

 1

Consiglio Nazionale delle Ricerche
Istituto di Calcolo e Reti ad Alte Prestazioni

BEN-Cluster: Users Operational Guide

Francesco Gargiulo, Emilio Greco

RT-ICAR-NA-2024-03 September 2024

 The ICAR-CNR technical reports are published by the Institute of High Performance Computing
and Networks of the National Research Council. These reports, prepared under the exclusive scientific
responsibility of the authors, describe research activities of ICAR staff and collaborators, in some cases in a
preliminary format before definitive publication elsewhere.

 2

BEN-Cluster: Users Operational Guide

Francesco Gargiulo, Emilio Greco

Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche (ICAR-CNR)
Via Pietro Castellino, 111 – 80131 Napoli, Italia
{francesco.gargiulo, emilio.greco}@icar.cnr.it

Abstract

Introducing advanced hardware infrastructure is pivotal for conducting cutting-edge scientific
international research. To address this need, the Institute of High-Performance Computing and
Networks (ICAR) of the National Research Council (CNR) and other CNR Research Institutes have
acquired the BEN-Cluster, an IBM-produced high-performance computing cluster. This cluster is
designed to support researchers in a wide range of experiments that require substantial computational
power, particularly those in fields such as High-Performance Computing (HPC), Artificial
Intelligence (AI), Big Data Analytics, and cybersecurity.

The BEN-Cluster is tailored to handle complex AI models, especially those developed through deep
learning paradigms, by leveraging GPUs' acceleration capabilities. Its infrastructure is also ideal for
processing and analyzing large datasets, which are increasingly common in scientific research.
Furthermore, the cluster’s robust architecture supports the simulation and validation of
methodologies that demand extensive computational resources.

This operational guide aims to provide a comprehensive overview of the BEN-Cluster, outlining its
hardware specifications, job management through the Platform Load Sharing Facility (LSF), and the
setup and management of software environments using Conda. Detailed instructions on simulating a
workstation environment via VNC are also included, facilitating a seamless transition for researchers
from their local machines to the cluster environment.

Through this document, authorized users will gain the necessary insights and technical knowledge to
maximize the use of the BEN-Cluster. By understanding the operational protocols and best practices,
researchers can efficiently harness the cluster’s capabilities to advance their scientific inquiries.
Future developments and potential enhancements to the infrastructure are also explored, aiming to
further improve the cluster’s performance and alignment with regulatory requirements.

 3

1. Hardware Specifications

The BEN-Cluster, installed at ICAR-CNR’s CED, is a state-of-the-art high-performance computing
system designed to support various scientific research applications. This section provides a detailed
overview of the hardware components and their specifications and benchmarking data that highlights
this infrastructure's performance advantages.

Cluster Overview

The BEN-Cluster comprises 73 compute nodes with IBM POWER9 processors and NVIDIA Tesla
V100 GPUs. The total system configuration includes 62 TB of RAM and 1.6 PB of disk space,
segmented into various types of storage to optimize performance across different workloads.

The cluster's architecture is designed for high computational throughput, scalability, and flexibility.
It is ideal for demanding scientific applications such as HPC, AI, ML, Big Data Analytics, and
cybersecurity. Integrating IBM's POWER9 processors and NVIDIA's Tesla V100 GPUs provides a
robust platform that can easily handle intensive parallel processing tasks, large-scale simulations, and
real-time data processing.

Key Features and Capabilities

● High Computational Power: The cluster's 73 nodes, equipped with POWER9 processors
and Tesla V100 GPUs, offer high computational throughput, essential for complex
simulations and data-intensive tasks.

● Scalability: The architecture supports scalable expansion, allowing more nodes and storage
to be added as research demands grow.

● Advanced Networking: A 100 Gb/s Infiniband network ensures high-speed, low-latency
communication between nodes, which is crucial for distributed computing applications.

● Optimized Memory Hierarchy: With 62 TB of RAM, the cluster supports large in-memory
computations and efficient data access, reducing bottlenecks in data-intensive workflows.

