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1Institute for High-Performance Computing and Networking,

National Research Council of Italy

Abstract

This report provides an overview of current methods, datasets, met-

rics, and available software for petroglyph segmentation. Petroglyphs are

indeed valuable artifacts that provide insights into ancient civilizations.

Still, their preservation and analysis can be challenging due to factors like

degradation, location, and the sheer volume of data to process. Auto-

matic segmentation tools offer promising solutions by reducing manual

effort and increasing the efficiency of the whole analysis process. The

report focuses on techniques that exploit depth information or curvature

analysis of the 3D data and methods that perform the semantic partition

directly on 2D images. The study serves as a starting point for designing

a new automatic tool for image segmentation and analysis that will enable

archaeologists to analyze petroglyphs on site efficiently.

1 Introduction

A glyph is an elemental symbol or picture representing an understandable char-
acter. Petroglyphs act as ancient human rock art to leave messages through
glyphs. They involve removing part of a rock surface by incising, picking, carv-
ing, or abrading. Petroglyphs can be found all over the world, in protected
areas such as caves or overhangs, and represent a valuable source of informa-
tion for archaeologists and historians. However, analyzing these carvings can
be challenging due to weathering, erosion, and overlapping imagery. Automatic
segmentation, separating the petroglyphs from the background rock surface, is
crucial in analyzing and interpreting these images.

This report reviews existing methods for petroglyph segmentation, focusing
on techniques that exploit depth information (3D data) or curvature analysis
and methods that perform semantic segmentation directly on 2D images. We
discuss the details of each approach, including representative works and the
datasets used for evaluation. The report is organized as follows: it first intro-
duces publicly available datasets designed explicitly for petroglyph segmenta-
tion, also mentioning other datasets that could be of interest. We then discuss
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the evaluation metrics commonly used for petroglyph segmentation tasks, and
finally, the report dives into different segmentation methods categorized based
on the data they utilize. This comparative analysis aims to understand current
methods for automatic petroglyph segmentation comprehensively and lays the
groundwork for future advancements in this field.

2 Annotated Datasets

This section introduces publicly available datasets containing 3D scans and im-
agery of petroglyphs. These resources can be valuable for researchers developing
automated methods for analyzing and understanding petroglyphs.

2.1 3D-Pitoti Dataset

The 3D-Pitoti dataset1 [15] contains 26 high-resolution surface reconstructions
of natural rock surfaces with several petroglyphs. Data were acquired in Valca-
monica2, Italy, using structured light scanning (SLS) and structure from motion
(SfM) scanning techniques. The dataset provides 3D point clouds, mesh trian-
gulations, ortophotos, and depth maps for each surface. The ground truths
(GTs) are given as 2D masks of the orthoimages. An example is given in Fig 1.

(a) (b)

Figure 1: 3D-Pitoti dataset: (a) example orthoimage and (b) corresponding
GT.

The related paper [15] also presents results using two baseline segmentation
methods based on Random Forests and CNNs, using the color (2D) informa-
tion and the depth (3D) information, showing that depth leads to much better
results. The dataset has been adopted by the same authors in [18], but also by
other authors [1].

1The 3D-Pitoti dataset is available at http://www.tugraz.at/institute/icg/research/

team-bischof/learning-recognition-surveillance/downloads/3dpitotidataset.
2whc.unesco.org/en/list/94
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2.2 Petroglyphs Dataset

The Petroglyphs Dataset3 [13] includes 34 rock art images of size 512 × 512
and corresponding GTs. Examples are given in Fig. 2. The dataset has been
adopted for experiments in [14].

Figure 2: Petroglyphs Dataset: example images (first row) and corresponding
ground truths (second row).

2.3 Other Datasets

Other datasets that could be of interest include

• the RockArt Database https://rockartdatabase.com (see also [6]);

• the Swedish Rock Art Research Archives (SHFA) is a national archive
for rock art documentation and research at the University of Gothenburg
https://sketchfab.com/SHFA-3D;

• the Hodjikent Petroglyphs https://cs.pollub.pl/zasoby/?lang=en, dataset
1 and 2 (see also [16]).

3 Metrics

This section explores various metrics used in the literature to evaluate the per-
formance of algorithms designed to segment petroglyphs in images. These met-
rics quantify how well the automatically identified petroglyphs (the computed
segmentation) align with the actual petroglyphs (the GT). These metrics are
crucially helpful in comparing the performance of different segmentation meth-
ods.

Three performance metrics frequently adopted in the literature (e.g., [18, 15])
include the Dice Similarity Coefficient (DSC), the Hit Rate (HR), and the False
Acceptance Rate (FAR).

3The Petroglyphs Dataset is available at https://universe.roboflow.com/lums-z1nde/

petroglyphs/dataset.
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The DSC measures the mutual overlap between the computed segmentation
X and the ground truth Y , given by

DSC(X,Y ) =
2|X ∩ Y |

|X|+ |Y |
.

The HR measures the rate of correctly classified foreground (engraving) pixels,
given as

HR(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ |Y/X|
.

