

• (𝑣1, 𝑣2, 𝑣3) = (4, 5, 1)
• (𝑤1,𝑤2,𝑤3) = (1, 3, 1)

and thus the value of the penalty is 𝐴 = 11.
The problem is expressed as:

max (4𝑥1 + 5𝑥2 + 𝑥3) (16)
𝑥1 + 3𝑥2 + 𝑥3 <= 3 (17)

After the definition of slack variables, and the inclusion of the constraint into the objective function, we obtain
the following formulation, corresponding to the general expression (10):

min
(
− 70 · 𝑥1 − 203 · 𝑥2 − 67 · 𝑥3 − 66 · 𝑦1 − 132 · 𝑦2 + 66 · 𝑥1 · 𝑥2

+ 22 · 𝑥1 · 𝑥3 + 22 · 𝑥1 · 𝑦1 + 44 · 𝑥1 · 𝑦2 + 66 · 𝑥2 · 𝑥3 + 66 · 𝑥2 · 𝑦1
+ 132 · 𝑥2 · 𝑦2 + 22 · 𝑥3 · 𝑦1 + 44 · 𝑥3 · 𝑦2 + 44 · 𝑦1 · 𝑦2 + 11 · 𝑥21 + 99 · 𝑥22

+ 11 · 𝑥23 + 11 · 𝑦21 + 44 · 𝑦22 + 99
)

(18)

After the variable substitutions (12,13), we obtain the Ising problem and the Hamiltonian operator, expressed
as:

H = −9 · 𝑍5 − 30.5 · 𝑍4 − 10.5 · 𝑍3 − 11 · 𝑍2 − 22 · 𝑍1 + 16.5 · 𝑍4𝑍5

+ 5.5 · 𝑍3𝑍5 + 16.5 · 𝑍3𝑍4 + 5.5 · 𝑍2𝑍5 + 16.5 · 𝑍2𝑍4 + 5.5 · 𝑍2𝑍3

+ 11 · 𝑍1𝑍5 + 33 · 𝑍1𝑍4 + 11 · 𝑍1𝑍3 + 11 · 𝑍1𝑍2 + 50 (19)
Figure 2 shows the probability that the final measurement on the QAOA circuit gives, respectively, the best 

solution and an admissible solution, i.e., a solution that satisfies the constraint (17). The results have been obtained 
with the simulator ibmq_qasm_simulator and the real hardware ibmq_montreal of the IBM Quantum Platform. 
When using the simulator, the probabilities increase with the depth of the QAOA circuit, i.e., with the number of 
repetitions of the gates, as foreseen by [10]. Conversely, when using the real hardware, more then 20 repetitions 
increase the effect of noise, which explains the lower probabilities to find the best solution.

5 CONCLUSIONS AND FUTURE WORK
The paper highlighted how Quantum Computing could be exploited in the Edge/Cloud continuum. In particular, 
it first presented a Quantum-assisted Edge/Cloud computing architecture, where quantum computing resources 
can support both infrastructural behaviors and developed applications. Then, the paper proposed an approach, 
leveraging Quantum Computing, for solving the process assignment problem in the Edge/Cloud continuum, 
i.e., choosing where (Edge or Cloud) to assign a set of processes. The problem has been transformed and solved 
with the Quantum Approximate Optimization Algorithm. A preliminary set of results show the feasibility of the 
approach in the domain of the Edge/Cloud continuum.
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Fig. 2. Probability of finding an admissible solution, 𝑃𝑎𝑑𝑚 , and the best solution, 𝑃𝑏𝑒𝑠𝑡 , with simulation and real quantum
hardware.

Current research is devoted to experiments with real devices, which are prone to noise and decoherence errors.
An interesting preliminary outcome is that, when increasing the size of the problem, the success probability
decreases due to the noise, but the execution time hardly depends on the number of qubits. The latter result is
consistent with the O(𝑛) circuit depth of the QAOA algorithm, with 𝑛 the number of qubits, since the QAOA
gates are executed in parallel on the qubits. Moreover, we are currently working on the formalization and the
analysis of the results obtained in the more general assignment problem, presented in Section 2.2, with multiple
Edge nodes.
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