● Flexible Storage Solutions: The hierarchical storage system, comprising SSDs, NVMe, and
HDDs, provides a balanced approach to storage, combining speed and capacity to handle
various data access patterns.

Detailed Node Specifications

25 IBM SYSTEM POWER AC922 Compute Nodes:

● Processors: 2 x 16-core 2.7 GHz (3.3 GHz Turbo) POWER9
● Storage: 2 x 1.92TB SATA/SSD disks
● GPUs: 4 x NVIDIA Tesla V100 16GB
● Memory: 512 GB RAM (16 x 32 GB DDR4)

44 IBM SYSTEM POWER AC922 Compute Nodes:

 4

● Processors: 2 x 16-core 2.7 GHz (3.3 GHz Turbo) POWER9
● Storage: 2 x 1.92TB SATA/SSD disks
● GPUs: 4 x NVIDIA Tesla V100 32GB
● Memory: 1024 GB RAM (16 x 64 GB DDR4)

4 IBM SYSTEM POWER AC922 Compute Nodes:

● Processors: 2 x 16-core 2.7 GHz (3.3 GHz Turbo) POWER9
● Storage: 2 x 1.92TB SATA/SSD disks, 2 x 6.4 TB NVMe Flash disks
● GPUs: 4 x NVIDIA Tesla V100 32GB
● Memory: 1024 GB RAM (16 x 64 GB DDR4)

Storage and Network Configuration

The BEN-Cluster features a hierarchical storage architecture:

● 284 TB SSD for high-speed data access and intermediate storage.
● 51 TB NVMe for ultra-fast, low-latency storage requirements.
● 1.3 PB HDD for long-term data storage and archival purposes.

A 100 Gb/s Infiniband connection facilitates the network within the cluster, ensuring low-latency,
high-throughput communication between nodes, which is critical for parallel processing tasks and
large-scale simulations.

Benchmarking and Performance Evaluation

Several benchmarks were conducted to evaluate the BEN-Cluster's performance, comparing its
capabilities to similar systems based on the Intel architecture. The results, illustrated in the following,
demonstrate significant performance improvements in memory management and GPU utilization.

1. Deep Learning Workloads: The POWER9 processors, combined with the Tesla V100
GPUs, show a 50% increase in training speeds for deep learning models compared to Intel-
based systems.

2. Big Data Analytics: The BEN-Cluster's optimized memory hierarchy and storage
subsystems make data processing tasks 30% faster.

3. Security Applications: Blockchain and encryption-related computations exhibit a 40%
efficiency gain, highlighting the cluster's superior handling of complex, data-intensive
operations.

For further details on the hardware architecture and performance benchmarks, refer to the following
sources:

1. IBM Power Systems Technical White Paper - A comprehensive guide on the POWER9
architecture and its applications in high-performance computing. Available at: IBM
Technical Papers.

 5

2. NVIDIA Tesla V100 GPU Overview—The Tesla V100 GPU's detailed specifications and
performance metrics are available at NVIDIA Tesla V1001.

3. High-Performance Computing with IBM POWER9 and NVIDIA GPUs - A study on
integrating IBM POWER9 processors with NVIDIA GPUs in HPC environments.
Available at: HPC Wire2.

Figure 1: a) Performance comparison of POWER9 vs. Intel architectures on deep learning tasks. b) Data
throughput and latency benchmarks for storage configurations.

Figure 2: Efficiency metrics for blockchain computations on BEN-Cluster.

2. Job management through LSF

The BEN-Cluster utilizes the Platform Load Sharing Facility (LSF) to manage and schedule jobs.
LSF is a powerful job scheduler and workload management platform that allows users to efficiently
allocate and utilize computational resources within a cluster environment. This section provides an

1 https://www.nvidia.com/en-us/data-center/tesla-v100/
2 https://www.hpcwire.com/

 6

overview of LSF's functionalities, how to manage jobs, and best practices for using the BEN-Cl LSF
Job Management.