The FAR measures the rate of pixels incorrectly classified as foreground, given
as

FAR(X,Y ) =
|X/Y |

|X ∩ Y |+ |X/Y |
.

The three metrics above range between 0 and 1, while for DSC and HR, the
higher, the better; for FAR, lower values indicate better performance.

The performance metrics adopted in [1, 14, 15] also include the mean Inter-
section over Union (IoU) and the pixel accuracy (PA).

The mIoU measures the ratio between the number of pixels correctly labeled
as positive to the number of positive pixels:

mIoU =
|TP |

|TP + FN |
,

where the mean is taken over all the images of the considered dataset.
The Pixel Accuracy (PA), also used in [1] and named as Binary Accuracy

in [14], is the ratio between correctly classified pixels and the overall number of
pixels.

PA =
|TP + TN |

|TP + FP + TN + FN |
.

Matlab scripts for computing the above metrics are provided4 for the 3D-
Pitoti dataset.

In [3], performance has been evaluated using the F1 score, measured based
on the vertex labels, and the Segmented Inscription Recognition Index (SIRI),
which (according to a paper unfortunately available only in Korean) gives a
performance measure closer to the subjective evaluation. For its computation,
the GT is divided into four areas: inside of strokes, boundaries of strokes,
background adjacent to strokes, and remaining background. Since each area
has different relevance for recognizing inscriptions, each contributes differently
to TP, FN, and FP calculations. Then, SIRI is obtained using the weighted TP,
FN, and FP as follows:

SIRI =
TPw

TPw + FNw+FPw

2

.

4https://github.com/poier/3d-pitoti-dataset-evaluation-scripts
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Finally, Melnik et al. [14] consider the Earth’s Mover’s Distance (EMD),
also known as Wasserstein distance, which measures the distance between image
intensity distributions.

4 Methods

This section explores various techniques for automatically segmenting petro-
glyphs from 3D scans of rock surfaces. These methods typically involve ana-
lyzing the depth information of the surface to distinguish between petroglyphs
(raised or lowered areas) and the background. Some approaches rely on setting
a depth threshold to separate foreground and background, while others leverage
more sophisticated techniques like curvature analysis or machine learning.

4.1 Methods Exploiting Depth

Some methods for extracting reliefs and details from 3D information of relief
surfaces estimate the depth at each position and identify reliefs or background
based on a depth threshold [10, 11, 12, 17].

Some methods focus on specific families of reliefs, including isolated reliefs on
a smooth background [10], reliefs lying on a textured background [11], and peri-
odic reliefs [12]. These methods are specifically designed for reverse engineering
of reliefs, where a model of an existing relief superimposed on an underlying
surface needs to be automatically extracted to be applied on a different base
surface. Applications include decorating porcelain or applying brands to pack-
aging.

In detail, Liu et al. [10] consider the specific case of simple reliefs delim-
ited by a single outer contour and lying on a smooth background surface. For
their segmentation, they rely on user input for delimiting the area of interest
and adopt an active contour model [8] suitably adapted to cope with contour
concavities and noisy background. The method could be extended to negative

reliefs or embossing with minor changes. However, the limitations concerning
the single outer contour (and thus no internal holes) and smooth background
(and thus hardly applicable to stones) prevent its use for segmenting petro-
glyphs. In [11], the same authors consider geometric reliefs lying on a textured
background, and propose two approaches for their segmentation. One is based
on classifying parts of a surface mesh as relief or background; then, it uses a
snake that moves inwards towards the desired relief boundary, which is coarsely
located using energy based on the classification. The second approach starts by
smoothing the surface to eliminate the background texture; then it applies the
previous segmentation method [10].

Zatzarinni et al. [17] present an approach (named DRE in [3], for Depth
estimation-based Relief Extraction) for extracting reliefs and details from relief
surfaces. The surface is considered to be composed of two components: a base
(unknown) surface and a height function defined over this base. The relief is
found by estimating the base surface normals and determining the depth values
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by globally optimizing the local relative depths of each point with respect to its
adjacent points. By modeling the depths for relief and background regions as a
mixture of Gaussians, the segmentation is obtained by an EM algorithm. Ap-
plications include relief segmentation and shape editing by detail exaggeration
and dampening, cut and paste of reliefs and details (e.g., to decorate models
or embedding logos), or curve drawing (e.g., to aid archaeologists in visualiz-
ing the reliefs). Their method aims at reliefs with enough height (or depth).
Moreover, for a severely rough surface, the normals of the base surface cannot
be obtained accurately, and the Gaussian assumption of the depth distribution
does not hold.

Zeppelzauer et al. [18] present an automatic 3D segmentation approach that
is able to extract rock engravings from reconstructed 3D surfaces. They transfer
the task of segmentation from 3D input data (point cloud) to the image space
(depth map) and extract the surface topography by enhancing the geometric
micro-structure captured by the depth map. A classifier estimates the proba-
bility that a given pixel of the enhanced depth map belongs to a relief. The
contour of the segmented shapes is optimized by a gradient, preserving energy
minimization to improve the smoothness and reduce noise. The segmentation is
finally refined interactively based on scribbles input by the user. The evaluation
is performed on the 3D-Pitoti dataset using the DSC, HR, and FAR metrics.