The Platform Load Sharing Facility (LSF) is the job manager used by the BEN-Cluster. All
documentation and commands are available through the IBM website. This section lists the key
concepts and functionalities that will allow a quick first use of the tool.

Job submission occurs through the JOB_MASTER, a frontend process running on the master hosts
named ems1 and ben-login. The JOB_MASTER places the request in one of the queues, waiting for
the required resources to become available for the proper job execution. Once resources are available,
the job is launched on a subset of the requested cluster resources.

Resources are allocated based on the requests specified by the user at the time of job submission.
These requests may include the number of cores, amount of memory, estimated execution time, and
other specifications. LSF uses advanced scheduling algorithms to optimize resource allocation based
on these requests and cluster policies.

When a job ends, it returns the output to the JOB_MASTER. It's important to note that jobs don't
always terminate successfully; they can end for various reasons, including execution errors, exceeded
time limits, or manual interruptions. LSF provides mechanisms to monitor job status and notify users
of their completion or any issues. Users can use specific LSF commands such as bjobs to check the
status of their jobs or configure email notifications that are automatically sent upon job completion.

Throughout all phases, the JOB_MASTER constantly communicates with the resources, monitoring
each one's status and making this information available to cluster users. This allows for efficient
resource management and gives users a real-time view of cluster usage.

Fig.2 illustrates the flow diagram of job processing, visually showing the phases from submission to
execution and completion of the job within the LSF system.

 7

The diagram below describes the states where jobs can be found during the request management
phases, highlighting the nature of transitions between the different possible states.

Below is a brief description of the main states of a job in LSF:

● PEND: This is the state of a job submitted through the bsub command. The process is
waiting to be executed on an appropriate queue. In this state, LSF evaluates available
resources and priorities to determine when and where to run the job.

● RUN: Indicates that the job runs on one or more cluster nodes. The requested resources have
been allocated, and the job is processing data.

● DONE: This state signals that the job has been completed successfully. The output is
available for the user to retrieve.

 8

● PSUSP (Pre-execution Suspended): The system suspended the job before the execution
began. This can happen for various reasons, such as scheduling policies or administrative
interventions.

● EXIT: This indicates that the job has terminated abnormally, usually due to an error during
execution or exceeding assigned resource limits.

● USUSP (User Suspended): The job has been suspended by the user who submitted it using
the bstop command.

● SSUSP (System Suspended): The system has suspended the job, generally for resource
management or cluster maintenance.

Users can intervene with various commands to force the state transition of their jobs in LSF. Below
are the main commands and how they affect job states:

● bresume [job_ID]: Resumes the execution of a suspended job, for example, from USUSP
(User Suspended) or PSUSP (Pre-execution Suspended) to RUN or PEND (depending on
resource availability).

● bstop [job_ID]: Suspends a running job, for example, from RUN state to USUSP (User
Suspended) state.

● bkill [job_ID]: Terminates a job in any state (RUN, PEND, USUSP, SSUSP, PSUSP),
putting it in the EXIT state.

● brequeue [job_ID]: Puts a job back in the queue to be reprocessed from RUN, USUSP,
SSUSP to PEND.

● bswitch [queue_name] [job_ID]: Moves a job from one queue to another, for example, from
PEND to PSUSP.

● bmod [options] [job_ID]: Modifies the parameters of a pending job.

The command bqueues display the status of the various queues on the BEN-Cluster. Below is an
example output:

This output provides a comprehensive overview of the current status of the queues, including:

● QUEUE_NAME: The name of the queue.
● PRIO: The priority of the queue.
● STATUS: The current status of the queue.
● MAX: The maximum number of jobs allowed in the queue.
● JL/U: The job limit per user.

 9

● JL/P: The job limit per processor.
● JL/H: The job limit per host.
● NJOBS: The number of jobs currently in the queue.
● PEND: The number of pending jobs.
● RUN: The number of running jobs.
● SUSP: The number of suspended jobs.

This output shows the status of various queues, including the queue name, priority, status, job limits,
number of jobs, pending jobs, running jobs, and suspended jobs. Each queue is listed with its current
status and job details, providing a comprehensive overview of the job distribution and activity within
the cluster.

BEN-Cluster: LSF Queues
The BEN-Cluster is configured with five distinct queues to cater to different types of job submissions
and user requirements:

● interactive (default queue): This queue is intended for interactive jobs that require user input
and real-time monitoring. It allows multiple users to share the same node resources.

o This is set as the default queue.
o It's the only queue where interactive jobs can be run.
o Interactive jobs are launched with the -Is option.
o If no specific queue is indicated during job submission, the job will automatically be

processed in this queue.
o Jobs running in this queue cannot reserve a node exclusively, allowing for better

resource sharing.
o This queue is ideal for interactive tasks requiring user input or real-time monitoring.

● ext_batch: This queue is designed for batch jobs submitted by non-ICAR users. It supports
exclusive node usage, making it suitable for long-running, resource-intensive tasks.

o This queue is designed to run batch jobs submitted by non-ICAR users.
o It allows for exclusive node usage, meaning a job can request and use an entire node

without sharing resources with other jobs.
o Suitable for longer-running, resource-intensive tasks that don't require user interaction.

● icar_batch: This is similar to ext_batch but specifically allocated for ICAR users. It also
supports exclusive node usage and may have different resource limits or priorities tailored to
ICAR requirements.

o Similar to ext_batch, but specifically allocated for ICAR (Institute for Calculus
Applications and Research) users.

o It also allows for exclusive node usage.
o It may have different resource limits or priorities than ext_batch, which is tailored to

ICAR requirements.

 10

● admin: Reserved for administrative tasks, this queue likely has higher priorities and fewer
restrictions to allow system administrators to perform necessary maintenance and
management tasks.

o Limited to administrative tasks.
o It likely has higher priorities and fewer restrictions to allow system administrators to

perform necessary maintenance and management tasks.

● dataq: Also restricted to administrative tasks, this queue is dedicated to data management
operations such as backups, data transfers, or other storage-related tasks.

o Also limited to administrative tasks.
o Possibly dedicated to data management operations, such as backups, data transfers, or

other storage-related tasks.

Using the correct queue is essential to allow efficient resource allocation based on the nature of the
jobs and the users submitting them. It ensures that different types of computational tasks can be
accommodated while maintaining fair access and optimal utilization of the cluster resources. In
details:

● Batch queues are designed for jobs that can run unattended, often for longer periods. They
typically have particular resource requests and can have the necessity of exclusive node
access, making them suitable for computationally intensive tasks;

● The interactive queue, on the other hand, is optimized for shorter, user-interactive sessions.
It usually doesn't need specific resource requests, and exclusive node access is not allowed to
simultaneously ensure resource availability for multiple users.

BEN-Cluster: Practical Use Cases

Interactive jobs are ideal for real-time tasks that require user interaction. The commands for
launching an interactive job are as follows:

Without GPU support:

With GPU support:

 11

Since the "interactive" queue is the default, the -q interactive parameter is optional and can be
omitted. These commands open a shell session on the cluster, allowing users to execute commands
interactively.

Batch job submissions are suitable for non-interactive tasks that can run unattended. Depending on
the user's affiliation with ICAR, there are two specific queues for batch job submission: icar_batch
for ICAR users and ext_batch for external users. Both queues function identically in terms of job
handling.

Command to submit a batch job:

● -q icar_batch: Specifies the queue for the job. Use ext_batch if you are an external user.
● -gpu "num=1:gtile=1": Requests one GPU for the job
● -o logs/log.out: Redirects the job's standard output to logs/log.out.
● -e logs/log.err: Redirects the job's standard error to logs/log.err.

These redirection parameters are crucial as they help capture the job's output and error logs for later
analysis.