4.2 Methods Exploiting Curvature

Other methods exploit the curvatures of the 3D data [3, 9].
Lawonn et al. [9] propose a framework for interactive exploration of carving

structures from 3D data, using different techniques for detecting, selecting, vi-
sualizing, and generating them. For detection, they propose a relief extraction
method (named CRE in [3], for Curvature-based Relief Extraction), adapting
the Frangi filter to define the vesselness measure of the data mesh. Detection
results are visually compared with those by DRE [17].

Choi et al. [3] propose a method where relief candidate segments are initially
obtained exploiting curvature (using MCRE - Modified CRE [paper unavail-
able]), then refined based on an SVM classifier trained various features based
on appearance, cross-section, and local extrema of candidate relief segments.
The method is evaluated on a dataset of the stele Musul-ojakbi, registered as
a national treasure of Korea, but unfortunately not publicly available. Results
are compared to DRE [17], CRE [9], and MCRE using the F1 and SIRI metrics.
The same authors in [2], present another method evaluated on the same dataset
and compared to DRE, CRE, MCRE, DCRE, and SRE.

4.3 Semantic Segmentation in 2D Images

Bai et al. [1] present a framework for the segmentation of petroglyphs from
2D high-resolution images, based on the UNet architecture with a loss func-
tion (boundary enhancement with Gaussian - BEGL) aiming at refining and
smoothing the segmentation boundaries. The method is evaluated using data
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from the 3D-Pitoti dataset to produce high-resolution non-overlapping and ro-
tation corrected images of size 512 × 512 from the available orthoimages. The
adopted metrics include PA, mean precision, recall, and F-measure, mean IoU,
and DSC. Comparisons are provided against the UNet architecture using differ-
ent loss functions.

In [14], Melnik et al. introduce a deep neural network that, given 2D images
of characters in palimpsests or symbols in petroglyphs, computes their seg-
mentation while overcoming occlusions, missing parts, and degradation. The
network interleaves pixel-level classification with global prediction of the object
structure; it incorporates a generative component for the global segmentation
mask and an adversarial component for its refinement. Due to its inference
abilities, the network infers and completes missing and corrupted parts beyond
segmenting the symbol’s foreground pixels. To train and test the network for
petroglyphs, they developed the Petroglyph annotated dataset [13], manually
labeled by expert archaeologists, based on the Negev Rock-Art dataset [4]. For
the evaluation, they adopted binary accuracy, MSE, mIoU, F1, and the Earth’s
Mover’s Distance (EMD), also known as Wasserstein distance.

4.4 Other Methods

Horn et al. [5] train a model that locates and classifies image objects using
a faster region-based convolutional neural network (Faster-RCNN) based on
data produced by a novel method to improve visualizing the content of 3D
documentation. The 3D models are publicly available5. They developed a
publicly available tool6 named ratopoviz for rock art topographic visualization
to automate the creation of 2D visualizations for 3D rock art data. It generates
depth maps, normal maps, topographic maps, enhanced topographic maps, and
blended maps in colour and greyscale. The code for the rock art detection
model is also publicly available7. 2D images extracted from the 3D models are
annotated with bounding boxes and assigned one of 11 class labels.

Jalandoni and Shuler [7] propose a method for the automated tracing of
petroglyphs using open-source spatial algorithms on enhanced 3D derivatives
of an engraved rock art site. This step highlights lines engraved in the rock,
providing only an initial aid for detecting the engraved figures. The results
are evaluated by comparing the automated tracing with on-screen digitization,
based on a 3D model they created.

Wojcicki et al. [16] describe the process of digitally recording a historic object
using the Artec Eva scanner. The process of data acquisition from points in
space and the processes of highlighting petroglyphs are described. The created
Hojikent Petroglyphs dataset is publicly available.

5https://sketchfab.com/SHFA-3D: Swedish Rock Art Research Archives.
6https://github.com/Swedish-Rock-Art-Research-Archives/rock-art-ratopoviz:

Rock Art Topographical Visualization.
7https://github.com/Swedish-Rock-Art-Research-Archives/rock-art-radnet: Rock

Art Detection Network.
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5 Conclusions and Future Works

Image segmentation helps preserve cultural heritage by facilitating the iden-
tification, documentation, and preservation of petroglyphs, which are valuable
artifacts of ancient civilizations. Automatic segmentation tools reduce the man-
ual effort required for analyzing petroglyphs, making the process more efficient
and scalable. This report presented an overview of existing petroglyph seg-
mentation methods to collect features of different segmentation approaches and
information on the availability of private and public datasets. On one side,
some segmentation methods, particularly those involving deep learning or com-
plex algorithms, may require significant computational resources, making them
less accessible for archaeologists with limited computing infrastructure. On the
other side, despite the existence of some publicly available datasets, there is
still a scarcity of annotated data specifically tailored for training and evaluat-
ing petroglyph segmentation algorithms, hindering the development of robust
methods. In the future, the aim will be to contribute new automatic tools for
image segmentation and analysis that permit archaeologists to analyze findings
on site.
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