For complete information about the GPU options, refer to the documentation on GPU management.
Below is a synopsis of the options available for the -gpu parameter:

Explanation of -gpu Options:

● num: Specifies the number of GPUs required.
○ Example: num=1 for one GPU.

● mode: Determines the mode of GPU usage.
○ shared: The GPU can be shared among multiple processes.
○ exclusive_process: The GPU is exclusively used by one process.

● gmem: Specifies the amount of GPU memory.
○ Example: gmem=4G for 4GB of GPU memory.

● mps: Enables NVIDIA Multi-Process Service (MPS) with optional configurations.

 12

● j_exclusive: Determines job exclusivity on GPUs.
● aff: GPU affinity settings.
● block: Blocks jobs until the requested GPU resources are available.
● gpack: GPU packing strategy.
● gmodel: Specifies the GPU model and, optionally, the memory size.
● gtile: Specifies GPU tiling settings.
● nvlink: Enables or disables NVLink for GPU communication.

For example, suppose you have a Python script named fibonacci.py that you want to run within
a specific Conda environment, testing various values for the script's parameters. Here is a step-by-
step guide to submitting this job:

1. Prepare the Batch Script: Create a script (e.g., run_fibonacci.sh) with the following content:

2. Submit the Job: Submit the batch job using the following command:

Starting from this script, we have to write another one (run_bsub.sh) to instantiate the
environment on the destination node, such as:

 13

Note that we have considered the input parameter $1 for the fibonacci.py script.

This command will run fibonacci.py within the specified Conda environment with parameters
set to 10. The standard output and error logs will be saved in logs/log.out and logs/log.err
for further review.

We must prepare and launch this final script to test the Fibonacci script for n={10,20,30} in parallel
on the cluster nodes.

The final project’s folder has to contain at least these files/directories:

Note that we have created the sub-folder “log” to put all the batch output.
Now, it is possible to launch the batch as follows:

 14

The subfolder “log” contains the outputs of the jobs, as you can see in the following screenshot:

If we open one of them, such as “fibonacci_10.out”, the output is the following:

 15

The first line contains the proper output; after that, the job output provides a wealth of information,
including:

● CPU Time: The amount of processor time consumed by the job.
● Max Memory: The peak memory usage during the job execution.
● Job Submission Details: Hostname, username, queue, and other metadata.

This detailed information can be useful for optimizing and debugging jobs. For further customization
and advanced options, refer to the official documentation.

Monitoring Jobs and Cluster Resources

To view the execution status of a particular job, it is sufficient to run the command:

If a specific ID is not specified, the command will show the status of all jobs for the current user. The
command output will display a series of information similar to the following:

This output provides crucial information such as the job ID, the user who submitted it, the current
status, the queue it's in, the host from which it was submitted, the host on which it's running (if

 16

applicable), the job name, and the submission time. To obtain more detailed information about a
specific job, you can use the command:

This will provide a complete job report, including the resources used, execution times, and other
relevant information.

LSF provides several commands to monitor the status of jobs and the utilisation of cluster
resources:

 17

● bjobs: Displays the status of jobs submitted by the user.

Example: Output of bqueues

The command bqueues display the status of the various queues on the BEN-Cluster. Below is an
example output:

This output shows the status of various queues, including the queue name, priority, status, job limits,
number of jobs, pending jobs, running jobs, and suspended jobs. Each queue is listed with its current
status and job details, providing a comprehensive overview of the job distribution and activity within
the cluster.

Example: Output of bjobs

The command bjobs shows the status of jobs submitted by the user. Below is an example output:

The output of the bjobs command shows that the process is in the RUNNING state on the host
ben02 and is executing the /bin/bash process. It is important to note that this command only displays
active jobs for the current user and not all jobs running on the system.

This output provides crucial information such as:

● JOBID: The ID of the job.
● USER: The user who submitted the job.
● STAT: The current status of the job.
● QUEUE: The queue in which the job is placed.
● FROM_HOST: The host from which the job was submitted.
● EXEC_HOST: The host on which the job is running.
● JOB_NAME: The name of the job.
● SUBMIT_TIME: The time at which the job was submitted.

 18

● lsload: Provides an overview of resource utilisation across the entire cluster.

● lsload -gpuload: Specifically monitors GPU utilisation.

Job Management Commands:

● bresume [job_ID]: Resumes executing a suspended job.
● bstop [job_ID]: Suspends a running job.
● bkill [job_ID]: Terminates a job in any state.
● brequeue [job_ID]: Requeues a job to be reprocessed.
● bswitch [queue_name] [job_ID]: Moves a job from one queue to another.
● bmod [options] [job_ID]: Modifies the parameters of a pending job.

These commands allow users to manage their jobs efficiently, ensuring optimal use of cluster
resources and minimizing downtime due to job errors or resource contention.

Killing Jobs
Suppose you have started a process that is not functioning correctly. To stop it, LSF provides the
bkill command. Here is how you can use it:

1. Identify the Job ID (JOBID): First, you need to find the JOBID of the problematic job. You
can do this using the bjobs command to list all your running jobs.

2. Kill the Job: Once you have identified the JOBID, you can kill the job using the following
command:

For example, to terminate a job with a JOBID of 12345, you would execute the following:

In a more complex scenario where you have generated hundreds of processes that are not functioning
correctly, you can use the bkill command to kill all jobs simultaneously. This is done using:

 19

More in detail:

● bjobs: This command lists all your active jobs, their JOBIDs, and statuses. It helps you
identify which jobs need to be terminated.

● bkill JOBID: This command terminates a specific job identified by its JOBID. It sends a
signal to stop the job immediately.

● bkill 0: This command kills all the jobs the user submits. It is useful when you need to
clear out many problematic jobs quickly.

Imagine you have submitted multiple jobs to test a script and realise an error is causing all the jobs
to hang or produce incorrect results. Instead of killing each job individually, you can use bkill 0
to terminate all of them in one go, allowing you to correct the error and resubmit the jobs more
efficiently.

Using these commands effectively ensures you can manage and control your job submissions,
minimize resource wastage, and improve overall system performance. For more detailed options and
advanced usage, refer to the official LSF documentation.

3. Conda Repository Management

The ANACONDA33 package manager is installed and configured on the BEN Cluster. Using this
package manager, conda environments can be created, and all the packages necessary to develop or
use a program can be installed. Specifically, the first thing to configure is the channels. For the
PowerPC architecture, IBM has defined its channels with distributions of packages specifically
modified to optimize the cluster architecture.

Configuring Conda Channels

One of these channels is:

To configure this channel in the system, you can use the following command (note that it is already configured
by default on the platform, so this step is not necessary):

3 https://docs.anaconda.com/

 20

Creating and Activating Conda Environments

To create a conda environment with everything needed to operate, use the following syntax for
creating and activating the environment:

For example, to create an environment named test_env with Python version 3.10, you would run:

Conda environments are private collections of software that reside in the user's home directory. The directory
that contains each user's default personal environment is ~/.conda/envs.

To immediately access executable tools on the cluster under consideration, below are some relevant
cases of interest and useful commands.

To determine which environments are immediately available, simply execute the command:

In this case, you can observe environments associated only with the user "gargiulo," while two
environments are valid for all users: base and wmlce16.

Now, you can activate one of the environments (for example, wmlce16) and check which packages
are available in it using the commands:

 21

Using the second command (conda list), you can list all the packages in the active environment,
specifying, for each one, the package name, version, version details (build), and the channel from
which the package was downloaded. Additionally, once the environment is activated, the initial text
in parentheses changes, indicating to the user which environment is active, from (base) to (wmlce16).

Listing and Activating Environments

To deactivate the environment, simply execute the command:

To install, update, or delete packages, it is best to clone the desired environment into your own using
the following command:

Now, let's see how to install a package. Suppose you need to install "scipy".

 22

First of all, it is necessary to activate a local user environment. In this case, the user environment
wmlce_2 has been chosen. Then, you search for the package and proceed to install the desired
version.

Currently, on IBM channels, the most updated version is 1.5.3, available on conda-forge:

In the example environment wmlce_2, a not-so-up-to-date version of scipy is currently installed,
as seen in the following screenshot:

If you wanted to install a specific version of the package, you would need to execute the command:

Instead, to update it, you need to execute the command:

In case you need to remove it, simply execute the command:

 23

In a conda environment, installing packages using Python's pip command is also possible. Pip (short
for Pip Installs Packages) is a command-line tool that allows you to install packages similarly to
conda. The packages are sourced from PyPI (Python Package Index), a global repository of thousands
of Python-related projects and programs. These are managed and organized based on package
versions and their dependencies. Refer to the documentation for a comprehensive list of all the
options available for this command.

In this case, the most up-to-date version of scipy on the conda channel matches the latest version
on PyPI. However, this is not always the case, as the latest compiled versions for the POWERPC
platform are not always available on this channel.

4. Cluster Access Modes

The cluster features two front-end nodes for redundancy: "ben-login" and "ems1". Users can connect
to either of these through a VPN. The internal addresses are 172.16.3.9 for ems1 and 172.16.3.10
for ben-login. Authentication occurs via SSH keys. Using a VPN ensures a secure connection to the
cluster.

The following Figure illustrates the main steps that a user must follow to connect to the IBM cluster
through the ben-login front-end:

1. Activation of the VPN network (OpenVPN)
2. Verification of front-end reachability
3. SSH authentication

 24

Before accessing the cluster, users must meet the following requirements:

● A VPN certificate for connecting to the front end (provided by the system administrator)
● A pair of RSA keys (public and private)

For Windows users, it is possible to generate the keys using PuTTYgen as follows:

For Linux users, the following shell command can be used: ssh-keygen -b 2048 -t rsa

 25

The public key must be provided to the Cluster administrator while the user uses the private key for
authentication.

Once authenticated, it is possible to launch, if necessary, a graphical interface using vncserver4.

The following figures show the SSH connection to the front end and the subsequent launch of a
vncserver graphical session.

4 https://www.realvnc.com/

 26

To create a new VNC connection, as illustrated in the figure below, it is sufficient to add the
connection port and the address of the front-end server to activate the graphical session.

5. Conclusion
This technical report presented BEN, an IBM-produced high-performance computing cluster
acquired by the Institute of High-Performance Computing and Networks (ICAR) of the National
Research Council (CNR) and other CNR Research Institutes.

 27

This operational guide aimed to provide a comprehensive overview of the BEN-Cluster, outlining its
hardware specifications, job management through the Platform Load Sharing Facility (LSF), and
software environment setup and management using Conda. Detailed instructions on simulating a
workstation environment via VNC are also included, facilitating a seamless transition for researchers
from their local machines to the cluster environment.

Future improvements will further align the infrastructure with GDPR directives and optimize service
management. Several operational modes for using this platform have been introduced. In the future,
if usage scenarios and requirements change, it might be possible to add or radically modify how users
interact with the cluster. For example, the modeling part should be optimized by providing a front-
end based on Jupyter/Anaconda.

References

1. IBM LSF Documentation - Comprehensive guide on using LSF for job scheduling and
resource management. Available at: IBM LSF Documentation

2. LSF Commands Quick Reference - A quick reference guide for commonly used LSF
commands. Available at: LSF Commands Quick Reference

3. Conda Documentation - Comprehensive guide on using Conda for environment and package
management.

4. IBM Power Systems Technical White Paper - A comprehensive guide on the POWER9 architecture
and its applications in high-performance computing.

5. NVIDIA Tesla V100 GPU Overview - Detailed specifications and performance metrics for the Tesla
V100 GPU.

6. HPC with IBM POWER9 and NVIDIA GPUs - A study on the integration of IBM POWER9
processors with NVIDIA GPUs in HPC environments.

